1
|
Prado C, Herrada AA, Hevia D, Goiry LG, Escobedo N. Role of innate immune cells in multiple sclerosis. Front Immunol 2025; 16:1540263. [PMID: 40034690 PMCID: PMC11872933 DOI: 10.3389/fimmu.2025.1540263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 01/28/2025] [Indexed: 03/05/2025] Open
Abstract
Multiple sclerosis (MS) is a chronic autoimmune, inflammatory and neurodegenerative disease affecting the central nervous system (CNS). MS is associated with a complex interplay between neurodegenerative and inflammatory processes, mostly attributed to pathogenic T and B cells. However, a growing body of preclinical and clinical evidence indicates that innate immunity plays a crucial role in MS promotion and progression. Accordingly, preclinical and clinical studies targeting different innate immune cells to control MS are currently under study, highlighting the importance of innate immunity in this pathology. Here, we reviewed recent findings regarding the role played by innate immune cells in the pathogenesis of MS. Additionally, we discuss potential new treatments for MS based on targets against innate immune components.
Collapse
Affiliation(s)
- Carolina Prado
- Laboratorio de Neuroinmunología, Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Santiago, Chile
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Andrés A. Herrada
- Lymphatic Vasculature and Inflammation Research Laboratory, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Talca, Chile
| | - Daniel Hevia
- Center for Studies and Innovation in Dentistry, Facultad de Odontología, Universidad Finis Terrae, Santiago, Chile
| | - Lorna Galleguillos Goiry
- Neurology and Psychiatry Department, Clínica Alemana, Neurology and Neurosurgery Department, Clínica Dávila, Santiago, Chile
| | - Noelia Escobedo
- Lymphatic Vasculature and Inflammation Research Laboratory, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Talca, Chile
| |
Collapse
|
2
|
Boziki M, Theotokis P, Kesidou E, Nella M, Bakirtzis C, Karafoulidou E, Tzitiridou-Chatzopoulou M, Doulberis M, Kazakos E, Deretzi G, Grigoriadis N, Kountouras J. Impact of Mast Cell Activation on Neurodegeneration: A Potential Role for Gut-Brain Axis and Helicobacter pylori Infection. Neurol Int 2024; 16:1750-1778. [PMID: 39728753 DOI: 10.3390/neurolint16060127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 11/08/2024] [Accepted: 12/03/2024] [Indexed: 12/28/2024] Open
Abstract
BACKGROUND The innate immune response aims to prevent pathogens from entering the organism and/or to facilitate pathogen clearance. Innate immune cells, such as macrophages, mast cells (MCs), natural killer cells and neutrophils, bear pattern recognition receptors and are thus able to recognize common molecular patterns, such as pathogen-associated molecular patterns (PAMPs), and damage-associated molecular patterns (DAMPs), the later occurring in the context of neuroinflammation. An inflammatory component in the pathology of otherwise "primary cerebrovascular and neurodegenerative" disease has recently been recognized and targeted as a means of therapeutic intervention. Activated MCs are multifunctional effector cells generated from hematopoietic stem cells that, together with dendritic cells, represent first-line immune defense mechanisms against pathogens and/or tissue destruction. METHODS This review aims to summarize evidence of MC implication in the pathogenesis of neurodegenerative diseases, namely, Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, Huntington's disease, and multiple sclerosis. RESULTS In view of recent evidence that the gut-brain axis may be implicated in the pathogenesis of neurodegenerative diseases and the characterization of the neuroinflammatory component in the pathology of these diseases, this review also focuses on MCs as potential mediators in the gut-brain axis bi-directional communication and the possible role of Helicobacter pylori, a gastric pathogen known to alter the gut-brain axis homeostasis towards local and systemic pro-inflammatory responses. CONCLUSION As MCs and Helicobacter pylori infection may offer targets of intervention with potential therapeutic implications for neurodegenerative disease, more clinical and translational evidence is needed to elucidate this field.
Collapse
Affiliation(s)
- Marina Boziki
- Laboratory of Experimental Neurology and Neuroimmunology, the Multiple Sclerosis Center, 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Paschalis Theotokis
- Laboratory of Experimental Neurology and Neuroimmunology, the Multiple Sclerosis Center, 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Evangelia Kesidou
- Laboratory of Experimental Neurology and Neuroimmunology, the Multiple Sclerosis Center, 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Maria Nella
- Laboratory of Experimental Neurology and Neuroimmunology, the Multiple Sclerosis Center, 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Christos Bakirtzis
- Laboratory of Experimental Neurology and Neuroimmunology, the Multiple Sclerosis Center, 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Eleni Karafoulidou
- Laboratory of Experimental Neurology and Neuroimmunology, the Multiple Sclerosis Center, 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Maria Tzitiridou-Chatzopoulou
- Second Medical Clinic, School of Medicine, Ippokration Hospital, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece
- Midwifery Department, School of Healthcare Sciences, University of West Macedonia, Koila, 50100 Kozani, Greece
| | - Michael Doulberis
- Second Medical Clinic, School of Medicine, Ippokration Hospital, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece
- Gastroklinik, Private Gastroenterological Practice, 8810 Horgen, Switzerland
- Division of Gastroenterology and Hepatology, Medical University Department, 5001 Aarau, Switzerland
| | - Evangelos Kazakos
- Second Medical Clinic, School of Medicine, Ippokration Hospital, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece
| | - Georgia Deretzi
- Second Medical Clinic, School of Medicine, Ippokration Hospital, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece
- Department of Neurology, Papageorgiou General Hospital, 54629 Thessaloniki, Greece
| | - Nikolaos Grigoriadis
- Laboratory of Experimental Neurology and Neuroimmunology, the Multiple Sclerosis Center, 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Jannis Kountouras
- Second Medical Clinic, School of Medicine, Ippokration Hospital, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece
| |
Collapse
|
3
|
Zelante T, Paolicelli G, Fallarino F, Gargaro M, Vascelli G, De Zuani M, Fric J, Laznickova P, Kohoutkova MH, Macchiarulo A, Dolciami D, Pieraccini G, Gaetani L, Scalisi G, Trevisan C, Frossi B, Pucillo C, De Luca A, Nunzi E, Spaccapelo R, Pariano M, Borghi M, Boscaro F, Romoli R, Mancini A, Gentili L, Renga G, Costantini C, Puccetti M, Giovagnoli S, Ricci M, Antonini M, Calabresi P, Puccetti P, Di Filippo M, Romani L. A microbially produced AhR ligand promotes a Tph1-driven tolerogenic program in multiple sclerosis. Sci Rep 2024; 14:6651. [PMID: 38509264 PMCID: PMC10954611 DOI: 10.1038/s41598-024-57400-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 03/18/2024] [Indexed: 03/22/2024] Open
Abstract
Multiple sclerosis is a debilitating autoimmune disease, characterized by chronic inflammation of the central nervous system. While the significance of the gut microbiome on multiple sclerosis pathogenesis is established, the underlining mechanisms are unknown. We found that serum levels of the microbial postbiotic tryptophan metabolite indole-3-carboxaldehyde (3-IAld) inversely correlated with disease duration in multiple sclerosis patients. Much like the host-derived tryptophan derivative L-Kynurenine, 3-IAld would bind and activate the Aryl hydrocarbon Receptor (AhR), which, in turn, controls endogenous tryptophan catabolic pathways. As a result, in peripheral lymph nodes, microbial 3-IAld, affected mast-cell tryptophan metabolism, forcing mast cells to produce serotonin via Tph1. We thus propose a protective role for AhR-mast-cell activation driven by the microbiome, whereby natural metabolites or postbiotics will have a physiological role in immune homeostasis and may act as therapeutic targets in autoimmune diseases.
Collapse
Affiliation(s)
- Teresa Zelante
- Department of Medicine and Surgery, University of Perugia, Piazza Lucio Severi, 1, 06132, Perugia, Italy.
- Interuniversity Consortium for Biotechnology, (CIB), 34149, Trieste, Italy.
| | - Giuseppe Paolicelli
- Department of Medicine and Surgery, University of Perugia, Piazza Lucio Severi, 1, 06132, Perugia, Italy
| | - Francesca Fallarino
- Department of Medicine and Surgery, University of Perugia, Piazza Lucio Severi, 1, 06132, Perugia, Italy
| | - Marco Gargaro
- Department of Medicine and Surgery, University of Perugia, Piazza Lucio Severi, 1, 06132, Perugia, Italy
| | - Gianluca Vascelli
- Department of Medicine and Surgery, University of Perugia, Piazza Lucio Severi, 1, 06132, Perugia, Italy
| | - Marco De Zuani
- International Clinical Research Centre, St. Anne's University Hospital Brno, Brno, Czech Republic
| | - Jan Fric
- International Clinical Research Centre, St. Anne's University Hospital Brno, Brno, Czech Republic
- Institute of Hematology and Blood Transfusion, U Nemocnice 2094/1, 128 20, Prague, Czech Republic
- International Clinical Research Centre, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Petra Laznickova
- International Clinical Research Centre, St. Anne's University Hospital Brno, Brno, Czech Republic
- International Clinical Research Centre, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Marcela Hortova Kohoutkova
- International Clinical Research Centre, St. Anne's University Hospital Brno, Brno, Czech Republic
- International Clinical Research Centre, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Antonio Macchiarulo
- Department of Pharmaceutical Science, University of Perugia, 06132, Perugia, Italy
| | - Daniela Dolciami
- Department of Pharmaceutical Science, University of Perugia, 06132, Perugia, Italy
| | - Giuseppe Pieraccini
- Mass Spectrometry Center (CISM), University of Florence, 50139, Florence, Italy
| | - Lorenzo Gaetani
- Department of Medicine and Surgery, University of Perugia, Piazza Lucio Severi, 1, 06132, Perugia, Italy
| | - Giulia Scalisi
- Department of Medicine and Surgery, University of Perugia, Piazza Lucio Severi, 1, 06132, Perugia, Italy
| | - Caterina Trevisan
- Department of Medical and Biological Science, University of Udine, 33100, Udine, Italy
| | - Barbara Frossi
- Department of Medical and Biological Science, University of Udine, 33100, Udine, Italy
| | - Carlo Pucillo
- Department of Medical and Biological Science, University of Udine, 33100, Udine, Italy
| | - Antonella De Luca
- Department of Medicine and Surgery, University of Perugia, Piazza Lucio Severi, 1, 06132, Perugia, Italy
| | - Emilia Nunzi
- Department of Medicine and Surgery, University of Perugia, Piazza Lucio Severi, 1, 06132, Perugia, Italy
- Center of Functional Genomics, C.U.R.Ge.F, University of Perugia, 06132, Perugia, Italy
| | - Roberta Spaccapelo
- Department of Medicine and Surgery, University of Perugia, Piazza Lucio Severi, 1, 06132, Perugia, Italy
- Center of Functional Genomics, C.U.R.Ge.F, University of Perugia, 06132, Perugia, Italy
- Interuniversity Consortium for Biotechnology, (CIB), 34149, Trieste, Italy
| | - Marilena Pariano
- Department of Medicine and Surgery, University of Perugia, Piazza Lucio Severi, 1, 06132, Perugia, Italy
| | - Monica Borghi
- Department of Medicine and Surgery, University of Perugia, Piazza Lucio Severi, 1, 06132, Perugia, Italy
| | - Francesca Boscaro
- Mass Spectrometry Center (CISM), University of Florence, 50139, Florence, Italy
| | - Riccardo Romoli
- Mass Spectrometry Center (CISM), University of Florence, 50139, Florence, Italy
| | - Andrea Mancini
- Department of Medicine and Surgery, University of Perugia, Piazza Lucio Severi, 1, 06132, Perugia, Italy
| | - Lucia Gentili
- Department of Medicine and Surgery, University of Perugia, Piazza Lucio Severi, 1, 06132, Perugia, Italy
| | - Giorgia Renga
- Department of Medicine and Surgery, University of Perugia, Piazza Lucio Severi, 1, 06132, Perugia, Italy
| | - Claudio Costantini
- Department of Medicine and Surgery, University of Perugia, Piazza Lucio Severi, 1, 06132, Perugia, Italy
| | - Matteo Puccetti
- Department of Pharmaceutical Science, University of Perugia, 06132, Perugia, Italy
| | - Stefano Giovagnoli
- Department of Pharmaceutical Science, University of Perugia, 06132, Perugia, Italy
| | - Maurizio Ricci
- Department of Pharmaceutical Science, University of Perugia, 06132, Perugia, Italy
| | - Martina Antonini
- Department of Medicine and Surgery, University of Perugia, Piazza Lucio Severi, 1, 06132, Perugia, Italy
| | - Paolo Calabresi
- Unità di Neurologia, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Rome, Italy
| | - Paolo Puccetti
- Department of Medicine and Surgery, University of Perugia, Piazza Lucio Severi, 1, 06132, Perugia, Italy
- Center of Functional Genomics, C.U.R.Ge.F, University of Perugia, 06132, Perugia, Italy
| | - Massimiliano Di Filippo
- Department of Medicine and Surgery, University of Perugia, Piazza Lucio Severi, 1, 06132, Perugia, Italy
| | - Luigina Romani
- Department of Medicine and Surgery, University of Perugia, Piazza Lucio Severi, 1, 06132, Perugia, Italy
- Center of Functional Genomics, C.U.R.Ge.F, University of Perugia, 06132, Perugia, Italy
| |
Collapse
|
4
|
Kveštak D, Mihalić A, Jonjić S, Brizić I. Innate lymphoid cells in neuroinflammation. Front Cell Neurosci 2024; 18:1364485. [PMID: 38450285 PMCID: PMC10915051 DOI: 10.3389/fncel.2024.1364485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 02/09/2024] [Indexed: 03/08/2024] Open
Abstract
Innate lymphoid cells (ILCs) are largely tissue-resident cells that participate in the maintenance of tissue homeostasis and react early to inflammatory events. Mature ILCs are divided into three major groups based on the transcription factors required for their development and function. Under physiological conditions, ILCs are present within the choroid plexus and meninges while the CNS parenchyma is almost devoid of these cells. However, pathological conditions such as autoimmune neuroinflammation and viral infections of the CNS result in the infiltration of ILCs into parenchyma. In this article, we provide an overview of the involvement and function of the ILCs within the CNS during physiological conditions and in infections, autoimmune diseases, neurodegeneration, and injury.
Collapse
Affiliation(s)
- Daria Kveštak
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Andrea Mihalić
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Stipan Jonjić
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
- Department of Biomedical Sciences, Croatian Academy of Sciences and Arts, Rijeka, Croatia
| | - Ilija Brizić
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| |
Collapse
|
5
|
Sabaté San José A, Petersen PH. Absence of meningeal mast cells in the Mitf mutant mouse. Front Cell Neurosci 2024; 18:1337621. [PMID: 38405598 PMCID: PMC10884230 DOI: 10.3389/fncel.2024.1337621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/17/2024] [Indexed: 02/27/2024] Open
Abstract
Mast cells (MCs) are located in the meninges of the central nervous system (CNS), where they play key roles in the immune response. MC-deficient mice are advantageous in delineating the role of MCs in the immune response in vivo. In this study, we illustrate that a mutation in microphthalmia-associated transcription factor (Mitf) affects meningeal MC number in a dosage-dependent manner. C57BL/6J Mitf null mice lack meningeal MCs completely, whereas heterozygous mice have on average 25% fewer MCs. Mitf heterozygous mice might be a valuable tool to study the role of MCs in the meninges.
Collapse
Affiliation(s)
- Alba Sabaté San José
- Department of Anatomy, Biomedical Center, Faculty of Medicine, University of Iceland, Reykjavik, Iceland
- ULB Neuroscience Institute (UNI), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Petur Henry Petersen
- Department of Anatomy, Biomedical Center, Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| |
Collapse
|
6
|
Dünschede J, Ruschil C, Bender B, Mengel A, Lindig T, Ziemann U, Kowarik MC. Clinical-Radiological Mismatch in Multiple Sclerosis Patients during Acute Relapse: Discrepancy between Clinical Symptoms and Active, Topographically Fitting MRI Lesions. J Clin Med 2023; 12:jcm12030739. [PMID: 36769392 PMCID: PMC9917396 DOI: 10.3390/jcm12030739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/11/2022] [Accepted: 01/07/2023] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Relapses in multiple sclerosis (MS) patients are usually defined as subacute clinical symptoms that last for at least 24 h. To validate a clinical relapse on magnetic resonance imaging (MRI), an anatomically fitting lesion with gadolinium enhancement in the central nervous system (CNS) would be mandatory. The aim of this study was to validate clinical relapses in regard to the concomitant detection of active, anatomically fitting MRI lesions. METHODS We performed a retrospective analysis of 199 MS patients with acute relapse who had received an MRI scan before the initiation of methylprednisolone (MPS) therapy. Clinical data and MRIs were systematically reanalyzed by correlating clinical symptoms with their anatomical representation in the CNS. Patients were then categorized into subgroups with a clinical-radiological match (group 1) or clinical-radiological mismatch (group 2) between symptoms and active, topographically fitting lesions and further analyzed in regard to clinical characteristics. RESULTS In 43% of our patients, we observed a clinical-radiological mismatch (group 2). Further analysis of patient characteristics showed that these patients were significantly older at the time of relapse. MS patients in group 2 also showed a significantly longer disease duration and significantly more previous relapses when compared to group 1. Comparing symptom clusters, the appearance of motor dysfunction during the current relapse was significantly more frequent in group 2 than in group 1. The overall dose of MPS treatment was significantly lower in group 2 than in group 1 with a similar treatment response in both groups. CONCLUSIONS The substantial clinical-radiological mismatch during acute relapse in our study could be explained by several factors, including a psychosomatic component or disturbance of network connectivity. Alternatively, secondary progression or a diffuse neuro-inflammatory process might cause clinical symptoms, especially in older patients with a longer disease duration. As a consequence, treatment of clinical relapses and the definition of breakthrough disease should be reconsidered in regard to combined clinical and MRI criteria and/or additional biomarkers. Further studies are necessary to address the contribution of diffuse neuro-inflammation to the clinical presentation of symptoms.
Collapse
Affiliation(s)
- Jutta Dünschede
- Department of Neurology & Stroke, Hertie-Institute for Clinical Brain Research, Eberhard-Karls University of Tübingen, 72076 Tübingen, Germany
| | - Christoph Ruschil
- Department of Neurology & Stroke, Hertie-Institute for Clinical Brain Research, Eberhard-Karls University of Tübingen, 72076 Tübingen, Germany
| | - Benjamin Bender
- Department of Neuroradiology, Eberhard-Karls University of Tübingen, 72076 Tübingen, Germany
| | - Annerose Mengel
- Department of Neurology & Stroke, Hertie-Institute for Clinical Brain Research, Eberhard-Karls University of Tübingen, 72076 Tübingen, Germany
| | - Tobias Lindig
- Department of Neuroradiology, Eberhard-Karls University of Tübingen, 72076 Tübingen, Germany
| | - Ulf Ziemann
- Department of Neurology & Stroke, Hertie-Institute for Clinical Brain Research, Eberhard-Karls University of Tübingen, 72076 Tübingen, Germany
| | - Markus C. Kowarik
- Department of Neurology & Stroke, Hertie-Institute for Clinical Brain Research, Eberhard-Karls University of Tübingen, 72076 Tübingen, Germany
- Correspondence:
| |
Collapse
|
7
|
Asante I, Louie S, Yassine HN. Uncovering mechanisms of brain inflammation in Alzheimer's disease with APOE4: Application of single cell-type lipidomics. Ann N Y Acad Sci 2022; 1518:84-105. [PMID: 36200578 PMCID: PMC10092192 DOI: 10.1111/nyas.14907] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A chronic state of unresolved inflammation in Alzheimer's disease (AD) is intrinsically involved with the remodeling of brain lipids. This review highlights the effect of carrying the apolipoprotein E ε4 allele (APOE4) on various brain cell types in promoting an unresolved inflammatory state. Among its pleotropic effects on brain lipids, we focus on APOE4's activation of Ca2+ -dependent phospholipase A2 (cPLA2) and its effects on arachidonic acid, eicosapentaenoic acid, and docosahexaenoic acid signaling cascades in the brain. During the process of neurodegeneration, various brain cell types, such as astrocytes, microglia, and neurons, together with the neurovascular unit, develop distinct inflammatory phenotypes that impact their functions and have characteristic lipidomic fingerprints. We propose that lipidomic phenotyping of single cell-types harvested from brains differing by age, sex, disease severity stage, and dietary and genetic backgrounds can be employed to probe mechanisms of neurodegeneration. A better understanding of the brain cellular inflammatory/lipidomic response promises to guide the development of nutritional and drug interventions for AD dementia.
Collapse
Affiliation(s)
- Isaac Asante
- Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Stan Louie
- School of Pharmacy, University of Southern California, Los Angeles, California, USA
| | - Hussein N Yassine
- Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
8
|
Early life adversity drives sex-specific anhedonia and meningeal immune gene expression through mast cell activation. Brain Behav Immun 2022; 103:73-84. [PMID: 35339629 PMCID: PMC9149134 DOI: 10.1016/j.bbi.2022.03.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 02/25/2022] [Accepted: 03/16/2022] [Indexed: 01/06/2023] Open
Abstract
Exposure to early life adversity (ELA) in the form of physical and/or psychological abuse or neglect increases the risk of developing psychiatric and inflammatory disorders later in life. It has been hypothesized that exposure to ELA results in persistent, low grade inflammation that leads to increased disease susceptibility by amplifying the crosstalk between stress-processing brain networks and the immune system, but the mechanisms remain largely unexplored. The meninges, a layer of three overlapping membranes that surround the central nervous system (CNS)- dura mater, arachnoid, and piamater - possess unique features that allow them to play a key role in coordinating immune trafficking between the brain and the peripheral immune system. These include a network of lymphatic vessels that carry cerebrospinal fluid from the brain to the deep cervical lymph nodes, fenestrated blood vessels that allow the passage of molecules from blood to the CNS, and a rich population of resident mast cells, master regulators of the immune system. Using a mouse model of ELA consisting of neonatal maternal separation plus early weaning (NMSEW), we sought to explore the effects of ELA on sucrose preference behavior, dura mater expression of inflammatory markers and mast cell histology in adult male and female C57Bl/6 mice. We found that NMSEW alone does not affect sucrose preference behavior in males or females, but it increases the dura mater expression of the genes coding for mast cell protease CMA1 (cma1) and the inflammatory cytokine TNF alpha (tnf alpha) in females. When NMSEW is combined with an adult mild stress (that does not affect behavior or gene expression in NH animals) females show reduced sucrose preference and even greater increases in meningeal cma1 levels. Interestingly, systemic administration of the mast cell stabilizer Ketotifen before exposure to adult stress prevents both, reduction in sucrose preference an increases in cma1 expression in NMSEW females, but facilitates stress-induced sucrose anhedonia in NMSEW males and NH females. Finally, histological analyses showed that, compared to males, females have increased baseline activation levels of mast cells located in the transverse sinus of the dura mater, where the meningeal lymphatics run along, and that, in males and females exposed to adult stress, NMSEW increases the number of mast cells in the interparietal region of the dura mater and the levels of mast cell activation in the sagittal sinus regions of the dura mater. Together, our results indicate that ELA induces long-term meningeal immune gene changes and heightened sensitivity to adult stress-induced behavioral and meningeal immune responses and that these effects could mediated via mast cells.
Collapse
|
9
|
Male-specific coordinated changes in expression of miRNA genes, but not other genes within the DLK1-DIO3 locus in multiple sclerosis. Gene 2022; 836:146676. [PMID: 35714798 DOI: 10.1016/j.gene.2022.146676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/03/2022] [Accepted: 06/10/2022] [Indexed: 11/21/2022]
Abstract
The role of miRNAs, small non-coding regulatory RNAs, in the molecular mechanisms of multiple sclerosis (MS) development has been intensively studied. MiRNAs tend to be clustered within imprinted regions, and the largest number of miRNA genes is observed in the DLK1-DIO3 locus. Earlier using RNA-seq we identified sex-specific upregulation of the set of miRNA genes from this locus in peripheral blood mononuclear cells (PBMC) of treatment-naive relapsing-remitting MS (RRMS) patients. In the present study we set up to independently investigate the expression of a vast array of genes present in the DLK1-DIO3 imprinted locus. First, we analyzed the expression of miRNA genes, which levels in RRMS were mostly inconsistent based on RNA-seq data and not previously explored using qPCR. We identified that all selected miRNAs - miR-337-3p and -665 from 14q32.2 cluster and miR-370c, -380, -494, -654-3p, -300, -539, -668, and -323b-5p - were upregulated in MS men, but not women when compared to controls, regardless of conflicting RNA-seq data. The expression of miRNAs from the DLK1-DIO3 locus was highly correlated, indicating the existence of a common regulatory mechanism(s) that controls miRNA expression, regardless of the position of their genes within this region. Second, we performed the expression analysis of non-miRNA genes within the locus. The genes encoding proteins (DLK1, DIO3, RTL1), long non-coding RNAs (MEG3, MEG8, and MEG9) and small nucleolar RNAs (SNORD112, SNORD113-5, SNORD113-7, SNORD114-3, SNORD114-8, SNORD114-19) were not dysregulated in RRMS both in men and women. DNA methylation analysis of selected CpG sites within the differentially methylated regions IG-DMR, MEG3-DMR, and MEG8-DMR of the DLK1-DIO3 imprinted locus pointed out that they were not involved in the regulation of miRNA gene expression in RRMS, at least in PBMC population. The question of whether the observed changes in expression of miRNA genes (given that there is a constant expression of other non-miRNA genes of the DLK1-DIO3 locus) are involved in the development of RRMS or are they a consequence of the disease progress, remains open and needs further investigation.
Collapse
|
10
|
Cui Y, Yu H, Bu Z, Wen L, Yan L, Feng J. Focus on the Role of the NLRP3 Inflammasome in Multiple Sclerosis: Pathogenesis, Diagnosis, and Therapeutics. Front Mol Neurosci 2022; 15:894298. [PMID: 35694441 PMCID: PMC9175009 DOI: 10.3389/fnmol.2022.894298] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/05/2022] [Indexed: 12/11/2022] Open
Abstract
Neuroinflammation is initiated with an aberrant innate immune response in the central nervous system (CNS) and is involved in many neurological diseases. Inflammasomes are intracellular multiprotein complexes that can be used as platforms to induce the maturation and secretion of proinflammatory cytokines and pyroptosis, thus playing a pivotal role in neuroinflammation. Among the inflammasomes, the nucleotide-binding oligomerization domain-, leucine-rich repeat- and pyrin domain-containing 3 (NLRP3) inflammasome is well-characterized and contributes to many neurological diseases, such as multiple sclerosis (MS), Alzheimer's disease (AD), and ischemic stroke. MS is a chronic autoimmune disease of the CNS, and its hallmarks include chronic inflammation, demyelination, and neurodegeneration. Studies have demonstrated a relationship between MS and the NLRP3 inflammasome. To date, the pathogenesis of MS is not fully understood, and clinical studies on novel therapies are still underway. Here, we review the activation mechanism of the NLRP3 inflammasome, its role in MS, and therapies targeting related molecules, which may be beneficial in MS.
Collapse
|
11
|
Derk J, Jones HE, Como C, Pawlikowski B, Siegenthaler JA. Living on the Edge of the CNS: Meninges Cell Diversity in Health and Disease. Front Cell Neurosci 2021; 15:703944. [PMID: 34276313 PMCID: PMC8281977 DOI: 10.3389/fncel.2021.703944] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 06/08/2021] [Indexed: 12/30/2022] Open
Abstract
The meninges are the fibrous covering of the central nervous system (CNS) which contain vastly heterogeneous cell types within its three layers (dura, arachnoid, and pia). The dural compartment of the meninges, closest to the skull, is predominantly composed of fibroblasts, but also includes fenestrated blood vasculature, an elaborate lymphatic system, as well as immune cells which are distinct from the CNS. Segregating the outer and inner meningeal compartments is the epithelial-like arachnoid barrier cells, connected by tight and adherens junctions, which regulate the movement of pathogens, molecules, and cells into and out of the cerebral spinal fluid (CSF) and brain parenchyma. Most proximate to the brain is the collagen and basement membrane-rich pia matter that abuts the glial limitans and has recently be shown to have regional heterogeneity within the developing mouse brain. While the meninges were historically seen as a purely structural support for the CNS and protection from trauma, the emerging view of the meninges is as an essential interface between the CNS and the periphery, critical to brain development, required for brain homeostasis, and involved in a variety of diseases. In this review, we will summarize what is known regarding the development, specification, and maturation of the meninges during homeostatic conditions and discuss the rapidly emerging evidence that specific meningeal cell compartments play differential and important roles in the pathophysiology of a myriad of diseases including: multiple sclerosis, dementia, stroke, viral/bacterial meningitis, traumatic brain injury, and cancer. We will conclude with a list of major questions and mechanisms that remain unknown, the study of which represent new, future directions for the field of meninges biology.
Collapse
Affiliation(s)
- Julia Derk
- Section of Developmental Biology, Department of Pediatrics, University of Colorado, Aurora, CO, United States
| | - Hannah E. Jones
- Section of Developmental Biology, Department of Pediatrics, University of Colorado, Aurora, CO, United States
- Cell Biology, Stem Cells and Development Graduate Program, University of Colorado, Anschutz Medical Campus, Aurora, CO, United States
| | - Christina Como
- Section of Developmental Biology, Department of Pediatrics, University of Colorado, Aurora, CO, United States
- Neuroscience Graduate Program, University of Colorado, Aurora, CO, United States
| | - Bradley Pawlikowski
- Section of Developmental Biology, Department of Pediatrics, University of Colorado, Aurora, CO, United States
| | - Julie A. Siegenthaler
- Section of Developmental Biology, Department of Pediatrics, University of Colorado, Aurora, CO, United States
- Cell Biology, Stem Cells and Development Graduate Program, University of Colorado, Anschutz Medical Campus, Aurora, CO, United States
- Neuroscience Graduate Program, University of Colorado, Aurora, CO, United States
| |
Collapse
|
12
|
Charitos IA, Castellaneta F, Santacroce L, Bottalico L. Historical Anecdotes and Breakthroughs of Histamine: From Discovery to Date. Endocr Metab Immune Disord Drug Targets 2021; 21:801-814. [PMID: 32727338 DOI: 10.2174/1871530320666200729150124] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 06/04/2020] [Accepted: 06/22/2020] [Indexed: 11/22/2022]
Abstract
AIM Investigating about the history of allergies and discovery of the histamine's role in the immune response through historical references, starting with ancient anecdotes, analysing the first immunization attempts on animals to understand its importance as the anaphylaxis mediator. Moreover, we shortly resume the most recent discoveries on mast cell role in allergic diseases throughout the latest updates on its antibody-independent receptors. METHODS Publications, including reviews, treatment guidelines, historical and medical books, on the topic of interest were found on Medline, PubMed, Web of Knowledge, Web of Science, Google Scholar, Elsevier's (EMBASE.comvarious internet museum archives. Texts from the National Library of Greece (Stavros Niarchos Foundation), from the School of Health Sciences of the National and Kapodistrian University of Athens (Greece). We selected key articles which could provide ahistorical and scientific insight into histamine molecule and its mechanism of action's discovery starting with Egyptian, Greek and Chinese antiquity to end with the more recent pharmacological and molecular discoveries. RESULTS Allergic diseases were described by medicine since ancient times, without exactly understanding the physio-pathologic mechanisms of immuno-mediated reactions and of their most important biochemical mediator, histamine. Researches on histamine and allergic mechanisms started at the beginning of the 20th century with the first experimental observations on animals of anaphylactic reactions. Histamine was then identified as their major mediator of many allergic diseases and anaphylaxis, but also of several physiologic body's functions, and its four receptors were characterized. Modern researches focus their attention on the fundamental role of the antibody-independent receptors of mast cells in allergic mechanisms, such as MRGPRX2, ADGRE2 and IL-33 receptor. CONCLUSION New research should investigate how to modulate immunity cells activity in order to better investigate possible multi-target therapies for host's benefits in preclinical and clinical studies on allergic diseases in which mast cells play a major role.
Collapse
Affiliation(s)
- Ioannis A Charitos
- CEDICLO - Interdepartmental Research Center for Pre-Latin, Latin and Oriental Rights and Culture Studies, University of Bari, Bari, Italy
| | | | - Luigi Santacroce
- CEDICLO - Interdepartmental Research Center for Pre-Latin, Latin and Oriental Rights and Culture Studies, University of Bari, Bari, Italy
| | - Lucrezia Bottalico
- CEDICLO - Interdepartmental Research Center for Pre-Latin, Latin and Oriental Rights and Culture Studies, University of Bari, Bari, Italy
| |
Collapse
|
13
|
Magrone T, Magrone M, Jirillo E. Mast Cells as a Double Edged Sword in Immunity: Disorders of Mast Cell Activation and Therapeutic Management. Second of Two Parts. Endocr Metab Immune Disord Drug Targets 2021; 20:670-686. [PMID: 31789136 DOI: 10.2174/1871530319666191202121644] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 10/23/2019] [Accepted: 10/23/2019] [Indexed: 12/20/2022]
Abstract
Mast cells (MCs) bear many receptors that allow them to respond to a variety of exogenous and endogenous stimuli. However, MC function is dual since they can initiate pathological events or protect the host against infectious challenges. The role of MCs in disease will be analyzed in a broad sense, describing cellular and molecular mechanisms related to their involvement in auto-inflammatory diseases, asthma, autoimmune diseases and cancer. On the other hand, their protective role in the course of bacterial, fungal and parasitic infections will also be illustrated. As far as treatment of MC-derived diseases is concerned, allergen immunotherapy as well as other attempts to reduce MC-activation will be outlined according to the recent data. Finally, in agreement with current literature and our own data polyphenols have been demonstrated to attenuate type I allergic reactions and contact dermatitis in response to nickel. The use of polyphenols in these diseases will be discussed also in view of MC involvement.
Collapse
Affiliation(s)
- Thea Magrone
- Department of Basic Medical Sciences, Neuroscience and Sensory Organs, School of Medicine, University of Bari "Aldo Moro", Bari, Italy
| | - Manrico Magrone
- Department of Basic Medical Sciences, Neuroscience and Sensory Organs, School of Medicine, University of Bari "Aldo Moro", Bari, Italy
| | - Emilio Jirillo
- Department of Basic Medical Sciences, Neuroscience and Sensory Organs, School of Medicine, University of Bari "Aldo Moro", Bari, Italy
| |
Collapse
|
14
|
Sandhu JK, Kulka M. Decoding Mast Cell-Microglia Communication in Neurodegenerative Diseases. Int J Mol Sci 2021; 22:ijms22031093. [PMID: 33499208 PMCID: PMC7865982 DOI: 10.3390/ijms22031093] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/16/2021] [Accepted: 01/17/2021] [Indexed: 12/12/2022] Open
Abstract
Microglia, resident immune cells of the central nervous system (CNS), play a pivotal role in immune surveillance and maintenance of neuronal health. Mast cells are also important resident immune cells of the CNS but they are underappreciated and understudied. Both microglia and mast cells are endowed with an array of signaling receptors that recognize microbes and cellular damage. As cellular sensors and effectors in the CNS, they respond to many CNS perturbations and have been implicated in neuroinflammation and neurodegeneration. Mast cells contain numerous secretory granules packaged with a plethora of readily available and newly synthesized compounds known as 'mast cell mediators'. Mast cells act as 'first responders' to a pathogenic stimuli and respond by degranulation and releasing these mediators into the extracellular milieu. They alert other glial cells, including microglia to initiate neuroinflammatory processes that culminate in the resolution of injury. However, failure to resolve the pathogenic process can lead to persistent activation, release of pro-inflammatory mediators and amplification of neuroinflammatory responses, in turn, resulting in neuronal dysfunction and demise. This review discusses the current understanding of the molecular conversation between mast cells and microglia in orchestrating immune responses during two of the most prevalent neurodegenerative diseases, namely Alzheimer's disease and Parkinson's disease. Here we also survey the potential emerging therapeutic approaches targeting common pathways in mast cells and microglia to extinguish the fire of inflammation.
Collapse
Affiliation(s)
- Jagdeep K. Sandhu
- Human Health Therapeutics Research Centre, National Research Council Canada, 1200 Montreal Road, Ottawa, ON K1A 0R6, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
- Correspondence: (J.K.S.); (M.K.); Tel.: +1-613-993-5304 (J.K.S.); +1-780-641-1687 (M.K.)
| | - Marianna Kulka
- Nanotechnology Research Centre, National Research Council Canada, 11421 Saskatchewan Drive, Edmonton, AB T6G 2M9, Canada
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2E1, Canada
- Correspondence: (J.K.S.); (M.K.); Tel.: +1-613-993-5304 (J.K.S.); +1-780-641-1687 (M.K.)
| |
Collapse
|
15
|
Zheng J, Sariol A, Meyerholz D, Zhang Q, Abrahante Lloréns JE, Narumiya S, Perlman S. Prostaglandin D2 signaling in dendritic cells is critical for the development of EAE. J Autoimmun 2020; 114:102508. [PMID: 32624353 PMCID: PMC7332282 DOI: 10.1016/j.jaut.2020.102508] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/08/2020] [Accepted: 06/12/2020] [Indexed: 12/24/2022]
Abstract
Priming of autoreactive T cells in lymph nodes by dendritic cells (DCs) is critical for the pathogenesis of experimental autoimmune encephalitis (EAE). DC activation reflects a balance of pro- and anti-inflammatory signals. One anti-inflammatory factor is prostaglandin D2 signaling through its cognate receptor, D-prostanoid receptor 1 (PTGDR), on myeloid cells. Loss of PTGDR signaling might be expected to enhance DC activation and EAE but here we show that PTGDR−/− mice developed only mild signs of MOG35-55 peptide immunization-induced EAE. Compared to wild type mice, PTGDR−/− mice exhibited less demyelination, decreased leukocyte infiltration and diminished microglia activation. These effects resulted from increased pro-inflammatory responses in the lymph nodes, most notably in IL-1β production, with the unexpected consequence of increased activation-induced apoptosis of MOG35-55 peptide-specific T cells. Conditional deletion of PTGDR on DCs, and not other myeloid cells ameliorated EAE. Together, these results demonstrate the indispensable role that PGD2/PTGDR signaling on DCs has in development of pathogenic T cells in autoimmune demyelination. Increased T cell activation occurred in PTGDR−/- mice resulting in T cell apoptosis. AICD decreased T cell infiltration into, and demyelination in CNS during EAE. Decreased PGD2/PTGDR signaling in DCs resulted in increased IL-1β expression. Anakinra treatment in PTGDR−/- mice increased EAE severity.
Collapse
Affiliation(s)
- Jian Zheng
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, USA
| | - Alan Sariol
- Interdisciplinary Program in Immunology, University of Iowa, Iowa City, IA, USA
| | - David Meyerholz
- Department of Pathology, University of Iowa, Iowa City, IA, USA
| | - Qinran Zhang
- School of Mathematics and Statistics, Wuhan University, Wuhan, PR China
| | | | - Shuh Narumiya
- Department of Pharmacology, Kyoto University, Tokyo, 606-8501, Japan
| | - Stanley Perlman
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, USA; Interdisciplinary Program in Immunology, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
16
|
Pinke KH, Zorzella-Pezavento SFG, de Campos Fraga-Silva TF, Mimura LAN, de Oliveira LRC, Ishikawa LLW, Fernandes AAH, Lara VS, Sartori A. Calming Down Mast Cells with Ketotifen: A Potential Strategy for Multiple Sclerosis Therapy? Neurotherapeutics 2020; 17:218-234. [PMID: 31463682 PMCID: PMC7007452 DOI: 10.1007/s13311-019-00775-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic autoimmune disease of the central nervous system (CNS) characterized by extensive inflammation, demyelination, axonal loss and gliosis. Evidence indicates that mast cells contribute to immunopathogenesis of both MS and experimental autoimmune encephalomyelitis (EAE), which is the most employed animal model to study this disease. Considering the inflammatory potential of mast cells, their presence at the CNS and their stabilization by certain drugs, we investigated the effect of ketotifen fumarate (Ket) on EAE development. EAE was induced in C57BL/6 mice by immunization with MOG35-55 and the animals were injected daily with Ket from the seventh to the 17th day after disease induction. This early intervention with Ket significantly reduced disease prevalence and severity. The protective effect was concomitant with less NLRP3 inflammasome activation, rebalanced oxidative stress and also reduced T cell infiltration at the CNS. Even though Ket administration did not alter mast cell percentage at the CNS, it decreased the local CPA3 and CMA1 mRNA expression that are enzymes typically produced by these cells. Evaluation of the CNS-barrier permeability indicated that Ket clearly restored the permeability levels of this barrier. Ket also triggered an evident lymphadenomegaly due to accumulation of T cells that produced higher levels of encephalitogenic cytokines in response to in vitro stimulation with MOG. Altogether these findings reinforce the concept that mast cells are particularly relevant in MS immunopathogenesis and that Ket, a known stabilizer of their activity, has the potential to be used in MS control.
Collapse
Affiliation(s)
- Karen Henriette Pinke
- Department of Microbiology and Immunology, Institute of Biosciences, São Paulo State University (UNESP), Rua Dr. Plinio Pinto e Silva, S/N, Distrito de Rubião Júnior, Botucatu, São Paulo, 18618-691, Brazil.
| | - Sofia Fernanda Gonçalves Zorzella-Pezavento
- Department of Microbiology and Immunology, Institute of Biosciences, São Paulo State University (UNESP), Rua Dr. Plinio Pinto e Silva, S/N, Distrito de Rubião Júnior, Botucatu, São Paulo, 18618-691, Brazil
| | - Thais Fernanda de Campos Fraga-Silva
- Department of Microbiology and Immunology, Institute of Biosciences, São Paulo State University (UNESP), Rua Dr. Plinio Pinto e Silva, S/N, Distrito de Rubião Júnior, Botucatu, São Paulo, 18618-691, Brazil
| | - Luiza Ayumi Nishiyama Mimura
- Department of Microbiology and Immunology, Institute of Biosciences, São Paulo State University (UNESP), Rua Dr. Plinio Pinto e Silva, S/N, Distrito de Rubião Júnior, Botucatu, São Paulo, 18618-691, Brazil
| | - Larissa Ragozo Cardoso de Oliveira
- Department of Microbiology and Immunology, Institute of Biosciences, São Paulo State University (UNESP), Rua Dr. Plinio Pinto e Silva, S/N, Distrito de Rubião Júnior, Botucatu, São Paulo, 18618-691, Brazil
| | - Larissa Lumi Watanabe Ishikawa
- Department of Microbiology and Immunology, Institute of Biosciences, São Paulo State University (UNESP), Rua Dr. Plinio Pinto e Silva, S/N, Distrito de Rubião Júnior, Botucatu, São Paulo, 18618-691, Brazil
| | - Ana Angélica Henrique Fernandes
- Department of Chemistry and Biochemistry, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Vanessa Soares Lara
- Department of Surgery, Stomatology, Pathology and Radiology, Bauru School of Dentistry, University of São Paulo (USP), Bauru, São Paulo, Brazil
| | - Alexandrina Sartori
- Department of Microbiology and Immunology, Institute of Biosciences, São Paulo State University (UNESP), Rua Dr. Plinio Pinto e Silva, S/N, Distrito de Rubião Júnior, Botucatu, São Paulo, 18618-691, Brazil
| |
Collapse
|
17
|
Takata K, Uchida K, Mukai M, Takano S, Aikawa J, Iwase D, Sekiguchi H, Miyagi M, Inoue G, Takaso M. Increase in Tryptase and Its Role in the Synovial Membrane of Overweight and Obese Patients with Osteoarthritis of the Knee. Diabetes Metab Syndr Obes 2020; 13:1491-1497. [PMID: 32440178 PMCID: PMC7211312 DOI: 10.2147/dmso.s253147] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 04/21/2020] [Indexed: 01/12/2023] Open
Abstract
PURPOSE The mechanisms governing evidence that obesity is a risk factor for osteoarthritis (OA) are not well understood. We previously reported an increase in mast cell (MC) marker expression in the osteoarthritic synovial membrane (SM) of patients with obesity. We hypothesized that an enzyme produced by MC, β-tryptase, may be increased in the SM of obese patients with knee OA and contribute to synovial inflammation. This study investigated the expression of the β-tryptase encoding gene, TPSB2, in the SM of obese patients with knee OA and β-tryptase-mediated regulation of IL-1β in synovial cells. PATIENTS AND METHODS A total of 216 patients radiographically diagnosed with knee OA were grouped according to the World Health Organization's body mass index classifications: normal weight (NW; <25 kg/m2), overweight (OW; 25-29.99 kg/m2) and obese (OB; ≥30 kg/m2). Quantitative polymerase chain reaction was conducted to examine TPSB2 expression in the SM among the three groups. We also examined TPSB2 and IL1B expression in MC-rich (CD3-CD14-CD19-CD90-) and MC-poor (CD3+, CD14+, CD19+, or CD90+) fractions freshly isolated from synovial tissue. Further, the effect of β-tryptase on IL1B expression was investigated in cultured CD14-positive (macrophage-rich fraction) and CD14-negative (fibroblast-rich fraction) cells. RESULTS There was significantly elevated TPSB2 expression in the OW and OB groups compared to the NW group. The MC-rich fraction had significantly higher levels of TPSB2, CD117 and CD203c than the MC-poor fraction. Recombinant human β-tryptase stimulated IL1B expression in both the synovial fibroblast and macrophage fractions. CONCLUSION Obese patients with knee OA showed elevated TPSB2 expression in the SM. Tryptase may play a role in synovial inflammation in obese patients with OA.
Collapse
Affiliation(s)
- Ken Takata
- Department of Orthopedic Surgery, Kitasato University School of Medicine, Sagamihara City, Kanagawa252-0374, Japan
| | - Kentaro Uchida
- Department of Orthopedic Surgery, Kitasato University School of Medicine, Sagamihara City, Kanagawa252-0374, Japan
- Shonan University of Medical Sciences Research Institute, Chigasaki City, Kanagawa253-0083, Japan
- Correspondence: Kentaro Uchida Tel/Fax +81-42-778-9217 Email
| | - Manabu Mukai
- Department of Orthopedic Surgery, Kitasato University School of Medicine, Sagamihara City, Kanagawa252-0374, Japan
| | - Shotaro Takano
- Department of Orthopedic Surgery, Kitasato University School of Medicine, Sagamihara City, Kanagawa252-0374, Japan
| | - Jun Aikawa
- Department of Orthopedic Surgery, Kitasato University School of Medicine, Sagamihara City, Kanagawa252-0374, Japan
| | - Dai Iwase
- Department of Orthopedic Surgery, Kitasato University School of Medicine, Sagamihara City, Kanagawa252-0374, Japan
| | - Hiroyuki Sekiguchi
- Shonan University of Medical Sciences Research Institute, Chigasaki City, Kanagawa253-0083, Japan
| | - Masayuki Miyagi
- Department of Orthopedic Surgery, Kitasato University School of Medicine, Sagamihara City, Kanagawa252-0374, Japan
| | - Gen Inoue
- Department of Orthopedic Surgery, Kitasato University School of Medicine, Sagamihara City, Kanagawa252-0374, Japan
| | - Masashi Takaso
- Department of Orthopedic Surgery, Kitasato University School of Medicine, Sagamihara City, Kanagawa252-0374, Japan
| |
Collapse
|
18
|
Frederick N, Louveau A. Meningeal lymphatics, immunity and neuroinflammation. Curr Opin Neurobiol 2019; 62:41-47. [PMID: 31816570 DOI: 10.1016/j.conb.2019.11.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 10/28/2019] [Accepted: 11/01/2019] [Indexed: 12/26/2022]
Abstract
In the past five years, the surrounding of the brain, that is the meninges (singular meninx) have evolved from being a physical barrier that protects the brain parenchyma to becoming a central player for both the maintenance of normal brain function and the modulation of neurological disorders. Indeed, the meninges are an immunologically active compartment that communicates with the periphery via the (re)discovered meningeal lymphatic system. From its ties to both the periphery and the central nervous system, the meninges are becoming a prevalent organ to understand and modulate brain homeostasis. Here we will focus on current advances in our understanding of the meningeal compartment with an emphasis on the meningeal lymphatic network as a key regulator.
Collapse
Affiliation(s)
- Natalie Frederick
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Antoine Louveau
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; Department of Molecular Medicine, Cleveland Clinic College of Medicine, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
19
|
Mouse mast cell protease 4 suppresses scar formation after traumatic spinal cord injury. Sci Rep 2019; 9:3715. [PMID: 30842526 PMCID: PMC6403346 DOI: 10.1038/s41598-019-39551-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 01/14/2019] [Indexed: 12/15/2022] Open
Abstract
Spinal cord injury (SCI) triggers the formation of a glial and fibrotic scar, which creates a major barrier for neuroregenerative processes. Previous findings indicate that mast cells (MCs) protect the spinal cord after mechanical damage by suppressing detrimental inflammatory processes via mouse mast cell protease 4 (mMCP4), a MC-specific chymase. In addition to these immunomodulatory properties, mMCP4 also plays an important role in tissue remodeling and extracellular matrix degradation. Therefore, we have investigated the effects of mMCP4 on the scarring response after SCI. We demonstrate that the decrease in locomotor performance in mMCP4-/- mice is correlated with excessive scar formation at the lesion. The expression of axon-growth inhibitory chondroitin sulfate proteoglycans was dramatically increased in the perilesional area in mMCP4-/- mice compared to wild type mice. Moreover, the fibronectin-, laminin-, and collagen IV-positive scar was significantly enlarged in mMCP4-/- mice at the lesion center. A degradation assay revealed that mMCP4 directly cleaves collagen IV in vitro. On the gene expression level, neurocan and GFAP were significantly higher in the mMCP4-/- group at day 2 and day 28 after injury respectively. In contrast, the expression of fibronectin and collagen IV was reduced in mMCP4-/- mice compared to WT mice at day 7 after SCI. In conclusion, our data show that mMCP4 modulates scar development after SCI by altering the gene and protein expression patterns of key scar factors in vivo. Therefore, we suggest a new mechanism via which endogenous mMCP4 can improve recovery after SCI.
Collapse
|
20
|
Role of Inflammasomes in Neuroimmune and Neurodegenerative Diseases: A Systematic Review. Mediators Inflamm 2018; 2018:1549549. [PMID: 29849483 PMCID: PMC5932495 DOI: 10.1155/2018/1549549] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 12/26/2017] [Accepted: 01/01/2018] [Indexed: 12/31/2022] Open
Abstract
Inflammasomes are multiprotein complexes that can sense pathogen-associated molecular patterns and damage-associated molecular signals. They are involved in the initiation and development of inflammation via activation of IL-1β and IL-18. Many recent studies suggest a strong correlation between inflammasomes and neurological diseases, such as multiple sclerosis (MS), Alzheimer's disease (AD), and Parkinson's disease (PD). Several components of inflammasomes, such as nucleotide-binding oligomerization domain- (NOD-) like receptor, absent in melanoma 2- (AIM2-) like receptors (ALRs), apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC), and caspase-1, as well as the upstream factors and downstream effectors, are associated with the initiation and development of MS and its animal model, experimental autoimmune encephalomyelitis. Additionally, inflammasomes affect the efficacy of interferon-β therapy in patients with MS. Finally, the strong association of inflammasomes with AD and PD needs to be further studied. In this review of latest literatures, we comprehensively tease out diverse roles of different kinds of inflammasomes in neuroimmune and neurodegenerative diseases, especially in the perspective of double roles involved in pathogenesis, and identify future research priorities.
Collapse
|
21
|
Skaper SD, Facci L, Zusso M, Giusti P. An Inflammation-Centric View of Neurological Disease: Beyond the Neuron. Front Cell Neurosci 2018; 12:72. [PMID: 29618972 PMCID: PMC5871676 DOI: 10.3389/fncel.2018.00072] [Citation(s) in RCA: 321] [Impact Index Per Article: 45.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 02/27/2018] [Indexed: 12/13/2022] Open
Abstract
Inflammation is a complex biological response fundamental to how the body deals with injury and infection to eliminate the initial cause of cell injury and effect repair. Unlike a normally beneficial acute inflammatory response, chronic inflammation can lead to tissue damage and ultimately its destruction, and often results from an inappropriate immune response. Inflammation in the nervous system (“neuroinflammation”), especially when prolonged, can be particularly injurious. While inflammation per se may not cause disease, it contributes importantly to disease pathogenesis across both the peripheral (neuropathic pain, fibromyalgia) and central [e.g., Alzheimer disease, Parkinson disease, multiple sclerosis, motor neuron disease, ischemia and traumatic brain injury, depression, and autism spectrum disorder] nervous systems. The existence of extensive lines of communication between the nervous system and immune system represents a fundamental principle underlying neuroinflammation. Immune cell-derived inflammatory molecules are critical for regulation of host responses to inflammation. Although these mediators can originate from various non-neuronal cells, important sources in the above neuropathologies appear to be microglia and mast cells, together with astrocytes and possibly also oligodendrocytes. Understanding neuroinflammation also requires an appreciation that non-neuronal cell—cell interactions, between both glia and mast cells and glia themselves, are an integral part of the inflammation process. Within this context the mast cell occupies a key niche in orchestrating the inflammatory process, from initiation to prolongation. This review will describe the current state of knowledge concerning the biology of neuroinflammation, emphasizing mast cell-glia and glia-glia interactions, then conclude with a consideration of how a cell's endogenous mechanisms might be leveraged to provide a therapeutic strategy to target neuroinflammation.
Collapse
Affiliation(s)
- Stephen D Skaper
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | - Laura Facci
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | - Morena Zusso
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | - Pietro Giusti
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| |
Collapse
|
22
|
Elieh-Ali-Komi D, Cao Y. Role of Mast Cells in the Pathogenesis of Multiple Sclerosis and Experimental Autoimmune Encephalomyelitis. Clin Rev Allergy Immunol 2018; 52:436-445. [PMID: 28025778 DOI: 10.1007/s12016-016-8595-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Multiple sclerosis (MS) is a neurological autoimmune disorder of the central nervous system (CNS), characterized by recurrent episodes of inflammatory demyelination and consequent axonal deterioration. The hallmark of the disease is the demyelinated plaque, a hypocellular area characterized by formation of astrocytic scars and infiltration of mononuclear cells. Recent studies have revealed that both innate and adaptive immune cells contribute to the pathogenesis of MS and its experimental autoimmune encephalomyelitis (EAE) model. Here, we review the current understanding of the role of mast cells in the pathogenesis of MS and EAE. Mast cells may act at the early stage that promote demyelination through interactions among mast cells, neurons, and other immune cells to mediate neuroinflammation. Studies from EAE model suggest that mast cells regulate adaptive autoimmune responses, present myelin antigens to T cells, disrupt the blood-brain barrier, and permit the entry of inflammatory cells and mediators into the CNS. Depletion or limiting mast cells could be a new promising therapeutic target for MS and EAE.
Collapse
Affiliation(s)
- Daniel Elieh-Ali-Komi
- Immunology Research Center, Department of Immunology, and Student's Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yonghao Cao
- Center for Synthetic Biology Engineering Research, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, China. .,Departments of Neurology and Immunobiology, Yale School of Medicine, New Haven, CT, 06511, USA.
| |
Collapse
|
23
|
Bonnekoh H, Scheffel J, Kambe N, Krause K. The role of mast cells in autoinflammation. Immunol Rev 2018; 282:265-275. [DOI: 10.1111/imr.12633] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Hanna Bonnekoh
- Department of Dermatology and Allergy; Allergie-Centrum-Charité; Charité - Universitätsmedizin Berlin; Berlin Germany
- Autoinflammation Reference Center Charité (ARC2); Charité - Universitätsmedizin Berlin; Berlin Germany
| | - Jörg Scheffel
- Department of Dermatology and Allergy; Allergie-Centrum-Charité; Charité - Universitätsmedizin Berlin; Berlin Germany
- Autoinflammation Reference Center Charité (ARC2); Charité - Universitätsmedizin Berlin; Berlin Germany
| | - Naotomo Kambe
- Department of Dermatology; Kansai Medical University; Hirakata Japan
- Allergy Center; Kansai Medical University; Hirakata Japan
| | - Karoline Krause
- Department of Dermatology and Allergy; Allergie-Centrum-Charité; Charité - Universitätsmedizin Berlin; Berlin Germany
- Autoinflammation Reference Center Charité (ARC2); Charité - Universitätsmedizin Berlin; Berlin Germany
| |
Collapse
|
24
|
Lin CC, Edelson BT. New Insights into the Role of IL-1β in Experimental Autoimmune Encephalomyelitis and Multiple Sclerosis. THE JOURNAL OF IMMUNOLOGY 2017; 198:4553-4560. [PMID: 28583987 DOI: 10.4049/jimmunol.1700263] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 03/23/2017] [Indexed: 01/05/2023]
Abstract
Multiple sclerosis (MS), and its animal model experimental autoimmune encephalomyelitis, are neuroinflammatory diseases driven by autoreactive pathogenic TH cells that elicit demyelination and axonal damage. How TH cells acquire pathogenicity and communicate with myeloid cells and cells of the CNS remain unclear. IL-1β is recognized to play an important role in experimental autoimmune encephalomyelitis (EAE) and perhaps MS. Clinical EAE is significantly attenuated in IL-1R-deficient and IL-1β-deficient mice, and IL-1β is found in the blood, cerebrospinal fluid, and CNS lesions of MS patients. In this article, we focus on new reports that elucidate the cellular sources of IL-1β and its actions during EAE, in both lymphoid tissues and within the CNS. Several immune cell types serve as critical producers of IL-1β during EAE, with this cytokine inducing response in both hematopoietic and nonhematopoietic cells. These findings from the EAE model should inspire efforts toward investigating the therapeutic potential of IL-1 blockade in MS.
Collapse
Affiliation(s)
- Chih-Chung Lin
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Brian T Edelson
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| |
Collapse
|
25
|
Kempuraj D, Thangavel R, Selvakumar GP, Zaheer S, Ahmed ME, Raikwar SP, Zahoor H, Saeed D, Natteru PA, Iyer S, Zaheer A. Brain and Peripheral Atypical Inflammatory Mediators Potentiate Neuroinflammation and Neurodegeneration. Front Cell Neurosci 2017; 11:216. [PMID: 28790893 PMCID: PMC5522882 DOI: 10.3389/fncel.2017.00216] [Citation(s) in RCA: 263] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Accepted: 07/05/2017] [Indexed: 12/18/2022] Open
Abstract
Neuroinflammatory response is primarily a protective mechanism in the brain. However, excessive and chronic inflammatory responses can lead to deleterious effects involving immune cells, brain cells and signaling molecules. Neuroinflammation induces and accelerates pathogenesis of Parkinson’s disease (PD), Alzheimer’s disease (AD) and Multiple sclerosis (MS). Neuroinflammatory pathways are indicated as novel therapeutic targets for these diseases. Mast cells are immune cells of hematopoietic origin that regulate inflammation and upon activation release many proinflammatory mediators in systemic and central nervous system (CNS) inflammatory conditions. In addition, inflammatory mediators released from activated glial cells induce neurodegeneration in the brain. Systemic inflammation-derived proinflammatory cytokines/chemokines and other factors cause a breach in the blood brain-barrier (BBB) thereby allowing for the entry of immune/inflammatory cells including mast cell progenitors, mast cells and proinflammatory cytokines and chemokines into the brain. These peripheral-derived factors and intrinsically generated cytokines/chemokines, α-synuclein, corticotropin-releasing hormone (CRH), substance P (SP), beta amyloid 1–42 (Aβ1–42) peptide and amyloid precursor proteins can activate glial cells, T-cells and mast cells in the brain can induce additional release of inflammatory and neurotoxic molecules contributing to chronic neuroinflammation and neuronal death. The glia maturation factor (GMF), a proinflammatory protein discovered in our laboratory released from glia, activates mast cells to release inflammatory cytokines and chemokines. Chronic increase in the proinflammatory mediators induces neurotoxic Aβ and plaque formation in AD brains and neurodegeneration in PD brains. Glial cells, mast cells and T-cells can reactivate each other in neuroinflammatory conditions in the brain and augment neuroinflammation. Further, inflammatory mediators from the brain can also enter into the peripheral system through defective BBB, recruit immune cells into the brain, and exacerbate neuroinflammation. We suggest that mast cell-associated inflammatory mediators from systemic inflammation and brain could augment neuroinflammation and neurodegeneration in the brain. This review article addresses the role of some atypical inflammatory mediators that are associated with mast cell inflammation and their activation of glial cells to induce neurodegeneration.
Collapse
Affiliation(s)
- Duraisamy Kempuraj
- Harry S. Truman Memorial Veteran's Hospital, U.S. Department of Veterans AffairsColumbia, MO, United States.,Department of Neurology and the Center for Translational Neuroscience, School of Medicine, University of MissouriColumbia, MO, United States
| | - Ramasamy Thangavel
- Harry S. Truman Memorial Veteran's Hospital, U.S. Department of Veterans AffairsColumbia, MO, United States.,Department of Neurology and the Center for Translational Neuroscience, School of Medicine, University of MissouriColumbia, MO, United States
| | - Govindhasamy P Selvakumar
- Harry S. Truman Memorial Veteran's Hospital, U.S. Department of Veterans AffairsColumbia, MO, United States.,Department of Neurology and the Center for Translational Neuroscience, School of Medicine, University of MissouriColumbia, MO, United States
| | - Smita Zaheer
- Department of Neurology and the Center for Translational Neuroscience, School of Medicine, University of MissouriColumbia, MO, United States
| | - Mohammad E Ahmed
- Department of Neurology and the Center for Translational Neuroscience, School of Medicine, University of MissouriColumbia, MO, United States
| | - Sudhanshu P Raikwar
- Harry S. Truman Memorial Veteran's Hospital, U.S. Department of Veterans AffairsColumbia, MO, United States.,Department of Neurology and the Center for Translational Neuroscience, School of Medicine, University of MissouriColumbia, MO, United States
| | - Haris Zahoor
- Department of Neurology and the Center for Translational Neuroscience, School of Medicine, University of MissouriColumbia, MO, United States
| | - Daniyal Saeed
- Department of Neurology and the Center for Translational Neuroscience, School of Medicine, University of MissouriColumbia, MO, United States
| | - Prashant A Natteru
- Department of Neurology and the Center for Translational Neuroscience, School of Medicine, University of MissouriColumbia, MO, United States
| | - Shankar Iyer
- Harry S. Truman Memorial Veteran's Hospital, U.S. Department of Veterans AffairsColumbia, MO, United States.,Department of Neurology and the Center for Translational Neuroscience, School of Medicine, University of MissouriColumbia, MO, United States
| | - Asgar Zaheer
- Harry S. Truman Memorial Veteran's Hospital, U.S. Department of Veterans AffairsColumbia, MO, United States.,Department of Neurology and the Center for Translational Neuroscience, School of Medicine, University of MissouriColumbia, MO, United States
| |
Collapse
|
26
|
Cho KA, Park M, Kim YH, Woo SY. Th17 cell-mediated immune responses promote mast cell proliferation by triggering stem cell factor in keratinocytes. Biochem Biophys Res Commun 2017; 487:856-861. [PMID: 28456630 DOI: 10.1016/j.bbrc.2017.04.141] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 04/26/2017] [Indexed: 02/08/2023]
Abstract
Although mast cells are traditionally thought to function as effector cells in allergic responses, they have increasingly been recognized as important regulators of various immune responses. Mast cells mature locally; thus, tissue-specific influences are important for promoting mast cell accumulation and survival in the skin and the gastrointestinal tract. In this study, we determined the effects of keratinocytes on mast cell accumulation during Th17-mediated skin inflammation. We observed increases in dermal mast cells in imiquimod-induced psoriatic dermatitis in mice accompanied by the expression of epidermal stem cell factor (SCF), a critical mast cell growth factor. Similar to mouse epidermal keratinocytes, SCF was highly expressed in the human HaCaT keratinocyte cell line following stimulation with IL-17. Further, keratinocytes promoted mast cell proliferation following stimulation with IL-17 in vitro. However, the effects of keratinocytes on mast cells were significantly diminished in the presence of anti-CD117 (stem cell factor receptor) blocking antibodies. Taken together, our results revealed that the Th17-mediated inflammatory environment promotes mast cell accumulation through keratinocyte-derived SCF.
Collapse
Affiliation(s)
- Kyung-Ah Cho
- Department of Microbiology, College of Medicine, Ewha Womans University, Seoul 07985, Republic of Korea
| | - Minhwa Park
- Department of Microbiology, College of Medicine, Ewha Womans University, Seoul 07985, Republic of Korea
| | - Yu-Hee Kim
- Department of Microbiology, College of Medicine, Ewha Womans University, Seoul 07985, Republic of Korea
| | - So-Youn Woo
- Department of Microbiology, College of Medicine, Ewha Womans University, Seoul 07985, Republic of Korea.
| |
Collapse
|
27
|
Mills EA, Mirza A, Mao-Draayer Y. Emerging Approaches for Validating and Managing Multiple Sclerosis Relapse. Front Neurol 2017; 8:116. [PMID: 28424654 PMCID: PMC5372802 DOI: 10.3389/fneur.2017.00116] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Accepted: 03/14/2017] [Indexed: 12/17/2022] Open
Abstract
The autoimmune disease multiple sclerosis (MS) is characterized by relapses in the majority of patients. A definitive clinical diagnosis of relapse in MS can be complicated by the presence of an infection or comorbid disorder. In this mini-review, we describe efforts to develop enhanced imaging techniques and biomarker detection as future tools for relapse validation. There is emerging evidence of roles for meningeal inflammation, sex hormones, comorbid metabolic or mood disorders, and a dysregulated immune profile in the manifestation and severity of relapse. Specific subsets of immune cells likely drive the pathophysiology of relapse, and identification of a patient's unique immunological signature of relapse may help guide future diagnosis and treatment. Finally, these studies highlight the diversity in terms of relapse presentation, immunological signature, and response in patients with MS, indicating that going forward the best approach to assessment and treatment of relapse will be multifactorial and highly personalized.
Collapse
Affiliation(s)
- Elizabeth A Mills
- Molecular and Behavioral Neuroscience Institute, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Ali Mirza
- Graduate Program in Immunology, Program in Biomedical Sciences, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Yang Mao-Draayer
- Graduate Program in Immunology, Program in Biomedical Sciences, University of Michigan Medical School, Ann Arbor, MI, USA.,Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
28
|
Skaper SD, Facci L, Zusso M, Giusti P. Neuroinflammation, Mast Cells, and Glia: Dangerous Liaisons. Neuroscientist 2017; 23:478-498. [PMID: 29283023 DOI: 10.1177/1073858416687249] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The perspective of neuroinflammation as an epiphenomenon following neuron damage is being replaced by the awareness of glia and their importance in neural functions and disorders. Systemic inflammation generates signals that communicate with the brain and leads to changes in metabolism and behavior, with microglia assuming a pro-inflammatory phenotype. Identification of potential peripheral-to-central cellular links is thus a critical step in designing effective therapeutics. Mast cells may fulfill such a role. These resident immune cells are found close to and within peripheral nerves and in brain parenchyma/meninges, where they exercise a key role in orchestrating the inflammatory process from initiation through chronic activation. Mast cells and glia engage in crosstalk that contributes to accelerate disease progression; such interactions become exaggerated with aging and increased cell sensitivity to stress. Emerging evidence for oligodendrocytes, independent of myelin and support of axonal integrity, points to their having strong immune functions, innate immune receptor expression, and production/response to chemokines and cytokines that modulate immune responses in the central nervous system while engaging in crosstalk with microglia and astrocytes. In this review, we summarize the findings related to our understanding of the biology and cellular signaling mechanisms of neuroinflammation, with emphasis on mast cell-glia interactions.
Collapse
Affiliation(s)
- Stephen D Skaper
- 1 Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Italy
| | - Laura Facci
- 1 Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Italy
| | - Morena Zusso
- 1 Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Italy
| | - Pietro Giusti
- 1 Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Italy
| |
Collapse
|
29
|
Significant Contribution of Mouse Mast Cell Protease 4 in Early Phases of Experimental Autoimmune Encephalomyelitis. Mediators Inflamm 2016; 2016:9797021. [PMID: 27610007 PMCID: PMC5005578 DOI: 10.1155/2016/9797021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Revised: 06/13/2016] [Accepted: 07/21/2016] [Indexed: 02/08/2023] Open
Abstract
Experimental autoimmune encephalomyelitis (EAE) is a mouse model that reproduces cardinal signs of clinical, histopathological, and immunological features found in Multiple Sclerosis (MS). Mast cells are suggested to be involved in the main inflammatory phases occurring during EAE development, possibly by secreting several autacoids and proteases. Among the latter, the chymase mouse mast cell protease 4 (mMCP-4) can contribute to the inflammatory response by producing endothelin-1 (ET-1). The aim of this study was to determine the impact of mMCP-4 on acute inflammatory stages in EAE. C57BL/6 wild type (WT) or mMCP-4 knockout (KO) mice were immunized with MOG35–55 plus complete Freund's adjuvant followed by pertussis toxin. Immunized WT mice presented an initial acute phase characterized by progressive increases in clinical score, which were significantly reduced in mMCP-4 KO mice. In addition, higher levels of spinal myelin were found in mMCP-4 KO as compared with WT mice. Finally, whereas EAE triggered significant increases in brain levels of mMCP-4 mRNA and immunoreactive ET-1 in WT mice, the latter peptide was reduced to basal levels in mMCP-4 KO congeners. Together, the present study supports a role for mMCP-4 in the early inflammatory phases of the disease in a mouse model of MS.
Collapse
|
30
|
Koudriavtseva T, Mainero C. Neuroinflammation, neurodegeneration and regeneration in multiple sclerosis: intercorrelated manifestations of the immune response. Neural Regen Res 2016; 11:1727-1730. [PMID: 28123401 PMCID: PMC5204213 DOI: 10.4103/1673-5374.194804] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic immune-mediated inflammatory-demyelinating disorder of the central nervous system, with a strong neurodegenerative component. The question whether neurodegeneration in MS is independent or related to neuroinflammation has been long debated, but not yet fully clarified. Furthermore, little is still known on how neuroinflammation and neurodegeneration in MS are related to potential regenerative processes. In this perspective, we briefly discuss main clinical, pathological and experimental evidence on the relationship between neuroinflammation and neurodegeneration in MS, and on their connection with regeneration. We discuss that these processes in MS might represent intercorrelated manifestations of the immune response, especially of the innate immunity.
Collapse
Affiliation(s)
- Tatiana Koudriavtseva
- Multiple Sclerosis Clinical and Research Unit, Department of Systems Medicine, Tor Vergata University, Rome, Italy
| | - Caterina Mainero
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA; Harvard Medical School, Boston, MA, USA
| |
Collapse
|