1
|
King LA, Veth M, Iglesias-Guimarais V, Blijdorp I, Kloosterman J, Vis AN, Roovers RC, Hulsik DL, Riedl T, Adang AE, Parren PW, van Helden PM, de Gruijl TD, van der Vliet HJ. Leveraging Vγ9Vδ2 T cells against prostate cancer through a VHH-based PSMA-Vδ2 bispecific T cell engager. iScience 2024; 27:111289. [PMID: 39628574 PMCID: PMC11612814 DOI: 10.1016/j.isci.2024.111289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/17/2024] [Accepted: 10/28/2024] [Indexed: 12/06/2024] Open
Abstract
Vγ9Vδ2 T cells constitute a homogeneous effector T cell population that lyses tumors of different origin, including the prostate. We generated a bispecific T cell engager (bsTCE) to direct Vγ9Vδ2 T cells to PSMA+ prostate cancer (PCa) cells. The PSMA-Vδ2 bsTCE triggered healthy donor and PCa patient-derived Vγ9Vδ2 T cells to lyse PSMA+ PCa cell lines and patient-derived tumor cells while sparing normal prostate cells and enhanced Vγ9Vδ2 T cell antigen cross-presentation to CD8+ T cells. Vγ9Vδ2 T cell expressed NKG2D and DNAM-1 contributed to Vγ9Vδ2 T cell activation and tumor lysis at low PSMA-Vδ2 bsTCE concentrations. In vivo models confirmed the antitumor efficacy of the bsTCE and demonstrated a half-life of 6-7 days. Tissue-cross reactivity analysis was in line with known tissue distribution of PSMA and Vγ9Vδ2 T cells. Together these data show the PSMA-Vδ2 bsTCE to represent a promising anti-tumor strategy and supports its ongoing evaluation in a phase 1/2a clinical trial in therapy refractory metastatic castration-resistant PCa.
Collapse
Affiliation(s)
- Lisa A. King
- Department of Medical Oncology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam 1081 HV, the Netherlands
- Cancer Center Amsterdam, 1081 HV Amsterdam, the Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Myrthe Veth
- Department of Medical Oncology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam 1081 HV, the Netherlands
- Cancer Center Amsterdam, 1081 HV Amsterdam, the Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | | | - Iris Blijdorp
- Lava Therapeutics NV, 3584 CM Utrecht, the Netherlands
| | - Jan Kloosterman
- Department of Medical Oncology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam 1081 HV, the Netherlands
- Cancer Center Amsterdam, 1081 HV Amsterdam, the Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - André N. Vis
- Prostate Cancer Network the Netherlands, Amsterdam, the Netherlands
- Department of Urology, Amsterdam UMC, Vrije Universiteit Amsterdam, HV Amsterdam 1081, the Netherlands
| | | | | | - Thilo Riedl
- Lava Therapeutics NV, 3584 CM Utrecht, the Netherlands
| | | | - Paul W.H.I. Parren
- Lava Therapeutics NV, 3584 CM Utrecht, the Netherlands
- Department of Immunology, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | | | - Tanja D. de Gruijl
- Department of Medical Oncology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam 1081 HV, the Netherlands
- Cancer Center Amsterdam, 1081 HV Amsterdam, the Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Hans J. van der Vliet
- Department of Medical Oncology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam 1081 HV, the Netherlands
- Cancer Center Amsterdam, 1081 HV Amsterdam, the Netherlands
- Lava Therapeutics NV, 3584 CM Utrecht, the Netherlands
| |
Collapse
|
2
|
King LA, de Jong M, Veth M, Lutje Hulsik D, Yousefi P, Iglesias-Guimarais V, van Helden PM, de Gruijl TD, van der Vliet HJ. Vδ2 T-cell engagers bivalent for Vδ2-TCR binding provide anti-tumor immunity and support robust Vγ9Vδ2 T-cell expansion. Front Oncol 2024; 14:1474007. [PMID: 39493452 PMCID: PMC11527600 DOI: 10.3389/fonc.2024.1474007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 09/20/2024] [Indexed: 11/05/2024] Open
Abstract
Background Vγ9Vδ2 T-cells are antitumor immune effector cells that can detect metabolic dysregulation in cancer cells through phosphoantigen-induced conformational changes in the butyrophilin (BTN) 2A1/3A1 complex. In order to clinically exploit the anticancer properties of Vγ9Vδ2 T-cells, various approaches have been studied including phosphoantigen stimulation, agonistic BTN3A-specific antibodies, adoptive transfer of expanded Vγ9Vδ2 T-cells, and more recently bispecific antibodies. While Vγ9Vδ2 T-cells constitute a sizeable population, typically making up ~1-10% of the total T cell population, lower numbers have been observed with increasing age and in the context of disease. Methods We evaluated whether bivalent single domain antibodies (VHHs) that link Vδ2-TCR specific VHHs with different affinities could support Vγ9Vδ2 T-cell expansion and could be incorporated in a bispecific engager format when additionally linked to a tumor antigen specific VHH. Results Bivalent VHHs that link a high and low affinity Vδ2-TCR specific VHH can support Vγ9Vδ2 T-cell expansion. The majority of Vγ9Vδ2 T-cells that expanded following exposure to these bivalent VHHs had an effector or central memory phenotype and expressed relatively low levels of PD-1. Bispecific engagers that incorporated the bivalent Vδ2-TCR specific VHH as well as a tumor antigen specific VHH triggered antitumor effector functions and supported expansion of Vγ9Vδ2 T-cells in vitro and in an in vivo model in NOG-hIL-15 mice. Conclusion By enhancing the number of Vγ9Vδ2 T-cells available to exert antitumor effector functions, these novel Vδ2-bivalent bispecific T cell engagers may promote the overall efficacy of bispecific Vγ9Vδ2 T-cell engagement, particularly in patients with relatively low levels of Vγ9Vδ2 T-cells.
Collapse
Affiliation(s)
- Lisa A. King
- Department of Medical Oncology, Amsterdam University Medical Center (UMC), Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Cancer Center Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Milon de Jong
- Department of Medical Oncology, Amsterdam University Medical Center (UMC), Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Cancer Center Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Myrthe Veth
- Department of Medical Oncology, Amsterdam University Medical Center (UMC), Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Cancer Center Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | | | | | | | | | - Tanja D. de Gruijl
- Department of Medical Oncology, Amsterdam University Medical Center (UMC), Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Cancer Center Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Hans J. van der Vliet
- Department of Medical Oncology, Amsterdam University Medical Center (UMC), Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Cancer Center Amsterdam, Amsterdam, Netherlands
- Lava Therapeutics NV, Utrecht, Netherlands
| |
Collapse
|
3
|
Wang M, Ying T, Wu Y. Single-domain antibodies as therapeutics for solid tumor treatment. Acta Pharm Sin B 2024; 14:2854-2868. [PMID: 39027249 PMCID: PMC11252471 DOI: 10.1016/j.apsb.2024.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/23/2024] [Accepted: 03/01/2024] [Indexed: 07/20/2024] Open
Abstract
Single-domain antibodies (sdAbs), initially identified in camelids or sharks and commonly referred to as nanobodies or VNARs, have emerged as a promising alternative to conventional therapeutic antibodies. These sdAbs have many superior physicochemical and pharmacological properties, including small size, good solubility and thermostability, easier accessible epitopes, and strong tissue penetration. However, the inherent challenges associated with the animal origin of sdAbs limit their clinical use. In recent years, various innovative humanization technologies, including complementarity-determining region (CDR) grafting or complete engineering of fully human sdAbs, have been developed to mitigate potential immunogenicity issues and enhance their compatibility. This review provides a comprehensive exploration of sdAbs, emphasizing their distinctive features and the progress in humanization methodologies. In addition, we provide an overview of the recent progress in developing drugs and therapeutic strategies based on sdAbs and their potential in solid tumor treatment, such as sdAb-drug conjugates, multispecific sdAbs, sdAb-based delivery systems, and sdAb-based cell therapy.
Collapse
Affiliation(s)
- Mingkai Wang
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Department of Pulmonary and Critical Care Medicine, Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Engineering Research Center for Synthetic Immunology, Shanghai 200032, China
| | - Tianlei Ying
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Department of Pulmonary and Critical Care Medicine, Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Engineering Research Center for Synthetic Immunology, Shanghai 200032, China
| | - Yanling Wu
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Department of Pulmonary and Critical Care Medicine, Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Engineering Research Center for Synthetic Immunology, Shanghai 200032, China
| |
Collapse
|
4
|
Li HK, Wu TS, Kuo YC, Hsiao CW, Yang HP, Lee CY, Leng PJ, Chiang YJ, Cheng ZF, Yang SH, Lin YL, Chen LY, Chen CS, Chen YJ, Hsiao SC, Tang SW. A Novel Allogeneic Rituximab-Conjugated Gamma Delta T Cell Therapy for the Treatment of Relapsed/Refractory B-Cell Lymphoma. Cancers (Basel) 2023; 15:4844. [PMID: 37835538 PMCID: PMC10571679 DOI: 10.3390/cancers15194844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/20/2023] [Accepted: 10/02/2023] [Indexed: 10/15/2023] Open
Abstract
Chimeric antigen receptor T cell (CAR-T) therapy has been applied in the treatment of B-cell lymphoma; however, CAR-T manufacturing requires virus- or non-virus-based genetic modification, which causes high manufacturing costs and potential safety concerns. Antibody-cell conjugation (ACC) technology, which originated from bio-orthogonal click chemistry, provides an efficient approach for arming immune cells with cancer-targeting antibodies without genetic modification. Here, we applied ACC technology in Vγ9Vδ2 T (γδ2 T) cells to generate a novel off-the-shelf CD20-targeting cell therapy ACE1831 (rituximab-conjugated γδ2 T cells) against relapsed/refractory B-cell lymphoma. ACE1831 exhibited superior cytotoxicity against B-cell lymphoma cells and rituximab-resistant cells compared to γδ2 T cells without rituximab conjugation. The in vivo xenograft study demonstrated that ACE1831 treatment strongly suppressed the aggressive proliferation of B-cell lymphoma and prolonged the survival of tumor-bearing mice with no observed toxicity. Mass spectrometry analysis indicated that cell activation receptors including the TCR complex, integrins and cytokine receptors were conjugated with rituximab. Intriguingly, the antigen recognition of the ACC-linked antibody/receptor complex stimulated NFAT activation and contributed to ACE1831-mediated cytotoxicity against CD20-expressing cancer cells. This study elucidates the role of the ACC-linked antibody/receptor complex in cytotoxicity and supports the potential of ACE1831 as an off-the-shelf γδ2 cell therapy against relapsed/refractory B-cell lymphoma.
Collapse
Affiliation(s)
- Hao-Kang Li
- Acepodia Biotech Inc., Alameda, CA 94502, USA; (H.-K.L.); (T.-S.W.); (Y.-C.K.); (C.-W.H.); (H.-P.Y.); (C.-Y.L.); (P.-J.L.); (Y.-J.C.); (Z.-F.C.); (S.-H.Y.); (Y.-L.L.)
| | - Tai-Sheng Wu
- Acepodia Biotech Inc., Alameda, CA 94502, USA; (H.-K.L.); (T.-S.W.); (Y.-C.K.); (C.-W.H.); (H.-P.Y.); (C.-Y.L.); (P.-J.L.); (Y.-J.C.); (Z.-F.C.); (S.-H.Y.); (Y.-L.L.)
| | - Yi-Chiu Kuo
- Acepodia Biotech Inc., Alameda, CA 94502, USA; (H.-K.L.); (T.-S.W.); (Y.-C.K.); (C.-W.H.); (H.-P.Y.); (C.-Y.L.); (P.-J.L.); (Y.-J.C.); (Z.-F.C.); (S.-H.Y.); (Y.-L.L.)
| | - Ching-Wen Hsiao
- Acepodia Biotech Inc., Alameda, CA 94502, USA; (H.-K.L.); (T.-S.W.); (Y.-C.K.); (C.-W.H.); (H.-P.Y.); (C.-Y.L.); (P.-J.L.); (Y.-J.C.); (Z.-F.C.); (S.-H.Y.); (Y.-L.L.)
| | - Hsiu-Ping Yang
- Acepodia Biotech Inc., Alameda, CA 94502, USA; (H.-K.L.); (T.-S.W.); (Y.-C.K.); (C.-W.H.); (H.-P.Y.); (C.-Y.L.); (P.-J.L.); (Y.-J.C.); (Z.-F.C.); (S.-H.Y.); (Y.-L.L.)
| | - Chia-Yun Lee
- Acepodia Biotech Inc., Alameda, CA 94502, USA; (H.-K.L.); (T.-S.W.); (Y.-C.K.); (C.-W.H.); (H.-P.Y.); (C.-Y.L.); (P.-J.L.); (Y.-J.C.); (Z.-F.C.); (S.-H.Y.); (Y.-L.L.)
| | - Pei-Ju Leng
- Acepodia Biotech Inc., Alameda, CA 94502, USA; (H.-K.L.); (T.-S.W.); (Y.-C.K.); (C.-W.H.); (H.-P.Y.); (C.-Y.L.); (P.-J.L.); (Y.-J.C.); (Z.-F.C.); (S.-H.Y.); (Y.-L.L.)
| | - Yun-Jung Chiang
- Acepodia Biotech Inc., Alameda, CA 94502, USA; (H.-K.L.); (T.-S.W.); (Y.-C.K.); (C.-W.H.); (H.-P.Y.); (C.-Y.L.); (P.-J.L.); (Y.-J.C.); (Z.-F.C.); (S.-H.Y.); (Y.-L.L.)
| | - Zih-Fei Cheng
- Acepodia Biotech Inc., Alameda, CA 94502, USA; (H.-K.L.); (T.-S.W.); (Y.-C.K.); (C.-W.H.); (H.-P.Y.); (C.-Y.L.); (P.-J.L.); (Y.-J.C.); (Z.-F.C.); (S.-H.Y.); (Y.-L.L.)
| | - Sen-Han Yang
- Acepodia Biotech Inc., Alameda, CA 94502, USA; (H.-K.L.); (T.-S.W.); (Y.-C.K.); (C.-W.H.); (H.-P.Y.); (C.-Y.L.); (P.-J.L.); (Y.-J.C.); (Z.-F.C.); (S.-H.Y.); (Y.-L.L.)
| | - Yan-Liang Lin
- Acepodia Biotech Inc., Alameda, CA 94502, USA; (H.-K.L.); (T.-S.W.); (Y.-C.K.); (C.-W.H.); (H.-P.Y.); (C.-Y.L.); (P.-J.L.); (Y.-J.C.); (Z.-F.C.); (S.-H.Y.); (Y.-L.L.)
| | - Li-Yu Chen
- Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan; (L.-Y.C.); (C.-S.C.); (Y.-J.C.)
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Ciao-Syuan Chen
- Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan; (L.-Y.C.); (C.-S.C.); (Y.-J.C.)
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Yu-Ju Chen
- Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan; (L.-Y.C.); (C.-S.C.); (Y.-J.C.)
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Shih-Chia Hsiao
- Acepodia Biotech Inc., Alameda, CA 94502, USA; (H.-K.L.); (T.-S.W.); (Y.-C.K.); (C.-W.H.); (H.-P.Y.); (C.-Y.L.); (P.-J.L.); (Y.-J.C.); (Z.-F.C.); (S.-H.Y.); (Y.-L.L.)
| | - Sai-Wen Tang
- Acepodia Biotech Inc., Alameda, CA 94502, USA; (H.-K.L.); (T.-S.W.); (Y.-C.K.); (C.-W.H.); (H.-P.Y.); (C.-Y.L.); (P.-J.L.); (Y.-J.C.); (Z.-F.C.); (S.-H.Y.); (Y.-L.L.)
| |
Collapse
|
5
|
King LA, Toffoli EC, Veth M, Iglesias-Guimarais V, Slot MC, Amsen D, van de Ven R, Derks S, Fransen MF, Tuynman JB, Riedl T, Roovers RC, Adang AEP, Ruben JM, Parren PWHI, de Gruijl TD, van der Vliet HJ. A Bispecific γδ T-cell Engager Targeting EGFR Activates a Potent Vγ9Vδ2 T cell-Mediated Immune Response against EGFR-Expressing Tumors. Cancer Immunol Res 2023; 11:1237-1252. [PMID: 37368791 DOI: 10.1158/2326-6066.cir-23-0189] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/04/2023] [Accepted: 06/23/2023] [Indexed: 06/29/2023]
Abstract
Vγ9Vδ2 T cells are effector cells with proven antitumor efficacy against a broad range of cancers. This study aimed to assess the antitumor activity and safety of a bispecific antibody directing Vγ9Vδ2 T cells to EGFR-expressing tumors. An EGFR-Vδ2 bispecific T-cell engager (bsTCE) was generated, and its capacity to activate Vγ9Vδ2 T cells and trigger antitumor activity was tested in multiple in vitro, in vivo, and ex vivo models. Studies to explore safety were conducted using cross-reactive surrogate engagers in nonhuman primates (NHP). We found that Vγ9Vδ2 T cells from peripheral blood and tumor specimens of patients with EGFR+ cancers had a distinct immune checkpoint expression profile characterized by low levels of PD-1, LAG-3, and TIM-3. Vγ9Vδ2 T cells could be activated by EGFR-Vδ2 bsTCEs to mediate lysis of various EGFR+ patient-derived tumor samples, and substantial tumor growth inhibition and improved survival were observed in in vivo xenograft mouse models using peripheral blood mononuclear cells (PBMC) as effector cells. EGFR-Vδ2 bsTCEs exerted preferential activity toward EGFR+ tumor cells and induced downstream activation of CD4+ and CD8+ T cells and natural killer (NK) cells without concomitant activation of suppressive regulatory T cells observed with EGFR-CD3 bsTCEs. Administration of fully cross-reactive and half-life extended surrogate engagers to NHPs did not trigger signals in the safety parameters that were assessed. Considering the effector and immune-activating properties of Vγ9Vδ2 T cells, the preclinical efficacy data and acceptable safety profile reported here provide a solid basis for testing EGFR-Vδ2 bsTCEs in patients with EGFR+ malignancies.
Collapse
Affiliation(s)
- Lisa A King
- Department of Medical Oncology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Cancer Center Amsterdam, Amsterdam, the Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Elisa C Toffoli
- Department of Medical Oncology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Cancer Center Amsterdam, Amsterdam, the Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Myrthe Veth
- Department of Medical Oncology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Cancer Center Amsterdam, Amsterdam, the Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | | | - Manon C Slot
- Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Derk Amsen
- Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Rieneke van de Ven
- Cancer Center Amsterdam, Amsterdam, the Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
- Department of Otolaryngology and Head and Neck Surgery, Amsterdam UMC, Vrije Universiteit Amsterdam, the Netherlands
| | - Sarah Derks
- Department of Medical Oncology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Cancer Center Amsterdam, Amsterdam, the Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Marieke F Fransen
- Cancer Center Amsterdam, Amsterdam, the Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
- Department of Pulmonary Diseases, Amsterdam UMC, Vrije Universiteit Amsterdam, the Netherlands
| | - Jurriaan B Tuynman
- Department of Surgery, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Thilo Riedl
- Lava Therapeutics NV, Utrecht, the Netherlands
| | | | | | | | - Paul W H I Parren
- Lava Therapeutics NV, Utrecht, the Netherlands
- Department of Immunology, Leiden University Medical Center, Leiden, the Netherlands
| | - Tanja D de Gruijl
- Department of Medical Oncology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Cancer Center Amsterdam, Amsterdam, the Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Hans J van der Vliet
- Department of Medical Oncology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Cancer Center Amsterdam, Amsterdam, the Netherlands
- Lava Therapeutics NV, Utrecht, the Netherlands
| |
Collapse
|
6
|
Lameris R, Ruben JM, Iglesias-Guimarais V, de Jong M, Veth M, van de Bovenkamp FS, de Weerdt I, Kater AP, Zweegman S, Horbach S, Riedl T, Winograd B, Roovers RC, Adang AEP, de Gruijl TD, Parren PWHI, van der Vliet HJ. A bispecific T cell engager recruits both type 1 NKT and Vγ9Vδ2-T cells for the treatment of CD1d-expressing hematological malignancies. Cell Rep Med 2023; 4:100961. [PMID: 36868236 PMCID: PMC10040383 DOI: 10.1016/j.xcrm.2023.100961] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 10/13/2022] [Accepted: 02/09/2023] [Indexed: 03/05/2023]
Abstract
Bispecific T cell engagers (bsTCEs) hold great promise for cancer treatment but face challenges due to the induction of cytokine release syndrome (CRS), on-target off-tumor toxicity, and the engagement of immunosuppressive regulatory T cells that limit efficacy. The development of Vγ9Vδ2-T cell engagers may overcome these challenges by combining high therapeutic efficacy with limited toxicity. By linking a CD1d-specific single-domain antibody (VHH) to a Vδ2-TCR-specific VHH, we create a bsTCE with trispecific properties, which engages not only Vγ9Vδ2-T cells but also type 1 NKT cells to CD1d+ tumors and triggers robust proinflammatory cytokine production, effector cell expansion, and target cell lysis in vitro. We show that CD1d is expressed by the majority of patient MM, (myelo)monocytic AML, and CLL cells and that the bsTCE triggers type 1 NKT and Vγ9Vδ2-T cell-mediated antitumor activity against these patient tumor cells and improves survival in in vivo AML, MM, and T-ALL mouse models. Evaluation of a surrogate CD1d-γδ bsTCE in NHPs shows Vγ9Vδ2-T cell engagement and excellent tolerability. Based on these results, CD1d-Vδ2 bsTCE (LAVA-051) is now evaluated in a phase 1/2a study in patients with therapy refractory CLL, MM, or AML.
Collapse
Affiliation(s)
- Roeland Lameris
- Amsterdam UMC location Vrije University Amsterdam, Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam, the Netherlands
| | | | | | - Milon de Jong
- Amsterdam UMC location Vrije University Amsterdam, Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Myrthe Veth
- Amsterdam UMC location Vrije University Amsterdam, Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam, the Netherlands
| | | | - Iris de Weerdt
- Amsterdam UMC location University of Amsterdam, Department of Hematology, Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Arnon P Kater
- Amsterdam UMC location University of Amsterdam, Department of Hematology, Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Sonja Zweegman
- Amsterdam UMC location Vrije University Amsterdam, Department of Hematology, Cancer Center Amsterdam, Amsterdam, the Netherlands
| | | | | | - Benjamin Winograd
- LAVA Therapeutics, Utrecht, the Netherlands; LAVA Therapeutics, Philadelphia, PA, USA
| | | | | | - Tanja D de Gruijl
- Amsterdam UMC location Vrije University Amsterdam, Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Paul W H I Parren
- LAVA Therapeutics, Utrecht, the Netherlands; Leiden University Medical Center, Department of Immunology, Leiden, the Netherlands
| | - Hans J van der Vliet
- Amsterdam UMC location Vrije University Amsterdam, Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam, the Netherlands; LAVA Therapeutics, Utrecht, the Netherlands.
| |
Collapse
|
7
|
Cable J, Saphire EO, Hayday AC, Wiltshire TD, Mousa JJ, Humphreys DP, Breij ECW, Bruhns P, Broketa M, Furuya G, Hauser BM, Mahévas M, Carfi A, Cantaert T, Kwong PD, Tripathi P, Davis JH, Brewis N, Keyt BA, Fennemann FL, Dussupt V, Sivasubramanian A, Kim PM, Rawi R, Richardson E, Leventhal D, Wolters RM, Geuijen CAW, Sleeman MA, Pengo N, Donnellan FR. Antibodies as drugs-a Keystone Symposia report. Ann N Y Acad Sci 2023; 1519:153-166. [PMID: 36382536 PMCID: PMC10103175 DOI: 10.1111/nyas.14915] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Therapeutic antibodies have broad indications across diverse disease states, such as oncology, autoimmune diseases, and infectious diseases. New research continues to identify antibodies with therapeutic potential as well as methods to improve upon endogenous antibodies and to design antibodies de novo. On April 27-30, 2022, experts in antibody research across academia and industry met for the Keystone symposium "Antibodies as Drugs" to present the state-of-the-art in antibody therapeutics, repertoires and deep learning, bispecific antibodies, and engineering.
Collapse
Affiliation(s)
| | - Erica Ollmann Saphire
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, California, USA.,Department of Medicine, University of California San Diego, La Jolla, California, USA
| | - Adrian C Hayday
- Peter Gorer Department of Immunobiology, King's College London, London, UK.,Cancer Research UK Cancer Immunotherapy Accelerator, London, UK.,Immunosurveillance Laboratory, The Francis Crick Institute, London, UK
| | | | - Jarrod J Mousa
- Department of Infectious Diseases and Center for Vaccines and Immunology, College of Veterinary Medicine, Athens, Georgia, USA.,Department of Biochemistry and Molecular Biology, Franklin College of Arts and Sciences, University of Georgia, Athens, Georgia, USA.,Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | | | - Esther C W Breij
- Translational Research and Precision Medicine, Genmab BV, Utrecht, the Netherlands
| | - Pierre Bruhns
- Institut Pasteur, Université de Paris, Unit of Antibodies in Therapy and Pathology, Paris, France
| | - Matteo Broketa
- Institut Pasteur, Université de Paris, Unit of Antibodies in Therapy and Pathology, Paris, France
| | - Genta Furuya
- Department of Preventive Medicine and Department of Pathology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Blake M Hauser
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA
| | - Matthieu Mahévas
- Service de Médecine Interne, Centre de Référence des Cytopénies Auto-immunes de l'adulte, Centre Hospitalier Universitaire Henri-Mondor, Assistance Publique-Hôpitaux de Paris, Université Paris-Est Créteil, Créteil, France
| | - Andrea Carfi
- Moderna Inc., Cambridge, Massachusetts, USA.,Department of Pathology, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Tineke Cantaert
- Immunology Unit, Institut Pasteur du Cambodge, The Pasteur Network, Phnom Penh, Cambodia
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Prabhanshu Tripathi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | | | | | - Bruce A Keyt
- IGM Biosciences, Inc., Mountainview, California, USA
| | | | - Vincent Dussupt
- Emerging Infectious Diseases Branch, U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | | | - Philip M Kim
- Department of Molecular Genetics, Donnelly Centre for Cellular and Biomolecular Research, Toronto, Ontario, Canada.,Department of Computer Science, University of Toronto, Toronto, Ontario, Canada
| | - Reda Rawi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Eve Richardson
- Department of Statistics, University of Oxford, Oxford, UK
| | | | - Rachael M Wolters
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | | | | | | | | |
Collapse
|
8
|
Awad RM, Meeus F, Ceuppens H, Ertveldt T, Hanssens H, Lecocq Q, Mateusiak L, Zeven K, Valenta H, De Groof TWM, De Vlaeminck Y, Krasniqi A, De Veirman K, Goyvaerts C, D'Huyvetter M, Hernot S, Devoogdt N, Breckpot K. Emerging applications of nanobodies in cancer therapy. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2022; 369:143-199. [PMID: 35777863 DOI: 10.1016/bs.ircmb.2022.03.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Cancer is a heterogeneous disease, requiring treatment tailored to the unique phenotype of the patient's tumor. Monoclonal antibodies (mAbs) and variants thereof have enabled targeted therapies to selectively target cancer cells. Cancer cell-specific mAbs have been used for image-guided surgery and targeted delivery of radionuclides or toxic agents, improving classical treatment strategies. Cancer cell-specific mAbs can further inhibit tumor cell growth or can stimulate immune-mediated destruction of cancer cells, a feature that has also been achieved through mAb-mediated manipulation of immune cells and pathways. Drawbacks of mAbs and their variants, together with the discovery of camelid heavy chain-only antibodies and the many advantageous features of their variable domains, referred to as VHHs, single domain antibodies or nanobodies (Nbs), resulted in the exploration of Nbs as an alternative targeting moiety. We therefore review the state-of-the-art as well as novel exploitation strategies of Nbs for targeted cancer therapy.
Collapse
Affiliation(s)
- Robin Maximilian Awad
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Fien Meeus
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Hannelore Ceuppens
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Thomas Ertveldt
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Heleen Hanssens
- In Vivo Cellular and Molecular Imaging Laboratory, Department of Medical Imaging, Vrije Universiteit Brussel, Brussels, Belgium
| | - Quentin Lecocq
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Lukasz Mateusiak
- In Vivo Cellular and Molecular Imaging Laboratory, Department of Medical Imaging, Vrije Universiteit Brussel, Brussels, Belgium
| | - Katty Zeven
- In Vivo Cellular and Molecular Imaging Laboratory, Department of Medical Imaging, Vrije Universiteit Brussel, Brussels, Belgium
| | - Hana Valenta
- Lab for Nanobiology, Department of Chemistry, KU Leuven, Leuven, Belgium
| | - Timo W M De Groof
- In Vivo Cellular and Molecular Imaging Laboratory, Department of Medical Imaging, Vrije Universiteit Brussel, Brussels, Belgium
| | - Yannick De Vlaeminck
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Ahmet Krasniqi
- In Vivo Cellular and Molecular Imaging Laboratory, Department of Medical Imaging, Vrije Universiteit Brussel, Brussels, Belgium
| | - Kim De Veirman
- Laboratory for Hematology and Immunology, Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Cleo Goyvaerts
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Matthias D'Huyvetter
- In Vivo Cellular and Molecular Imaging Laboratory, Department of Medical Imaging, Vrije Universiteit Brussel, Brussels, Belgium
| | - Sophie Hernot
- In Vivo Cellular and Molecular Imaging Laboratory, Department of Medical Imaging, Vrije Universiteit Brussel, Brussels, Belgium
| | - Nick Devoogdt
- In Vivo Cellular and Molecular Imaging Laboratory, Department of Medical Imaging, Vrije Universiteit Brussel, Brussels, Belgium
| | - Karine Breckpot
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium.
| |
Collapse
|
9
|
Asaadi Y, Jouneghani FF, Janani S, Rahbarizadeh F. A comprehensive comparison between camelid nanobodies and single chain variable fragments. Biomark Res 2021; 9:87. [PMID: 34863296 PMCID: PMC8642758 DOI: 10.1186/s40364-021-00332-6] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/22/2021] [Indexed: 12/24/2022] Open
Abstract
By the emergence of recombinant DNA technology, many antibody fragments have been developed devoid of undesired properties of natural immunoglobulins. Among them, camelid heavy-chain variable domains (VHHs) and single-chain variable fragments (scFvs) are the most favored ones. While scFv is used widely in various applications, camelid antibodies (VHHs) can serve as an alternative because of their superior chemical and physical properties such as higher solubility, stability, smaller size, and lower production cost. Here, these two counterparts are compared in structure and properties to identify which one is more suitable for each of their various therapeutic, diagnosis, and research applications.
Collapse
Affiliation(s)
- Yasaman Asaadi
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Fatemeh Fazlollahi Jouneghani
- Department of Cell & Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Sara Janani
- Department of Cell & Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Fatemeh Rahbarizadeh
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
- Research and Development Center of Biotechnology, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
10
|
Yang R, Shen S, Gong C, Wang X, Luo F, Luo F, Lei Y, Wang Z, Xu S, Ni Q, Xue Y, Fu Z, Zeng L, Fang L, Yan Y, Zhang J, Gan L, Yi J, Zhou P. Bispecific Antibody PD-L1 x CD3 Boosts the Anti-Tumor Potency of the Expanded Vγ2Vδ2 T Cells. Front Immunol 2021; 12:654080. [PMID: 34040604 PMCID: PMC8141752 DOI: 10.3389/fimmu.2021.654080] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 04/26/2021] [Indexed: 01/13/2023] Open
Abstract
Vγ2Vδ2 T cell-based immunotherapy has benefited some patients in clinical trials, but the overall efficacy is low for solid tumor patients. In this study, a bispecific antibody against both PD-L1 and CD3 (PD-L1 x CD3), Y111, could efficiently bridge T cells and PD-L1 expressing tumor cells. The Y111 prompted fresh CD8+ T cell-mediated lysis of H358 cells, but spared this effect on the fresh Vδ2+ T cells enriched from the same donors, which suggested that Y111 could bypass the anti-tumor capacity of the fresh Vγ2Vδ2 T cells. As the adoptive transfer of the expanded Vγ2Vδ2 T cells was approved to be safe and well-tolerated in clinical trials, we hypothesized that the combination of the expanded Vγ2Vδ2 T cells with the Y111 would provide an alternative approach of immunotherapy. Y111 induced the activation of the expanded Vγ2Vδ2 T cells in a dose-dependent fashion in the presence of PD-L1 positive tumor cells. Moreover, Y111 increased the cytotoxicity of the expanded Vγ2Vδ2 T cells against various NSCLC-derived tumor cell lines with the releases of granzyme B, IFNγ, and TNFα in vitro. Meanwhile, the adoptive transferred Vγ2Vδ2 T cells together with the Y111 inhibited the growth of the established xenografts in NPG mice. Taken together, our data suggested a clinical potential for the adoptive transferring the Vγ2Vδ2 T cells with the Y111 to treat PD-L1 positive solid tumors.
Collapse
Affiliation(s)
- Rui Yang
- Research and Development Department, Wuhan YZY Biopharma Co., Ltd, Wuhan, China.,National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Susu Shen
- Research and Development Department, Wuhan YZY Biopharma Co., Ltd, Wuhan, China.,National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Cheng Gong
- Research and Development Department, Wuhan YZY Biopharma Co., Ltd, Wuhan, China
| | - Xin Wang
- Research and Development Department, Wuhan YZY Biopharma Co., Ltd, Wuhan, China
| | - Fang Luo
- Research and Development Department, Wuhan YZY Biopharma Co., Ltd, Wuhan, China
| | - Fengyan Luo
- Research and Development Department, Wuhan YZY Biopharma Co., Ltd, Wuhan, China
| | - Yang Lei
- Research and Development Department, Wuhan YZY Biopharma Co., Ltd, Wuhan, China
| | - Zili Wang
- Research and Development Department, Wuhan YZY Biopharma Co., Ltd, Wuhan, China
| | - Shasha Xu
- Research and Development Department, Wuhan YZY Biopharma Co., Ltd, Wuhan, China
| | - Qian Ni
- Research and Development Department, Wuhan YZY Biopharma Co., Ltd, Wuhan, China
| | - Yan Xue
- Research and Development Department, Wuhan YZY Biopharma Co., Ltd, Wuhan, China
| | - Zhen Fu
- Research and Development Department, Wuhan YZY Biopharma Co., Ltd, Wuhan, China
| | - Liang Zeng
- Research and Development Department, Wuhan YZY Biopharma Co., Ltd, Wuhan, China
| | - Lijuan Fang
- Research and Development Department, Wuhan YZY Biopharma Co., Ltd, Wuhan, China
| | - Yongxiang Yan
- Research and Development Department, Wuhan YZY Biopharma Co., Ltd, Wuhan, China
| | - Jing Zhang
- Research and Development Department, Wuhan YZY Biopharma Co., Ltd, Wuhan, China
| | - Lu Gan
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Jizu Yi
- Research and Development Department, Wuhan YZY Biopharma Co., Ltd, Wuhan, China
| | - Pengfei Zhou
- Research and Development Department, Wuhan YZY Biopharma Co., Ltd, Wuhan, China
| |
Collapse
|
11
|
de Weerdt I, Lameris R, Ruben JM, de Boer R, Kloosterman J, King LA, Levin MD, Parren PWHI, de Gruijl TD, Kater AP, van der Vliet HJ. A Bispecific Single-Domain Antibody Boosts Autologous Vγ9Vδ2-T Cell Responses Toward CD1d in Chronic Lymphocytic Leukemia. Clin Cancer Res 2021; 27:1744-1755. [PMID: 33451981 DOI: 10.1158/1078-0432.ccr-20-4576] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/30/2020] [Accepted: 01/13/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE Although considerable progress has been made with autologous T cell-based therapy in B-cell malignancies, application in chronic lymphocytic leukemia (CLL) lags behind due to disappointing response rates as well as substantial toxicity that is of particular concern in the elderly CLL population. Vγ9Vδ2-T cells form a conserved T-cell subset with strong intrinsic immunotherapeutic potential, largely because of their capacity to be triggered by phosphoantigens that can be overproduced by CLL and other malignant cells. Specific activation of Vγ9Vδ2-T cells by a bispecific antibody may improve the efficacy and toxicity of autologous T-cell-based therapy in CLL. EXPERIMENTAL DESIGN We evaluated CD1d expression in a cohort of 78 untreated patients with CLL and generated and functionally characterized a CD1d-specific Vγ9Vδ2-T cell engager based on single-domain antibodies (VHH). RESULTS CD1d was expressed by CLL in the majority of patients, particularly in patients with advanced disease. The CD1d-specific Vγ9Vδ2-T cell engager induced robust activation and degranulation of Vγ9Vδ2-T cells, enabling Vγ9Vδ2-T cells from patients with CLL to lyse autologous leukemic cells at low effector-to-target ratios. Expression of CD1d on CLL cells is upregulated by all-trans retinoic acid, and sensitizes the malignant cells to bispecific VHH-induced lysis. Furthermore, we provide evidence that the Vγ9Vδ2-T cell receptor retains responsiveness to phosphoantigens when the bispecific VHH is bound, and aminobisphosphonates can therefore enhance bispecific Vγ9Vδ2-T cell engager-mediated tumor-specific killing. CONCLUSIONS Collectively, our data demonstrate the immunotherapeutic potential of this novel CD1d-specific Vγ9Vδ2-T cell engager in CLL.
Collapse
Affiliation(s)
- Iris de Weerdt
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam Infection & Immunity Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands.,Department of Hematology, Cancer Center Amsterdam, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Roeland Lameris
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam Infection & Immunity Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Jurjen M Ruben
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam Infection & Immunity Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Renate de Boer
- Department of Experimental Immunology, Cancer Center Amsterdam, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Jan Kloosterman
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam Infection & Immunity Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Lisa A King
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam Infection & Immunity Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Mark-David Levin
- Department of Internal Medicine, Albert Schweitzer Hospital, Dordrecht, the Netherlands
| | - Paul W H I Parren
- Lava Therapeutics, Utrecht, the Netherlands.,Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, the Netherlands
| | - Tanja D de Gruijl
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam Infection & Immunity Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Arnon P Kater
- Department of Hematology, Cancer Center Amsterdam, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands.,Lymphoma and Myeloma Center Amsterdam (LYMMCARE), Amsterdam, the Netherlands
| | - Hans J van der Vliet
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam Infection & Immunity Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands. .,Lava Therapeutics, Utrecht, the Netherlands
| |
Collapse
|
12
|
Van Campenhout R, Muyldermans S, Vinken M, Devoogdt N, De Groof TW. Therapeutic Nanobodies Targeting Cell Plasma Membrane Transport Proteins: A High-Risk/High-Gain Endeavor. Biomolecules 2021; 11:63. [PMID: 33418902 PMCID: PMC7825061 DOI: 10.3390/biom11010063] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/30/2020] [Accepted: 01/01/2021] [Indexed: 02/06/2023] Open
Abstract
Cell plasma membrane proteins are considered as gatekeepers of the cell and play a major role in regulating various processes. Transport proteins constitute a subclass of cell plasma membrane proteins enabling the exchange of molecules and ions between the extracellular environment and the cytosol. A plethora of human pathologies are associated with the altered expression or dysfunction of cell plasma membrane transport proteins, making them interesting therapeutic drug targets. However, the search for therapeutics is challenging, since many drug candidates targeting cell plasma membrane proteins fail in (pre)clinical testing due to inadequate selectivity, specificity, potency or stability. These latter characteristics are met by nanobodies, which potentially renders them eligible therapeutics targeting cell plasma membrane proteins. Therefore, a therapeutic nanobody-based strategy seems a valid approach to target and modulate the activity of cell plasma membrane transport proteins. This review paper focuses on methodologies to generate cell plasma membrane transport protein-targeting nanobodies, and the advantages and pitfalls while generating these small antibody-derivatives, and discusses several therapeutic nanobodies directed towards transmembrane proteins, including channels and pores, adenosine triphosphate-powered pumps and porters.
Collapse
Affiliation(s)
- Raf Van Campenhout
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium; (R.V.C.); (M.V.)
| | - Serge Muyldermans
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium;
| | - Mathieu Vinken
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium; (R.V.C.); (M.V.)
| | - Nick Devoogdt
- In Vivo Cellular and Molecular Imaging Laboratory, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium;
| | - Timo W.M. De Groof
- In Vivo Cellular and Molecular Imaging Laboratory, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium;
| |
Collapse
|
13
|
Selective recruitment of γδ T cells by a bispecific antibody for the treatment of acute myeloid leukemia. Leukemia 2021; 35:2274-2284. [PMID: 33526858 PMCID: PMC8324575 DOI: 10.1038/s41375-021-01122-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 11/19/2020] [Accepted: 01/07/2021] [Indexed: 01/29/2023]
Abstract
Despite significant progress over the last few decades in the treatment of acute myeloid leukemia (AML), there still remains a major unmet medical need for this disease. Immunotherapy approaches for redirecting pan CD3+ T cells to target leukemia blasts have shown limited efficacy in clinical trials and often accompanied with severe toxicity in AML patients. We designed an alternative engager molecule (Anti-TRGV9/anti-CD123), a bispecific antibody that can simultaneously bind to the Vγ9 chain of the Vγ9Vδ2+ γδ T cell receptor and to AML target antigen, CD123, to selectively recruit Vγ9+ γδ T cells rather than pan T cells to target AML blasts. Our results suggest that prototypic bispecific antibodies (a) selectively activate Vγ9+ γδ T cells as judged by CD69 and CD25 surface expression, and intracellular Granzyme B expression, (b) selectively recruit Vγ9+ γδ T cells into cell-cell conjugate formation of γδ T cells with tumor cells indicating selective and effective engagement of effector and target tumor cells, and (c) mediate γδ T cell cytotoxicity (in vitro and in vivo) against tumor antigen-expressing cells. Collectively, these findings suggest that selectively redirecting Vγ9+ γδ T cells to target AML blasts has a potential for immunotherapy for AML patients and favors further exploration of this concept.
Collapse
|
14
|
de Weerdt I, Lameris R, Scheffer GL, Vree J, de Boer R, Stam AG, van de Ven R, Levin MD, Pals ST, Roovers RC, Parren PWHI, de Gruijl TD, Kater AP, van der Vliet HJ. A Bispecific Antibody Antagonizes Prosurvival CD40 Signaling and Promotes Vγ9Vδ2 T cell-Mediated Antitumor Responses in Human B-cell Malignancies. Cancer Immunol Res 2020; 9:50-61. [PMID: 33177109 DOI: 10.1158/2326-6066.cir-20-0138] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 08/05/2020] [Accepted: 11/04/2020] [Indexed: 11/16/2022]
Abstract
Novel T cell-based therapies for the treatment of B-cell malignancies, such as chronic lymphocytic leukemia (CLL) and multiple myeloma (MM), are thought to have strong potential. Progress, however, has been hampered by low efficacy and high toxicity. Tumor targeting by Vγ9Vδ2 T cells, a conserved T-cell subset with potent intrinsic antitumor properties, mediated by a bispecific antibody represents a novel approach promising high efficacy with limited toxicity. Here, we describe the generation of a bispecific Vγ9Vδ2 T-cell engager directed against CD40, which, due to its overexpression and biological footprint in malignant B cells, represents an attractive target. The CD40-targeting moiety of the bispecific antibody was selected because it can prevent CD40L-induced prosurvival signaling and reduce CD40-mediated resistance of CLL cells to venetoclax. Selective activation of Vγ9Vδ2 T cells in the presence of CD40+ tumor cells induced potent Vγ9Vδ2 T-cell degranulation, cytotoxicity against CLL and MM cells in vitro, and in vivo control of MM in a xenograft model. The CD40-bispecific γδ T-cell engager demonstrated lysis of leukemic cells by autologous Vγ9Vδ2 T cells present in patient-derived samples. Taken together, our CD40 bispecific γδ T-cell engager increased the sensitivity of leukemic cells to apoptosis and induced a potent Vγ9Vδ2 T cell-dependent antileukemic response. It may, therefore, represent a potential candidate for the development of novel treatments for B-cell malignancies.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Animals
- Antibodies, Bispecific/immunology
- Antibodies, Bispecific/pharmacology
- CD40 Antigens/immunology
- Cell Line, Tumor
- Female
- HEK293 Cells
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Lymphocyte Activation/drug effects
- Male
- Mice
- Mice, Inbred NOD
- Middle Aged
- Signal Transduction/drug effects
- Tumor Cells, Cultured
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Iris de Weerdt
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Department of Hematology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Roeland Lameris
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - George L Scheffer
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Jana Vree
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Renate de Boer
- Department of Hematology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Anita G Stam
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Rieneke van de Ven
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Mark-David Levin
- Department of Internal Medicine, Albert Schweitzer Hospital, Dordrecht, the Netherlands
| | - Steven T Pals
- Department of Pathology, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Lymphoma and Myeloma Center Amsterdam (LYMMCARE), Amsterdam, the Netherlands
| | | | - Paul W H I Parren
- Lava Therapeutics, Utrecht, the Netherlands
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, the Netherlands
| | - Tanja D de Gruijl
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Arnon P Kater
- Department of Hematology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Lymphoma and Myeloma Center Amsterdam (LYMMCARE), Amsterdam, the Netherlands
| | - Hans J van der Vliet
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands.
- Lava Therapeutics, Utrecht, the Netherlands
| |
Collapse
|
15
|
de Beer MA, Giepmans BNG. Nanobody-Based Probes for Subcellular Protein Identification and Visualization. Front Cell Neurosci 2020; 14:573278. [PMID: 33240044 PMCID: PMC7667270 DOI: 10.3389/fncel.2020.573278] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 10/05/2020] [Indexed: 12/14/2022] Open
Abstract
Understanding how building blocks of life contribute to physiology is greatly aided by protein identification and cellular localization. The two main labeling approaches developed over the past decades are labeling with antibodies such as immunoglobulin G (IgGs) or use of genetically encoded tags such as fluorescent proteins. However, IgGs are large proteins (150 kDa), which limits penetration depth and uncertainty of target position caused by up to ∼25 nm distance of the label created by the chosen targeting approach. Additionally, IgGs cannot be easily recombinantly modulated and engineered as part of fusion proteins because they consist of multiple independent translated chains. In the last decade single domain antigen binding proteins are being explored in bioscience as a tool in revealing molecular identity and localization to overcome limitations by IgGs. These nanobodies have several potential benefits over routine applications. Because of their small size (15 kDa), nanobodies better penetrate during labeling procedures and improve resolution. Moreover, nanobodies cDNA can easily be fused with other cDNA. Multidomain proteins can thus be easily engineered consisting of domains for targeting (nanobodies) and visualization by fluorescence microscopy (fluorescent proteins) or electron microscopy (based on certain enzymes). Additional modules for e.g., purification are also easily added. These nanobody-based probes can be applied in cells for live-cell endogenous protein detection or may be purified prior to use on molecules, cells or tissues. Here, we present the current state of nanobody-based probes and their implementation in microscopy, including pitfalls and potential future opportunities.
Collapse
Affiliation(s)
- Marit A de Beer
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Ben N G Giepmans
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| |
Collapse
|
16
|
Wesch D, Kabelitz D, Oberg HH. Tumor resistance mechanisms and their consequences on γδ T cell activation. Immunol Rev 2020; 298:84-98. [PMID: 33048357 DOI: 10.1111/imr.12925] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 08/28/2020] [Accepted: 09/03/2020] [Indexed: 12/22/2022]
Abstract
Human γδ T lymphocytes are predominated by two major subsets, defined by the variable domain of the δ chain. Both, Vδ1 and Vδ2 T cells infiltrate in tumors and have been implicated in cancer immunosurveillance. Since the localization and distribution of tumor-infiltrating γδ T cell subsets and their impact on survival of cancer patients are not completely defined, this review summarizes the current knowledge about this issue. Different intrinsic tumor resistance mechanisms and immunosuppressive molecules of immune cells in the tumor microenvironment have been reported to negatively influence functional properties of γδ T cell subsets. Here, we focus on selected tumor resistance mechanisms including overexpression of cyclooxygenase (COX)-2 and indolamine-2,3-dioxygenase (IDO)-1/2, regulation by tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)/TRAIL-R4 pathway and the release of galectins. These inhibitory mechanisms play important roles in the cross-talk of γδ T cell subsets and tumor cells, thereby influencing cytotoxicity or proliferation of γδ T cells and limiting a successful γδ T cell-based immunotherapy. Possible future directions of a combined therapy of adoptively transferred γδ T cells together with γδ-targeting bispecific T cell engagers and COX-2 or IDO-1/2 inhibitors or targeting sialoglycan-Siglec pathways will be discussed and considered as attractive therapeutic options to overcome the immunosuppressive tumor microenvironment.
Collapse
Affiliation(s)
- Daniela Wesch
- Institute of Immunology, University Hospital Schleswig-Holstein, Christian-Albrechts University of Kiel, Kiel, Germany
| | - Dieter Kabelitz
- Institute of Immunology, University Hospital Schleswig-Holstein, Christian-Albrechts University of Kiel, Kiel, Germany
| | - Hans-Heinrich Oberg
- Institute of Immunology, University Hospital Schleswig-Holstein, Christian-Albrechts University of Kiel, Kiel, Germany
| |
Collapse
|
17
|
Bathula NV, Bommadevara H, Hayes JM. Nanobodies: The Future of Antibody-Based Immune Therapeutics. Cancer Biother Radiopharm 2020; 36:109-122. [PMID: 32936001 DOI: 10.1089/cbr.2020.3941] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Targeted therapy is a fast evolving treatment strategy to reduce unwanted damage to healthy tissues, while increasing efficacy and specificity. Driven by state-of-the-art technology, this therapeutic approach is especially true of cancer. Antibodies with their remarkable specificity have revolutionized therapeutic strategies for autoimmune conditions and cancer, particularly blood-borne cancers, but have severe limitations in treating solid tumors. This is mainly due to their large molecular size, low stability, tumor-tissue penetration difficulties, and pharmacokinetic properties. The tumor microenvironment, rich in immune-suppressing molecules is also a major barrier in targeting solid tumors by antibody-based drugs. Nanobodies have recently emerged as an alternative therapeutic agent to overcome some of the drawbacks of traditional antibody treatment. Nanobodies are the VHH domains found on the heavy-chain only antibodies of camelids and are the smallest naturally available antibody fragments with excellent antigen-binding specificity and affinity, equivalent to conventional antibodies but with molecular weights as low as 15 kDa. The compact size, high stability, enhanced hydrophilicity, particularly in framework regions, excellent epitope interactions with protruding CDR3 regions, and improved tissue penetration make nanobodies the next-generation therapeutics (Nano-BioDrugs). In this review, the authors discuss the interesting properties of nanobodies and their advantages over their conventional counterparts and provide insight into how nanobodies are being utilized as agonists and antagonists, bispecific constructs, and drug and enzyme-conjugates to combat the tumor microenvironment and treat disease.
Collapse
Affiliation(s)
- Nuthan V Bathula
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Hemashree Bommadevara
- School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| | - Jerrard M Hayes
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
18
|
Kabelitz D, Serrano R, Kouakanou L, Peters C, Kalyan S. Cancer immunotherapy with γδ T cells: many paths ahead of us. Cell Mol Immunol 2020; 17:925-939. [PMID: 32699351 PMCID: PMC7609273 DOI: 10.1038/s41423-020-0504-x] [Citation(s) in RCA: 203] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 06/27/2020] [Indexed: 12/12/2022] Open
Abstract
γδ T cells play uniquely important roles in stress surveillance and immunity for infections and carcinogenesis. Human γδ T cells recognize and kill transformed cells independently of human leukocyte antigen (HLA) restriction, which is an essential feature of conventional αβ T cells. Vγ9Vδ2 γδ T cells, which prevail in the peripheral blood of healthy adults, are activated by microbial or endogenous tumor-derived pyrophosphates by a mechanism dependent on butyrophilin molecules. γδ T cells expressing other T cell receptor variable genes, notably Vδ1, are more abundant in mucosal tissue. In addition to the T cell receptor, γδ T cells usually express activating natural killer (NK) receptors, such as NKp30, NKp44, or NKG2D which binds to stress-inducible surface molecules that are absent on healthy cells but are frequently expressed on malignant cells. Therefore, γδ T cells are endowed with at least two independent recognition systems to sense tumor cells and to initiate anticancer effector mechanisms, including cytokine production and cytotoxicity. In view of their HLA-independent potent antitumor activity, there has been increasing interest in translating the unique potential of γδ T cells into innovative cellular cancer immunotherapies. Here, we discuss recent developments to enhance the efficacy of γδ T cell-based immunotherapy. This includes strategies for in vivo activation and tumor-targeting of γδ T cells, the optimization of in vitro expansion protocols, and the development of gene-modified γδ T cells. It is equally important to consider potential synergisms with other therapeutic strategies, notably checkpoint inhibitors, chemotherapy, or the (local) activation of innate immunity.
Collapse
Affiliation(s)
- Dieter Kabelitz
- Institute of Immunology, Christian-Albrechts University of Kiel and University Hospital Schleswig-Holstein Campus Kiel, D-24105, Kiel, Germany.
| | - Ruben Serrano
- Institute of Immunology, Christian-Albrechts University of Kiel and University Hospital Schleswig-Holstein Campus Kiel, D-24105, Kiel, Germany
| | - Léonce Kouakanou
- Institute of Immunology, Christian-Albrechts University of Kiel and University Hospital Schleswig-Holstein Campus Kiel, D-24105, Kiel, Germany
| | - Christian Peters
- Institute of Immunology, Christian-Albrechts University of Kiel and University Hospital Schleswig-Holstein Campus Kiel, D-24105, Kiel, Germany
| | - Shirin Kalyan
- Faculty of Medicine, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
19
|
Han L, Peng R, Jiang W, Xu T, Zhang C, Chen K, Zhang Y, Song H, Jia L. Coordination-driven reversible surfaces with site-specifically immobilized nanobody for dynamic cancer cell capture and release. J Mater Chem B 2020; 8:7511-7520. [PMID: 32677632 DOI: 10.1039/d0tb00574f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Selective isolation of circulating tumor cells (CTCs) from blood provides a non-invasive avenue for the diagnosis, prognosis and personalized treatment for patients with cancer. The specific capture of CTCs is conventionally based on the immunoaffinity recognition between antibody and receptor on cell membranes. However, using a traditional antibody for high-efficiency isolation of CTCs remains a challenge due to the limited loading capacity of the large antibodies on material surfaces. Herein, using a small-sized nanobody (Nb), we developed a widely applicable strategy to construct reversible site-specifically immobilized Nb surfaces for the capture and release of epidermoid cancer cell line A431 cells. Coordination interaction between the histidine tag (His-tag) of the nanobody (Nb) and Ni2+ ions that chelated to the NTA-modified poly(2-hydroxyethyl methacrylate) (PHEMA) brushes was used to achieve site-specific immobilization of EGFR Nb (PHEMA-aEGFR surfaces). The high-density immobilized nanobody possessing maximized activity resulted in the high-efficiency capture of 81% rare A431 cells within just 30 min, showing a higher capture yield and shorter capture time compared with that achieved by the conventional antibody immobilized on the flat surface. Additionally, the PHEMA-aEGFR surfaces exhibited low capture limit (1 cell mL-1), cytocompatibility for captured cells, as well as negligible non-specific adhesion of PBMCs. With a one-step treatment using imidazole for competitive coordination, 86% of the captured cells were effectively released. This multifunctional and dynamic site-specifically immobilized nanobody strategy paves a new path in the development of materials and instruments for the high-efficiency capture and release of rare cells at a low cost.
Collapse
Affiliation(s)
- Lulu Han
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian 116023, P. R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Hebbrecht T, Liu J, Zwaenepoel O, Boddin G, Van Leene C, Decoene K, Madder A, Braeckmans K, Gettemans J. Nanobody click chemistry for convenient site-specific fluorescent labelling, single step immunocytochemistry and delivery into living cells by photoporation and live cell imaging. N Biotechnol 2020; 59:33-43. [PMID: 32659511 DOI: 10.1016/j.nbt.2020.05.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 05/20/2020] [Accepted: 05/23/2020] [Indexed: 12/18/2022]
Abstract
While conventional antibodies have been an instrument of choice in immunocytochemistry for some time, their small counterparts known as nanobodies have been much less frequently used for this purpose. In this study we took advantage of the availability of nanobody cDNAs to site-specifically introduce a non-standard amino acid carrying an azide/alkyne moiety, allowing subsequent Cu(I)-catalyzed Azide-Alkyne Click Chemistry (CuAAC). This generated a fluorescently labelled nanobody that can be used in single step immunocytochemistry as compared to conventional two step immunocytochemistry. Two strategies were explored to label nanobodies with Alexa Fluor 488. The first involved enzymatic addition of an alkyne-containing peptide to nanobodies using sortase A, while the second consisted of incorporating para-azido phenylalanine at the nanobody C-terminus. Through these approaches, the fluorophore was covalently and site-specifically attached. It was demonstrated that cortactin and β-catenin, cytoskeletal and adherens junction proteins respectively, can be imaged in cells in this manner through single step immunocytochemistry. However, fixation and permeabilization of cells can alter native protein structure and form a dense cross-linked protein network, encumbering antibody binding. It was shown that photoporation prior to fixation not only allowed delivery of nanobodies into living cells, but also facilitated β-catenin nanobody Nb86 imaging of its target, which was not possible in fixed cells. Pharmacological inhibitors are lacking for many non-enzymatic proteins, and it is therefore expected that new biological information will be obtained through photoporation of fluorescent nanobodies, which allows the study of short term effects, independent of gene-dependent (intrabody) expression.
Collapse
Affiliation(s)
- Tim Hebbrecht
- Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, Ghent B-9000, Belgium
| | - Jing Liu
- Laboratory of General Biochemistry and Physical Pharmacy, Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Ghent University, Ghent B-9000, Belgium
| | - Olivier Zwaenepoel
- Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, Ghent B-9000, Belgium
| | - Gaëlle Boddin
- Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, Ghent B-9000, Belgium
| | - Chloé Van Leene
- Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, Ghent B-9000, Belgium
| | - Klaas Decoene
- Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Ghent B-9000, Belgium
| | - Annemieke Madder
- Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Ghent B-9000, Belgium
| | - Kevin Braeckmans
- Laboratory of General Biochemistry and Physical Pharmacy, Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Ghent University, Ghent B-9000, Belgium; Center for Advanced Light Microscopy, Ghent University, Ghent B-9000, Belgium
| | - Jan Gettemans
- Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, Ghent B-9000, Belgium.
| |
Collapse
|
21
|
Single-Domain Antibodies Represent Novel Alternatives to Monoclonal Antibodies as Targeting Agents against the Human Papillomavirus 16 E6 Protein. Int J Mol Sci 2019; 20:ijms20092088. [PMID: 31035322 PMCID: PMC6539864 DOI: 10.3390/ijms20092088] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 04/23/2019] [Accepted: 04/26/2019] [Indexed: 01/18/2023] Open
Abstract
Approximately one fifth of all malignancies worldwide are etiologically associated with a persistent viral or bacterial infection. Thus, there is a particular interest in therapeutic molecules which use components of a natural immune response to specifically inhibit oncogenic microbial proteins, as it is anticipated they will elicit fewer off-target effects than conventional treatments. This concept has been explored in the context of human papillomavirus 16 (HPV16)-related cancers, through the development of monoclonal antibodies and fragments thereof against the viral E6 oncoprotein. Challenges related to the biology of E6 as well as the functional properties of the antibodies themselves appear to have precluded their clinical translation. Here, we addressed these issues by exploring the utility of the variable domains of camelid heavy-chain-only antibodies (denoted as VHHs). Through construction and panning of two llama, immune VHH phage display libraries, a pool of potential VHHs was isolated. The interactions of these with recombinant E6 were further characterized using an enzyme-linked immunosorbent assay (ELISA), Western blotting under denaturing and native conditions, and surface plasmon resonance. Three VHHs were identified that bound recombinant E6 with nanomolar affinities. Our results lead the way for subsequent studies into the ability of these novel molecules to inhibit HPV16-infected cells in vitro and in vivo.
Collapse
|
22
|
Chanier T, Chames P. Nanobody Engineering: Toward Next Generation Immunotherapies and Immunoimaging of Cancer. Antibodies (Basel) 2019; 8:E13. [PMID: 31544819 PMCID: PMC6640690 DOI: 10.3390/antib8010013] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 01/16/2019] [Accepted: 01/17/2019] [Indexed: 12/14/2022] Open
Abstract
In the last decade, cancer immunotherapies have produced impressive therapeutic results. However, the potency of immunotherapy is tightly linked to immune cell infiltration within the tumor and varies from patient to patient. Thus, it is becoming increasingly important to monitor and modulate the tumor immune infiltrate for an efficient diagnosis and therapy. Various bispecific approaches are being developed to favor immune cell infiltration through specific tumor targeting. The discovery of antibodies devoid of light chains in camelids has spurred the development of single domain antibodies (also called VHH or nanobody), allowing for an increased diversity of multispecific and/or multivalent formats of relatively small sizes endowed with high tissue penetration. The small size of nanobodies is also an asset leading to high contrasts for non-invasive imaging. The approval of the first therapeutic nanobody directed against the von Willebrand factor for the treatment of acquired thrombotic thrombocypenic purpura (Caplacizumab, Ablynx), is expected to bolster the rise of these innovative molecules. In this review, we discuss the latest advances in the development of nanobodies and nanobody-derived molecules for use in cancer immunotherapy and immunoimaging.
Collapse
Affiliation(s)
- Timothée Chanier
- Aix Marseille University, CNRS, INSERM, Institute Paoli-Calmettes, CRCM, 13009 Marseille, France.
| | - Patrick Chames
- Aix Marseille University, CNRS, INSERM, Institute Paoli-Calmettes, CRCM, 13009 Marseille, France.
| |
Collapse
|
23
|
Hoeres T, Smetak M, Pretscher D, Wilhelm M. Improving the Efficiency of Vγ9Vδ2 T-Cell Immunotherapy in Cancer. Front Immunol 2018; 9:800. [PMID: 29725332 PMCID: PMC5916964 DOI: 10.3389/fimmu.2018.00800] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 04/03/2018] [Indexed: 12/28/2022] Open
Abstract
Increasing immunological knowledge and advances in techniques lay the ground for more efficient and broader application of immunotherapies. gamma delta (γδ) T-cells possess multiple favorable anti-tumor characteristics, making them promising candidates to be used in cellular and combination therapies of cancer. They recognize malignant cells, infiltrate tumors, and depict strong cytotoxic and pro-inflammatory activity. Here, we focus on human Vγ9Vδ2 T-cells, the most abundant γδ T-cell subpopulation in the blood, which are able to inhibit cancer progression in various models in vitro and in vivo. For therapeutic use they can be cultured and manipulated ex vivo and in the following adoptively transferred to patients, as well as directly stimulated to propagate in vivo. In clinical studies, Vγ9Vδ2 T-cells repeatedly demonstrated a low toxicity profile but hitherto only the modest therapeutic efficacy. This review provides a comprehensive summary of established and newer strategies for the enhancement of Vγ9Vδ2 T-cell anti-tumor functions. We discuss data of studies exploring methods for the sensitization of malignant cells, the improvement of recognition mechanisms and cytotoxic activity of Vγ9Vδ2 T-cells. Main aspects are the tumor cell metabolism, antibody-dependent cell-mediated cytotoxicity, antibody constructs, as well as activating and inhibitory receptors like NKG2D and immune checkpoint molecules. Several concepts show promising results in vitro, now awaiting translation to in vivo models and clinical studies. Given the array of research and encouraging findings in this area, this review aims at optimizing future investigations, specifically targeting the unanswered questions.
Collapse
Affiliation(s)
- Timm Hoeres
- Department of Hematology and Medical Oncology, Paracelsus Medical University, Nuremberg, Germany
| | - Manfred Smetak
- Department of Hematology and Medical Oncology, Paracelsus Medical University, Nuremberg, Germany
| | - Dominik Pretscher
- Department of Hematology and Medical Oncology, Paracelsus Medical University, Nuremberg, Germany
| | - Martin Wilhelm
- Department of Hematology and Medical Oncology, Paracelsus Medical University, Nuremberg, Germany
| |
Collapse
|
24
|
de Bruin RCG, Veluchamy JP, Lougheed SM, Schneiders FL, Lopez-Lastra S, Lameris R, Stam AG, Sebestyen Z, Kuball J, Molthoff CFM, Hooijberg E, Roovers RC, Santo JPD, van Bergen En Henegouwen PMP, Verheul HMW, de Gruijl TD, van der Vliet HJ. A bispecific nanobody approach to leverage the potent and widely applicable tumor cytolytic capacity of Vγ9Vδ2-T cells. Oncoimmunology 2017; 7:e1375641. [PMID: 29296532 DOI: 10.1080/2162402x.2017.1375641] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 08/11/2017] [Accepted: 08/31/2017] [Indexed: 12/23/2022] Open
Abstract
Though Vγ9Vδ2-T cells constitute only a small fraction of the total T cell population in human peripheral blood, they play a vital role in tumor defense and are therefore of major interest to explore for cancer immunotherapy. Vγ9Vδ2-T cell-based cancer immunotherapeutic approaches developed so far have been generally well tolerated and were able to induce significant clinical responses. However, overall results were inconsistent, possibly due to the fact that these strategies induced systemic activation of Vγ9Vδ2-T cells without preferential accumulation and targeted activation in the tumor. Here we show that a novel bispecific nanobody-based construct targeting both Vγ9Vδ2-T cells and EGFR induced potent Vγ9Vδ2-T cell activation and subsequent tumor cell lysis both in vitro and in an in vivo mouse xenograft model. Tumor cell lysis was independent of KRAS and BRAF tumor mutation status and common Vγ9Vδ2-T cell receptor sequence variations. In combination with the conserved monomorphic nature of the Vγ9Vδ2-TCR and the facile replacement of the tumor-specific nanobody, this immunotherapeutic approach can be applied to a large group of cancer patients.
Collapse
Affiliation(s)
- Renée C G de Bruin
- Department of Medical Oncology, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - John P Veluchamy
- Department of Medical Oncology, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Sinéad M Lougheed
- Department of Medical Oncology, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Famke L Schneiders
- Department of Medical Oncology, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Silvia Lopez-Lastra
- Innate Immunity Unit, Institut Pasteur, Paris, France.,Institut National de la Santé et de la Recherche Médicale (INSERM) U1223, Paris, France.,Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Roeland Lameris
- Department of Medical Oncology, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Anita G Stam
- Department of Medical Oncology, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Zsolt Sebestyen
- Department of Hematology and Laboratory of Translational Immunology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - Jürgen Kuball
- Department of Hematology and Laboratory of Translational Immunology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - Carla F M Molthoff
- Department of Radiology and Nuclear Medicine, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Erik Hooijberg
- Department of Pathology, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Rob C Roovers
- Department of Cell Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - James P Di Santo
- Innate Immunity Unit, Institut Pasteur, Paris, France.,Institut National de la Santé et de la Recherche Médicale (INSERM) U1223, Paris, France
| | | | - Henk M W Verheul
- Department of Medical Oncology, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Tanja D de Gruijl
- Department of Medical Oncology, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Hans J van der Vliet
- Department of Medical Oncology, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| |
Collapse
|
25
|
Beghein E, Gettemans J. Nanobody Technology: A Versatile Toolkit for Microscopic Imaging, Protein-Protein Interaction Analysis, and Protein Function Exploration. Front Immunol 2017; 8:771. [PMID: 28725224 PMCID: PMC5495861 DOI: 10.3389/fimmu.2017.00771] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 06/16/2017] [Indexed: 01/05/2023] Open
Abstract
Over the last two decades, nanobodies or single-domain antibodies have found their way in research, diagnostics, and therapy. These antigen-binding fragments, derived from Camelid heavy chain only antibodies, possess remarkable characteristics that favor their use over conventional antibodies or fragments thereof, in selected areas of research. In this review, we assess the current status of nanobodies as research tools in diverse aspects of fundamental research. We discuss the use of nanobodies as detection reagents in fluorescence microscopy and focus on recent advances in super-resolution microscopy. Second, application of nanobody technology in investigating protein–protein interactions is reviewed, with emphasis on possible uses in mass spectrometry. Finally, we discuss the potential value of nanobodies in studying protein function, and we focus on their recently reported application in targeted protein degradation. Throughout the review, we highlight state-of-the-art engineering strategies that could expand nanobody versatility and we suggest future applications of the technology in the selected areas of fundamental research.
Collapse
Affiliation(s)
- Els Beghein
- Nanobody Laboratory, Department of Biochemistry, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Jan Gettemans
- Nanobody Laboratory, Department of Biochemistry, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
26
|
Hodgins NO, Wang JTW, Al-Jamal KT. Nano-technology based carriers for nitrogen-containing bisphosphonates delivery as sensitisers of γδ T cells for anticancer immunotherapy. Adv Drug Deliv Rev 2017; 114:143-160. [PMID: 28694026 DOI: 10.1016/j.addr.2017.07.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 06/29/2017] [Accepted: 07/05/2017] [Indexed: 12/21/2022]
Abstract
Nitrogen containing bisphosphonates (N-BPs) including zoledronate (ZOL) and alendronate (ALD) inhibit farnesyl diphosphate synthase, and have been shown to have a cytotoxic affect against cancer cells as a monotherapy and to also sensitise tumour cells to destruction by γδ T cells. γδ T cells are a subset of human T lymphocytes and have a diverse range of roles in the immune system including the recognition and destruction of cancer cells. This property of γδ T cells can be harnessed for use in cancer immunotherapy through in vivo expansion or the adoptive transfer of ex vivo activated γδ T cells. The use of N-BPs with γδ T cells has been shown to have a synergistic effect in in vitro, animal and clinical studies. N-BPs have limited in vivo activity due to rapid clearance from the circulation. By encapsulating N-BPs in liposomes (L) it is possible to increase the levels of N-BPs at non-osseous tumour sites. L-ZOL and L-ALD have been shown to have different toxicological profiles than free ZOL or ALD. Both L-ALD and L-ZOL led to increased spleen weight, leucocytosis, neutrophilia and lymphocytopenia in mice after intravenous injection. L-ALD was shown to be better tolerated than L-ZOL in murine studies. Biodistribution studies have been performed in order to better understand the interaction of N-BPs and γδ T cells in vivo. Additionally, in vivo therapy studies have shown that mice treated with both L-ALD and γδ T cells had a significant reduction in tumour growth compared to mice treated with L-ALD or γδ T cells alone. The use of ligand-targeted liposomes may further increase the efficacy of this combinatory immunotherapy. Liposomes targeting the αvβ6 integrin receptor using the peptide A20FMDV2 had a greater ability than untargeted liposomes in sensitising cancer cells to destruction by γδ T cells in αvβ6 positive cancer cell lines.
Collapse
|
27
|
de Bruin RCG, Stam AGM, Vangone A, van Bergen En Henegouwen PMP, Verheul HMW, Sebestyén Z, Kuball J, Bonvin AMJJ, de Gruijl TD, van der Vliet HJ. Prevention of Vγ9Vδ2 T Cell Activation by a Vγ9Vδ2 TCR Nanobody. THE JOURNAL OF IMMUNOLOGY 2016; 198:308-317. [PMID: 27895170 DOI: 10.4049/jimmunol.1600948] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 11/02/2016] [Indexed: 01/09/2023]
Abstract
Vγ9Vδ2 T cell activation plays an important role in antitumor and antimicrobial immune responses. However, there are conditions in which Vγ9Vδ2 T cell activation can be considered inappropriate for the host. Patients treated with aminobisphosphonates for hypercalcemia or metastatic bone disease often present with a debilitating acute phase response as a result of Vγ9Vδ2 T cell activation. To date, no agents are available that can clinically inhibit Vγ9Vδ2 T cell activation. In this study, we describe the identification of a single domain Ab fragment directed to the TCR of Vγ9Vδ2 T cells with neutralizing properties. This variable domain of an H chain-only Ab (VHH or nanobody) significantly inhibited both phosphoantigen-dependent and -independent activation of Vγ9Vδ2 T cells and, importantly, strongly reduced the production of inflammatory cytokines upon stimulation with aminobisphosphonate-treated cells. Additionally, in silico modeling suggests that the neutralizing VHH binds the same residues on the Vγ9Vδ2 TCR as the Vγ9Vδ2 T cell Ag-presenting transmembrane protein butyrophilin 3A1, providing information on critical residues involved in this interaction. The neutralizing Vγ9Vδ2 TCR VHH identified in this study might provide a novel approach to inhibit the unintentional Vγ9Vδ2 T cell activation as a consequence of aminobisphosphonate administration.
Collapse
Affiliation(s)
- Renée C G de Bruin
- Department of Medical Oncology, VU University Medical Center, 1081 HV Amsterdam, the Netherlands
| | - Anita G M Stam
- Department of Medical Oncology, VU University Medical Center, 1081 HV Amsterdam, the Netherlands
| | - Anna Vangone
- Bijvoet Center for Biomolecular Research, Faculty of Science, Utrecht University, 3584 CH Utrecht, the Netherlands
| | | | - Henk M W Verheul
- Department of Medical Oncology, VU University Medical Center, 1081 HV Amsterdam, the Netherlands
| | - Zsolt Sebestyén
- Laboratory of Translational Immunology, Department of Hematology, University Medical Center Utrecht, 3508 GA Utrecht, the Netherlands
| | - Jürgen Kuball
- Laboratory of Translational Immunology, Department of Hematology, University Medical Center Utrecht, 3508 GA Utrecht, the Netherlands
| | - Alexandre M J J Bonvin
- Bijvoet Center for Biomolecular Research, Faculty of Science, Utrecht University, 3584 CH Utrecht, the Netherlands
| | - Tanja D de Gruijl
- Department of Medical Oncology, VU University Medical Center, 1081 HV Amsterdam, the Netherlands
| | - Hans J van der Vliet
- Department of Medical Oncology, VU University Medical Center, 1081 HV Amsterdam, the Netherlands;
| |
Collapse
|