1
|
Veld LF, Waters S, Irish A, Price P, Lee S. An IL-10 homologue encoded by human cytomegalovirus is linked with the viral "footprint" in clinical samples. Cytokine 2024; 180:156654. [PMID: 38810501 DOI: 10.1016/j.cyto.2024.156654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/22/2024] [Accepted: 05/14/2024] [Indexed: 05/31/2024]
Abstract
Persistent infections with human cytomegalovirus (HCMV) affect the hosts' immune system and have been linked with chronic inflammation and cardiovascular disease. These effects may be influenced by a HCMV-encoded homologue of the anti-inflammatory cytokine, IL-10 (cmvIL-10). To assess this, we quantitated cmvIL-10 in plasma from renal transplant recipients (RTR) and healthy adults. Detectable levels of cmvIL-10 associated with seropositivity in RTR, but were found in some seronegative healthy adults. RTR with detectable cmvIL-10 had elevated interferon-γ T-cell responses to HCMV antigens, whilst cmvIL-10 in healthy adults associated with reduced populations of terminally-differentiated T-cells - a known "footprint" of HCMV. Plasma cmvIL-10 associated with lower VCAM-1 levels in healthy adults. The data suggest cmvIL-10 may suppress seroconversion and/or reduce the footprint of HCMV in healthy adults. This appears to be subverted in RTR by their high burden of HCMV and/or immune dysregulation associated with transplantation. A role for cmvIL-10 in protection of vascular health is discussed.
Collapse
Affiliation(s)
- Luna-Faye Veld
- Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, Bentley, Australia
| | - Shelley Waters
- Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, Bentley, Australia.
| | - Ashley Irish
- Renal Unit, Fiona Stanley Hospital, Murdoch, Australia; School of Medicine and Pharmacology, University of Western Australia, Nedlands, Australia
| | - Patricia Price
- Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, Bentley, Australia
| | - Silvia Lee
- Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, Bentley, Australia; Department of Microbiology and Infectious Diseases, Pathwest Laboratory Medicine, Murdoch, Australia
| |
Collapse
|
2
|
Zheng Z, Li J, Liu T, Fan Y, Zhai QC, Xiong M, Wang QR, Sun X, Zheng QW, Che S, Jiang B, Zheng Q, Wang C, Liu L, Ping J, Wang S, Gao DD, Ye J, Yang K, Zuo Y, Ma S, Yang YG, Qu J, Zhang F, Jia P, Liu GH, Zhang W. DNA methylation clocks for estimating biological age in Chinese cohorts. Protein Cell 2024; 15:575-593. [PMID: 38482631 PMCID: PMC11259550 DOI: 10.1093/procel/pwae011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 01/10/2024] [Indexed: 07/21/2024] Open
Abstract
Epigenetic clocks are accurate predictors of human chronological age based on the analysis of DNA methylation (DNAm) at specific CpG sites. However, a systematic comparison between DNA methylation data and other omics datasets has not yet been performed. Moreover, available DNAm age predictors are based on datasets with limited ethnic representation. To address these knowledge gaps, we generated and analyzed DNA methylation datasets from two independent Chinese cohorts, revealing age-related DNAm changes. Additionally, a DNA methylation aging clock (iCAS-DNAmAge) and a group of DNAm-based multi-modal clocks for Chinese individuals were developed, with most of them demonstrating strong predictive capabilities for chronological age. The clocks were further employed to predict factors influencing aging rates. The DNAm aging clock, derived from multi-modal aging features (compositeAge-DNAmAge), exhibited a close association with multi-omics changes, lifestyles, and disease status, underscoring its robust potential for precise biological age assessment. Our findings offer novel insights into the regulatory mechanism of age-related DNAm changes and extend the application of the DNAm clock for measuring biological age and aging pace, providing the basis for evaluating aging intervention strategies.
Collapse
Affiliation(s)
- Zikai Zheng
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiaming Li
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tianzi Liu
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yanling Fan
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
| | - Qiao-Cheng Zhai
- Division of Orthopaedics, Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou 324000, China
- The Joint Innovation Center for Engineering in Medicine, Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou 324000, China
| | - Muzhao Xiong
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiao-Ran Wang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoyan Sun
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qi-Wen Zheng
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
| | - Shanshan Che
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Beier Jiang
- The Joint Innovation Center for Engineering in Medicine, Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou 324000, China
| | - Quan Zheng
- The Joint Innovation Center for Engineering in Medicine, Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou 324000, China
| | - Cui Wang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lixiao Liu
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiale Ping
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Si Wang
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
- Aging Biomarker Consortium, Beijing 100101, China
| | - Dan-Dan Gao
- The Joint Innovation Center for Engineering in Medicine, Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou 324000, China
| | - Jinlin Ye
- The Joint Innovation Center for Engineering in Medicine, Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou 324000, China
| | - Kuan Yang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuesheng Zuo
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuai Ma
- Aging Biomarker Consortium, Beijing 100101, China
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Yun-Gui Yang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Qu
- University of Chinese Academy of Sciences, Beijing 100049, China
- Aging Biomarker Consortium, Beijing 100101, China
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Feng Zhang
- Division of Orthopaedics, Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou 324000, China
| | - Peilin Jia
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
| | - Guang-Hui Liu
- University of Chinese Academy of Sciences, Beijing 100049, China
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
- Aging Biomarker Consortium, Beijing 100101, China
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Weiqi Zhang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Aging Biomarker Consortium, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
3
|
Do variations in the HLA-E ligand encoded by UL40 distinguish individuals susceptible to HCMV disease? Hum Immunol 2023; 84:75-79. [PMID: 36456304 DOI: 10.1016/j.humimm.2022.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 11/07/2022] [Accepted: 11/11/2022] [Indexed: 11/30/2022]
Abstract
Human cytomegalovirus (HCMV) is carried lifelong by ∼80 % of adults worldwide, generating distinct disease syndromes in transplant recipients, people with HIV (PWH) and neonates. Amino acids 15-23 encoded by the HCMV gene UL40 match positions 3-11 of HLA-A and HLA-C, and constitute a "signal peptide" able to stabilise cell surface HLA-E as a restriction element and a ligand of NKG2A and NKG2C. We present next generation sequencing of UL40 amplified from 15 Australian renal transplant recipients (RTR), six healthy adults and four neonates, and 21 Indonesian PWH. We found no groupwise associations between the presence of multiple sequences and HCMV burden (highest in PWH) or HCMV-associated symptoms in neonates. Homology between UL40 and corresponding HLA-C and HLA-A peptides in 11 RTR revealed perfect matches with HLA-C in three individuals, all carrying HCMV encoding only VMAPRTLIL - a peptide previously associated with viremia. However indices of the burden of HCMV did not segregate in our cohort.
Collapse
|
4
|
Lee S, Affandi J, Waters S, Price P. Human Cytomegalovirus Infection and Cardiovascular Disease: Current Perspectives. Viral Immunol 2023; 36:13-24. [PMID: 36622943 DOI: 10.1089/vim.2022.0139] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Infections with human cytomegalovirus (HCMV) are often asymptomatic in healthy adults but can be severe in people with a compromised immune system. While several studies have demonstrated associations between cardiovascular disease in older adults and HCMV seropositivity, the underlying mechanisms are unclear. We review evidence published within the last 5 years establishing how HCMV can contribute directly and indirectly to the development and progression of atherosclerotic plaques. We also discuss associations between HCMV infection and cardiovascular outcomes in populations with a high or very high burden of HCMV, including patients with renal or autoimmune disease, transplant recipients, and people living with HIV.
Collapse
Affiliation(s)
- Silvia Lee
- Department of Microbiology, Pathwest Laboratory Medicine, Perth, Western Australia, Australia.,Department of Advanced Clinical and Translational Cardiovascular Imaging, Harry Perkins Institute of Medical Research, Murdoch, Western Australia, Australia.,Curtin Medical School and the Curtin Health Innovation Research Institute (CHIRI); Bentley, Western Australia, Australia
| | - Jacquita Affandi
- Curtin School of Population Health; Curtin University, Bentley, Western Australia, Australia
| | - Shelley Waters
- Curtin Medical School and the Curtin Health Innovation Research Institute (CHIRI); Bentley, Western Australia, Australia
| | - Patricia Price
- Curtin Medical School and the Curtin Health Innovation Research Institute (CHIRI); Bentley, Western Australia, Australia
| |
Collapse
|
5
|
Ariyanto IA, Estiasari R, Lee S, Price P. γδ T Cell Subpopulations Associate with Recovery of Memory Function in Indonesian HIV Patients Starting Antiretroviral Therapy. AIDS Res Hum Retroviruses 2022; 38:764-770. [PMID: 35699068 DOI: 10.1089/aid.2021.0171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Cognitive impairment may persist in HIV patients despite effective antiretroviral therapy (ART). However, recovery is influenced by the neurocognitive domain tested, the severity of HIV disease, and by education. In young adult patients commencing ART in Jakarta, Indonesia, we described improvements in all cognitive domains except memory after 6-12 months on ART. In this study, we address relationships between cytomegalovirus (CMV), γδ T cell profiles and neurocognitive assessments with a focus on memory. The JakCCANDO (Jakarta CMV Cardiovascular ART Neurology Dentistry Ophthalmology) project recruited patients (aged 18-48 years) beginning ART with <200 CD4+ T cells/μL. Cognitive assessments used validated tests of five domains. Flow cytometry was used to assess proportions of Vδ2- and Vδ2+ γδ T cells, and their activation (HLA-DR) and terminal differentiation (CD27-/CD45RA+). All patients carried high levels of antibodies reactive with CMV, so the detection of CMV DNA before ART was used to stratify participants into subgroups with a moderate/high or an extremely high burden of CMV. Patients had higher proportions of Vδ2- γδ T cells and fewer Vδ2+ γδ T cells than healthy controls before ART and at 6 months. Z-scores for memory function correlated with proportions of Vδ2+ γδ T cells at both time points. Linear regression analyses confirmed this association. When the detection of CMV DNA was used to stratify the cohort, the association between memory Z-scores and Vδ2+ γδ T cells or CMV antibodies was only discernible in patients with a lower CMV burden. Hence, CMV and Vδ2+ γδ T cells warrant further consideration as factors that may contribute to the poor recovery of memory on ART.
Collapse
Affiliation(s)
- Ibnu A Ariyanto
- Doctoral Program in Biomedical Science, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia.,Virology and Cancer Pathobiology Research Centre, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Riwanti Estiasari
- Department of Neurology, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia.,Department of Neurology, Cipto Mangunkusumo General Hospital, Jakarta, Indonesia
| | - Silvia Lee
- Department of Microbiology, Pathwest Laboratory Medicine, Perth, Australia.,School of Medicine, Curtin University, Perth, Australia
| | - Patricia Price
- Virology and Cancer Pathobiology Research Centre, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia.,School of Medicine, Curtin University, Perth, Australia
| |
Collapse
|
6
|
Waters S, Lee S, Ariyanto I, Kresoje N, Leary S, Munyard K, Gaudieri S, Irish A, Keil AD, Allcock RJN, Price P. Sequencing of the Viral UL111a Gene Directly from Clinical Specimens Reveals Variants of HCMV-Encoded IL-10 That Are Associated with Altered Immune Responses to HCMV. Int J Mol Sci 2022; 23:4644. [PMID: 35563032 PMCID: PMC9104433 DOI: 10.3390/ijms23094644] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/27/2022] [Accepted: 04/18/2022] [Indexed: 12/16/2022] Open
Abstract
Human cytomegalovirus (HCMV) is a beta-herpesvirus carried by ~80% of adults worldwide. Acute infections are often asymptomatic in healthy individuals but generate diverse syndromes in neonates, renal transplant recipients (RTR), and people with HIV (PWH). The HCMV gene UL111a encodes a homolog of human interleukin-10 (IL-10) that interacts with the human IL-10 receptor. Deep sequencing technologies were used to sequence UL111a directly from 59 clinical samples from Indonesian PWH and Australian RTR, healthy adults, and neonates. Overall, 93% of samples contained more than one variant of HCMV, as defined by at least one nonsynonymous variation. Carriage of these variants differed between neonates and adults, Australians and Indonesians, and between saliva and blood leukocytes. The variant alleles of N41D and S71Y occurred together in Australian RTR and were associated with higher T-cell responses to HCMV pp65. The variant P122S was associated with lower levels of antibodies reactive with a lysate of HCMV-infected fibroblasts. L174F was associated with increased levels of antibodies reactive with HCMV lysate, immediate-early 1 (IE-1), and glycoprotein B (gB) in Australian RTR and Indonesians PWH, suggesting a higher viral burden. We conclude that variants of UL111a are common in all populations and may influence systemic responses to HCMV.
Collapse
Affiliation(s)
- Shelley Waters
- Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, Bentley 6102, Australia; (S.W.); (S.L.); (K.M.)
| | - Silvia Lee
- Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, Bentley 6102, Australia; (S.W.); (S.L.); (K.M.)
- PathWest Laboratory Medicine WA, Department of Microbiology, Nedlands 6009, Australia;
| | - Ibnu Ariyanto
- Virology and Cancer Pathobiology Research Center, Faculty of Medicine, Universitas Indonesia, Jakarta 10430, Indonesia;
| | - Nina Kresoje
- School of Biomedical Sciences, University of Western Australia, Nedlands 6009, Australia; (N.K.); (R.J.N.A.)
| | - Shay Leary
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch 6150, Australia; (S.L.); (S.G.)
| | - Kylie Munyard
- Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, Bentley 6102, Australia; (S.W.); (S.L.); (K.M.)
| | - Silvana Gaudieri
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch 6150, Australia; (S.L.); (S.G.)
- School of Human Sciences, University of Western Australia, Nedlands 6009, Australia
- Department of Medicine, Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Ashley Irish
- Department of Nephrology, Fiona Stanley Hospital, Murdoch 6150, Australia;
| | - Anthony D. Keil
- PathWest Laboratory Medicine WA, Department of Microbiology, Nedlands 6009, Australia;
| | - Richard J. N. Allcock
- School of Biomedical Sciences, University of Western Australia, Nedlands 6009, Australia; (N.K.); (R.J.N.A.)
- PathWest Laboratory Medicine WA, Department of Diagnostic Genomics, Nedlands 6009, Australia
| | - Patricia Price
- Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, Bentley 6102, Australia; (S.W.); (S.L.); (K.M.)
| |
Collapse
|
7
|
Martini F, Champagne E. The Contribution of Human Herpes Viruses to γδ T Cell Mobilisation in Co-Infections. Viruses 2021; 13:v13122372. [PMID: 34960641 PMCID: PMC8704314 DOI: 10.3390/v13122372] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 12/12/2022] Open
Abstract
γδ T cells are activated in viral, bacterial and parasitic infections. Among viruses that promote γδ T cell mobilisation in humans, herpes viruses (HHVs) occupy a particular place since they infect the majority of the human population and persist indefinitely in the organism in a latent state. Thus, other infections should, in most instances, be considered co-infections, and the reactivation of HHV is a serious confounding factor in attributing γδ T cell alterations to a particular pathogen in human diseases. We review here the literature data on γδ T cell mobilisation in HHV infections and co-infections, and discuss the possible contribution of HHVs to γδ alterations observed in various infectious settings. As multiple infections seemingly mobilise overlapping γδ subsets, we also address the concept of possible cross-protection.
Collapse
|
8
|
Wijaya IP, Karim B, Azizi MS, Ariyanto I, Mansjoer A, Yunihastuti E, Harimurti K, Alwi I, Lee S, Price P. Cytomegalovirus may influence vascular endothelial health in Indonesian HIV-infected patients after 5 years on ART. AIDS Res Ther 2021; 18:83. [PMID: 34763708 PMCID: PMC8582163 DOI: 10.1186/s12981-021-00410-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 10/27/2021] [Indexed: 12/13/2022] Open
Abstract
Objectives Accelerated atherosclerosis in older HIV-infected patients has been attributed to persistent immune activation and high burden cytomegalovirus (CMV), as demonstrated in transplant recipients and the general population. Here we assess CMV and inflammatory markers linked with vascular health in young adult patients treated in Indonesia. Study design HIV-infected adults (n = 32) were examined when they began antiretroviral therapy (ART) with < 200 CD4 T-cells/µl (V0) and after 60 months (V60). Age-matched healthy controls (HC, n = 32) were assessed once. Methods Flow Mediated Dilatation (FMD) was assessed by ultrasound on brachial arteries at V60 and in HC. Plasma markers of immune activation and endothelial activation, and CMV antibodies (lysate, gB, IE-1) were assessed in all samples. Results were assessed using bivariate (non-parametric) and multivariable analyses. Results Levels of inflammatory biomarkers and CMV antibodies declined on ART, but the antibodies remained higher than in HC. FMD values were similar in patients and HC at V60. In HIV patients, levels of CMV lysate antibody correlated inversely (r = − 0.37) with FMD. The optimal model predicting lower FMD values (adjusted R2 = 0.214, p = 0.012) included CMV lysate antibodies and chondroitin sulphate. In HC, levels of sTNFR correlated inversely with FMD (r = − 0.41) and remained as a risk factor in the optimal multivariable model, with CMV glycoprotein-B (gB) antibody predicting a healthier FMD (adjusted R2 = 0.248, p = 0.013). Conclusions Higher levels CMV antibodies optimally predict vascular health measured by FMD in HIV patients. However in healthy controls, sTNFR marks risk and CMV gB antibody may be protective.
Collapse
|
9
|
Sequencing Directly from Clinical Specimens Reveals Genetic Variations in HCMV-Encoded Chemokine Receptor US28 That May Influence Antibody Levels and Interactions with Human Chemokines. Microbiol Spectr 2021; 9:e0002021. [PMID: 34704798 PMCID: PMC8549752 DOI: 10.1128/spectrum.00020-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Human cytomegalovirus (HCMV) is a beta-herpesvirus carried by ∼80% of the world’s population. Acute infections are asymptomatic in healthy individuals but generate diverse syndromes in neonates, solid organ transplant recipients, and HIV-infected individuals. The HCMV gene US28 encodes a homolog of a human chemokine receptor that is able to bind several chemokines and HIV gp120. Deep sequencing technologies were used to sequence US28 directly from 60 clinical samples from Indonesian HIV patients and Australian renal transplant recipients, healthy adults, and neonates. Molecular modeling approaches were used to predict whether nine nonsynonymous mutations in US28 may alter protein binding to a panel of six chemokines and two variants of HIV gp120. Ninety-two percent of samples contained more than one variant of HCMV, as defined by at least one nonsynonymous mutation. Carriage of these variants differed between neonates and adults, Australian and Indonesian samples, and saliva samples and blood leukocytes. Two nonsynonymous mutations (N170D and R267K) were associated with increased levels of immediate early protein 1 (IE-1) and glycoprotein B (gB) HCMV-reactive antibodies, suggesting a higher viral burden. Seven of the nine mutations were predicted to alter binding of at least one ligand. Overall, HCMV variants are common in all populations and have the potential to affect US28 interactions with human chemokines and/or gp120 and alter responses to the virus. The findings relied on deep sequencing technologies applied directly to clinical samples, so the variants exist in vivo. IMPORTANCE Human cytomegalovirus (HCMV) is a common viral pathogen of solid organ transplant recipients, neonates, and HIV-infected individuals. HCMV encodes homologs of several host genes with the potential to influence viral persistence and/or pathogenesis. Here, we present deep sequencing of an HCMV chemokine receptor homolog, US28, acquired directly from clinical specimens. Carriage of these variants differed between patient groups and was associated with different levels of circulating HCMV-reactive antibodies. These features are consistent with a role for US28 in HCMV persistence and pathogenesis. This was supported by in silico analyses of the variant sequences demonstrating altered ligand-binding profiles. The data delineate a novel approach to understanding the pathogenesis of HCMV and may impact the development of an effective vaccine.
Collapse
|
10
|
Waters S, Lee S, Lloyd M, Irish A, Price P. The Detection of CMV in Saliva Can Mark a Systemic Infection with CMV in Renal Transplant Recipients. Int J Mol Sci 2019; 20:ijms20205230. [PMID: 31652514 PMCID: PMC6829882 DOI: 10.3390/ijms20205230] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/17/2019] [Accepted: 10/18/2019] [Indexed: 12/13/2022] Open
Abstract
Human cytomegalovirus (CMV) is often transmitted through saliva. The salivary gland is a site of CMV replication and saliva can be used to diagnose congenital CMV infections. CMV replication is monitored in whole blood or plasma in renal transplant recipients (RTR) and associates with clinical disease. However, these assays may not detect replication in the salivary gland and there is little data linking detection in saliva with systemic infection and clinical sequelae. RTR (n = 82) were recruited > 2 years after transplantation. An in-house quantitative PCR assay was used to detect CMV UL54 in saliva samples. CMV DNA was sought in plasma using a commercial assay. Vascular health was predicted using flow mediated dilatation (FMD) and plasma biomarkers. CMV-reactive antibodies were quantified by ELISA and circulating CMV-specific T-cells by an interferon-γ ELISpot assay. Vδ2− γδ T-cells were detected using multicolor flow cytometry reflecting population expansion after CMV infection. The presence of CMV DNA in saliva and plasma associated with plasma levels of antibodies reactive with CMV gB and with populations of circulating Vδ2− γδ T -cells (p < 0.01). T-cells reactive to CMV immediate early (IE)-1 protein were generally lower in patients with CMV DNA in saliva or plasma, but the level of significance varied (p = 0.02–0.16). Additionally, CMV DNA in saliva or plasma associated weakly with impaired FMD (p = 0.06–0.09). The data suggest that CMV detected in saliva reflects systemic infections in adult RTR.
Collapse
Affiliation(s)
- Shelley Waters
- School of Biomedical Science, Curtin University, Bentley 6102, Australia.
| | - Silvia Lee
- School of Biomedical Science, Curtin University, Bentley 6102, Australia.
- Department of Microbiology and Infectious Diseases, Pathwest Laboratory Medicine, Murdoch 6150, Australia.
| | - Megan Lloyd
- School of Medical and Health Sciences, Edith Cowan University, Joondalup 6027, Australia.
- School of Biomedical Sciences, University of Western Australia, Nedlands 6009, Australia.
| | - Ashley Irish
- Renal Unit, Fiona Stanley Hospital, Murdoch 6150, Australia.
- School of Medicine and Pharmacology, University of Western Australia, Nedlands 6009, Australia.
| | - Patricia Price
- School of Biomedical Science, Curtin University, Bentley 6102, Australia.
| |
Collapse
|
11
|
Lee S, Brook E, Affandi J, Howson P, Tanudjaja SA, Dhaliwal S, Irish A, Price P. A high burden of cytomegalovirus marks poor vascular health in transplant recipients more clearly than in the general population. Clin Transl Immunology 2019; 8:e1043. [PMID: 30788107 PMCID: PMC6369563 DOI: 10.1002/cti2.1043] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 01/07/2019] [Accepted: 01/08/2019] [Indexed: 01/22/2023] Open
Abstract
Objectives Meta‐analyses have now confirmed that persistent infections with cytomegalovirus (CMV) can accelerate the onset of diseases of ageing, notably cardiovascular pathologies. We address the circumstances in which the association may be strong enough to warrant intervention to reduce the viral burden. Results We compare markers of the burden of CMV with established indices of vascular pathology in healthy adults (n = 82) and in renal transplant recipients (RTR; n = 81). Levels of all inflammatory and vascular biomarkers and CMV antibodies were higher in RTR, and flow‐mediated dilation (FMD) values were lower indicating inferior endothelial function. In multivariable regression models without adjustment for estimated glomerular filtration rate (eGFR), CMV antibody levels, age and gender were independently associated with FMD in RTR, whilst only CRP associated with FMD in healthy adults. After adjustment for eGFR, associations between CMV antibody and FMD in RTR were reduced. Methods Carotid intima‐media thickness, FMD, eGFR and plasma levels of CMV antibodies (reactive with a lysate, CMV IE‐1 or CMV gB), ICAM‐1, VCAM‐1, P‐selectin, sIFNαR2, sTNFR1, sCD14 and CRP were determined. Conclusion Levels of CMV antibody predict declining endothelial health in RTR and not in healthy adults, presumably by reflecting a high burden of CMV. The levels of CMV antibodies were a poor reflection of plasma biomarkers thought to reflect ‘inflammaging’ or vascular damage.
Collapse
Affiliation(s)
- Silvia Lee
- School of Biomedical Science and the Curtin Health Innovation Research Institute Curtin University Bentley WA Australia.,Department of Microbiology Pathwest Laboratory Medicine Perth WA Australia
| | - Emily Brook
- School of Biomedical Science and the Curtin Health Innovation Research Institute Curtin University Bentley WA Australia
| | | | - Prue Howson
- Renal Unit Fiona Stanley Hospital Murdoch WA Australia
| | | | | | - Ashley Irish
- Renal Unit Fiona Stanley Hospital Murdoch WA Australia
| | - Patricia Price
- School of Biomedical Science and the Curtin Health Innovation Research Institute Curtin University Bentley WA Australia
| |
Collapse
|
12
|
Lee S, Doualeh M, Affandi JS, Makwana N, Irish A, Price P. Functional and clinical consequences of changes to natural killer cell phenotypes driven by chronic cytomegalovirus infections. J Med Virol 2019; 91:1120-1127. [DOI: 10.1002/jmv.25401] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 12/18/2018] [Accepted: 01/09/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Silvia Lee
- School of Biomedical Science and the Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin UniversityBentley Western Australia
- Department of MicrobiologyPathWest Laboratory MedicinePerth Western Australia
| | - Mariam Doualeh
- School of Biomedical Science and the Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin UniversityBentley Western Australia
| | - Jacquita S. Affandi
- School of Public Health, Faculty of Health Sciences, Curtin University Western Australia
| | - Nandini Makwana
- School of Biomedical Science and the Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin UniversityBentley Western Australia
| | - Ashley Irish
- Renal Unit, Department of NephrologyFiona Stanley HospitalMurdoch Western Australia
| | | |
Collapse
|
13
|
Ariyanto IA, Estiasari R, Waters S, Wulandari EAT, Fernandez S, Lee S, Price P. Active and Persistent Cytomegalovirus Infections Affect T Cells in Young Adult HIV Patients Commencing Antiretroviral Therapy. Viral Immunol 2018; 31:472-479. [PMID: 29688840 DOI: 10.1089/vim.2018.0014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Altered T cell profiles have been linked with metrics of persistent cytomegalovirus (CMV) infections in healthy aging and older HIV patients stable on antiretroviral therapy (ART). In this study, we use CMV DNA to identify active infections, and levels of CMV-reactive antibody to assess the persistent burden of CMV in a longitudinal study of 78 young adult patients beginning ART in Jakarta, Indonesia, with <200 CD4 T cells/μL. CMV antibodies, inflammatory markers (C-reactive protein [CRP], soluble interferon-α/β receptor) and T cell phenotypes were assessed before ART (V0) and after 1, 3, 6, and 12 months (V1-V12). CMV DNA was detected in 41 patients (52%) at V0, irrespective of CD4 T cell counts, gender, age, or plasma HIV RNA. CMV DNA+ patients had higher levels of antibody reactive with CMV Immediate Early 1 (IE-1) at V0 and V12 (p = 0.04), and with CMV lysate at V12 (p = 0.01). Detectable CMV DNA did not align with inflammatory markers, but associated with lower CD4/CD8 ratios until V3. CMV antibody levels correlated inversely with proportions of naive CD4 and CD8 T cells, and directly with proportions of CD57+ and activated memory T cells (CD3+ CD45RA-) after 3-12 months on ART. Overall, active CMV replication is common in HIV patients beginning ART in Indonesia and associates with low CD4/CD8 ratios. Elevated levels of CMV-reactive antibody measured on ART also mark a depletion of naive T cells, accumulation of memory T cells, and may be a stable metric of the burden of CMV.
Collapse
Affiliation(s)
- Ibnu A Ariyanto
- 1 Virology and Cancer Pathobiology Research Center , Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Riwanti Estiasari
- 2 Department of Neurology, Faculty of Medicine, Universitas Indonesia , Jakarta, Indonesia .,3 Cipto Mangunkusumo Hospital, Jakarta, Indonesia
| | - Shelley Waters
- 4 School of Biomedical Sciences, Curtin University , Perth, Australia
| | - Endah A T Wulandari
- 3 Cipto Mangunkusumo Hospital, Jakarta, Indonesia .,5 Department of Dentistry, Faculty of Medicine, Universitas Indonesia , Jakarta, Indonesia
| | - Sonia Fernandez
- 6 School of Biomedical Sciences, University of Western Australia , Perth, Australia
| | - Silvia Lee
- 4 School of Biomedical Sciences, Curtin University , Perth, Australia
| | - Patricia Price
- 1 Virology and Cancer Pathobiology Research Center , Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia .,4 School of Biomedical Sciences, Curtin University , Perth, Australia
| |
Collapse
|