1
|
Yang L, Zhu JC, Li SJ, Zeng X, Xue XR, Dai Y, Wei ZF. HSP90β shapes the fate of Th17 cells with the help of glycolysis-controlled methylation modification. Br J Pharmacol 2024; 181:3886-3907. [PMID: 38881036 DOI: 10.1111/bph.16432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 02/21/2024] [Accepted: 03/21/2024] [Indexed: 06/18/2024] Open
Abstract
BACKGROUND AND PURPOSE Ulcerative colitis (UC) is a refractory inflammatory disease associated with immune dysregulation. Elevated levels of heat shock protein (HSP) 90 in the β but not α subtype were positively associated with disease status in UC patients. This study validated the possibility that pharmacological inhibition or reduction of HSP90β would alleviate colitis, induced by dextran sulfate sodium, in mice and elucidated its mechanisms. EXPERIMENTAL APPROACH Histopathological and biochemical analysis assessed disease severity, and bioinformatics and correlation analysis explained the association between the many immune cells and HSP90β. Flow cytometry was used to analyse the homeostasis and transdifferentiation of Th17 and Treg cells. In vitro inhibition and adoptive transfer assays were used to investigate functions of the phenotypically transformed Th17 cells. Metabolomic analysis, DNA methylation detection and chromatin immunoprecipitation were used to explore these mechanisms. KEY RESULTS The selective pharmacological inhibitor (HSP90βi) and shHSP90β significantly mitigated UC in mice and promoted transformation of Th17 to Treg cell phenotype, via Foxp3 transcription. The phenotypically-transformed Th17 cells by HSP90βi or shHSP90β were able to inhibit lymphocyte proliferation and colitis in mice. HSP90βi and shHSP90β selectively weakened glycolysis by stopping the direct association of HSP90β and GLUT1, the key glucose transporter, to accelerate ubiquitination degradation of GLUT1, and enhance the methylation of Foxp3 CNS2 region. Then, the mediator path was identified as the "lactate-STAT5-TET2" cascade. CONCLUSION AND IMPLICATIONS HSP90β shapes the fate of Th17 cells via glycolysis-controlled methylation modification to affect UC progression, which provides a new therapeutic target for UC.
Collapse
Affiliation(s)
- Ling Yang
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Jing-Chao Zhu
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Shi-Jia Li
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xi Zeng
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xin-Ru Xue
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yue Dai
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Zhi-Feng Wei
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
2
|
Ren J, Wu PP, Xue JH, Zhao WL, Zhu YH, Chen YY, Yang QJ, Luo Q, Cheng X, Bi EG. Discovery of an immunosuppressive functional metabolite from the insect-derived endophytic Aspergillus taichungensis SMU01. Fitoterapia 2024; 176:106007. [PMID: 38744384 DOI: 10.1016/j.fitote.2024.106007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/29/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024]
Abstract
Three p-terphenyl metabolites (1-3), three indole-diterpenoids (4-6), an herbicide sesquiterpene (7), a flavonoid (8), and five other small molecules containing nitrogen (9-13) were isolated from the medicinal insect (Periplaneta americana)-derived endophytic Aspergillus taichungensis SMU01. Their chemical structures were elucidated on the basis of spectroscopic data and quantum chemical computational methods. Biological activity of these isolates in the differentiation of mouse CD4+ T cell subsets was evaluated. Importantly, metabolites 2 targeting JAK-STAT signaling pathway could hold potential benefits in maintaining peripheral immune homeostasis and alleviating the progression of autoimmune diseases.
Collapse
Affiliation(s)
- Jie Ren
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Ping-Ping Wu
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Mediscine, Southern Medical University, Guangzhou 510515, China; School of Pharmaceutical Sciences, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Jia-Hao Xue
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Mediscine, Southern Medical University, Guangzhou 510515, China
| | - Wen-Li Zhao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yi-Han Zhu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yu-Yang Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Qian-Jun Yang
- Department of Stomatology, Jiangmen Central Hospital, Jiangmen 529000, China
| | - Qi Luo
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Mediscine, Southern Medical University, Guangzhou 510515, China.
| | - Xia Cheng
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Mediscine, Southern Medical University, Guangzhou 510515, China.
| | - En-Guang Bi
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
3
|
Huang Y, Zhong M, Gao R, Wang X, Zhong S, Zhong L, Huang X, Li Y, Zeng C. BET Inhibitor JQ1 Selectively Reduce Tregs by Upregulating STAT3 and Suppressing PD-1 Expression in Patients with Multiple Myeloma. Adv Biol (Weinh) 2024; 8:e2300640. [PMID: 38797917 DOI: 10.1002/adbi.202300640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 03/31/2024] [Indexed: 05/29/2024]
Abstract
Multiple myeloma (MM) stands as a prevalent hematological malignancy, primarily incurable, originating from plasma cell clones. MM's progression encompasses genetic abnormalities and disruptions in the bone marrow microenvironment, leading to tumor proliferation, immune dysfunction, and compromised treatment outcomes. Emerging evidence highlights the critical role of regulatory T cells (Tregs) in MM progression, suggesting that targeting Tregs could enhance immune functionality and treatment efficacy. In this study, a notable increase in Treg proportions within MM patients' bone marrow (BM) compared to healthy individuals is observed. Additionally, it is found that the bromodomain and extraterminal domain (BET) inhibitor JQ1 selectively diminishes Treg percentages in MM patients' BM and reduces TGF-β1-induced Tregs. This reduction occurs via inhibiting cell viability and promoting apoptosis. RNA sequencing further indicates that JQ1's inhibitory impact on Tregs likely involves upregulating STAT3 and suppressing PD-1 expression. Collectively, these findings suggest JQ1's potential to modulate Tregs, bolstering the immune response in MM and introducing a promising avenue for MM immunotherapy.
Collapse
Affiliation(s)
- Youxue Huang
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, 510632, P. R. China
| | - Mengjun Zhong
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, 510632, P. R. China
- Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou, 510630, P. R. China
| | - Rili Gao
- Department of Endocrinology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Xianfeng Wang
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, 510632, P. R. China
| | - Shuxin Zhong
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, 510632, P. R. China
| | - Liye Zhong
- Department of Hematology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Xin Huang
- Department of Hematology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Yangqiu Li
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, 510632, P. R. China
| | - Chengwu Zeng
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, 510632, P. R. China
- Department of Hematology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510700, China
| |
Collapse
|
4
|
Wang KD, Zhu ML, Qin CJ, Dong RF, Xiao CM, Lin Q, Wei RY, He XY, Zang X, Kong LY, Xia YZ. Sanguinarine induces apoptosis in osteosarcoma by attenuating the binding of STAT3 to the single-stranded DNA-binding protein 1 (SSBP1) promoter region. Br J Pharmacol 2023; 180:3175-3193. [PMID: 37501645 DOI: 10.1111/bph.16202] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 06/19/2023] [Accepted: 07/20/2023] [Indexed: 07/29/2023] Open
Abstract
BACKGROUND AND PURPOSE Osteosarcoma, a primary malignant bone tumour prevalent among adolescents and young adults, remains a considerable challenge despite protracted progress made in enhancing patient survival rates over the last 40 years. Consequently, the development of novel therapeutic approaches for osteosarcoma is imperative. Sanguinarine (SNG), a compound with demonstrated potent anticancer properties against various malignancies, presents a promising avenue for exploration. Nevertheless, the intricate molecular mechanisms underpinning SNG's actions in osteosarcoma remain elusive, necessitating further elucidation. EXPERIMENTAL APPROACH Single-stranded DNA-binding protein 1 (SSBP1) was screened out by differential proteomic analysis. Apoptosis, cell cycle, reactive oxygen species (ROS) and mitochondrial changes were assessed via flow cytometry. Western blotting and quantitative real-time reverse transcription PCR (qRT-PCR) were used to determine protein and gene levels. The antitumour mechanism of SNG was explored at a molecular level using chromatin immunoprecipitation (ChIP) and dual luciferase reporter plasmids. KEY RESULTS Our investigation revealed that SNG exerted an up-regulated effect on SSBP1, disrupting mitochondrial function and inducing apoptosis. In-depth analysis uncovered a mechanism whereby SNG hindered the JAK/signal transducer and activator of transcription 3 (STAT3) signalling pathway, relieved the inhibitory effect of STAT3 on SSBP1 transcription, and inhibited the downstream PI3K/Akt/mTOR signalling axis, ultimately activating apoptosis. CONCLUSIONS AND IMPLICATIONS The study delved further into elucidating the anticancer mechanism of SNG in osteosarcoma. Notably, we unravelled the previously undisclosed apoptotic potential of SSBP1 in osteosarcoma cells. This finding holds substantial promise in advancing the development of novel anticancer drugs and identification of therapeutic targets.
Collapse
Affiliation(s)
- Kai-Di Wang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Miao-Lin Zhu
- Department of Oncology, The Affiliated Cancer Hospital of Nanjing Medical University and Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, Nanjing, China
| | - Cheng-Jiao Qin
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Rui-Fang Dong
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Cheng-Mei Xiao
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Qing Lin
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Rong-Yuan Wei
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xiao-Yu He
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xin Zang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Ling-Yi Kong
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yuan-Zheng Xia
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
5
|
Zhang Z, Guo J, Jia R. Treg plasticity and human diseases. Inflamm Res 2023; 72:2181-2197. [PMID: 37878023 DOI: 10.1007/s00011-023-01808-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/08/2023] [Accepted: 10/11/2023] [Indexed: 10/26/2023] Open
Abstract
INTRODUCTION As a subset of CD4+ T cells, regulatory T cells (Tregs) with the characteristic expression of transcription factor FOXP3 play a key role in maintaining self-tolerance and regulating immune responses. However, in some inflammatory circumstances, Tregs can express cytokines of other T help (Th) cells by internal reprogramming, which is called Treg plasticity. These reprogrammed Tregs with impaired suppressive ability contribute to the progression of diseases by secreting pro-inflammatory cytokines. However, in the tumor microenvironment (TME), such changes in phenotype rarely occur in Tregs, on the contrary, Tregs usually display a stronger suppressive function and inhibit anti-tumor immunity. It is important to understand the mechanisms of Treg plasticity in inflammatory diseases and cancers. OBJECTIVES In this review, we summarize the characteristics of different Th-like Tregs and discuss the potential mechanisms of these changes in phenotype. Furthermore, we summarize the Treg plasticity in human diseases and discuss the effects of these changes in phenotype on disease progression, as well as the potential application of drugs or reagents that regulate Treg plasticity in human diseases. CONCLUSIONS Treg plasticity is associated with inflammatory diseases and cancers. Regulating Treg plasticity is a promising direction for the treatment of inflammatory diseases and cancers.
Collapse
Affiliation(s)
- Zheng Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430072, China
| | - Jihua Guo
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430072, China
- Department of Endodontics, School & Hospital of Stomatology, Wuhan University, Wuhan, 430072, China
| | - Rong Jia
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
6
|
Yan K, Zhang F, Ren J, Huang Q, Yawalkar N, Han L. MicroRNA-125a-5p regulates the effect of Tregs on Th1 and Th17 through targeting ETS-1/STAT3 in psoriasis. J Transl Med 2023; 21:678. [PMID: 37773129 PMCID: PMC10543306 DOI: 10.1186/s12967-023-04427-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 08/07/2023] [Indexed: 09/30/2023] Open
Abstract
BACKGROUND Psoriasis is an inflammatory disease mediated by helper T (Th)17 and Th1 cells. MicroRNA-125a (miR-125a) is reduced in the lesional skin of psoriatic patients. However, the mechanism by which miR-125a participates in psoriasis remains unclear. METHODS The levels of miR-125a-5p and its downstream targets (ETS-1, IFN-γ, and STAT3) were detected in CD4+ T cells of healthy controls and psoriatic patients by quantitative real-time PCR (qRT-PCR). In vitro, transfection of miR-125a-5p mimics was used to analyze the effect of miR-125a-5p on the differentiation of Th17 cells by flow cytometry. Imiquimod (IMQ)-induced mouse model was used to evaluate the role of upregulating miR-125a-5p by intradermal injection of agomir-125a-5p in vivo. RESULTS miR-125a-5p was downregulated in peripheral blood CD4+ T cells of psoriatic patients, which was positively associated with the proportion of regulatory T cells (Tregs) and negatively correlated with the Psoriasis Area and Severity Index (PASI) score. Moreover, the miR-125a-5p mimics promoted the differentiation of Tregs and downregulated the messenger RNA (mRNA) levels of ETS-1, IFN-γ, and STAT3 in murine CD4+ T cells. Furthermore, agomir-125a-5p alleviated psoriasis-like inflammation in an IMQ-induced mouse model by downregulating the proportion of Th17 cells. CONCLUSIONS miR-125a-5p may have therapeutic potential in psoriasis by restoring the suppressive function of Tregs on Th17 cells through targeting STAT3, and on Th1 cells indirectly through targeting ETS-1 and IFN-γ.
Collapse
Affiliation(s)
- Kexiang Yan
- Department of Dermatology, Huashan Hospital, Shanghai Institute of Dermatology, Fudan University, Shanghai, 200040, China
| | - Fuxin Zhang
- Department of Dermatology, Huashan Hospital, Shanghai Institute of Dermatology, Fudan University, Shanghai, 200040, China
| | - Jie Ren
- Department of Dermatology, Huashan Hospital, Shanghai Institute of Dermatology, Fudan University, Shanghai, 200040, China
| | - Qiong Huang
- Department of Dermatology, Huashan Hospital, Shanghai Institute of Dermatology, Fudan University, Shanghai, 200040, China
| | - Nikhil Yawalkar
- Department of Dermatology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Ling Han
- Department of Dermatology, Huashan Hospital, Shanghai Institute of Dermatology, Fudan University, Shanghai, 200040, China.
| |
Collapse
|
7
|
Hinshaw DC, Benavides GA, Metge BJ, Swain CA, Kammerud SC, Alsheikh HA, Elhamamsy A, Chen D, Darley-Usmar V, Rathmell JC, Welner RS, Samant RS, Shevde LA. Hedgehog Signaling Regulates Treg to Th17 Conversion Through Metabolic Rewiring in Breast Cancer. Cancer Immunol Res 2023; 11:687-702. [PMID: 37058110 PMCID: PMC10159910 DOI: 10.1158/2326-6066.cir-22-0426] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 10/18/2022] [Accepted: 02/28/2023] [Indexed: 04/15/2023]
Abstract
The tumor immune microenvironment dynamically evolves to support tumor growth and progression. Immunosuppressive regulatory T cells (Treg) promote tumor growth and metastatic seeding in patients with breast cancer. Deregulation of plasticity between Treg and Th17 cells creates an immune regulatory framework that enables tumor progression. Here, we discovered a functional role for Hedgehog (Hh) signaling in promoting Treg differentiation and immunosuppressive activity, and when Hh activity was inhibited, Tregs adopted a Th17-like phenotype complemented by an enhanced inflammatory profile. Mechanistically, Hh signaling promoted O-GlcNAc modifications of critical Treg and Th17 transcription factors, Foxp3 and STAT3, respectively, that orchestrated this transition. Blocking Hh reprogramed Tregs metabolically, dampened their immunosuppressive activity, and supported their transdifferentiation into inflammatory Th17 cells that enhanced the recruitment of cytotoxic CD8+ T cells into tumors. Our results demonstrate a previously unknown role for Hh signaling in the regulation of Treg differentiation and activity and the switch between Tregs and Th17 cells in the tumor microenvironment.
Collapse
Affiliation(s)
- Dominique C. Hinshaw
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Gloria A. Benavides
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Brandon J. Metge
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Courtney A. Swain
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Sarah C. Kammerud
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Heba A. Alsheikh
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Amr Elhamamsy
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Dongquan Chen
- Division of Preventive Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
- Center for Clinical and Translational Sciences, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Victor Darley-Usmar
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jeffrey C. Rathmell
- Department of Pathology, Microbiology, and Immunology, VUMC, Nashville, TN, USA
- Vanderbilt Center for Immunobiology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Robert S. Welner
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Rajeev S. Samant
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
- Birmingham VA Medical Center, Birmingham, AL, USA
| | - Lalita A. Shevde
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
- Senior author
| |
Collapse
|
8
|
Qiu J, Xiao Z, Zhang Z, Luo S, Zhou Z. Latent autoimmune diabetes in adults in China. Front Immunol 2022; 13:977413. [PMID: 36090989 PMCID: PMC9454334 DOI: 10.3389/fimmu.2022.977413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/08/2022] [Indexed: 11/30/2022] Open
Abstract
Latent autoimmune diabetes in adults (LADA) is a type of diabetes caused by slow progression of autoimmune damage to pancreatic beta cells. According to the etiological classification, LADA should belong to the autoimmune subtype of type 1 diabetes (T1D). Previous studies have found general immune genetic effects associated with LADA, but there are also some racial differences. Multicenter studies have been conducted in different countries worldwide, but it is still unclear how the Chinese and Caucasian populations differ. The epidemiology and phenotypic characteristics of LADA may vary between Caucasian and Chinese diabetic patients as lifestyle, food habits, and body mass index differ between these two populations. The prevalence of LADA in China has reached a high level compared to other countries. The prevalence of LADA in China has reached a high level compared to other countries, and the number of patients with LADA ranks first in the world. Previous studies have found general immune genetic effects associated with LADA, but some racial differences also exist. The prevalence of LADA among newly diagnosed type 2 diabetes patients over the age of 30 years in China is 5.9%, and LADA patients account for 65% of the newly diagnosed T1D patients in the country. As a country with a large population, China has many people with LADA. A summary and analysis of these studies will enhance further understanding of LADA in China. In addition, comparing the similarities and differences between the Chinese and the Caucasian population from the perspectives of epidemiology, clinical, immunology and genetics will help to improve the understanding of LADA, and then promote LADA studies in individual populations.
Collapse
|
9
|
Miao L, Lu Q. Anzi Heji Downregulates DNMT1 to Improve Anticardiolipin Antibody (ACA)-Positive Abortion by Regulating JAK/STAT Pathway. Nat Prod Commun 2022. [DOI: 10.1177/1934578x221112813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Anzi Heji (AZHJ) is a traditional Chinese medicine compound prepared for long-term treatment of Anticardiolipin Antibody (ACA)-positive abortion, with small side effects and definite curative effect. Abortion was reported to be related to DNMT1, a methylation transferase regulated by JAK2 pathway, so this study aimed to explore whether AZHJ treated ACA-positive abortion by regulating the DNMT1. Cell proliferation estimation employed Cell counting kit-8 (CCK-8) and flow cytometry. Human β2-glycoprotein I (GPI) was used as an inducer to establish ACA-positive mice model. Western blot was applied to examine the expressions of DNMT1, FOXP3, IL-6, and JAK/STAT3 pathway-related proteins. ACA titers and IL-6 levels in peripheral blood were tested by enzyme-linked immunosorbent assay (ELISA). Placental tissue damage was assessed by hematoxylin and eosin (H&E) staining. Based on the findings from experiments, AZHJ could significantly inhibit apoptosis and regulate the proliferation activity of HTR-8/SVneo cells. AZHJ treatment reduced the expression levels of DNMT1, FOXP3, IL-6, and JAK/STAT3 signaling pathways-related proteins in HTR-8/SVneo cells and maternal–fetal interface (uterine decidua and placenta), and the titer of serum ACA was also significantly decreased. In addition, AZHJ effectively alleviated placental tissue damage caused by ACA-positive abortion compared with model group. To sum up, AZHJ may play a therapeutic role by inhibiting DNMT1 activation through Janus kinase/signal transducers and activators of transcription (JAK/STAT) pathway, and then promoting FOXP3 expression in maternal–fetal interface of pregnant mice, thereby improving immune tolerance at the maternal–fetal interface, preventing and treating ACA-positive abortion.
Collapse
Affiliation(s)
- Li Miao
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Provincial Second Traditional Chinese Medicine, Nanjing, China
| | - Qibin Lu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| |
Collapse
|
10
|
Fakhrolmobasheri M, Shiravi A, Zeinalian M. SARS-CoV-2 Interaction with Human DNA Methyl Transferase 1: A Potential Risk for Increasing the Incidence of Later Chronic Diseases in the Survived Patients. Int J Prev Med 2022; 13:23. [PMID: 35392323 PMCID: PMC8980824 DOI: 10.4103/ijpvm.ijpvm_628_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 06/27/2021] [Indexed: 11/26/2022] Open
Abstract
Currently, the COVID-19 pandemic is the most discussed subject in medical researches worldwide. As the knowledge is expanded about the disease, more hypotheses become created. A recent study on the viral protein interaction map revealed that SARS-CoV-2 open reading frame 8 (ORF8) interacts with human DNA methyl transferase1 (DNMT1), an active epigenetic agent in DNA methylation. Moreover, DNMT1 is a contributor to a variety of chronic diseases which could cause some epigenetic dysregulation in infected cells, especially leukocytes, pancreatic beta, and endothelial cells. Regarding the fact that epigenetic alterations have a partial, but not completely reversible phenomena, it raises the question that if this interaction may cause long-term complications such as diabetes, atherosclerosis, cancer, and autoimmune diseases. Accordingly, long follow-up studies on the recovered patients from COVID-19 are recommended.
Collapse
Affiliation(s)
- Mohammad Fakhrolmobasheri
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Amirabbas Shiravi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mehrdad Zeinalian
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.,Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-Communicable Diseases, Isfahan University of Medical Sciences, Isfahan, Iran.,Iranians Cancer Control Charity Institute (MACSA), Isfahan, Iran
| |
Collapse
|
11
|
Yin W, Luo S, Xiao Z, Zhang Z, Liu B, Zhou Z. Latent autoimmune diabetes in adults: a focus on β-cell protection and therapy. Front Endocrinol (Lausanne) 2022; 13:959011. [PMID: 35992113 PMCID: PMC9389314 DOI: 10.3389/fendo.2022.959011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/14/2022] [Indexed: 11/13/2022] Open
Abstract
Latent autoimmune diabetes in adults (LADA) is a heterogeneous disease sharing some phenotypic, genetic, and immunological features with both type 1 and 2 diabetes. Patients with LADA have a relatively slow autoimmune process and more residual islet β-cell function at onset, allowing a time window to protect residual islet β cells and delay or inhibit disease progression. It is crucial to discover various heterogeneous factors affecting islet β-cell function for precise LADA therapy. In this review, we first describe the natural history of LADA. Thereafter, we summarize β-cell function-related heterogeneous factors in LADA, including the age of onset, body mass index, genetic background, and immune, lifestyle, and environmental factors. In parallel, we evaluate the impact of current hypoglycemic agents and immune intervention therapies for islet β-cell protection. Finally, we discuss the opportunities and challenges of LADA treatment from the perspective of islet β-cell function protection.
Collapse
|
12
|
Wang L, Yi JL, Chen HY, Wang PL, Shen YL. Level of Foxp3, DNMTs, methylation of Foxp3 promoter region, and CD4 + CD25 + CD127low regulatory T cells in vulvar lichen sclerosus. Kaohsiung J Med Sci 2021; 37:520-527. [PMID: 33438816 DOI: 10.1002/kjm2.12356] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 12/01/2020] [Accepted: 12/20/2020] [Indexed: 12/18/2022] Open
Abstract
This study is to investigate the pathogenesis of vulvar lichen sclerosus (VLS) by analyzing the level of Foxp3, DNMTs, methylation of Foxp3 promoter region, and CD4 + CD25 + CD127low Regulatory T cells (Tregs). This study enrolled 15 VLS patients and 25 controls. Lesional and extralesional vulvar skin tissues, normal vulvar skin tissues and peripheral blood were collected. Compared with the control group, Foxp3 protein in the lesional and extralesional skin of VLS group was significantly reduced. The levels of DNMT1 and DNMT3b proteins in lesional skin of VLS group were significantly increased. There was no difference in the total methylation rates of the promoter region of the Foxp3 gene. The methylation rates of CpG1, CpG4, CpG9, and CpG10 were significantly higher in lesional skin of VLS group than in control group. There was no correlation between the total methylation rates of 10 CpG sites and the level of Foxp3 and DNMT1 proteins; there was a positive correlation between Foxp3 and DNMT1 protein in lesional skin of VLS group (r = 0.675, p < 0.05), and a negative correlation (r = -0.665, p < 0.05) in extralesional skin of VLS group. However, there was no correlation of Foxp3 with DNMT3b. The number of CD4 + CD25 + CD127low Tregs VLS decreased significantly. The expression of Foxp3 protein and the quantity of CD4 + CD25 + CD127low Tregs in patients with VLS decreased, which may cause local or systemic abnormal immunosuppression of Tregs, leading to the occurrence of VLS. This may be related with methylation or DNMT1, which needs further verification.
Collapse
Affiliation(s)
| | - Jin-Ling Yi
- Department of Gynecology, the Fifth Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Hai-Yan Chen
- Department of Gynecology, the Fifth Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Pei-Liang Wang
- Department of Gynecology, the Fifth Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Yan-Li Shen
- Department of Gynecology, the Fifth Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| |
Collapse
|
13
|
Ma Y, Ye Y, Liu Y, Chen J, Cen Y, Chen W, Yu C, Zeng Q, Zhang A, Yang G. DNMT1-mediated Foxp3 gene promoter hypermethylation involved in immune dysfunction caused by arsenic in human lymphocytes. Toxicol Res (Camb) 2020; 9:519-529. [PMID: 32905139 DOI: 10.1093/toxres/tfaa056] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 07/05/2020] [Accepted: 07/08/2020] [Indexed: 02/06/2023] Open
Abstract
Growing evidence indicates that arsenic can cause long-lasting and irreversible damage to the function of the human immune system. It is known that forkhead box protein 3(Foxp3), which is specifically expressed in regulatory T cells (Tregs), plays a decisive role in immunoregulation and is regulated by DNA methylation. While evidence suggests that epigenetic regulated Foxp3 is involved in the immune disorders caused by arsenic exposure, the specific mechanism remains unclear. In this study, after primary human lymphocytes were treated with different doses of NaAsO2, our results showed that arsenic induced the high expression of DNMT1 and Foxp3 gene promoter methylation level, thereby inhibiting the expression levels of Foxp3, followed by decreasing Tregs and reducing related anti-inflammatory cytokines, such as interleukin 10 (IL-10) and interleukin 10 (IL-35), and increasing the ratio of CD4+/CD8+ T cells in lymphocytes. Treatment with DNA methyltransferase inhibitor 5-Aza-CdR can notably inhibit the expression of DNMT1, effectively restoring the hypermethylation of the Foxp3 promoter region in primary human lymphocytes and upregulating the expression levels of Foxp3, balancing the ratio of CD4+/CD8+ T cells in lymphocytes. It also activates the secretion of anti-inflammatory cytokines and restores the immune regulatory functions of Tregs. In conclusion, our study provides limited evidence that DNMT1-mediated Foxp3 gene promoter hypermethylation is involved in immune dysfunction caused by arsenic in primary human lymphocytes. The study can provide a scientific basis for further understanding the arsenic-induced immune dysfunction in primary human lymphocytes.
Collapse
Affiliation(s)
- Yemei Ma
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, China
| | - Ying Ye
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, China
| | - Yining Liu
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, China
| | - Jing Chen
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, China
| | - Yanli Cen
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, China
| | - Wenyan Chen
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, China
| | - Chun Yu
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, China
| | - Qibing Zeng
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, China
| | - Aihua Zhang
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, China
| | - Guanghong Yang
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, China
| |
Collapse
|
14
|
Chen J, Jiang J, Liu Y, Ye Y, Ma Y, Cen Y, Chen W, Wang S, Yang G, Zhang A. Arsenite induces dysfunction of regulatory T cells through acetylation control of the Foxp3 promoter. Hum Exp Toxicol 2020; 40:35-46. [PMID: 32735129 DOI: 10.1177/0960327120934533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Arsenic is known to cause damage to the body's immune system by inducing epigenetic changes. However, the molecular mechanism of this damage remains elusive. Here, we report that arsenic disrupts the morphology of lymphocytes, decreases cell viability, and results in abnormal proportions of T lymphocyte subsets. Moreover, our results revealed that arsenic can reduce global acetylation of histone H4 at K16 (H4K16 ac) in lymphocytes via decreasing the level of males absent on the first but upregulates mRNA and protein levels of the forkhead/winged-helix box P3 (Foxp3) gene by increasing the acetylation of histone H4 at K16 (H4K16) at the promoter of Foxp3. Finally, arsenic-induced dysfunction of regulatory T cells (Tregs) could be ameliorated by trichostatin A. Our research indicates that arsenic-induced immunosuppressive effect in human lymphocytes may be related to the acetylation of H4K16 at the promoter of Foxp3 and that histone deacetylase inhibitors may play a role in the prevention and treatment of immune injury caused by arsenic.
Collapse
Affiliation(s)
- J Chen
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, School of Public Health, 74628Guizhou Medical University, Guiyang, China
| | - J Jiang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, School of Public Health, 74628Guizhou Medical University, Guiyang, China
| | - Y Liu
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, School of Public Health, 74628Guizhou Medical University, Guiyang, China
| | - Y Ye
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, School of Public Health, 74628Guizhou Medical University, Guiyang, China
| | - Y Ma
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, School of Public Health, 74628Guizhou Medical University, Guiyang, China
| | - Y Cen
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, School of Public Health, 74628Guizhou Medical University, Guiyang, China
| | - W Chen
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, School of Public Health, 74628Guizhou Medical University, Guiyang, China
| | - S Wang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, School of Public Health, 74628Guizhou Medical University, Guiyang, China
| | - G Yang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, School of Public Health, 74628Guizhou Medical University, Guiyang, China
| | - A Zhang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, School of Public Health, 74628Guizhou Medical University, Guiyang, China
| |
Collapse
|
15
|
Timakova AA, Saltykov BB. [Features of the development of latent autoimmune diabetes in adults (LADA)]. Arkh Patol 2019; 81:78-82. [PMID: 31407723 DOI: 10.17116/patol20198104178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The study of the sociomedical problems of diabetes mellitus led to the discovery of latent autoimmune diabetes in adults (LADA), a special form of the disease. The slow onset of the disease, the clinical signs of type 2 diabetes mellitus concurrent with the autoantibody pancreatic β-cell destruction mechanism that is characteristic of type 1 diabetes. Genetic factors play an important role in the genesis of the disease. Insulitis concurrent with intact or hypertrophic islets of the gland originally develops morphologically. Subsequently, the phenomena of islet atrophy and sclerosis are progressive. The disease is typical for young people (generally those aged 25-35 years) with normal body mass index, low blood C-peptide levels, with antibodies against β-cells, primarily to glutamate decarboxylase, being detected. Insulin preparations should be used to treat these patients.
Collapse
Affiliation(s)
- A A Timakova
- Akad. A.I. Strukov Department of Pathologic Anatomy, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - B B Saltykov
- Akad. A.I. Strukov Department of Pathologic Anatomy, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
16
|
Ge Q, Lu M, Ju L, Qian K, Wang G, Wu CL, Liu X, Xiao Y, Wang X. miR-4324-RACGAP1-STAT3-ESR1 feedback loop inhibits proliferation and metastasis of bladder cancer. Int J Cancer 2019; 144:3043-3055. [PMID: 30511377 DOI: 10.1002/ijc.32036] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 11/01/2018] [Accepted: 11/20/2018] [Indexed: 12/16/2022]
Abstract
Considering the importance of microRNAs (miRNAs) in regulating cellular processes, we performed microarray analysis and revealed miR-4324 as one of the most differentially expressed miRNAs in bladder cancer (BCa). Then, we discovered that miR-4324 was a negative regulator of Rac GTPase activating protein 1 (RACGAP1) and that RACGAP1 functioned as an oncogenic protein in BCa. Our studies indicated that ectopic overexpression of miR-4324 in BCa cells significantly suppressed cell proliferation and metastasis and enhanced chemotherapy sensitivity to doxorubicin by repressing RACGAP1 expression. Further studies showed that estrogen receptor 1 (ESR1) increased the expression of miR-4324 by binding to its promoter, while the downregulation of ESR1 in BCa was caused by hypermethylation of its promoter. p-STAT3 induced the enrichment of DNMT3B by binding to the ESR1 promoter and then induced methylation of the ESR1 promoter. In turn, RACGAP1 induced STAT3 phosphorylation, increasing p-STAT3 expression and promoting its translocation to the nucleus. Therefore, the miR-4324-RACGAP1-STAT3-ESR1 feedback loop could be a critical regulator of BCa progression.
Collapse
Affiliation(s)
- Qiangqiang Ge
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Mengxin Lu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Lingao Ju
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China.,Human Genetics Resource Preservation Center of Hubei Province, Wuhan, China
| | - Kaiyu Qian
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China.,Human Genetics Resource Preservation Center of Hubei Province, Wuhan, China
| | - Gang Wang
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China.,Human Genetics Resource Preservation Center of Hubei Province, Wuhan, China.,Laboratory of Precision Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Chin-Lee Wu
- Department of Urology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Xuefeng Liu
- Department of Pathology, Lombardi Comprehensive Cancer Center, Georgetown University Medical School, Washington, D.C., USA
| | - Yu Xiao
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China.,Human Genetics Resource Preservation Center of Hubei Province, Wuhan, China.,Laboratory of Precision Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xinghuan Wang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Medical Research Institute, Wuhan University, Wuhan, China.,Urological Clinical Research Center of Laparoscopy in Hubei Province, Wuhan, China
| |
Collapse
|
17
|
Wang Y, Hou C, Wisler J, Singh K, Wu C, Xie Z, Lu Q, Zhou Z. Elevated histone H3 acetylation is associated with genes involved in T lymphocyte activation and glutamate decarboxylase antibody production in patients with type 1 diabetes. J Diabetes Investig 2019; 10:51-61. [PMID: 29791073 PMCID: PMC6319479 DOI: 10.1111/jdi.12867] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 05/16/2018] [Accepted: 05/18/2018] [Indexed: 12/11/2022] Open
Abstract
AIMS/INTRODUCTION Genetic and epigenetic mechanisms have been implicated in the pathogenesis of type 1 diabetes, and histone acetylation is an epigenetic modification pattern that activates gene transcription. However, the genome-wide histone H3 acetylation in new-onset type 1 diabetes patients has not been well described. Accordingly, we aimed to unveil the genome-wide promoter acetylation profile in CD4+ T lymphocytes from type 1 diabetes patients, especially for those who are glutamate decarboxylase antibody-positive. MATERIALS AND METHODS A total of 12 patients with new-onset type 1 diabetes who were glutamate decarboxylase antibody-positive were enrolled, and 12 healthy individuals were recruited as controls. The global histone H3 acetylation level of CD4+ T lymphocytes from peripheral blood was detected by western blot, with chromatin immunoprecipitation linked to microarrays to characterize the promoter acetylation profile. Furthermore, we validated the results of particular genes from chromatin immunoprecipitation linked to microarrays by using chromatin immunoprecipitation quantitative polymerase chain reaction, and analyzed the transcription level by real-time quantitative polymerase chain reaction. RESULTS Elevated global histone H3 acetylation level was observed in type 1 diabetes patients, with 607 differentially acetylated genes identified between type 1 diabetes patients and controls by chromatin immunoprecipitation linked to microarrays. The hyperacetylated genes were enriched in biological processes involved in immune cell activation and inflammatory response. Gene-specific assessments showed that increased transcription of inducible T-cell costimulator was in concordance with the elevated acetylation in its gene promoter, along with positive correlation with glutamate decarboxylase antibody titer in type 1 diabetes patients. CONCLUSIONS The present study generates a genome-wide histone acetylation profile specific to CD4+ T lymphocytes in type 1 diabetes patients who are glutamic acid decarboxylase antibody-positive, which is instrumental in improving our understanding of the epigenetic involvement in autoimmune diabetes.
Collapse
Affiliation(s)
- Yanfei Wang
- Department of Metabolism & EndocrinologyThe Second Xiangya HospitalCentral South UniversityChangshaHunanChina
- Key Laboratory of Diabetes Immunology (Central South University)Ministry of EducationNational Clinical Research Center for Metabolic DiseasesChangshaHunanChina
| | - Can Hou
- Department of Intensive Care UnitThe Second Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Jonathan Wisler
- Department of SurgeryDivision of Trauma, Critical Care and Burn SurgeryThe Ohio State University Wexner Medical CenterColumbusOhioUSA
| | - Kanhaiya Singh
- Department of SurgeryThe Ohio State University Wexner Medical CenterColumbusOhioUSA
| | - Chao Wu
- Department of Metabolism & EndocrinologyThe Second Xiangya HospitalCentral South UniversityChangshaHunanChina
- Key Laboratory of Diabetes Immunology (Central South University)Ministry of EducationNational Clinical Research Center for Metabolic DiseasesChangshaHunanChina
| | - Zhiguo Xie
- Department of Metabolism & EndocrinologyThe Second Xiangya HospitalCentral South UniversityChangshaHunanChina
- Key Laboratory of Diabetes Immunology (Central South University)Ministry of EducationNational Clinical Research Center for Metabolic DiseasesChangshaHunanChina
| | - Qianjin Lu
- Department of DermatologyThe Second Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Zhiguang Zhou
- Department of Metabolism & EndocrinologyThe Second Xiangya HospitalCentral South UniversityChangshaHunanChina
- Key Laboratory of Diabetes Immunology (Central South University)Ministry of EducationNational Clinical Research Center for Metabolic DiseasesChangshaHunanChina
| |
Collapse
|
18
|
Wu PL, Zeng C, Zhou YF, Yin L, Yu XL, Xue Q. Farnesoid X Receptor Agonist GW4064 Inhibits Aromatase and ERβ Expression in Human Endometriotic Stromal Cells. Reprod Sci 2018; 26:1111-1120. [PMID: 30428773 DOI: 10.1177/1933719118808912] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Endometriosis is an estrogen-dependent disease. Farnesoid X receptor (FXR) activation has been shown to inhibit estrogen signaling in breast cancer and testicular tumors. However, the role of FXR in endometriosis is still poorly understood. Here, we aimed to investigate whether FXR activation by its synthetic agonist GW4064 has a therapeutic effect on endometriosis and the underlying molecular mechanisms. We found that the expression of FXR (encoded by the NR1H4 gene) in endometriotic tissues and stromal cells (ESCs) was higher than that in eutopic endometrial tissues and stromal cells. The GW4064 treatment led to a dose-dependent decrease in aromatase and estrogen receptor β (ERβ) expression and induced ERK1/2, p38, AMPK, and Stat3 activation in ESCs. In contrast, ERK1/2 inhibitor reversed the GW4064-induced reduction in aromatase expression. In addition, treatment with p38, AMPK, and Stat3 inhibitors or small interfering RNAs could also reverse the GW4064-induced reduction of ERβ expression in ESCs. The GW4064 treatment markedly increased Stat3 phosphorylation, enhancing the binding of Stat3 to the ESR2 promoter, which resulted in the downregulation of ERβ. Coimmunoprecipitation assay and chromatin immunoprecipitation analysis revealed that FXR was able to compete with cyclic AMP response element-binding (CREB) protein for binding to a common sequence on the aromatase promoter region after GW4064 treatment in ESCs. Moreover, treatment of endometriosis xenografts with GW4064 suppressed aromatase and ERβ expression in nude mice. Our results suggest that FXR may represent a potential therapeutic target for future therapy.
Collapse
Affiliation(s)
- Pei-Li Wu
- 1 Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
| | - Cheng Zeng
- 1 Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
| | - Ying-Fang Zhou
- 1 Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
| | - Ling Yin
- 1 Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
| | - Xiao-Lan Yu
- 1 Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
| | - Qing Xue
- 1 Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
| |
Collapse
|
19
|
STAT5 and TET2 Cooperate to Regulate FOXP3-TSDR Demethylation in CD4 + T Cells of Patients with Colorectal Cancer. J Immunol Res 2018; 2018:6985031. [PMID: 30013992 PMCID: PMC6022275 DOI: 10.1155/2018/6985031] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 03/03/2018] [Accepted: 05/23/2018] [Indexed: 12/13/2022] Open
Abstract
The tumor-infiltrating Tregs are linked to colorectal cancer progression and outcome. FOXP3 is regarded as a critical developmental and functional factor for Tregs. FOXP3-TSDR demethylation is required for stable expression of FOXP3 and maintenance of Treg function. In our study, we found specific DNA hypomethylation of FOXP3-TSDR in CD4+ T cells from colon tumor tissues as compared with normal colonic tissues. Moreover, we also found that the expression of STAT5 and TET2 was increased in CD4+ T cells from colon tumor tissues, and the superfluous STAT5 and TET2 binding to FOXP3-TSDR resulted in DNA hypomethylation. In conclusion, we have demonstrated that excessive amounts of STAT5 may bind more TET2 to the FOXP3-TSDR and upregulate FOXP3 expression via DNA demethylation. Our study improved the mechanism of FOXP3-TSDR hypomethylation in tumor-infiltrating CD4+ T cells of CRC patients.
Collapse
|