1
|
Mahendran M, Upton JEM, Ramasubramanian R, Memmott HL, Germain G, Büsch K, Laliberté F, Harrington A. Overall survival among patients with activated phosphoinositide 3-kinase delta syndrome (APDS). Orphanet J Rare Dis 2025; 20:212. [PMID: 40319290 PMCID: PMC12049806 DOI: 10.1186/s13023-025-03734-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 04/15/2025] [Indexed: 05/07/2025] Open
Abstract
BACKGROUND This study aimed to describe overall survival (OS) of patients with APDS relative to the global population as well as among subsets of patients with concurrent lymphoma or hematopoietic stem cell transplant (HSCT) relative to the overall APDS population. METHODS Patient-level data were extracted from a recent systematic literature review of 351 unique patients with APDS. OS was evaluated using the Kaplan-Meier method up to age 65 years. OS rate and corresponding 95% CI were reported at each decade of age. Global mortality estimates were obtained from World Health Organization life tables for 2019. RESULTS Of the 351 patients with APDS (APDS1, 267 [76.1%]; APDS2, 83 [23.6%]; unspecified, 1 [0.3%]), 41 (11.7%) died. The OS rate was 25.0% (95% CI, 1.6-62.7%) by the last death event at 64 years of age. Starting at 12 years of age, the OS rate was numerically lower in patients with APDS relative to the global population (median OS, 64 vs. 75 years, respectively). Relative to the overall APDS population, OS rates were numerically similar in those who underwent HSCT (median OS, 64 years for both; p = 0.569), whereas OS rates were numerically lower in patients with concurrent lymphoma (median OS, 41 vs. 64 years, respectively; p = 0.109). Publication bias in source data was a possible limitation. CONCLUSION Reduced survival in patients with APDS suggests a high disease burden, particularly in those with concurrent lymphoma. These results highlight the unmet need for disease-modifying treatments for APDS.
Collapse
Affiliation(s)
| | - Julia E M Upton
- Clinical Immunology and Allergy, Department of Pediatrics, The Hospital For Sick Children, Toronto, ON, Canada
- Department of Pediatrics, University of Toronto, Toronto, ON, Canada
| | | | | | | | | | | | | |
Collapse
|
2
|
Büsch K, Memmott HL, McLaughlin HM, Upton JEM, Harrington A. Genetic Etiologies and Outcomes in Malignancy and Mortality in Activated Phosphoinositide 3-Kinase Delta Syndrome: A Systematic Review. Adv Ther 2025; 42:752-771. [PMID: 39636570 PMCID: PMC11787279 DOI: 10.1007/s12325-024-03066-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 11/05/2024] [Indexed: 12/07/2024]
Abstract
INTRODUCTION This analysis evaluated literature on patients with activated phosphoinositide 3-kinase delta syndrome (APDS) to better understand the genetic etiologies and occurrence of mortality in this population. METHODS A systematic review was performed according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses approach, including all articles published in English prior to March 13, 2023, in PubMed and Embase. Patients included in the study had reported either (1) APDS diagnosis or (2) ≥ 1 clinical sign consistent with APDS and a first-degree relative with genetically confirmed APDS. Reported age at last observation was also a required outcome. Publications not meeting these criteria were excluded. Data were summarized using descriptive statistics. RESULTS The search identified 108 publications describing 351 unique patients with 39 distinct disease-causing variants. Among these, 41 (12%) deaths were reported, with a mean age at last follow-up of 19.6 (range, 1-64) years. A cause of death was reported for 80% (33/41) of deaths; lymphoma (24%, 10/41) and infections (22%, 9/41) were the most common causes. Types of infections causing death were severe uncontrollable infections (n = 3), sepsis (n = 2), viral infection (varicella zoster pneumonitis [n = 1], cytomegalovirus and adenovirus [n = 1], and Epstein-Barr virus [n = 1]), and infection (n = 1). Mean age at death for lymphoma was 24.9 (range, 1-41) years, and all nine patients who died from infections died before the age of 15 years. The mean age at first APDS symptom was 2.0 (range, < 1-22) years, and mean age at APDS diagnosis was 13.4 (range, 0-56) years; the mean time between symptoms and diagnosis was 10.6 (range, 0-44) years. Limitations of the study were primarily related to the data source. CONCLUSION Patients with APDS suffer early mortality, largely from lymphoma and infection, with large time gaps between symptoms and diagnosis. These findings highlight the need for improved diagnostics, earlier genetic testing for APDS, increased awareness of familial testing, and targeted therapies.
Collapse
Affiliation(s)
- Katharina Büsch
- KJM Büsch Consulting GmbH, Industriestrasse 24, 6300, Zug, Switzerland
| | - Heidi L Memmott
- Pharming Healthcare, Inc., 10 Independence Blvd, Warren, NJ, 07059, USA
| | | | - Julia E M Upton
- Division of Immunology and Allergy, Department of Paediatrics, The Hospital For Sick Children, 175 Elizabeth St, Room 13-14-027, Toronto, ON, M5G 2G3, Canada
- Department of Paediatrics, Temerty School of Medicine, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
| | - Amanda Harrington
- Pharming Healthcare, Inc., 10 Independence Blvd, Warren, NJ, 07059, USA.
| |
Collapse
|
3
|
Xu X, Denton J, Wu Y, Liu J, Guan Q, Dawson DB, Bleesing J, Zhang W. Genetic Testing in Patients with Autoimmune Lymphoproliferative Syndrome: Experience of 802 Patients at Cincinnati Children's Hospital Medical Center. J Clin Immunol 2024; 44:166. [PMID: 39060684 PMCID: PMC11282156 DOI: 10.1007/s10875-024-01772-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024]
Abstract
Autoimmune lymphoproliferative syndrome (ALPS) is a rare genetic disorder featuring chronic lymphadenopathy, splenomegaly, cytopenias, and increased lymphoma risk. Differentiating ALPS from immunodeficiencies with overlapping symptoms is challenging. This study evaluated the performance and the diagnostic yield of a 15-gene NGS panel for ALPS at Cincinnati Children's Hospital Medical Center. Samples from 802 patients submitted for ALPS NGS panel were studied between May 2014 and January 2023. A total of 62 patients (7.7%) had a definite diagnosis: 52/62 cases (84%) showed 37 unique pathogenic/likely pathogenic germline FAS variants supporting ALPS diagnosis (6.5%, 52/802). The ALPS diagnostic yield increased to 30% in patients who additionally fulfilled abnormal ALPS immunology findings criteria. 17/37 (46%) diagnostic FAS variants were novel variants reported for the first time in ALPS. 10/802 cases (1.2%) showed diagnostic findings in five genes (ADA2, CTLA4, KRAS, MAGT1, NRAS) which are related to autoimmune lymphoproliferative immunodeficiency (ALPID). Family studies enabled the reclassification of variants of unknown significance (VUS) and also the identification of at-risk family members of FAS-positive patients, which helped in the follow-up diagnosis and treatment. Alongside family studies, complete clinical phenotypes and abnormal ALPS immunology and Fas-mediated apoptosis results helped clarify uncertain genetic findings. This study describes the largest cohort of genetic testing for suspected ALPS in North America and highlights the effectiveness of the ALPS NGS panel in distinguishing ALPS from non-ALPS immunodeficiencies. More comprehensive assessment from exome or genome sequencing could be considered for undefined ALPS-U patients or non-ALPS immunodeficiencies after weighing cost, completeness, and timeliness of different genetic testing options.
Collapse
Affiliation(s)
- Xinxiu Xu
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - James Denton
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Yaning Wu
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Jie Liu
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Qiaoning Guan
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - D Brian Dawson
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Jack Bleesing
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Wenying Zhang
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
4
|
Zhao P, Huang J, Fu H, Xu J, Li T, Zhang X, Meng Q, Zhang L, Tan L, Zhang W, Chen H, Lu X, Ding Y, He X. Activated phosphoinositide 3-kinase δ syndrome caused by PIK3CD mutations: expanding the phenotype. Pediatr Rheumatol Online J 2024; 22:24. [PMID: 38287413 PMCID: PMC10823743 DOI: 10.1186/s12969-024-00955-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 01/02/2024] [Indexed: 01/31/2024] Open
Abstract
BACKGROUND Germline heterozygous gain-of-function (GOF) mutations in the PIK3CD gene lead to a rare primary immunodeficiency disease known as activated phosphoinositide 3-kinase (PI3K) δ syndrome type 1(APDS1). Affected patients present a spectrum of clinical manifestations, particularly recurrent respiratory infections and lymphoproliferation, increased levels of serum immunoglobulin (Ig) M, Epstein-Barr virus (EBV) and cytomegalovirus (CMV) viremia. Due to highly heterogeneous phenotypes of APDS1, it is very likely that suspected cases may be misdiagnosed. METHODS Herein we reported three patients with different clinical presentations but harboring pathogenic variants in PIK3CD gene detected by trio whole-exome sequencing (trio-WES) and confirmed by subsequent Sanger sequencing. RESULTS Two heterozygous mutations (c.3061G > A, p.E1021K and c.1574 A > G, p.E525G) in PIK3CD (NM_005026.3) were identified by whole exome sequencing (WES) in the three patients. One of two patients with the mutation (c.3061G > A) presented with abdominal pain and diarrhea as the first symptoms, which was due to intussusception caused by multiple polyps of colon. The patient with mutation (c.1574 A > G) had an anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV)-like clinical manifestations, including multisystemic inflammation, acute nephritic syndrome, and positive perinuclear ANCA (p-ANCA), thus the diagnosis of ANCA-AAV was considered. CONCLUSIONS Our study expands the spectrums of clinical phenotype and genotype of APDS, and demonstrates that WES has a high molecular diagnostic yield for patients with immunodeficiency related symptoms, such as respiratory infections, multiple ecchymosis, ANCA-associated vasculitis, multiple ileocecal polyps, hepatosplenomegaly, and lymphoid hyperplasia. TRIAL REGISTRATION Retrospectively registered.
Collapse
Affiliation(s)
- Peiwei Zhao
- Precision Medical Center, Tongji Medical College, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital, Huazhong University of Science & Technology, Wuhan, 430016, China
| | - Juan Huang
- Department of Pathology, Tongji Medical College, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital, Huazhong University of Science & Technology, Wuhan, 430016, China
| | - Huicong Fu
- Department of Respiratory Medicine, Tongji Medical College, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital, Huazhong University of Science & Technology, Wuhan, 430016, China
| | - Jiali Xu
- Department of Respiratory Medicine, Tongji Medical College, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital, Huazhong University of Science & Technology, Wuhan, 430016, China
| | - Tianhong Li
- Precision Medical Center, Tongji Medical College, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital, Huazhong University of Science & Technology, Wuhan, 430016, China
| | - Xiankai Zhang
- Precision Medical Center, Tongji Medical College, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital, Huazhong University of Science & Technology, Wuhan, 430016, China
| | - Qingjie Meng
- Department of Clinical Laboratory, Tongji Medical College, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital, Huazhong University of Science & Technology, Wuhan, 430016, China
| | - Lei Zhang
- Precision Medical Center, Tongji Medical College, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital, Huazhong University of Science & Technology, Wuhan, 430016, China
| | - Li Tan
- Precision Medical Center, Tongji Medical College, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital, Huazhong University of Science & Technology, Wuhan, 430016, China
| | - Wen Zhang
- Department of Pathology, Tongji Medical College, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital, Huazhong University of Science & Technology, Wuhan, 430016, China
| | - Hebin Chen
- Department of Respiratory Medicine, Tongji Medical College, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital, Huazhong University of Science & Technology, Wuhan, 430016, China
| | - Xiaoxia Lu
- Department of Respiratory Medicine, Tongji Medical College, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital, Huazhong University of Science & Technology, Wuhan, 430016, China.
| | - Yan Ding
- Department of Rheumatology and Immunology, Tongji Medical College, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital, Huazhong University of Science & Technology, Wuhan, 430016, China.
| | - Xuelian He
- Precision Medical Center, Tongji Medical College, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital, Huazhong University of Science & Technology, Wuhan, 430016, China.
| |
Collapse
|
5
|
Hanson J, Bonnen PE. Systematic review of mortality and survival rates for APDS. Clin Exp Med 2024; 24:17. [PMID: 38280023 PMCID: PMC10821986 DOI: 10.1007/s10238-023-01259-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 12/14/2023] [Indexed: 01/29/2024]
Abstract
Activated phosphoinositide 3-kinase delta syndrome (APDS) is a rare genetic disorder that presents clinically as a primary immunodeficiency. Clinical presentation of APDS includes severe, recurrent infections, lymphoproliferation, lymphoma, and other cancers, autoimmunity and enteropathy. Autosomal dominant variants in two independent genes have been demonstrated to cause APDS. Pathogenic variants in PIK3CD and PIK3R1, both of which encode components of the PI3-kinase, have been identified in subjects with APDS. APDS1 is caused by gain of function variants in the PIK3CD gene, while loss of function variants in PIK3R1 have been reported to cause APDS2. We conducted a review of the medical literature and identified 256 individuals who had a molecular diagnosis for APDS as well as age at last report; 193 individuals with APDS1 and 63 with APDS2. Despite available treatments, survival for individuals with APDS appears to be shortened from the average lifespan. A Kaplan-Meier survival analysis for APDS showed the conditional survival rate at the age of 20 years was 87%, age of 30 years was 74%, and ages of 40 and 50 years were 68%. Review of causes of death showed that the most common cause of death was lymphoma, followed by complications from HSCT. The overall mortality rate for HSCT in APDS1 and APDS2 cases was 15.6%, while the mortality rate for lymphoma was 47.6%. This survival and mortality data illustrate that new treatments are needed to mitigate the risk of death from lymphoma and other cancers as well as infection. These analyses based on real-world evidence gathered from the medical literature comprise the largest study of survival and mortality for APDS to date.
Collapse
Affiliation(s)
- Jennifer Hanson
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Penelope E Bonnen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
6
|
Kennedy-Batalla R, Acevedo D, Luo Y, Esteve-Solé A, Vlagea A, Correa-Rocha R, Seoane-Reula ME, Alsina L. Treg in inborn errors of immunity: gaps, knowns and future perspectives. Front Immunol 2024; 14:1278759. [PMID: 38259469 PMCID: PMC10800401 DOI: 10.3389/fimmu.2023.1278759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 12/13/2023] [Indexed: 01/24/2024] Open
Abstract
Regulatory T cells (Treg) are essential for immune balance, preventing overreactive responses and autoimmunity. Although traditionally characterized as CD4+CD25+CD127lowFoxP3hi, recent research has revealed diverse Treg subsets such as Tr1, Tr1-like, and CD8 Treg. Treg dysfunction leads to severe autoimmune diseases and immune-mediated inflammatory disorders. Inborn errors of immunity (IEI) are a group of disorders that affect correct functioning of the immune system. IEI include Tregopathies caused by genetic mutations affecting Treg development or function. In addition, Treg dysfunction is also observed in other IEIs, whose underlying mechanisms are largely unknown, thus requiring further research. This review provides a comprehensive overview and discussion of Treg in IEI focused on: A) advances and controversies in the evaluation of Treg extended subphenotypes and function; B) current knowledge and gaps in Treg disturbances in Tregopathies and other IEI including Treg subpopulation changes, genotype-phenotype correlation, Treg changes with disease activity, and available therapies, and C) the potential of Treg cell-based therapies for IEI with immune dysregulation. The aim is to improve both the diagnostic and the therapeutic approaches to IEI when there is involvement of Treg. We performed a non-systematic targeted literature review with a knowledgeable selection of current, high-quality original and review articles on Treg and IEI available since 2003 (with 58% of the articles within the last 6 years) in the PubMed database.
Collapse
Affiliation(s)
- Rebeca Kennedy-Batalla
- Laboratory of Immune-Regulation, Gregorio Marañón Health Research Institute (IISGM), Madrid, Spain
| | - Daniel Acevedo
- Clinical Immunology and Primary Immunodeficiencies Unit, Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, Barcelona, Spain
- Clinical Immunology Unit, Hospital Sant Joan de Déu-Hospital Clínic, Barcelona, Spain
- Study Group for Immune Dysfunction Diseases in Children (GEMDIP), Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Yiyi Luo
- Clinical Immunology and Primary Immunodeficiencies Unit, Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, Barcelona, Spain
- Clinical Immunology Unit, Hospital Sant Joan de Déu-Hospital Clínic, Barcelona, Spain
- Study Group for Immune Dysfunction Diseases in Children (GEMDIP), Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Ana Esteve-Solé
- Clinical Immunology and Primary Immunodeficiencies Unit, Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, Barcelona, Spain
- Clinical Immunology Unit, Hospital Sant Joan de Déu-Hospital Clínic, Barcelona, Spain
- Study Group for Immune Dysfunction Diseases in Children (GEMDIP), Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Alexandru Vlagea
- Clinical Immunology Unit, Hospital Sant Joan de Déu-Hospital Clínic, Barcelona, Spain
- Immunology Department, Biomedic Diagnostic Center (CDB), Hospital Clínic of Barcelona, Clinical Immunology Unit Hospital Sant Joan de Déu-Hospital Clínic de Barcelona, Barcelona, Spain
| | - Rafael Correa-Rocha
- Laboratory of Immune-Regulation, Gregorio Marañón Health Research Institute (IISGM), Madrid, Spain
| | - Ma Elena Seoane-Reula
- Laboratory of Immune-Regulation, Gregorio Marañón Health Research Institute (IISGM), Madrid, Spain
- Pediatric Immuno-Allergy Unit, Allergy Department, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Primary Immunodeficiencies Unit, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Laia Alsina
- Clinical Immunology and Primary Immunodeficiencies Unit, Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, Barcelona, Spain
- Clinical Immunology Unit, Hospital Sant Joan de Déu-Hospital Clínic, Barcelona, Spain
- Study Group for Immune Dysfunction Diseases in Children (GEMDIP), Institut de Recerca Sant Joan de Déu, Barcelona, Spain
- Department of Surgery and Surgical Specializations, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
7
|
Poggi L, Chentout L, Lizot S, Boyne A, Juillerat A, Moiani A, Luka M, Carbone F, Ménager M, Cavazzana M, Duchateau P, Valton J, Kracker S. Rescuing the cytolytic function of APDS1 patient T cells via TALEN-mediated PIK3CD gene correction. Mol Ther Methods Clin Dev 2023; 31:101133. [PMID: 38152700 PMCID: PMC10751510 DOI: 10.1016/j.omtm.2023.101133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 10/05/2023] [Indexed: 12/29/2023]
Abstract
Gain-of-function mutations in the PIK3CD gene result in activated phosphoinositide 3-kinase δ syndrome type 1 (APDS1). This syndrome is a life-threatening combined immunodeficiency and today there are neither optimal nor long-term therapeutic solutions for APDS1 patients. Thus, new alternative treatments are highly needed. The aim of the present study is to explore one therapeutic avenue that consists of the correction of the PIK3CD gene through gene editing. Our proof-of-concept shows that TALEN-mediated gene correction of the mutated PIK3CD gene in APDS1 T cells results in normalized phospho-AKT levels in basal and activated conditions. Normalization of PI3K signaling was correlated to restored cytotoxic functions of edited CD8+ T cells. At the transcriptomic level, single-cell RNA sequencing revealed corrected signatures of CD8+ effector memory and CD8+ proliferating T cells. This proof-of-concept study paves the way for the future development of a gene therapy candidate to cure activated phosphoinositide 3-kinase δ syndrome type 1.
Collapse
Affiliation(s)
- Lucie Poggi
- Université de Paris Cité, Imagine Institute, Paris, France
- Laboratory of Human Lymphohematopoiesis, INSERM UMR 1163, Paris, France
| | - Loïc Chentout
- Université de Paris Cité, Imagine Institute, Paris, France
- Laboratory of Human Lymphohematopoiesis, INSERM UMR 1163, Paris, France
| | - Sabrina Lizot
- Cellectis, 8 rue de la Croix Jarry, 75013 Paris, France
| | - Alex Boyne
- Cellectis, Inc., 430 East 29th Street, New York, NY 10016, USA
| | | | | | - Marine Luka
- Université de Paris Cité, Imagine Institute, Laboratory of Inflammatory Responses and Transcriptomic Networks in Diseases, Atip-Avenir Team, INSERM UMR 1163, 75015 Paris, France
- Labtech Single-Cell@Imagine, Imagine Institute, INSERM UMR 1163, 75015 Paris, France
| | - Francesco Carbone
- Université de Paris Cité, Imagine Institute, Laboratory of Inflammatory Responses and Transcriptomic Networks in Diseases, Atip-Avenir Team, INSERM UMR 1163, 75015 Paris, France
- Labtech Single-Cell@Imagine, Imagine Institute, INSERM UMR 1163, 75015 Paris, France
| | - Mickael Ménager
- Université de Paris Cité, Imagine Institute, Laboratory of Inflammatory Responses and Transcriptomic Networks in Diseases, Atip-Avenir Team, INSERM UMR 1163, 75015 Paris, France
- Labtech Single-Cell@Imagine, Imagine Institute, INSERM UMR 1163, 75015 Paris, France
| | - Marina Cavazzana
- Université de Paris Cité, Imagine Institute, Paris, France
- Biotherapy Clinical Investigation Center, Groupe Hospitalier Universitaire Ouest, Assistance Publique-Hôpitaux de Paris, INSERM, Paris, France
| | | | - Julien Valton
- Cellectis, 8 rue de la Croix Jarry, 75013 Paris, France
| | - Sven Kracker
- Université de Paris Cité, Imagine Institute, Paris, France
- Laboratory of Human Lymphohematopoiesis, INSERM UMR 1163, Paris, France
| |
Collapse
|
8
|
Vanselow S, Wahn V, Schuetz C. Activated PI3Kδ syndrome - reviewing challenges in diagnosis and treatment. Front Immunol 2023; 14:1208567. [PMID: 37600808 PMCID: PMC10432830 DOI: 10.3389/fimmu.2023.1208567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 07/04/2023] [Indexed: 08/22/2023] Open
Abstract
Activated PI3Kδ syndrome (APDS) is a rare inborn error of immunity (IEI) characterized primarily by frequent infections, lymphoproliferation and autoimmunity. Since its initial description in 2013, APDS has become part of the growing group of nearly 500 IEIs affecting various components of the immune system. The two subtypes of APDS - APDS1 and APDS2 - are caused by variants in the PIK3CD and PIK3R1 genes, respectively. Due to the rarity of the disease and the heterogeneous clinical picture, many patients are not diagnosed until years after symptom onset. Another challenge is the large number of PIK3CD and PIK3R1 variants whose functional significance for developing APDS is inconclusive. Treatment of APDS has so far been mostly symptom-oriented with immunoglobulin replacement therapy, immunosuppressive therapies and antibiotic or antiviral prophylaxes. Additionally, allogeneic stem cell transplantation as well as new targeted therapies are options targeting the root cause that may improve patients' quality of life and life expectancy. However, the clinical course of the disease is difficult to predict which complicates the choice of appropriate therapies. This review article discusses diagnostic procedures and current and future treatment options, and highlights the difficulties that physicians, patients and their caretakers face in managing this complex disease. This article is based on cohort studies, the German and US guidelines on the management of primary immunodeficiencies as well as on published experience with diagnosis and compiled treatment experience for APDS.
Collapse
Affiliation(s)
- Sven Vanselow
- Infill Healthcare Communication, Königswinter, Germany
| | - Volker Wahn
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine at Charité University Hospital Berlin, Berlin, Germany
| | - Catharina Schuetz
- Medical Faculty of The Technical University (TU) Dresden, Department of Pediatrics, University Hospital Carl Gustav Carus, Dresden, Germany
- University Center for Rare Diseases, University Hospital Carl Gustav Carus, Dresden, Germany
| |
Collapse
|
9
|
Liu J, Zheng R, Zhang Y, Jia S, He Y, Liu J. The Cross Talk between Cellular Senescence and Melanoma: From Molecular Pathogenesis to Target Therapies. Cancers (Basel) 2023; 15:cancers15092640. [PMID: 37174106 PMCID: PMC10177054 DOI: 10.3390/cancers15092640] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/02/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023] Open
Abstract
Melanoma is a malignant skin tumor that originates from melanocytes. The pathogenesis of melanoma involves a complex interaction that occurs between environmental factors, ultraviolet (UV)-light damage, and genetic alterations. UV light is the primary driver of the skin aging process and development of melanoma, which can induce reactive oxygen species (ROS) production and the presence of DNA damage in the cells, and results in cell senescence. As cellular senescence plays an important role in the relationship that exists between the skin aging process and the development of melanoma, the present study provides insight into the literature concerning the topic at present and discusses the relationship between skin aging and melanoma, including the mechanisms of cellular senescence that drive melanoma progression, the microenvironment in relation to skin aging and melanoma factors, and the therapeutics concerning melanoma. This review focuses on defining the role of cellular senescence in the process of melanoma carcinogenesis and discusses the targeting of senescent cells through therapeutic approaches, highlighting the areas that require more extensive research in the field.
Collapse
Affiliation(s)
- Jiahua Liu
- Laboratory of Molecular Genetics of Aging and Tumor, Medical School, Kunming University of Science and Technology, Kunming 650500, China
| | - Runzi Zheng
- Laboratory of Molecular Genetics of Aging and Tumor, Medical School, Kunming University of Science and Technology, Kunming 650500, China
| | - Yanghuan Zhang
- Laboratory of Molecular Genetics of Aging and Tumor, Medical School, Kunming University of Science and Technology, Kunming 650500, China
| | - Shuting Jia
- Laboratory of Molecular Genetics of Aging and Tumor, Medical School, Kunming University of Science and Technology, Kunming 650500, China
| | - Yonghan He
- Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
| | - Jing Liu
- Laboratory of Molecular Genetics of Aging and Tumor, Medical School, Kunming University of Science and Technology, Kunming 650500, China
| |
Collapse
|
10
|
Pang X, Song H, Li X, Xu F, Lei B, Wang F, Xu J, Qi L, Wang L, Tan G. Transcriptomic analyses of treatment-naïve pediatric ulcerative colitis patients and exploration of underlying disease pathogenesis. J Transl Med 2023; 21:30. [PMID: 36647141 PMCID: PMC9843999 DOI: 10.1186/s12967-023-03881-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 01/08/2023] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Ulcerative colitis (UC) is a form of chronic inflammatory bowel disease of nonspecific origin. This study used an RNA-Sequencing (RNA-Seq) approach to evaluate the transcriptomic landscape of a well-stratified treatment-naïve pediatric UC patient population by comparing them with healthy control children. The data were analyzed to evaluate the mechanisms driving UC-related intestinal inflammation and fibrosis. METHODS Intestinal mucosal samples from five pediatric UC patients and five healthy controls were analyzed by RNA-Seq, and results were verified by qPCR. A CRISPR/Cas9 approach was used to knock out the expression of HLA-DRB5, and molecular biology techniques were used for additional mechanistic studies. RESULTS In these analyses, 2290 genes were found to be differentially expressed between the UC and control samples, of which 1258 and 1032 were upregulated and downregulated, respectively. Gene Ontology analysis showed that these genes were enriched in extracellular matrix (ECM)-related processes and that 7 of 8 differentially expressed genes of interest (PIK3CD, IL1β, IL1α, TIMP1, MMP1, MMP12, COL6A3, and HLADRB5) were upregulated and involved in ECM-receptor interaction and inflammatory bowel disease-related pathways. Increased HLA-DRB5 expression driven by intestinal bacteria was found to promote IL-1α secretion, leading to intestinal inflammation and fibrosis, suggesting a possible target for the treatment of UC. CONCLUSION These data suggest that intestinal inflammation is present in pediatric UC patients for extended periods before the onset of symptoms, and intestinal fibrosis begins even during the early stages of UC. Intestinal bacteria were also found to trigger intestinal inflammation and fibrosis, with HLA-DRB5 playing a central role in this process.
Collapse
Affiliation(s)
- Xiaoli Pang
- grid.430605.40000 0004 1758 4110Department of Pediatric Gastroenterology, The First Hospital of Jilin University, Changchun, China
| | - Hongxiao Song
- grid.430605.40000 0004 1758 4110Department of Hepatology, Center for Pathogen Biology and Infectious Diseases, Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, Jilin China
| | - Xiaolu Li
- grid.430605.40000 0004 1758 4110Department of Pediatric Gastroenterology, The First Hospital of Jilin University, Changchun, China
| | - Fengchao Xu
- grid.430605.40000 0004 1758 4110Department of Hepatology, Center for Pathogen Biology and Infectious Diseases, Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, Jilin China
| | - Bingxun Lei
- grid.430605.40000 0004 1758 4110Department of Anesthesia, The First Hospital of Jilin University, Changchun, China
| | - Fei Wang
- grid.430605.40000 0004 1758 4110Department of Hepatology, Center for Pathogen Biology and Infectious Diseases, Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, Jilin China
| | - Jing Xu
- grid.430605.40000 0004 1758 4110Health Examination Center, The First Hospital of Jilin University, Changchun, China
| | - Lingli Qi
- grid.430605.40000 0004 1758 4110Department of Pediatric Gastroenterology, The First Hospital of Jilin University, Changchun, China
| | - Libo Wang
- grid.430605.40000 0004 1758 4110Department of Pediatric Gastroenterology, The First Hospital of Jilin University, Changchun, China
| | - Guangyun Tan
- grid.430605.40000 0004 1758 4110Department of Hepatology, Center for Pathogen Biology and Infectious Diseases, Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, Jilin China
| |
Collapse
|
11
|
Chen X, Wang J, Lan J, Ge X, Xu H, Zhang Y, Li Z. Initial sirolimus dosage recommendations for pediatric patients with PIK3CD mutation-related immunodeficiency disease. Front Pharmacol 2022; 13:919487. [PMID: 36188573 PMCID: PMC9515533 DOI: 10.3389/fphar.2022.919487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 08/24/2022] [Indexed: 11/13/2022] Open
Abstract
Sirolimus is used to treat pediatric patients with PIK3CD mutation-related immunodeficiency disease. However, the initial dosages of sirolimus remain undecided. The present study aims to explore initial dosages in pediatric patients with PIK3CD mutation-related immunodeficiency disease. Pediatric patients with this disease were analyzed using the population pharmacokinetic (PPK) model and the Monte Carlo simulation. Body weight and concomitant use of posaconazole were included in the final PPK model, where, under the same weight, clearances of sirolimus were 1 : 0.238 between children without and children with posaconazole. Without posaconazole, the initial dosages of sirolimus were 0.07, 0.06, 0.05, and 0.04 mg/kg/day for body weights of 10–14, 14–25, 25–50, and 50–60 kg, respectively. With posaconazole, the initial dosages of sirolimus were 0.02 mg/kg/day for body weights of 10–60 kg. This is the first attempt to build a sirolimus PPK model for recommending initial dosages in children with PIK3CD mutation-related immunodeficiency disease, thereby providing a reference for individualized clinical drug administration.
Collapse
Affiliation(s)
- Xiao Chen
- Department of Pharmacy, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| | - Jinglin Wang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianger Lan
- Department of Pharmacy, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| | - Xilin Ge
- Department of Pharmacy, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| | - Hong Xu
- Department of Nephrology, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
- *Correspondence: Hong Xu, ; Yu Zhang, ; Zhiping Li,
| | - Yu Zhang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Hong Xu, ; Yu Zhang, ; Zhiping Li,
| | - Zhiping Li
- Department of Pharmacy, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
- *Correspondence: Hong Xu, ; Yu Zhang, ; Zhiping Li,
| |
Collapse
|
12
|
Wang W, Min Q, Lai N, Csomos K, Wang Y, Liu L, Meng X, Sun J, Hou J, Ying W, Zhou Q, Sun B, Hui X, Ujhazi B, Gordon S, Buchbinder D, Schuetz C, Butte M, Walter JE, Wang X, Wang JY. Cellular Mechanisms Underlying B Cell Abnormalities in Patients With Gain-of-Function Mutations in the PIK3CD Gene. Front Immunol 2022; 13:890073. [PMID: 35799777 PMCID: PMC9253290 DOI: 10.3389/fimmu.2022.890073] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 05/23/2022] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Activated phosphoinositide 3 kinase (PI3K) -delta syndrome (APDS) is an inborn error of immunity with variable clinical phenotype of immunodeficiency and immune dysregulation and caused by gain-of-function mutations in PIK3CD. The hallmark of immune phenotype is increased proportions of transitional B cells and plasmablasts (PB), progressive B cell loss, and elevated levels of serum IgM. OBJECTIVE To explore unique B cell subsets and the pathomechanisms driving B cell dysregulation beyond the transitional B cell stage in APDS. METHODS Clinical and immunological data was collected from 24 patients with APDS. In five cases, we performed an in-depth analysis of B cell phenotypes and cultured purified naïve B cells to evaluate their survival, activation, Ig gene class switch recombination (CSR), PB differentiation and antibody secretion. We also analyzed PB differentiation capacity of sorted CD27-IgD- double-negative B (DNB) cells. RESULTS The patients had increased B cell sizes and higher proportions of IgM+ DNB cells than healthy controls (HC). Their naïve B cells exhibited increased death, impaired CSR but relatively normal PB differentiation. Upon stimulation, patient's DNB cells secreted a similar level of IgG but a higher level of IgM than DNB cells from HC. Targeted therapy of PI3K inhibition partially restored B cell phenotypes. CONCLUSIONS The present study suggests additional mechanistic insight into B cell pathology of APDS: (1) decreased peripheral B cell numbers may be due to the increased death of naïve B cells; (2) larger B cell sizes and expanded DNB population suggest enhanced activation and differentiation of naïve B cells into DNB cells; (3) the impaired CSR yet normal PB differentiation can predominantly generate IgM-secreting cells, resulting in elevated IgM levels.
Collapse
Affiliation(s)
- Wenjie Wang
- Department of Clinical Immunology, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| | - Qing Min
- Department of Clinical Immunology, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| | - Nannan Lai
- Key Laboratory of Whole-Period Monitoring and Precise Intervention of Digestive Cancer, Shanghai Municipal Health Commission (SMHC), Minhang Hospital, Fudan University, Shanghai, China
| | - Krisztian Csomos
- Division of Pediatric Allergy/Immunology and Jeffrey Modell Diagnostic and Research Center, University of South Florida and Johns Hopkins All Children’s Hospital, St. Petersburg, FL, United States
| | - Ying Wang
- Department of Clinical Immunology, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| | - Luyao Liu
- Department of Clinical Immunology, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| | - Xin Meng
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jinqiao Sun
- Department of Clinical Immunology, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| | - Jia Hou
- Department of Clinical Immunology, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| | - Wenjing Ying
- Department of Clinical Immunology, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| | - Qinhua Zhou
- Department of Clinical Immunology, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| | - Bijun Sun
- Department of Clinical Immunology, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| | - Xiaoying Hui
- Department of Clinical Immunology, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| | - Boglarka Ujhazi
- Division of Pediatric Allergy/Immunology and Jeffrey Modell Diagnostic and Research Center, University of South Florida and Johns Hopkins All Children’s Hospital, St. Petersburg, FL, United States
| | - Sumai Gordon
- Division of Pediatric Allergy/Immunology and Jeffrey Modell Diagnostic and Research Center, University of South Florida and Johns Hopkins All Children’s Hospital, St. Petersburg, FL, United States
| | - David Buchbinder
- Division of Hematology, Children’s Hospital of Orange Country (CHOC), Irvine, CA, United States
| | - Catharina Schuetz
- Department of Pediatrics, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Manish Butte
- Division of Immunology, Allergy, and Rheumatology, Department of Pediatrics and Jeffrey Modell Diagnostic and Research Center, University of California, Los Angeles, Los Angeles, CA, United States
| | - Jolan E. Walter
- Division of Pediatric Allergy/Immunology and Jeffrey Modell Diagnostic and Research Center, University of South Florida and Johns Hopkins All Children’s Hospital, St. Petersburg, FL, United States
- Massachusetts General Hospital, Boston, MA, United States
| | - Xiaochuan Wang
- Department of Clinical Immunology, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
- Shanghai Institute of Infectious Disease and Biosecurity, Shanghai, China
| | - Ji-Yang Wang
- Department of Clinical Immunology, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
- Department of Microbiology and Immunology, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
- Division of Biochemistry, Faculty of Pharmacy and Graduate School of Pharmaceutical Science, Keio University, Tokyo, Japan
| |
Collapse
|
13
|
Clinical, Immunological, and Genetic Features in Patients with Activated PI3Kδ Syndrome (APDS): a Systematic Review. Clin Rev Allergy Immunol 2021; 59:323-333. [PMID: 31111319 DOI: 10.1007/s12016-019-08738-9] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Activated phosphoinositide 3-kinase delta syndrome (APDS) is a novel primary immunodeficiency (PID) caused by heterozygous gain of function mutations in PI3Kδ catalytic p110δ (PIK3CD) or regulatory p85α (PIK3R1) subunits leading to APDS1 and APDS2, respectively. Patients with APDS present a spectrum of clinical manifestations, particularly recurrent respiratory infections and lymphoproliferation. We searched PubMed, Web of Science, and Scopus databases for APDS patients and screened for eligibility criteria. A total of 243 APDS patients were identified from 55 articles. For all patients, demographic, clinical, immunologic, and molecular data were collected. Overall, 179 APDS1 and 64 APDS2 patients were identified. The most common clinical manifestations were respiratory tract infections (pneumonia (43.6%), otitis media (28.8%), and sinusitis (25.9%)), lymphoproliferation (70.4%), autoimmunity (28%), enteropathy (26.7%), failure to thrive (20.6%), and malignancy (12.8%). The predominant immunologic phenotype was hyper-IgM syndrome (48.1%). Immunologic profiling showed decreased B cells in 74.8% and CD4+ T cells in 64.8% of APDS patients. The c.3061 G>A (p. E1021K) mutation in APDS1 with 85% frequency and c.1425+1 G> (A, C, T) (p.434-475del) mutation in APDS2 with 79% frequency were hotspot mutations. The majority of APDS patients were placed on long-term immunoglobulin replacement therapy. Immunosuppressive agents such as rituximab, tacrolimus, rapamycin, and leniolisib were also administered for autoimmunity and inflammatory complications. In addition, hematopoietic stem cell transplantation (HSCT) was used in 12.8% of patients. APDS has heterogynous clinical manifestations. It should be suspected in patients with history of recurrent respiratory infections, lymphoproliferation, and raised IgM levels. Moreover, HSCT should be considered in patients with severe and complicated clinical manifestations with no or insufficient response to the conventional therapies.
Collapse
|
14
|
Brodsky NN, Lucas CL. Infections in activated PI3K delta syndrome (APDS). Curr Opin Immunol 2021; 72:146-157. [PMID: 34052541 DOI: 10.1016/j.coi.2021.04.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/25/2021] [Accepted: 04/27/2021] [Indexed: 01/07/2023]
Abstract
Activated PI3K-delta Syndrome (APDS), also called PI3K-delta activating mutation causing senescent T cells, lymphadenopathy, and immunodeficiency (PASLI), is an autosomal dominant disorder caused by inherited or de novo gain-of-function mutations in one of two genes encoding subunits of the phosphoinositide-3-kinase delta (PI3Kδ) complex. This largely leukocyte-restricted protein complex regulates cell growth, activation, proliferation, and survival. Patients who harbor these mutations have early onset immunodeficiency with recurrent infections, lymphadenopathy, and autoimmunity. The most common infection susceptibilities are sinopulmonary (encapsulated bacteria) and herpesviruses. Multiple defects in both innate and adaptive immune function are responsible for this phenotype. Apart from anti-microbial prophylaxis and immunoglobulin replacement, patients are treated with a variety of immunomodulatory agents and some have needed hematopoietic stem cell transplants. Here, we highlight the spectrum of infections, immune defects, and therapy options in this inborn error of immunity.
Collapse
Affiliation(s)
- Nina N Brodsky
- Department of Immunobiology, Yale University School of Medicine, 300 George Street 353G, New Haven, CT, 06511, USA; Department of Pediatrics, Yale University School of Medicine, 333 Cedar Street, P.O. Box 208064, New Haven, CT 06520, USA
| | - Carrie L Lucas
- Department of Immunobiology, Yale University School of Medicine, 300 George Street 353G, New Haven, CT, 06511, USA.
| |
Collapse
|
15
|
Fekrvand S, Delavari S, Chavoshzadeh Z, Sherkat R, Mahdaviani SA, Sadeghi Shabestari M, Azizi G, Arzanian MT, Shahin Shamsian B, Eskandarzadeh S, Eslami N, Rae W, Condino-Neto A, Mohammadi J, Abolhassani H, Yazdani R, Aghamohammadi A. The First Iranian Cohort of Pediatric Patients with Activated Phosphoinositide 3-Kinase-δ (PI3Kδ) Syndrome (APDS). Immunol Invest 2021; 51:644-659. [PMID: 33401995 DOI: 10.1080/08820139.2020.1863982] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Background: Activated phosphoinositide 3-kinase δ syndrome (APDS) is a recently defined combined primary immunodeficiency disease (PID) characterized by recurrent respiratory tract infections, lymphoproliferation, autoimmunity and lymphoma. Gain-of-function mutations in PIK3CD and loss-of-function of PIK3R1 genes lead to APDS1 and APDS2, respectively.Methods: Demographic, clinical, immunological and genetic data were collected from medical records of 15 pediatric patients, who were genetically identified using the whole-exome sequencing method.Results: Fifteen patients (6 APDS1 and 9 APDS2) were enrolled in this study. Recurrent respiratory tract infections followed by lymphoproliferation and autoimmunity were the most common manifestations (86.7%, 53.3% and 26.7%, respectively). Five patients (33.3%) had a Hyper-IgM-syndrome-like immunoglobulin profile. In the APDS1 group, splice site and missense mutations were found in half of the patients and the C-lobe domain of PIK3CD was the most affected region (50%). In the APDS2 group, splice site mutation was the most frequent mutation (77.8%) and the inter-SH2 domain was the most affected region of PIK3R1 (66.7%). Mortality rate was significantly higher in APDS2 group (P = .02) mainly due to chronic lung infections.Conclusion: Respiratory tract infections and humoral immunodeficiency are commonly the most important complication in pediatric APDS patients, and they can be fatal by ultimately causing catastrophic damage to the structure of lungs. Hence, physicians should be aware of its significance and further work-up of patients with recurrent respiratory tract infections especially in patients with lymphoproliferation. Moreover, delineation of genotype-phenotype associations with disease severity could be helpful in the timely application of appropriate management and patients' survival.
Collapse
Affiliation(s)
- Saba Fekrvand
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| | - Samaneh Delavari
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| | - Zahra Chavoshzadeh
- Pediatric Infections Research Center, Mofid Children's Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Roya Sherkat
- Acquired Immunodeficiency Research Center, lsfahan University of Medical Sciences, Isfahan, Iran
| | - Seyed Alireza Mahdaviani
- Pediatric Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahnaz Sadeghi Shabestari
- Children Hospital of Tabriz, Immunology Research Center of Tabriz, TB and Lung Research Center of Tabriz, Tabriz University of Medical Science, Tabriz, Iran
| | - Gholamreza Azizi
- Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Mohammad Taghi Arzanian
- Pediatric Hematologist-Oncologist, Congenital Hematological Disorders Research Center, Mofid Children's Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bibi Shahin Shamsian
- Pediatric Hematologist-Oncologist, Congenital Hematological Disorders Research Center, Mofid Children's Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shabnam Eskandarzadeh
- Pediatric Infections Research Center, Mofid Children's Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Narges Eslami
- Pediatric Infections Research Center, Mofid Children's Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - William Rae
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Cambridge, UK.,Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, UK
| | - Antonio Condino-Neto
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Javad Mohammadi
- Department of Biomedical Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Hassan Abolhassani
- Research Center for Primary Immunodeficiencies, Iran University of Medical Science, Tehran, Iran.,Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institutet at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Reza Yazdani
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran.,Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Asghar Aghamohammadi
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| |
Collapse
|
16
|
Thouenon R, Moreno-Corona N, Poggi L, Durandy A, Kracker S. Activated PI3Kinase Delta Syndrome-A Multifaceted Disease. Front Pediatr 2021; 9:652405. [PMID: 34249806 PMCID: PMC8267809 DOI: 10.3389/fped.2021.652405] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 05/24/2021] [Indexed: 12/17/2022] Open
Abstract
Autosomal dominant gain-of-function mutations in the PIK3CD gene encoding the catalytic subunit p110δ of phosphoinositide 3-kinase-δ (PI3K-δ) or autosomal dominant loss-of-function mutations in the PIK3R1 gene encoding the p85α, p55α and p50α regulatory subunits cause Activated PI3-kinase-δ syndrome (APDS; referred as type 1 APDS and type 2 APDS, respectively). Consequences of these mutations are PI3K-δ hyperactivity. Clinical presentation described for both types of APDS patients is very variable, ranging from mild or asymptomatic features to profound combined immunodeficiency. Massive lymphoproliferation, bronchiectasis, increased susceptibility to bacterial and viral infections and, at a lesser extent, auto-immune manifestations and occurrence of cancer, especially B cell lymphoma, have been described for both types of APDS patients. Here, we review clinical presentation and treatment options as well as fundamental immunological and biological features associated to PI3K-δ increased signaling.
Collapse
Affiliation(s)
- Romane Thouenon
- Laboratory of Human Lymphohematopoiesis, Imagine Institute, INSERM UMR 1163, Université de Paris, Paris, France
| | - Nidia Moreno-Corona
- Laboratory of Human Lymphohematopoiesis, Imagine Institute, INSERM UMR 1163, Université de Paris, Paris, France
| | - Lucie Poggi
- Laboratory of Human Lymphohematopoiesis, Imagine Institute, INSERM UMR 1163, Université de Paris, Paris, France
| | - Anne Durandy
- Laboratory of Human Lymphohematopoiesis, Imagine Institute, INSERM UMR 1163, Université de Paris, Paris, France
| | - Sven Kracker
- Laboratory of Human Lymphohematopoiesis, Imagine Institute, INSERM UMR 1163, Université de Paris, Paris, France
| |
Collapse
|
17
|
Increased activation of PI3 kinase-δ predisposes to B-cell lymphoma. Blood 2020; 135:638-643. [PMID: 31942637 DOI: 10.1182/blood.2019002072] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 08/28/2019] [Indexed: 12/12/2022] Open
Abstract
Activated phosphatidylinositol 3-kinase-δ (PI3K-δ) syndrome (APDS) is a rare primary combined immunodeficiency caused by either dominant gain-of-function mutations in the PIK3CD gene encoding the catalytic subunit p110δ of PI3K-δ (referred to as type 1 APDS) or dominant loss-of-function mutations in the PIK3R1 gene encoding the p85α, p55α, and p50α regulatory subunits (type 2 APDS). In types 1 and 2 APDS, the PI3K-δ hyperactivity resulting from the gene mutations leads to similar clinical presentations, characterized by increased susceptibility to bacterial and viral infections and (to a lesser extent) autoimmune manifestations. A hallmark of this disease is lymphoproliferation, which may even be life threatening and require repeated surgical treatment. A major complication of APDS is malignancy (especially B-cell lymphomas), which greatly worsens the prognosis. Here, we review the different neoplastic conditions observed in patients with APDS and discuss the uncontrolled PI3K-δ activity in B and T cells that leads to malignant transformation.
Collapse
|
18
|
Wang Y, Wang W, Liu L, Hou J, Ying W, Hui X, Zhou Q, Liu D, Yao H, Sun J, Wang X. Report of a Chinese Cohort with Activated Phosphoinositide 3-Kinase δ Syndrome. J Clin Immunol 2018; 38:854-863. [PMID: 30499059 DOI: 10.1007/s10875-018-0568-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 11/06/2018] [Indexed: 12/31/2022]
Abstract
PURPOSE We aimed to report the clinical manifestations and immunological features of activated phosphatidylinositol 3-kinase δ syndrome 1 (APDS1) in a Chinese cohort. Moreover, we investigated the efficacy and safety of rapamycin therapy for Chinese patients with APDS1. METHODS Fifteen Chinese patients with APDS1 from 14 unrelated families were enrolled in this study. These patients were diagnosed based on clinical features, immunological phenotype, and whole-exome sequencing. Four patients were treated with rapamycin, and the clinical efficacy and safety of rapamycin were observed. The changes of phosphorylation of Akt and mammalian target of rapamycin (mTOR) signaling pathway after rapamycin treatment were detected by flow cytometry and real-time PCR. RESULTS The common clinical manifestations of the patients included lymphadenopathy (93%), recurrent sinopulmonary infections (93%), hepatosplenomegaly (93%), and diarrhea (78%). Epstein-Barr virus (EBV) (80%) and fungus (Aspergillus) (47%) were the most common pathogens. Immunological phenotype included elevated Immunoglobulin (Ig) M levels (100%), decreased naive T cells, increased senescent T cells, and expanded transitional B cells. Whole-exome sequencing indicated that 13 patients had heterogeneous PIK3CD E1021K mutations, 1 patient had heterogeneous E1025G mutation and 1 patient had heterogeneous Y524N mutation. Gain-of-function (GOF) PIK3CD mutations increased the phosphorylation of the Akt-mTOR signaling pathway. Four patients underwent rapamycin therapy, experiencing substantial improvement in clinical symptoms and immunological phenotype. Rapamycin inhibited the activated Akt-mTOR signaling pathway. CONCLUSIONS We described 15 Chinese patients with APDS1. Treatment with the mTOR inhibitor rapamycin improved patient outcomes.
Collapse
Affiliation(s)
- Ying Wang
- Department of Clinical Immunology, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China
| | - Wenjie Wang
- Department of Clinical Immunology, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China
| | - Luyao Liu
- Department of Clinical Immunology, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China
| | - Jia Hou
- Department of Clinical Immunology, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China
| | - Wenjing Ying
- Department of Clinical Immunology, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China
| | - Xiaoying Hui
- Department of Clinical Immunology, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China
| | - Qinhua Zhou
- Department of Clinical Immunology, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China
| | - Danru Liu
- Department of Clinical Immunology, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China
| | - Haili Yao
- Department of Clinical Immunology, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China
| | - Jinqiao Sun
- Department of Clinical Immunology, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China.
| | - Xiaochuan Wang
- Department of Clinical Immunology, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China.
| |
Collapse
|