1
|
Costa IB, Santana-da-Silva MN, Nogami PY, Santos e Santos CDJ, Pereira LMS, França EDS, Freire ABC, Ramos FLDP, Monteiro TAF, Macedo O, Sousa RCM, Freitas FB, Vallinoto ACR, Brasil-Costa I. Immunogenetic Profile Associated with Patients Living with HIV-1 and Epstein-Barr Virus (EBV) in the Brazilian Amazon Region. Viruses 2024; 16:1012. [PMID: 39066175 PMCID: PMC11281405 DOI: 10.3390/v16071012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/14/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024] Open
Abstract
Viral coinfection among HIV-positive patients, coupled with the development of AIDS, remains a major public health problem. The synergism between the presence of HIV and other viruses has consequences in relation to changes in the severity of the infection, as well as changes in the natural course of both infections. Several polymorphisms present in genes that encode cytokines have a relevant influence on their transcription and consequently on the production of such immunological molecules. The present study evaluated the influence of SNPs located in the promoter regions of genes encoding the cytokines INF-ɣ, TNF, IL-6, IL-4, and IL-2, as well as their respective plasma concentrations, in patients infected with HIV and/or EBV in the state of Pará. Additionally, this study described the epidemiological profile and compared CD4+ and CD8+ T lymphocyte counts among the groups studied. The associative analysis between the SNPs and plasma cytokine concentrations in different groups showed statistical relevance for three polymorphisms: rs2069762 (IL2), where the GG genotype demonstrated higher IL-2 levels in HIV mono-infected individuals; rs2243250 (IL4), where the CT genotype showed higher IL-4 levels in the control group; and rs2069705 (IFNG), where the TT genotype showed higher IFN-γ levels in the coinfected group. Regarding SNP associations with CD4+/CD8+ counts, significant findings were observed in HIV mono-infected individuals: the rs2069705 (IFNG) polymorphism was linked to higher CD4+ counts with the CT genotype, and rs1799964 (TNF) was associated with higher CD8+ counts with the CC genotype. Therefore, this study provides evidence that the rs2069705 (IFNG) SNP is associated with elevated IFN-γ levels, which may have pathogenic consequences, as depletion of this cytokine is concerning for people living with HIV due to its antiviral properties.
Collapse
Affiliation(s)
- Iran Barros Costa
- Epstein-Barr Virus Laboratory, Virology Department, Evandro Chagas Institute, Ananindeua 67030-000, PA, Brazil; (I.B.C.); (M.N.S.-d.-S.); (P.Y.N.); (C.d.J.S.e.S.); (E.d.S.F.); (T.A.F.M.)
- Immunology Laboratory, Virology Department, Evandro Chagas Institute, Ananindeua 67030-000, PA, Brazil
| | - Mayara Natália Santana-da-Silva
- Epstein-Barr Virus Laboratory, Virology Department, Evandro Chagas Institute, Ananindeua 67030-000, PA, Brazil; (I.B.C.); (M.N.S.-d.-S.); (P.Y.N.); (C.d.J.S.e.S.); (E.d.S.F.); (T.A.F.M.)
- Immunology Laboratory, Virology Department, Evandro Chagas Institute, Ananindeua 67030-000, PA, Brazil
| | - Patrícia Yuri Nogami
- Epstein-Barr Virus Laboratory, Virology Department, Evandro Chagas Institute, Ananindeua 67030-000, PA, Brazil; (I.B.C.); (M.N.S.-d.-S.); (P.Y.N.); (C.d.J.S.e.S.); (E.d.S.F.); (T.A.F.M.)
- Immunology Laboratory, Virology Department, Evandro Chagas Institute, Ananindeua 67030-000, PA, Brazil
| | - Carolinne de Jesus Santos e Santos
- Epstein-Barr Virus Laboratory, Virology Department, Evandro Chagas Institute, Ananindeua 67030-000, PA, Brazil; (I.B.C.); (M.N.S.-d.-S.); (P.Y.N.); (C.d.J.S.e.S.); (E.d.S.F.); (T.A.F.M.)
- Immunology Laboratory, Virology Department, Evandro Chagas Institute, Ananindeua 67030-000, PA, Brazil
| | - Leonn Mendes Soares Pereira
- Virology Laboratory, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil; (L.M.S.P.); (A.C.R.V.)
| | - Eliane dos Santos França
- Epstein-Barr Virus Laboratory, Virology Department, Evandro Chagas Institute, Ananindeua 67030-000, PA, Brazil; (I.B.C.); (M.N.S.-d.-S.); (P.Y.N.); (C.d.J.S.e.S.); (E.d.S.F.); (T.A.F.M.)
| | - Amaury Bentes Cunha Freire
- Epidemiology and Surveillance Service, Evandro Chagas Institute, Ananindeua 67030-000, PA, Brazil; (A.B.C.F.); (F.L.d.P.R.)
| | - Francisco Lúzio de Paula Ramos
- Epidemiology and Surveillance Service, Evandro Chagas Institute, Ananindeua 67030-000, PA, Brazil; (A.B.C.F.); (F.L.d.P.R.)
| | - Talita Antonia Furtado Monteiro
- Epstein-Barr Virus Laboratory, Virology Department, Evandro Chagas Institute, Ananindeua 67030-000, PA, Brazil; (I.B.C.); (M.N.S.-d.-S.); (P.Y.N.); (C.d.J.S.e.S.); (E.d.S.F.); (T.A.F.M.)
- Immunology Laboratory, Virology Department, Evandro Chagas Institute, Ananindeua 67030-000, PA, Brazil
| | - Olinda Macedo
- Retrovirus Laboratory, Virology Department, Evandro Chagas Institute, Ananindeua 67030-000, PA, Brazil; (O.M.); (F.B.F.)
| | | | - Felipe Bonfim Freitas
- Retrovirus Laboratory, Virology Department, Evandro Chagas Institute, Ananindeua 67030-000, PA, Brazil; (O.M.); (F.B.F.)
| | - Antonio Carlos Rosário Vallinoto
- Virology Laboratory, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil; (L.M.S.P.); (A.C.R.V.)
| | - Igor Brasil-Costa
- Epstein-Barr Virus Laboratory, Virology Department, Evandro Chagas Institute, Ananindeua 67030-000, PA, Brazil; (I.B.C.); (M.N.S.-d.-S.); (P.Y.N.); (C.d.J.S.e.S.); (E.d.S.F.); (T.A.F.M.)
- Immunology Laboratory, Virology Department, Evandro Chagas Institute, Ananindeua 67030-000, PA, Brazil
| |
Collapse
|
2
|
Erdem N, Chen KT, Qi M, Zhao Y, Wu X, Garcia I, Ku HT, Montero E, Al-Abdullah IH, Kandeel F, Roep BO, Isenberg JS. Thrombospondin-1, CD47, and SIRPα display cell-specific molecular signatures in human islets and pancreata. Am J Physiol Endocrinol Metab 2023; 324:E347-E357. [PMID: 36791324 PMCID: PMC11967708 DOI: 10.1152/ajpendo.00221.2022] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 01/10/2023] [Accepted: 02/08/2023] [Indexed: 02/17/2023]
Abstract
Thrombospondin-1 (TSP1) is a secreted protein minimally expressed in health but increased in disease and age. TSP1 binds to the cell membrane receptor CD47, which itself engages signal regulatory protein α (SIRPα), and the latter creates a checkpoint for immune activation. Individuals with cancer administered checkpoint-blocking molecules developed insulin-dependent diabetes. Relevant to this, CD47 blocking antibodies and SIRPα fusion proteins are in clinical trials. We characterized the molecular signature of TSP1, CD47, and SIRPα in human islets and pancreata. Fresh islets and pancreatic tissue from nondiabetic individuals were obtained. The expression of THBS1, CD47, and SIRPA was determined using single-cell mRNA sequencing, immunofluorescence microscopy, Western blot, and flow cytometry. Islets were exposed to diabetes-affiliated inflammatory cytokines and changes in protein expression were determined. CD47 mRNA was expressed in all islet cell types. THBS1 mRNA was restricted primarily to endothelial and mesenchymal cells, whereas SIRPA mRNA was found mostly in macrophages. Immunofluorescence staining showed CD47 protein expressed by β cells and present in the exocrine pancreas. TSP1 and SIRPα proteins were not seen in islets or the exocrine pancreas. Western blot and flow cytometry confirmed immunofluorescent expression patterns. Importantly, human islets produced substantial quantities of secreted TSP1. Human pancreatic exocrine and endocrine tissue expressed CD47, whereas fresh islets displayed cell surface CD47 and secreted TSP1 at baseline and in inflammation. These findings suggest unexpected effects on islets from agents that intersect TSP1-CD47-SIRPα.NEW & NOTEWORTHY CD47 is a cell surface receptor with two primary ligands, soluble thrombospondin-1 (TSP1) and cell surface signal regulatory protein alpha (SIRPα). Both interactions provide checkpoints for immune cell activity. We determined that fresh human islets display CD47 and secrete TSP1. However, human islet endocrine cells lack SIRPα. These gene signatures are likely important given the increasing use of CD47 and SIRPα blocking molecules in individuals with cancer.
Collapse
Affiliation(s)
- Neslihan Erdem
- Irell & Manella Graduate School of Biological Sciences, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, United States
- Department of Molecular & Cellular Endocrinology, City of Hope National Medical Center, Duarte, California, United States
- Department of Translational Research & Cellular Therapeutics, City of Hope National Medical Center, Duarte, California, United States
- Arthur Riggs Diabetes & Metabolism Research Institute, City of Hope National Medical Center, Duarte, California, United States
| | - Kuan-Tsen Chen
- Department of Translational Research & Cellular Therapeutics, City of Hope National Medical Center, Duarte, California, United States
- Arthur Riggs Diabetes & Metabolism Research Institute, City of Hope National Medical Center, Duarte, California, United States
| | - Meirigeng Qi
- Department of Translational Research & Cellular Therapeutics, City of Hope National Medical Center, Duarte, California, United States
- Arthur Riggs Diabetes & Metabolism Research Institute, City of Hope National Medical Center, Duarte, California, United States
| | - Yuqi Zhao
- Integrative Genomics Core, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, United States
| | - Xiwei Wu
- Integrative Genomics Core, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, United States
| | - Isaac Garcia
- Department of Molecular & Cellular Endocrinology, City of Hope National Medical Center, Duarte, California, United States
- Arthur Riggs Diabetes & Metabolism Research Institute, City of Hope National Medical Center, Duarte, California, United States
| | - Hsun Teresa Ku
- Irell & Manella Graduate School of Biological Sciences, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, United States
- Department of Translational Research & Cellular Therapeutics, City of Hope National Medical Center, Duarte, California, United States
- Arthur Riggs Diabetes & Metabolism Research Institute, City of Hope National Medical Center, Duarte, California, United States
| | - Enrique Montero
- Arthur Riggs Diabetes & Metabolism Research Institute, City of Hope National Medical Center, Duarte, California, United States
| | - Ismail H Al-Abdullah
- Department of Translational Research & Cellular Therapeutics, City of Hope National Medical Center, Duarte, California, United States
- Arthur Riggs Diabetes & Metabolism Research Institute, City of Hope National Medical Center, Duarte, California, United States
| | - Fouad Kandeel
- Department of Translational Research & Cellular Therapeutics, City of Hope National Medical Center, Duarte, California, United States
- Arthur Riggs Diabetes & Metabolism Research Institute, City of Hope National Medical Center, Duarte, California, United States
| | - Bart O Roep
- Arthur Riggs Diabetes & Metabolism Research Institute, City of Hope National Medical Center, Duarte, California, United States
| | - Jeffrey S Isenberg
- Department of Diabetes Complications & Metabolism, City of Hope National Medical Center, Duarte, California, United States
- Arthur Riggs Diabetes & Metabolism Research Institute, City of Hope National Medical Center, Duarte, California, United States
| |
Collapse
|
3
|
Ghanooni AH, Zadeh-Vakili A, Rezvankhah B, Jafari Nodushan S, Akbarzadeh M, Amouzegar A, Daneshpour MS, Khalili D, Mehrabi Y, Ebadi SA, Azizi F. Longitudinal Associations Between TPO Gene Variants and Thyroid Peroxidase Antibody Seroconversion in a Population-Based Study: Tehran Thyroid Study. Genet Test Mol Biomarkers 2023; 27:65-73. [PMID: 36989526 DOI: 10.1089/gtmb.2022.0122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023] Open
Abstract
Introduction: Autoimmune thyroid diseases (AITD) are usually accompanied by anti-thyroid antibodies which can serve as early predictive markers. This study was designed to investigate the relationship between thyroid peroxidase (TPO) gene variants and the presence of TPOAb and to evaluate the effect of environmental factors associated with seroconversion from TPOAb-negative to TPOAb-positive. Methods: Participants from phases 1 and 2 of the Tehran Thyroid Study in (n = 5327, ≥20 years) were evaluated in terms of TPOAb positivity, and its relationship with 53 single nucleotide polymorphisms (SNPs) from within the TPO gene (cross-sectional approach). TPOAb-negative participants (n = 4815) were followed up for seroconversion for 5.5 years. The relationship between the TPO gene variants and the TPOAb seroconversion was evaluated (longitudinal approach). Results: There were 521 TPOAb-positive participants in the cross-sectional phase and 266 new TPOAb-positive cases observed during the follow-up period. After quality control (Hardy-Weinberg equilibrium (p < 1 × 10-5) and minor allele frequency < 0.05), 49 SNPs were qualified for association analyses. From this set fourteen SNPs were identified that were associated with TPOAb positivity. rs6605278, located in the 3'UTR TPO gene, was the most highly significantly associated of the variant and remained associated after adjustment for age, gender, body mass index (BMI), smoking, number of parity, and oral contraceptive consumption in both cross-sectional and longitudinal analyses (p < 0.05). Conclusions: TPOAb-positivity can be partially explained by variants in the TPO gene. New TPOAb-associated SNPs were observed in Iranians as an ethnically diverse population.
Collapse
Affiliation(s)
- Amir Hossein Ghanooni
- Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Azita Zadeh-Vakili
- Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Boshra Rezvankhah
- Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Somayeh Jafari Nodushan
- Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahdi Akbarzadeh
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atieh Amouzegar
- Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam S Daneshpour
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Davood Khalili
- Department of Biostatistics and Epidemiology, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Yadollah Mehrabi
- Department of Biostatistics and Epidemiology, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Alireza Ebadi
- Department of Internal Medicine, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fereidoun Azizi
- Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Sharp RC, Brown ME, Shapiro MR, Posgai AL, Brusko TM. The Immunoregulatory Role of the Signal Regulatory Protein Family and CD47 Signaling Pathway in Type 1 Diabetes. Front Immunol 2021; 12:739048. [PMID: 34603322 PMCID: PMC8481641 DOI: 10.3389/fimmu.2021.739048] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 08/31/2021] [Indexed: 12/11/2022] Open
Abstract
Background The pathogenesis of type 1 diabetes (T1D) involves complex genetic susceptibility that impacts pathways regulating host immunity and the target of autoimmune attack, insulin-producing pancreatic β-cells. Interactions between risk variants and environmental factors result in significant heterogeneity in clinical presentation among those who develop T1D. Although genetic risk is dominated by the human leukocyte antigen (HLA) class II and insulin (INS) gene loci, nearly 150 additional risk variants are significantly associated with the disease, including polymorphisms in immune checkpoint molecules, such as SIRPG. Scope of Review In this review, we summarize the literature related to the T1D-associated risk variants in SIRPG, which include a protein-coding variant (rs6043409, G>A; A263V) and an intronic polymorphism (rs2281808, C>T), and their potential impacts on the immunoregulatory signal regulatory protein (SIRP) family:CD47 signaling axis. We discuss how dysregulated expression or function of SIRPs and CD47 in antigen-presenting cells (APCs), T cells, natural killer (NK) cells, and pancreatic β-cells could potentially promote T1D development. Major Conclusions We propose a hypothesis, supported by emerging genetic and functional immune studies, which states a loss of proper SIRP:CD47 signaling may result in increased lymphocyte activation and cytotoxicity and enhanced β-cell destruction. Thus, we present several novel therapeutic strategies for modulation of SIRPs and CD47 to intervene in T1D.
Collapse
MESH Headings
- Animals
- Antigen-Presenting Cells/immunology
- Antigen-Presenting Cells/metabolism
- Antigens, Differentiation/genetics
- Antigens, Differentiation/metabolism
- CD47 Antigen/metabolism
- Diabetes Mellitus, Type 1/genetics
- Diabetes Mellitus, Type 1/immunology
- Diabetes Mellitus, Type 1/metabolism
- Diabetes Mellitus, Type 1/therapy
- Genetic Association Studies
- Humans
- Immunotherapy
- Insulin-Secreting Cells/immunology
- Insulin-Secreting Cells/metabolism
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Polymorphism, Genetic
- Receptors, Cell Surface/metabolism
- Receptors, Immunologic/genetics
- Receptors, Immunologic/metabolism
- Signal Transduction
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
Collapse
Affiliation(s)
- Robert C. Sharp
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Matthew E. Brown
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Melanie R. Shapiro
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Amanda L. Posgai
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Todd M. Brusko
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, United States
- Department of Pediatrics, College of Medicine, Diabetes Institute, University of Florida, Gainesville, FL, United States
| |
Collapse
|
5
|
Liu L, Wang H, Zhang X, Chen R. Identification of Potential Biomarkers in Neonatal Sepsis by Establishing a Competitive Endogenous RNA Network. Comb Chem High Throughput Screen 2021; 23:369-380. [PMID: 32233999 DOI: 10.2174/1386207323666200401121204] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/31/2019] [Accepted: 03/20/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND Neonatal sepsis is a serious and difficult-to-diagnose systemic infectious disease occurring during the neonatal period. OBJECTIVE This study aimed to identify potential biomarkers of neonatal sepsis and explore its underlying mechanisms. METHODS We downloaded the neonatal sepsis-related gene profile GSE25504 from the NCBI Gene Expression Omnibus (GEO) database. The differentially expressed RNAs (DERs) were screened and identified using LIMMA. Then, the functions of the DERs were evaluated using Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses. Finally, a competing endogenous RNA (ceRNA) network was constructed and functional analyses were performed. RESULTS The initial screening identified 444 differentially expressed (DE)-mRNAs and 45 DElncRNAs. GO analysis showed that these DE-mRNAs were involved in immune response, defense response, and positive regulation of immune system process. KEGG analysis showed that these DE-mRNAs were enriched in 30 activated pathways and 6 suppressed pathways, and those with the highest scores were the IL-17 signaling pathway and ribosome. Next, 722 miRNAs associated with the identified lncRNAs were predicted using miRWalk. A ceRNA network was constructed that included 6 lncRNAs, 11 mRNAs, and 55 miRNAs. In this network, HCP5, LINC00638, XIST and TP53TG1 were hub nodes. Functional analysis of this network identified some essential immune functions, hematopoietic functions, osteoclast differentiation, and primary immunodeficiency as associated with neonatal sepsis. CONCLUSION HCP5, LINC00638, TP53TG1, ST20-AS1, and SERPINB9P1 may be potential biomarkers of neonatal sepsis and may be useful for rapid diagnosis; the biological process of the immune response was related to neonatal sepsis.
Collapse
Affiliation(s)
- Ling Liu
- Department of Pediatrics, The Third Hospital of Jilin University, Changchun, Jilin 130033, China
| | - Hong Wang
- Department of Pediatrics, The Third Hospital of Jilin University, Changchun, Jilin 130033, China
| | - Xiaofei Zhang
- Department of Pediatrics, The Third Hospital of Jilin University, Changchun, Jilin 130033, China
| | - Rui Chen
- Department of Pediatrics, The Third Hospital of Jilin University, Changchun, Jilin 130033, China
| |
Collapse
|
6
|
Sinha S, Renavikar PS, Crawford MP, Steward-Tharp SM, Brate A, Tsalikian E, Tansey M, Shivapour ET, Cho T, Kamholz J, Karandikar NJ. Altered expression of SIRPγ on the T-cells of relapsing remitting multiple sclerosis and type 1 diabetes patients could potentiate effector responses from T-cells. PLoS One 2020; 15:e0238070. [PMID: 32853219 PMCID: PMC7451561 DOI: 10.1371/journal.pone.0238070] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 08/08/2020] [Indexed: 11/19/2022] Open
Abstract
Factors regulating self-antigen directed immune-responses in autoimmunity are poorly understood. Signal regulatory protein gamma (SIRPγ) is a human T-cell specific protein with genetic variants associated with type 1 diabetes (T1D). SIRPγ's function in the immune system remains unclear. We show that T1D and relapsing remitting multiple sclerosis (RRMS) subjects have significantly greater frequency of rs2281808 T genetic variant, that correlates with reduced SIRPγ-expression in T-cells. Importantly, reduced SIRPγ-expression in RRMS and T1D subjects was not restricted to T variant, suggesting SIRPγ-expression is also regulated by disease specific factors in autoimmunity. Interestingly, increased frequencies of SIRPγlow T-cells in RRMS and T1D positively correlated with proinflammatory molecules from T-cells. Finally, we show that SIRPγlow T-cells have enhanced pathogenecity in vivo in a GVHD model. These findings suggest that decreased-SIRPγ expression, either determined by genetic variants or through peripherally acquired processes, may have a mechanistic link to autoimmunity through induction of hyperactive T-cells.
Collapse
Affiliation(s)
- Sushmita Sinha
- Department of Pathology, University of Iowa Health Care, Iowa City, Iowa, United States of America
| | - Pranav S. Renavikar
- Department of Pathology, University of Iowa Health Care, Iowa City, Iowa, United States of America
| | - Michael P. Crawford
- Department of Pathology, University of Iowa Health Care, Iowa City, Iowa, United States of America
| | - Scott M. Steward-Tharp
- Department of Pathology, University of Iowa Health Care, Iowa City, Iowa, United States of America
- Department of Oral Pathology, Radiology and Medicine, College of Dentistry, University of Iowa, Iowa City, Iowa, United States of America
| | - Ashley Brate
- Department of Pathology, University of Iowa Health Care, Iowa City, Iowa, United States of America
| | - Eva Tsalikian
- Department of Pediatrics, University of Iowa Health Care, Iowa City, Iowa, United States of America
| | - Michael Tansey
- Department of Pediatrics, University of Iowa Health Care, Iowa City, Iowa, United States of America
| | - Ezzatollah T. Shivapour
- Department of Neurology, University of Iowa Health Care, Iowa City, Iowa, United States of America
| | - Tracey Cho
- Department of Neurology, University of Iowa Health Care, Iowa City, Iowa, United States of America
| | - John Kamholz
- Department of Neurology, University of Iowa Health Care, Iowa City, Iowa, United States of America
| | - Nitin J. Karandikar
- Department of Pathology, University of Iowa Health Care, Iowa City, Iowa, United States of America
| |
Collapse
|
7
|
Na R, Ni W, E G, Zeng Y, Han Y, Huang Y. SNP screening of the MSTN gene and correlation analysis between genetic polymorphisms and growth traits in Dazu black goat. Anim Biotechnol 2020; 32:558-565. [PMID: 32633187 DOI: 10.1080/10495398.2020.1727915] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The aim of this study was to detect SNPs in myostatin (MSTN) gene of four goat breeds, and analyze the correlation of these markers on body measurement traits in the Dazu black goat breed. In total, twenty polymorphic sites were found in one hundred forty-eight individuals, and all SNPs were distributed in introns 1 and 2, except g. 425 C > T, which was found in the regulatory region. Three SNPs (g. 2732 C > T, g. 2752 G > A and g. 4552 A > C) were polymorphic in all four breeds. None of the tag SNPs (g. 425 C > T, g. 1583 A > G, 2732 C > T, g. 4552 A > C and g. 5167 C > T) were significantly correlated with body measurement traits (p > 0.05) in the Dazu black goat. However, individuals with genotype combination 3 (GtC 3) of tag SNPs had higher birth weight and weaning weight than individuals with the other genotype combinations (p < 0.05). Moreover, the genotype combination 4 (GtC 4) was significantly associated with body length and height at the age of 2 months (p < 0.05), and genotype combination 13 (GtC 13) was significantly correlated with body height at 6 months (p < 0.05). Briefly, the combined tag SNP markers might be useful for goat marker-associated selective breeding.
Collapse
Affiliation(s)
- Risu Na
- College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Weiwei Ni
- College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Guangxin E
- College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Yan Zeng
- College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Yanguo Han
- College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Yongfu Huang
- College of Animal Science and Technology, Southwest University, Chongqing, China
| |
Collapse
|