1
|
Lin YR, Lam LY, Chang CM, Lam HYP. Concomitant occurrence of chronic Schistosoma mansoni infection and chronic colitis restore immune imbalance and dysbiosis leading to protection against intestinal colitis and schistosome egg-induced intestinal fibrosis. Mem Inst Oswaldo Cruz 2025; 120:e240045. [PMID: 40332187 PMCID: PMC12051921 DOI: 10.1590/0074-02760240045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 12/23/2024] [Indexed: 05/08/2025] Open
Abstract
BACKGROUND Schistosomiasis is one of the most devastating tropical diseases in developing countries and is usually misdiagnosed with colitis because the prevalence of co-occurrence of both diseases is high. Previously, infection of Schistosoma japonicum cercariae has been shown to provide immediate protection against dextran sodium sulphate (DSS)-induced acute colitis in mice models. Studies using synthesised peptides or soluble proteins from parasites also revealed similar protection against colitis. However, most of these studies were done within a short timeframe, which cannot completely represent the actual situation where natural infection of Schistosoma or colitis is usually chronic. OBJECTIVES This study aims to investigate how chronic schistosomiasis affects chronic intestinal inflammation. METHODS Mice were infected with Schistosoma mansoni and induced simultaneously with chronic colitis. The symptoms and severity of intestinal inflammation and fibrosis were investigated by disease activity index, histology, enzyme-linked immunosorbent assay (ELISA), and quantitative polymerase chain reaction (qPCR). Furthermore, immune analysis by ELISA and qPCR and microbiome analysis by 16S rDNA sequencing were done to investigate the underlying mechanism. FINDINGS Concomitant occurrence of chronic schistosomiasis and chronic colitis significantly alleviated colitis symptoms, lessened intestinal inflammation, and reduced egg-induced fibrosis. Further analysis revealed an alternation of the intestinal immunity and gut microbiome community in mice with both diseases, which could be the potential reason for this outcome. MAIN CONCLUSIONS Our results represent a mechanism of how schistosomiasis and chronic intestinal inflammation affect each other.
Collapse
Affiliation(s)
- You-Ren Lin
- Tzu Chi University, School of Medicine, Master Program in Biomedical Sciences, Hualien, Taiwan
| | - Long Yin Lam
- The Hong Kong Polytechnic University, Department of Applied Biology and Chemical Technology, State Key Laboratory of Chemical Biology and Drug Discovery, Kowloon, Hong Kong SAR, China
| | - Chun-Ming Chang
- Buddhist Tzu Chi Medical Foundation, Hualien Tzu Chi Hospital, Department of General Surgery, Hualien, Taiwan
- Tzu Chi University, Institute of Medical Sciences, Hualien, Taiwan
| | - Ho Yin Pekkle Lam
- Tzu Chi University, School of Medicine, Master Program in Biomedical Sciences, Hualien, Taiwan
- Tzu Chi University, Institute of Medical Sciences, Hualien, Taiwan
- Tzu Chi University, School of Medicine, Department of Biochemistry, Hualien, Taiwan
| |
Collapse
|
2
|
Lu Z, Xiao P, Liu S, Huang C, Li W, Mao Y, Xu Y, Tian Y. Osteoimmunology: Crosstalk Between T Cells and Osteoclasts in Osteoporosis. Clin Rev Allergy Immunol 2025; 68:41. [PMID: 40208457 DOI: 10.1007/s12016-025-09046-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2025] [Indexed: 04/11/2025]
Abstract
Osteoporosis, a common metabolic condition that affects the bones, increases the risk of fractures, thereby diminishing one's quality of life and, in severe cases, can even result in life-threatening conditions. Osteoporosis is becoming increasingly prevalent worldwide as the population ages. Previous research on osteoporosis has focused on skeletal cellular components such as osteoblasts and osteoclasts. The emerging field of "osteoimmunology" has recently been introduced through new research. The concept highlights the critical impact of bone-immune system interactions on osteoporosis progression. The pathogenesis of osteoporosis is significantly influenced by T cells, particularly cytotoxic and helper T cells, which modulate osteoclast differentiation and activity. A crucial aspect of understanding osteoporosis is how T lymphocytes interact with osteoclasts. However, the precise mechanisms underlying T cell-osteoclast crosstalk remain poorly understood. This review systematically examines T cell and osteoclast involvement in osteoimmunology, with a particular focus on their involvement in osteoporosis. It seeks to elucidate the immune mechanisms driving the progression of osteoporosis and identify key molecules involved in T cell-osteoclast interactions. This aims to discover novel molecular targets and intervention strategies to improve early diagnosis and management of osteoporosis. Furthermore, this article will explore the potential of intervening in T cell-osteoclast interactions using conventional therapies, traditional Chinese medicine, immunomodulatory agents, and nanomaterial-based treatments, providing new perspectives for future osteoporosis management.
Collapse
Affiliation(s)
- Zeyao Lu
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Peilun Xiao
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Shijia Liu
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Chongjun Huang
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Weishang Li
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yuanheng Mao
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ying Xu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China.
| | - Ye Tian
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
3
|
Pan K, Li Q, Guo Z, Li Z. Healing action of Interleukin-4 (IL-4) in acute and chronic inflammatory conditions: Mechanisms and therapeutic strategies. Pharmacol Ther 2025; 265:108760. [PMID: 39615600 DOI: 10.1016/j.pharmthera.2024.108760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 11/02/2024] [Accepted: 11/22/2024] [Indexed: 12/06/2024]
Abstract
Interleukin-4 (IL-4), which is traditionally associated with inflammation, has emerged as a key player in tissue regeneration. Produced primarily by T-helper 2 (Th2) and other immune cells, IL-4 activates endogenous lymphocytes and promotes M2 macrophage polarization, both of which are crucial for tissue repair. Moreover, IL-4 stimulates the proliferation and differentiation of various cell types, contributing to efficient tissue regeneration, and shows promise for promoting tissue regeneration after injury. This review explores the multifaceted roles of IL-4 in tissue repair, summarizing its mechanisms and potential for clinical application. This review delves into the multifaceted functions of IL-4, including its immunomodulatory effects, its involvement in tissue regeneration, and its potential therapeutic applications. We discuss the mechanisms underlying IL-4-induced M2 macrophage polarization, a crucial process for tissue repair. Additionally, we explore innovative strategies for delivering IL-4, including gene therapy, protein-based therapies, and cell-based therapies. By leveraging the regenerative properties of IL-4, we can potentially develop novel therapies for various diseases, including chronic inflammatory disorders, autoimmune diseases, and organ injuries. While early research has shown promise for the application of IL-4 in regenerative medicine, further studies are needed to fully elucidate its therapeutic potential and optimize its use.
Collapse
Affiliation(s)
- Kai Pan
- Henan Key Laboratory of Cardiac Remodeling and Transplantation, Zhengzhou Seventh People's Hospital, Zhengzhou, China; Nankai University School of Medicine, Tianjin, China; Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, China
| | - Qiong Li
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, China; Sanquan Medical College, Xinxiang Medical University, Xinxiang, China.
| | - Zhikun Guo
- Henan Key Laboratory of Cardiac Remodeling and Transplantation, Zhengzhou Seventh People's Hospital, Zhengzhou, China; Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, China.
| | - Zongjin Li
- Henan Key Laboratory of Cardiac Remodeling and Transplantation, Zhengzhou Seventh People's Hospital, Zhengzhou, China; Nankai University School of Medicine, Tianjin, China; Sanquan Medical College, Xinxiang Medical University, Xinxiang, China; National Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
4
|
Arve-Butler S, Moorman CD. A comprehensive overview of tolerogenic vaccine adjuvants and their modes of action. Front Immunol 2024; 15:1494499. [PMID: 39759532 PMCID: PMC11695319 DOI: 10.3389/fimmu.2024.1494499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 11/29/2024] [Indexed: 01/07/2025] Open
Abstract
Tolerogenic vaccines represent a therapeutic approach to induce antigen-specific immune tolerance to disease-relevant antigens. As general immunosuppression comes with significant side effects, including heightened risk of infections and reduced anti-tumor immunity, antigen-specific tolerance by vaccination would be game changing in the treatment of immunological conditions such as autoimmunity, anti-drug antibody responses, transplantation rejection, and hypersensitivity. Tolerogenic vaccines induce antigen-specific tolerance by promoting tolerogenic antigen presenting cells, regulatory T cells, and regulatory B cells, or by suppressing or depleting antigen-specific pathogenic T and B cells. The design of tolerogenic vaccines vary greatly, but they all deliver a disease-relevant antigen with or without a tolerogenic adjuvant. Tolerogenic adjuvants are molecules which mediate anti-inflammatory or immunoregulatory effects and enhance vaccine efficacy by modulating the immune environment to favor a tolerogenic immune response to the vaccine antigen. Tolerogenic adjuvants act through several mechanisms, including immunosuppression, modulation of cytokine signaling, vitamin signaling, and modulation of immunological synapse signaling. This review seeks to provide a comprehensive examination of tolerogenic adjuvants currently utilized in tolerogenic vaccines, describing their mechanism of action and examples of their use in human clinical trials and animal models of disease.
Collapse
Affiliation(s)
- Sabine Arve-Butler
- Amgen R&D Postdoctoral Fellows Program, Amgen Inc, South San Francisco, CA, United States
- Amgen Research, Amgen Inc., South San Francisco, CA, United States
| | | |
Collapse
|
5
|
Yan Q, Liu H, Zhu R, Zhang Z. Contribution of macrophage polarization in bone metabolism: A literature review. Cytokine 2024; 184:156768. [PMID: 39340960 DOI: 10.1016/j.cyto.2024.156768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/11/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024]
Abstract
Macrophage polarization divides macrophages into two main cell subpopulations, classically and alternatively activated macrophages (M1 and M2, respectively). M1 polarization promotes osteoclastogenesis, while M2 polarization promotes osteogenesis. The physiological homeostasis of bone metabolism involves a high dynamic balance between osteoclastic-mediated bone resorption and formation. Reportedly, M1/M2 imbalance causes the onset and persistence of inflammation-related bone diseases. Therefore, understanding the research advances in functions and roles of macrophages in such diseases will provide substantial guidance for improved treatment of bone diseases. In this review, we underscore and summarize the research advances in macrophage polarization, and bone-related diseases, such as rheumatoid arthritis, osteoarthritis, and osteoporosis, over the last 5 years. Our findings showed that targeting macrophages and balancing macrophage polarization can effectively reduce inflammation and decrease bone destruction while promoting bone formation and vascular repair. These results indicate that regulating macrophage and macrophage polarization to restore homeostasis is a prospective approach for curing bone-related diseases.
Collapse
Affiliation(s)
- Qiqi Yan
- Institute of Basic Theory, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Haixia Liu
- Institute of Basic Theory, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Ruyuan Zhu
- Institute of Basic Theory, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Zhiguo Zhang
- Institute of Basic Theory, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
6
|
Shehabeldin M, Kobyra J, Cho Y, Gao J, Chong R, Tabib T, Lafyatis R, Little SR, Sfeir C. Local Controlled Delivery of IL-4 Decreases Inflammatory Bone Loss in a Murine Model of Periodontal Disease. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:1635-1643. [PMID: 39465979 DOI: 10.4049/jimmunol.2400332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 09/16/2024] [Indexed: 10/29/2024]
Abstract
Chronic inflammatory diseases are a leading global health problem. In many of these diseases, the consistent presence of systemic low-grade inflammation induces tissue damage. This is true in conditions such as diabetes, arthritis, and autoimmune disorders, where an overactive and uncontrolled host immune response is a major driver of immunopathology. Central to this overactive and destructive host response are macrophages, the major phagocytic cells within the innate immune system. These cells exhibit a dual role in both host defense against invading pathogens and promotion of tissue repair during inflammation resolution. Those unique characteristics make macrophages an excellent target for therapeutic interventions in many chronic inflammatory conditions. Using periodontal disease as a model of chronic inflammation, we sought to assess the feasibility of using a controlled drug delivery strategy to target macrophages within the oral cavity. To that end, IL-4 was encapsulated within a biodegradable polymer carrier and locally delivered into the inflamed periodontal tissues. Our data indicate that local sustained delivery of IL-4 decreased inflammatory bone loss and promoted bone gain in the diseased mouse periodontium. Those effects correlated with a shift of local macrophage population toward a prorepair phenotype. Using single-cell RNA sequencing technology, we found that IL-4 delivery reversed several proinflammatory pathways associated with tissue destructive macrophages. Together, our data suggest that sustained delivery of IL-4 may be a viable therapeutic option for chronic diseases characterized by immune-mediated tissue damage.
Collapse
Affiliation(s)
- Mostafa Shehabeldin
- Center for Craniofacial Regeneration, University of Pittsburgh, Pittsburgh, PA
- Department of Periodontics and Preventive Dentistry, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA
- Department of Oral and Craniofacial Sciences, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Julie Kobyra
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA
| | - Yejin Cho
- Department of Oral and Craniofacial Sciences, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Jin Gao
- Center for Craniofacial Regeneration, University of Pittsburgh, Pittsburgh, PA
| | - Rong Chong
- Center for Craniofacial Regeneration, University of Pittsburgh, Pittsburgh, PA
| | - Tracy Tabib
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, PA
| | - Robert Lafyatis
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, PA
| | - Steven R Little
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Charles Sfeir
- Center for Craniofacial Regeneration, University of Pittsburgh, Pittsburgh, PA
- Department of Periodontics and Preventive Dentistry, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA
- Department of Oral and Craniofacial Sciences, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
7
|
Liu J, Li Y, Wang J, Guan B, Chen Z, Liu Z, Xue Y, Li Y, Guan F, Wang Y. Integrated skin metabolomics and network pharmacology to explore the mechanisms of Goupi Plaster for treating knee osteoarthritis. J Tradit Complement Med 2024; 14:675-686. [PMID: 39850603 PMCID: PMC11752118 DOI: 10.1016/j.jtcme.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 03/08/2024] [Accepted: 04/09/2024] [Indexed: 01/25/2025] Open
Abstract
Background and aim Goupi Plaster (GP) is topical traditional Chinese medicine preparation. It has been used to treat Knee Osteoarthritis (KOA) in clinical practice of traditional Chinese medicine (TCM). However, the mechanisms of GP relieve KOA are poorly understood. Experimental procedure Rabbit models of KOA were established and treated with GP. Knee cartilage pathology was analyzed using hematoxylin and eosin staining, while plasma levels of inflammatory factors (interleukin (IL)-4, IL-6, and IL-17) and skin neurotransmitters (calcitonin gene-related peptide (CGRP), substance P (SP), and5-hydroxytryptamine (5-HT)) were measured by enzyme linked immunosorbent assay. Metabolomics based on GC-TOF-MS analysis screened for skin biomarkers as well as relevant pathways. Network pharmacology screened for relevant skin targets as well as relevant pathways, and finally, MetScape software was utilized to integrate the results of metabolomics and network pharmacology to screen for key skin targets, key metabolites, and key pathways for GP treatment of KOA. Results and conclusion GP administration substantially repaired cartilage surface breaks in KOA and led to relatively intact cartilage structure and normal cell morphology. GP decreased plasma levels of IL-6 and IL-17 and skin levels of CGRP, SP and 5-HT while increased plasma IL-4. GP administration normalized the levels of 15 metabolites which were changed in KOA. Network pharmacology analysis identified 181 targets. Finally, 3 key targets, 5 key metabolites and 3 related pathways were identified, which suggested that GP improved skin barrier function and skin permeability by regulating skin lipid metabolism. GP treatment also regulated skin amino acid levels and subsequently affected neurotransmitters and signaling molecules. In addition, the purinergic signaling pathway was also involved in the treatment of GP against KOA.In conclusion, GP treatment is associated with changes in skin lipid metabolism, neurotransmitters, and the purinergic signaling pathway.
Collapse
Affiliation(s)
- Jia Liu
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese, Harbin, 150040, China
| | - Yingpeng Li
- College of Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Jiajing Wang
- Heilongjiang University of Chinese Medicine Affiliated Second Hospital, Harbin, China
| | - Bixi Guan
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese, Harbin, 150040, China
| | - Zhaoliang Chen
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese, Harbin, 150040, China
| | - Ziheng Liu
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese, Harbin, 150040, China
| | - Yunfeng Xue
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese, Harbin, 150040, China
| | - Yongji Li
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese, Harbin, 150040, China
| | - Feng Guan
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese, Harbin, 150040, China
| | - Yanhong Wang
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese, Harbin, 150040, China
| |
Collapse
|
8
|
Tang R, Harasymowicz NS, Wu CL, Choi YR, Lenz K, Oswald SJ, Guilak F. Gene therapy for fat-1 prevents obesity-induced metabolic dysfunction, cellular senescence, and osteoarthritis. Proc Natl Acad Sci U S A 2024; 121:e2402954121. [PMID: 39401356 PMCID: PMC11513907 DOI: 10.1073/pnas.2402954121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 08/16/2024] [Indexed: 10/18/2024] Open
Abstract
Obesity is one of the primary risk factors for osteoarthritis (OA), acting through cross talk among altered biomechanics, metabolism, adipokines, and dietary free fatty acid (FA) composition. Obesity and aging have been linked to cellular senescence in various tissues, resulting in increased local and systemic inflammation and immune dysfunction. We hypothesized that obesity and joint injury lead to cellular senescence that is typically associated with increased OA severity or with aging and that the ratio of omega-6 (ω-6) to omega-3 (ω-3) FAs regulates these pathologic effects. Mice were placed on an ω-6-rich high-fat diet or a lean control diet and underwent destabilization of the medial meniscus to induce OA. Obesity and joint injury significantly increased cellular senescence in subcutaneous and visceral fat as well as joint tissues such as synovium and cartilage. Using adeno-associated virus (AAV) gene therapy for fat-1, a fatty acid desaturase that converts ω-6 to ω-3 FAs, decreasing the serum ω-6:ω-3 FA ratio had a strong senomorphic and therapeutic effect, mitigating metabolic dysfunction, cellular senescence, and joint degeneration. In vitro coculture of bone marrow-derived macrophages and chondrocytes from control and AAV8-fat1-treated mice were used to examine the roles of various FA mediators in regulating chondrocyte senescence. Our results suggest that obesity and joint injury result in a premature "aging" of the joint as measured by senescence markers, and these changes can be ameliorated by altering FA composition using fat-1 gene therapy. These findings support the potential for fat-1 gene therapy to treat obesity- and/or injury-induced OA clinically.
Collapse
Affiliation(s)
- Ruhang Tang
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO63110
- Shriners Hospitals for Children, St. Louis, MO63110
- Center of Regenerative Medicine, Washington University, St. Louis, MO63110
| | - Natalia S. Harasymowicz
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO63110
- Shriners Hospitals for Children, St. Louis, MO63110
- Center of Regenerative Medicine, Washington University, St. Louis, MO63110
| | - Chia-Lung Wu
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO63110
- Shriners Hospitals for Children, St. Louis, MO63110
| | - Yun-Rak Choi
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO63110
- Shriners Hospitals for Children, St. Louis, MO63110
- Center of Regenerative Medicine, Washington University, St. Louis, MO63110
- Department of Orthopaedic Surgery, Yonsei University College of Medicine, Seoul03722, South Korea
| | - Kristin Lenz
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO63110
- Shriners Hospitals for Children, St. Louis, MO63110
- Center of Regenerative Medicine, Washington University, St. Louis, MO63110
| | - Sara J. Oswald
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO63110
- Shriners Hospitals for Children, St. Louis, MO63110
- Center of Regenerative Medicine, Washington University, St. Louis, MO63110
| | - Farshid Guilak
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO63110
- Shriners Hospitals for Children, St. Louis, MO63110
- Center of Regenerative Medicine, Washington University, St. Louis, MO63110
| |
Collapse
|
9
|
Yin X, Wang Q, Tang Y, Wang T, Zhang Y, Yu T. Research progress on macrophage polarization during osteoarthritis disease progression: a review. J Orthop Surg Res 2024; 19:584. [PMID: 39342341 PMCID: PMC11437810 DOI: 10.1186/s13018-024-05052-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 09/01/2024] [Indexed: 10/01/2024] Open
Abstract
Primary osteoarthritis (OA) is a prevalent degenerative joint disease that mostly affects the knee joint. It is a condition that occurs around the world. Because of the aging population and the increase in obesity prevalence, the incidence of primary OA is increasing each year. Joint replacement can completely subside the pain and minimize movement disorders caused by advanced OA, while nonsteroidal drugs and injection of sodium hyaluronate into the joint cavity can only partially relieve the pain; hence, it is critical to search for new methods to treat OA. Increasing lines of evidence show that primary OA is a chronic inflammatory disorder, with synovial inflammation as the main characteristic. Macrophages, as one of the immune cells, can be polarized to produce M1 (proinflammatory) and M2 (anti-inflammatory) types during synovial inflammation in OA. Following polarization, macrophages do not come in direct contact with chondrocytes; however, they affect chondrocyte metabolism through paracrine production of a significant quantity of inflammatory cytokines, matrix metalloproteinases, and growth factors and thus participate in inducing joint pain, cartilage injury, angiogenesis, and osteophyte formation. The main pathways that influence the polarization of macrophages are the Toll-like receptor and NF-κB pathways. The study of how macrophage polarization affects OA disease progression has gradually become one of the approaches to prevent and treat OA. Experimental studies have found that the treatment of macrophage polarization in primary OA can effectively relieve synovial inflammation and reduce cartilage damage. The present article summarizes the influence of inflammatory factors secreted by macrophages after polarization on OA disease progression, the main signaling pathways that induce macrophage differentiation, and the role of different polarized types of macrophages in OA; thus, providing a reference for preventing and treating primary OA.
Collapse
Affiliation(s)
- Xiangzhi Yin
- Department of Orthopaedics, Affiliated Hospital of Qingdao University, Qingdao, 266000, China
- Department of Orthopaedics, Qingdao Municipal Hospital, Qingdao, 266011, China
| | - Quan Wang
- Department of Radiation Oncology, The Affiliated Hospital of Qingdao University, Qingdao, 266005, China
| | - Yijie Tang
- Department of Orthopaedics, Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Tianrui Wang
- Department of Orthopaedics, Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Yingze Zhang
- Department of Orthopaedics, Affiliated Hospital of Qingdao University, Qingdao, 266000, China.
| | - Tengbo Yu
- Department of Orthopaedics, Qingdao Municipal Hospital, Qingdao, 266011, China.
| |
Collapse
|
10
|
Zhu S, Zhou J, Xie Z. The balance between helper T 17 and regulatory T cells in osteoimmunology and relevant research progress on bone tissue engineering. Immun Inflamm Dis 2024; 12:e70011. [PMID: 39264247 PMCID: PMC11391570 DOI: 10.1002/iid3.70011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 09/13/2024] Open
Abstract
BACKGROUND Bone regeneration is a well-regulated dynamic process, of which the prominent role of the immune system on bone homeostasis is more and more revealed by recent research. Before fully activation of the bone remodeling cells, the immune system needs to clean up the microenvironment in facilitating the bone repair initiation. Furthermore, this microenvironment must be maintained properly by various mechanisms over the entire bone regeneration process. OBJECTIVE This review aims to summarize the role of the T-helper 17/Regulatory T cell (Th17/Treg) balance in bone cell remodeling and discuss the relevant progress in bone tissue engineering. RESULTS The role of the immune response in the early stages of bone regeneration is crucial, especially the impact of the Th17/Treg balance on osteoclasts, mesenchymal stem cells (MSCs), and osteoblasts activity. By virtue of these knowledge advancements, innovative approaches in bone tissue engineering, such as nano-structures, hydrogel, and exosomes, are designed to influence the Th17/Treg balance and thereby augment bone repair and regeneration. CONCLUSION Targeting the Th17/Treg balance is a promising innovative strategy for developing new treatments to enhance bone regeneration, thus offering potential breakthroughs in bone injury clinics.
Collapse
Affiliation(s)
- Shuyu Zhu
- Kunming Medical University School of Stomatology and Affiliated Stomatology HospitalKunmingYunnan ProvinceChina
| | - Jing Zhou
- Kunming Medical University School of Stomatology and Affiliated Stomatology HospitalKunmingYunnan ProvinceChina
| | - Zhigang Xie
- Kunming Medical University School of Stomatology and Affiliated Stomatology HospitalKunmingYunnan ProvinceChina
| |
Collapse
|
11
|
Shawl M, Geetha T, Burnett D, Babu JR. Omega-3 Supplementation and Its Effects on Osteoarthritis. Nutrients 2024; 16:1650. [PMID: 38892583 PMCID: PMC11174396 DOI: 10.3390/nu16111650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/16/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
Osteoarthritis (OA) is a degenerative joint disease characterized by the destruction of the articular cartilage, resulting in a pro-inflammatory response. The progression of OA is multifactorial and is influenced by the underlying cause of inflammation, which includes but is not limited to trauma, metabolism, biology, comorbidities, and biomechanics. Although articular cartilage is the main tissue affected in osteoarthritis, the chronic inflammatory environment negatively influences the surrounding synovium, ligaments, and subchondral bone, further limiting their functional abilities and enhancing symptoms of OA. Treatment for osteoarthritis remains inconsistent due to the inability to determine the underlying mechanism of disease onset, severity of symptoms, and complicating comorbidities. In recent years, diet and nutritional supplements have gained interest regarding slowing the disease process, prevention, and treatment of OA. This is due to their anti-inflammatory properties, which result in a positive influence on pain, joint mobility, and cartilage formation. More specifically, omega-3 polyunsaturated fatty acids (PUFA) have demonstrated an influential role in the progression of OA, resulting in the reduction of cartilage destruction, inhibition of pro-inflammatory cytokine cascades, and production of oxylipins that promote anti-inflammatory pathways. The present review is focused on the assessment of evidence explaining the inflammatory processes of osteoarthritis and the influence of omega-3 supplementation to modulate the progression of osteoarthritis.
Collapse
Affiliation(s)
- Megan Shawl
- Department of Nutritional Sciences, Auburn University, Auburn, AL 36849, USA
| | - Thangiah Geetha
- Department of Nutritional Sciences, Auburn University, Auburn, AL 36849, USA
- Boshell Metabolic Diseases and Diabetes Program, Auburn University, Auburn, AL 36849, USA
| | - Donna Burnett
- Department of Nutritional Sciences, Auburn University, Auburn, AL 36849, USA
| | - Jeganathan Ramesh Babu
- Department of Nutritional Sciences, Auburn University, Auburn, AL 36849, USA
- Boshell Metabolic Diseases and Diabetes Program, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
12
|
Wang X, Sun B, Wang Y, Gao P, Song J, Chang W, Xiao Z, Xi Y, Li Z, An F, Yan C. Research progress of targeted therapy regulating Th17/Treg balance in bone immune diseases. Front Immunol 2024; 15:1333993. [PMID: 38352872 PMCID: PMC10861655 DOI: 10.3389/fimmu.2024.1333993] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/16/2024] [Indexed: 02/16/2024] Open
Abstract
Rheumatoid arthritis (RA) and postmenopausal osteoporosis (PMOP) are common bone-immune diseases. The imbalance between helper (Th17) and regulatory T cells (Tregs) produced during differentiation of CD4+ T cells plays a key regulatory role in bone remodelling disorders in RA and PMOP. However, the specific regulatory mechanism of this imbalance in bone remodelling in RA and PMOP has not been clarified. Identifying the regulatory mechanism underlying the Th17/Treg imbalance in RA and PMOP during bone remodelling represents a key factor in the research and development of new drugs for bone immune diseases. In this review, the potential roles of Th17, Treg, and Th17/Treg imbalance in regulating bone remodelling in RA and PMOP have been summarised, and the potential mechanisms by which probiotics, traditional Chinese medicine compounds, and monomers maintain bone remodelling by regulating the Th17/Treg balance are expounded. The maintenance of Th17/Treg balance could be considered as an therapeutic alternative for the treatment of RA and PMOP. This study also summarizes the advantages and disadvantages of conventional treatments and the quality of life and rehabilitation of patients with RA and PMOP. The findings presented her will provide a better understanding of the close relationship between bone immunity and bone remodelling in chronic bone diseases and new ideas for future research, prevention, and treatment of bone immune diseases.
Collapse
Affiliation(s)
- Xiaxia Wang
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Bai Sun
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Yujie Wang
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Peng Gao
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Jiayi Song
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Weirong Chang
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Zhipan Xiao
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Yongbin Xi
- Orthopaedics Department, The No.2 People’s Hospital of Lanzhou, Lanzhou, Gansu, China
| | - Zhonghong Li
- Pathological Research Centre, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Fangyu An
- Teaching Experiment Training Centre, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Chunlu Yan
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| |
Collapse
|
13
|
Cheng C, Tian Y, Yang R, Guo W, Xiao K, Zhang F, Tian J, Deng Z, Yang W, Yang H, Zhou Z. miR-5581 Contributes to Osteoarthritis by Targeting NRF1 to Disturb the Proliferation and Functions of Chondrocytes. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:1234-1247. [PMID: 37611970 DOI: 10.1016/j.ajpath.2023.05.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 05/09/2023] [Accepted: 05/24/2023] [Indexed: 08/25/2023]
Abstract
Chondrocyte survival is critical for the preservation of a healthy cartilage matrix. Limited chondrocyte function and survival can result in articular cartilage failure, thereby contributing to osteoarthritis (OA). In this study, miR-5581 was significantly up-regulated in OA samples, and miR-5581-associated genes were enriched in Kras signaling. miR-5581 up-regulation was observed in clinical OA samples and IL-1β-stimulated chondrocytes. miR-5581 inhibition attenuated IL-1β-induced chondrocyte proliferation suppression, extracellular matrix (ECM) synthesis suppression and degradation, and IL-1β-suppressed Kras signaling activation. miR-5581 was targeted to inhibit NRF1. In IL-1β-treated chondrocytes, NRF1 overexpression attenuated IL-1β-induced cellular damage and partially abolished the effects of miR-5581 overexpression on IL-1β-stimulated chondrocytes. NRF1 was down-regulated in knee joint cartilage of OA mice. In conclusion, miR-5581, which was up-regulated in OA samples and IL-1β-stimulated chondrocytes, inhibited chondrocyte proliferation and ECM synthesis, and promoted ECM degradation through targeting NRF1, whereby Kras signaling might be involved.
Collapse
Affiliation(s)
- Chao Cheng
- Department of Orthopaedics, The Fourth People's Hospital of Yiyang, Yiyang, China; Clinical Medical Technology Demonstration Base for Minimally Invasive and Digital Orthopaedics in Hunan Province, Yiyang, China
| | - Ye Tian
- Clinical Medical Technology Demonstration Base for Minimally Invasive and Digital Orthopaedics in Hunan Province, Yiyang, China; Department of Orthopaedics, Yiyang Central Hospital, Yiyang, China
| | - Ruiqi Yang
- Clinical Medical Technology Demonstration Base for Minimally Invasive and Digital Orthopaedics in Hunan Province, Yiyang, China; Department of Orthopaedics, Yiyang Central Hospital, Yiyang, China
| | - Wei Guo
- Clinical Medical Technology Demonstration Base for Minimally Invasive and Digital Orthopaedics in Hunan Province, Yiyang, China; Department of Orthopaedics, Yiyang Central Hospital, Yiyang, China
| | - Kai Xiao
- Clinical Medical Technology Demonstration Base for Minimally Invasive and Digital Orthopaedics in Hunan Province, Yiyang, China; Department of Orthopaedics, Yiyang Central Hospital, Yiyang, China
| | - Fangjie Zhang
- Department of Emergency Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Jian Tian
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
| | - Zhenhan Deng
- Department of Sports Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Wenjian Yang
- Department of Orthopaedics, Yiyang Central Hospital, Yiyang, China
| | - Hua Yang
- Clinical Medical Technology Demonstration Base for Minimally Invasive and Digital Orthopaedics in Hunan Province, Yiyang, China; Department of Orthopaedics, Yiyang Central Hospital, Yiyang, China.
| | - Zhihong Zhou
- Department of Clinical Medicine, Yiyang Medical College, Yiyang, China.
| |
Collapse
|
14
|
Anwar A, Sapra L, Gupta N, Ojha RP, Verma B, Srivastava RK. Fine-tuning osteoclastogenesis: An insight into the cellular and molecular regulation of osteoclastogenesis. J Cell Physiol 2023. [PMID: 37183350 DOI: 10.1002/jcp.31036] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 05/16/2023]
Abstract
Osteoclasts, the bone-resorbing cells, are essential for the bone remodeling process and are involved in the pathophysiology of several bone-related diseases. The extensive corpus of in vitro research and crucial mouse model studies in the 1990s demonstrated the key roles of monocyte/macrophage colony-stimulating factor, receptor activator of nuclear factor kappa B ligand (RANKL) and integrin αvβ3 in osteoclast biology. Our knowledge of the molecular mechanisms by which these variables control osteoclast differentiation and function has significantly advanced in the first decade of this century. Recent developments have revealed a number of novel insights into the fundamental mechanisms governing the differentiation and functional activity of osteoclasts; however, these mechanisms have not yet been adequately documented. Thus, in the present review, we discuss various regulatory factors including local and hormonal factors, innate as well as adaptive immune cells, noncoding RNAs (ncRNAs), etc., in the molecular regulation of the intricate and tightly regulated process of osteoclastogenesis. ncRNAs have a critical role as epigenetic controllers of osteoclast physiologic activities, including differentiation and bone resorption. The primary ncRNAs, which include micro-RNAs, circular RNAs, and long noncoding RNAs, form a complex network that affects gene transcription activities associated with osteoclast biological activity. Greater knowledge of the involvement of ncRNAs in osteoclast biological activities will contribute to the treatment and management of several skeletal diseases such as osteoporosis, osteoarthritis, rheumatoid arthritis, etc. Moreover, we further outline potential therapies targeting these regulatory pathways of osteoclastogenesis in distinct bone pathologies.
Collapse
Affiliation(s)
- Aleena Anwar
- Translational Immunology, Osteoimmunology & Immunoporosis Lab (TIOIL), Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Leena Sapra
- Translational Immunology, Osteoimmunology & Immunoporosis Lab (TIOIL), Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Navita Gupta
- Department of Allied Health Sciences, Chitkara School of Health Sciences, Chitkara University, Chandigarh, Punjab, India
| | - Rudra P Ojha
- Department of Zoology, Nehru Gram Bharati University, Prayagraj, Uttar Pradesh, India
| | - Bhupendra Verma
- Translational Immunology, Osteoimmunology & Immunoporosis Lab (TIOIL), Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Rupesh K Srivastava
- Translational Immunology, Osteoimmunology & Immunoporosis Lab (TIOIL), Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| |
Collapse
|
15
|
Targeting macrophage polarization as a promising therapeutic strategy for the treatment of osteoarthritis. Int Immunopharmacol 2023; 116:109790. [PMID: 36736223 DOI: 10.1016/j.intimp.2023.109790] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/17/2023] [Accepted: 01/24/2023] [Indexed: 02/04/2023]
Abstract
Osteoarthritis (OA) is a chronic osteoarthropathy characterized by the progressive degeneration of articular cartilage and synovial inflammation. Early OA clinical treatments involve intra-articular injection of glucocorticoids, oral acetaminophen and non-steroidal anti-inflammatory drugs (NSAIDs), which are used for anti-inflammation and pain relief. However, long-term use of these agents will lead to inevitable side effects, even aggravate cartilage loss. At present, there are no disease-modifying OA drugs (DMOADs) yet approved by regulatory agencies. Polarization regulation of synovial macrophages is a new target for OA treatment. Inhibiting M1 polarization and promoting M2 polarization of synovial macrophages can alleviate synovial inflammation, relieve joint pain and inhibit articular cartilage degradation, which is a promising strategy for OA treatment. In this study, we describe the molecular mechanisms of macrophage polarization and its key role in the development of OA. Subsequently, we summarize the latest progress of strategies for OA treatment through macrophage reprogramming, including small molecule compounds (conventional western medicine and synthetic compounds, monomer compounds of traditional Chinese medicine), biomacromolecules, metal/metal oxides, cells, and cell derivatives, and interprets the molecular mechanisms, hoping to provide some information for DMOADs development.
Collapse
|
16
|
Zhang Q, Sun W, Li T, Liu F. Polarization Behavior of Bone Macrophage as Well as Associated Osteoimmunity in Glucocorticoid-Induced Osteonecrosis of the Femoral Head. J Inflamm Res 2023; 16:879-894. [PMID: 36891172 PMCID: PMC9986469 DOI: 10.2147/jir.s401968] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 02/24/2023] [Indexed: 03/04/2023] Open
Abstract
Glucocorticoid-induced osteonecrosis of the femoral head (GIONFH) is a disabling disease with high mortality in China but the detailed molecular and cellular mechanisms remain to be investigated. Macrophages are considered the key cells in osteoimmunology, and the cross-talk between bone macrophages and other cells in the microenvironment is involved in maintaining bone homeostasis. M1 polarized macrophages launch a chronic inflammatory response and secrete a broad spectrum of cytokines (eg, TNF-α, IL-6 and IL-1β) and chemokines to initiate a chronic inflammatory state in GIONFH. M2 macrophage is the alternatively activated anti-inflammatory type distributed mainly in the perivascular area of the necrotic femoral head. In the development of GIONFH, injured bone vascular endothelial cells and necrotic bone activate the TLR4/NF-κB signal pathway, promote dimerization of PKM2 and subsequently enhance the production of HIF-1, inducing metabolic transformation of macrophage to the M1 phenotype. Considering these findings, putative interventions by local chemokine regulation to correct the imbalance between M1/M2 polarized macrophages by switching macrophages to an M2 phenotype, or inhibiting the adoption of an M1 phenotype appear to be plausible regimens for preventing or intervening GIONFH in the early stage. However, these results were mainly obtained by in vitro tissue or experimental animal model. Further studies to completely elucidate the alterations of the M1/M2 macrophage polarization and functions of macrophages in glucocorticoid-induced osteonecrosis of the femoral head are imperative.
Collapse
Affiliation(s)
- Qingyu Zhang
- Department of Orthopaedics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, People’s Republic of China
| | - Wei Sun
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Centre for Osteonecrosis and Joint-Preserving & Reconstruction, Orthopaedic Department, China Japan Friendship Hospital, Beijing, 100029, People’s Republic of China
| | - Tengqi Li
- Department of Orthopedics, Peking University Shougang Hospital, Beijing, People’s Republic of China
- Department of Orthopedics, Peking University China-Japan Friendship School of Clinical Medicine, Beijing, People’s Republic of China
| | - Fanxiao Liu
- Department of Orthopaedics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, People’s Republic of China
| |
Collapse
|
17
|
Xu M, Ji Y. Immunoregulation of synovial macrophages for the treatment of osteoarthritis. Open Life Sci 2023; 18:20220567. [PMID: 36789002 PMCID: PMC9896167 DOI: 10.1515/biol-2022-0567] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 01/07/2023] [Accepted: 01/09/2023] [Indexed: 02/04/2023] Open
Abstract
Osteoarthritis (OA) is the most common joint disease affecting approximately 10% of men and 18% of women older than 60. Its pathogenesis is still not fully understood; however, emerging evidence has suggested that chronic low-grade inflammation is associated with OA progression. The pathological features of OA are articular cartilage degeneration in the focal area, including new bone formation at the edge of the joint, subchondral bone changes, and synovitis. Conventional drug therapy aims to prevent further cartilage loss and joint dysfunction. However, the ideal treatment for the pathogenesis of OA remains to be defined. Macrophages are the most common immune cells in inflamed synovial tissues. In OA, synovial macrophages undergo proliferation and activation, thereby releasing pro-inflammatory cytokines, including interleukin-1 and tumor necrosis factor-α, among others. The review article discusses (1) the role of synovial macrophages in the pathogenesis of OA; (2) the progress of immunoregulation of synovial macrophages in the treatment of OA; (3) novel therapeutic targets for preventing the progress of OA or promoting cartilage repair and regeneration.
Collapse
Affiliation(s)
- Mingze Xu
- Department of Orthopedics, Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, P. R. China
| | - Yunhan Ji
- Department of Orthopedics, Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, P. R. China
| |
Collapse
|
18
|
Zhang J, Ye C, Zhu Y, Wang J, Liu J. The Cell-Specific Role of SHP2 in Regulating Bone Homeostasis and Regeneration Niches. Int J Mol Sci 2023; 24:ijms24032202. [PMID: 36768520 PMCID: PMC9917188 DOI: 10.3390/ijms24032202] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/25/2023] Open
Abstract
Src homology-2 containing protein tyrosine phosphatase (SHP2), encoded by PTPN11, has been proven to participate in bone-related diseases, such as Noonan syndrome (NS), metachondromatosis and osteoarthritis. However, the mechanisms of SHP2 in bone remodeling and homeostasis maintenance are complex and undemonstrated. The abnormal expression of SHP2 can influence the differentiation and maturation of osteoblasts, osteoclasts and chondrocytes. Meanwhile, SHP2 mutations can act on the immune system, vasculature and nervous system, which in turn affect bone development and remodeling. Signaling pathways regulated by SHP2, such as mitogen-activated protein kinase (MAPK), Indian hedgehog (IHH) and phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)/protein kinase B (AKT), are also involved in the proliferation, differentiation and migration of bone functioning cells. This review summarizes the recent advances of SHP2 on osteogenesis-related cells and niche cells in the bone marrow microenvironment. The phenotypic features of SHP2 conditional knockout mice and underlying mechanisms are discussed. The prospective applications of the current agonists or inhibitors that target SHP2 in bone-related diseases are also described. Full clarification of the role of SHP2 in bone remodeling will shed new light on potential treatment for bone related diseases.
Collapse
Affiliation(s)
- Jie Zhang
- Laboratory for Aging Research, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Chengxinyue Ye
- Laboratory for Aging Research, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yufan Zhu
- Laboratory for Aging Research, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jun Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Correspondence: (J.W.); (J.L.)
| | - Jin Liu
- Laboratory for Aging Research, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
- Correspondence: (J.W.); (J.L.)
| |
Collapse
|
19
|
Elucidation of the Key Therapeutic Targets and Potential Mechanisms of Marmesine against Knee Osteoarthritis via Network Pharmacological Analysis and Molecular Docking. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:8303493. [PMID: 36544567 PMCID: PMC9763014 DOI: 10.1155/2022/8303493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 10/21/2022] [Accepted: 11/08/2022] [Indexed: 12/15/2022]
Abstract
Background Marmesine, a major active ingredient isolated from Radix Angelicae biseratae (Duhuo), has been reported to have multiple pharmacological activities. However, its therapeutic effects against knee osteoarthritis (OA) remain poorly investigated. The present study is aimed at uncovering the core targets and signaling pathways of marmesine against osteoarthritis using a combined method of bioinformatics and network pharmacology. Methods We utilized SwissTargetPrediction and PharmMapper to collect the potential targets of marmesine. OA-related differentially expressed genes (DEGs) were identified from GSE98918 dataset. Then, the intersection genes between DEGs and candidate genes of marmesine were subjected to protein-protein interaction (PPI) network construction and functional enrichment analysis. The core targets were verified using the molecular docking technology. Results A total of 320 marmesine-related genes and 5649 DEGs and 60 ingredient-disease targets between them were identified. The results of functional enrichment analyses revealed that response to oxygen levels, neuroinflammatory response, PI3K-Akt signaling pathway, MAPK signaling pathway, FoxO signaling pathway, and osteoclast differentiation was identified as the potential mechanisms of marmesine against OA. EGFR, CASP3, MMP9, PPARG, and MAPK1 served as hub genes regulated by marmesine in the treatment of OA, and the molecular docking further verified the results. Conclusion Marmesine exerts the therapeutic effects against OA through multitarget and multipathways, in which EGFR, CASP3, MMP9, PPARG, and MAPK1 might be hub genes. Our research indicated that the combination of bioinformatics and network pharmacology could serve as an effective approach for investigating the potential mechanisms of natural product.
Collapse
|
20
|
Chen YP, Wang XY, Ma YL, Wen W, Fang XH, Wu M, Dai SJ, He JF. p53/p21 Inhibits Osteoarthritis Progression by Regulating Chondrocyte Pyroptosis. J Biomed Nanotechnol 2022. [DOI: 10.1166/jbn.2022.3481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
This study aimed to explore the role of p53/p21 in osteoarthritis (OA). OA animal model was established by the anterior cruciate ligamentotomy (ACLT). 24 rats were randomly divided into control, OA, OA+p53 inhibitor and OA+pyroptosis inducer groups (n = 6). In the knee joint
tissue, microstructural changes were analysed by Micro-CT. Histopathological changes were stained by HE and safranin-fast green. NLRP3 and Caspase-1 were detected by immunohistochemistry. The chondrocytes C-28I2 were divided into control, LPS+ ATP and p53 inhibitor groups. The cell viability,
apoptosis, and LDH release were measured by MTT assay, TUNEL staining and LDH kit. The expression of p53/p21 and pyroptosis pathways were examined by western blot. The p53 inhibitor reduced the relative volume of trabecular bone (BV/TV) and trabecular bone thickness (Tb.Th), while increased
trabecular separation (Tb.Sp). Moreover, the p53 inhibitor improved histopathological changes in the knee joint, attenuated cartilage damage, and reduced the expression of p53/p21 and pyroptosis pathways-related proteins. In vitro assay showed that the p53 inhibitor increased C-28I2
cell activity, reduced LDH release and apoptosis and reduced p53/p21 and pyroptosis pathways-related proteins. Totally, p53 inhibitors improved the cartilage tissue and chondrocyte damage, inhibited cell pyroptosis and the progression of OA.
Collapse
|
21
|
[Research progress of immune cells regulating the occurrence and development of osteonecrosis of the femoral head]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2022; 36:1428-1433. [PMID: 36382463 PMCID: PMC9681590 DOI: 10.7507/1002-1892.202204106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
OBJECTIVE To summarize the characteristics of the occurrence and development of osteonecrosis of the femoral head (ONFH), and to review the important regulatory role of immune cells in the progression of ONFH. METHODS The domestic and foreign literature on the immune regulation of ONFH was reviewed, and the relationship between immune cells and the occurrence and development of ONFH was analyzed. RESULTS The ONFH region has a chronic inflammatory reaction and an imbalance between osteoblast and osteoclast, while innate immune cells such as macrophages, neutrophils, dendritic cells, and immune effector cells such as T cells and B cells are closely related to the maintenance of bone homeostasis. CONCLUSION Immunotherapy targeting the immune cells in the ONFH region and the key factors and proteins in their regulatory pathways may be a feasible method to delay the occurrence, development, and even reverse the pathology of ONFH.
Collapse
|
22
|
Phenotype Diversity of Macrophages in Osteoarthritis: Implications for Development of Macrophage Modulating Therapies. Int J Mol Sci 2022; 23:ijms23158381. [PMID: 35955514 PMCID: PMC9369350 DOI: 10.3390/ijms23158381] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/23/2022] [Accepted: 07/23/2022] [Indexed: 02/04/2023] Open
Abstract
Chronic inflammation is implicated in numerous human pathologies. In particular, low-grade inflammation is currently recognized as an important mechanism of osteoarthritis (OA), at least in some patients. Among the signs of the inflammatory process are elevated macrophage numbers detected in the OA synovium compared to healthy controls. High macrophage counts also correlate with clinical symptoms of the disease. Macrophages are central players in the development of chronic inflammation, pain, cartilage destruction, and bone remodeling. However, macrophages are also involved in tissue repair and remodeling, including cartilage. Therefore, reduction of macrophage content in the joints correlates with deleterious effects in OA models. Macrophage population is heterogeneous and dynamic, with phenotype transitions being induced by a variety of stimuli. In order to effectively use the macrophage inflammatory circuit for treatment of OA, it is important to understand macrophage heterogeneity and interactions with surrounding cells and tissues in the joint. In this review, we discuss functional phenotypes of macrophages and specific targeting approaches relevant for OA treatment development.
Collapse
|
23
|
Zhou X, Zhang Z, Jiang W, Hu M, Meng Y, Li W, Zhou X, Wang C. Naringenin is a Potential Anabolic Treatment for Bone Loss by Modulating Osteogenesis, Osteoclastogenesis, and Macrophage Polarization. Front Pharmacol 2022; 13:872188. [PMID: 35586056 PMCID: PMC9108355 DOI: 10.3389/fphar.2022.872188] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/31/2022] [Indexed: 11/13/2022] Open
Abstract
Bone undergoes constant remodeling of formation by osteoblasts and resorption by osteoclasts. In particular, macrophages have been reported to play an essential role in the regulation of bone homeostasis and regeneration. Naringenin, the predominant flavanone in citrus fruits, is reported to exert anti-inflammatory, anti-osteoclastic, and osteogenic effects. However, whether naringenin could modulate the crosstalk between macrophages and osteoblasts/osteoclasts remains to be investigated. In this study, we confirmed that naringenin enhanced osteogenesis and inhibited osteoclastogenesis directly. Naringenin promoted M2 transition and the secretion of osteogenic cytokines including IL-4, IL-10, BMP2, and TGF-β, while suppressing LPS-induced M1 polarization and the production of proinflammatory factors such as TNF-α and IL-1β. In addition, the coculture of primary bone mesenchymal stem cells (BMSCs)/bone marrow monocytes (BMMs) with macrophages showed that the naringenin-treated medium significantly enhanced osteogenic differentiation and impeded osteoclastic differentiation in both inflammatory and non-inflammatory environment. Moreover, in vivo experiments demonstrated that naringenin remarkably reversed LPS-induced bone loss and assisted the healing of calvarial defect. Taken together, naringenin serves as a potential anabolic treatment for pathological bone loss.
Collapse
Affiliation(s)
- Xin Zhou
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University (Naval Medical University), Shanghai, China
| | - Zheng Zhang
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University (Naval Medical University), Shanghai, China
- College of Basic Medicine, Second Military Medical University (Naval Medical University), Shanghai, China
| | - Weiwei Jiang
- Department of Critical Care Medicine, Changzheng Hospital, Second Military Medical University (Naval Medical University), Shanghai, China
| | - Miao Hu
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University (Naval Medical University), Shanghai, China
- College of Basic Medicine, Second Military Medical University (Naval Medical University), Shanghai, China
| | - Yichen Meng
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University (Naval Medical University), Shanghai, China
| | - Wenfang Li
- Department of Critical Care Medicine, Changzheng Hospital, Second Military Medical University (Naval Medical University), Shanghai, China
- *Correspondence: Wenfang Li, ; Xuhui Zhou, ; Ce Wang,
| | - Xuhui Zhou
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University (Naval Medical University), Shanghai, China
- *Correspondence: Wenfang Li, ; Xuhui Zhou, ; Ce Wang,
| | - Ce Wang
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University (Naval Medical University), Shanghai, China
- *Correspondence: Wenfang Li, ; Xuhui Zhou, ; Ce Wang,
| |
Collapse
|
24
|
The Effects of 21-Day General Rehabilitation after Hip or Knee Surgical Implantation on Plasma Levels of Selected Interleukins, VEGF, TNF-α, PDGF-BB, and Eotaxin-1. Biomolecules 2022; 12:biom12050605. [PMID: 35625533 PMCID: PMC9139046 DOI: 10.3390/biom12050605] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/11/2022] [Accepted: 04/17/2022] [Indexed: 02/01/2023] Open
Abstract
Rehabilitation in osteoarthritis (OA) patients aims to reduce joint pain and stiffness, preserve or improve joint mobility, and improve patients’ quality of life. This study evaluated the effects of the 21-day individually adjusted general rehabilitation program in 36 OA patients 90 days after hip or knee replacement on selected interleukins (IL) and cytokines using the Bio-Plex® Luminex® system. Serum concentrations of almost all selected anti/pro-inflammatory markers: IL-1 receptor antagonist (IL-1RA), IL-2, IL-4, IL-5, IL-6, IL-10, IL-13, IL-15, and of some chemokines: macrophage inflammatory protein-1 alpha (MIP-1α/CCL3), and RANTES/CCL5, and of eotaxin-1/CCL11, the vascular endothelial growth factor (VEGF) significantly increased, whereas basic fibroblast growth factor (FGF basic) significantly decreased after the 21-day general rehabilitation. The levels of interferon-γ induced protein 10 (IP-10), MIP-1β/CCL4, macrophage/monocyte chemoattractant protein-1 (MCP-1/CCL2 (MCAF)), granulocyte macrophage-colony stimulating factor (GM-CSF), platelet-derived growth factor-BB (PDGF-BB), and granulocyte colony-stimulating factor (G-CSF) remained unchanged. There were no changes in pro-inflammatory cytokines levels: tumor necrosis factor-alpha (TNF-α), interferon-γ (IFN-γ), and IL-12 (p70)) after the 21-day general rehabilitation, indicating the stable and controlled inflammatory status of osteoarthritis patients. Significantly higher levels of anti-inflammatory factors after 21 days of moderate physical activity confirm the beneficial outcome of the applied therapy. The increased level of IL-6 after the rehabilitation may reflect its anti-inflammatory effect in osteoarthritis patients.
Collapse
|
25
|
Liu S, Deng Z, Chen K, Jian S, Zhou F, Yang Y, Fu Z, Xie H, Xiong J, Zhu W. Cartilage tissue engineering: From proinflammatory and anti‑inflammatory cytokines to osteoarthritis treatments (Review). Mol Med Rep 2022; 25:99. [PMID: 35088882 PMCID: PMC8809050 DOI: 10.3892/mmr.2022.12615] [Citation(s) in RCA: 91] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 12/07/2021] [Indexed: 12/17/2022] Open
Abstract
Osteoarthritis (OA), one of the most common joint diseases, is characterized by fibrosis, rhagadia, ulcers and attrition of articular cartilage due to a number of factors. The etiology of OA remains unclear, but its occurrence has been associated with age, obesity, inflammation, trauma and genetic factors. Inflammatory cytokines are crucial for the occurrence and progression of OA. The intra-articular proinflammatory and anti-inflammatory cytokines jointly maintain a dynamic balance, in accordance with the physiological metabolism of articular cartilage. However, dynamic imbalance between proinflammatory and anti-inflammatory cytokines can cause abnormal metabolism in knee articular cartilage, which leads to deformation, loss and abnormal regeneration, and ultimately destroys the normal structure of the knee joint. The ability of articular cartilage to self-repair once damaged is limited, due to its inability to obtain nutrients from blood vessels, nerves and lymphatic vessels, as well as limitations in the extracellular matrix. There are several disadvantages inherent to conventional repair methods, while cartilage tissue engineering (CTE), which combines proinflammatory and anti-inflammatory cytokines, offers a new therapeutic approach for OA. The aim of the present review was to examine the proinflammatory factors implicated in OA, including IL-1β, TNF-α, IL-6, IL-15, IL-17 and IL-18, as well as the key anti-inflammatory factors reducing OA-related articular damage, including IL-4, insulin-like growth factor and TGF-β. The predominance of proinflammatory over anti-inflammatory cytokine effects ultimately leads to the development of OA. CTE, which employs mesenchymal stem cells and scaffolding technology, may prevent OA by maintaining the homeostasis of pro- and anti-inflammatory factors.
Collapse
Affiliation(s)
- Shuyu Liu
- Department of Sports Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong 518035, P.R. China
| | - Zhenhan Deng
- Department of Sports Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong 518035, P.R. China
| | - Kang Chen
- Department of Sports Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong 518035, P.R. China
| | - Shengsheng Jian
- Department of Orthopedics, Luo Hu Hospital, Shenzhen, Guangdong 518001, P.R. China
| | - Feifei Zhou
- Department of Sports Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong 518035, P.R. China
| | - Yuan Yang
- Department of Sports Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong 518035, P.R. China
| | - Zicai Fu
- Department of Sports Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong 518035, P.R. China
| | - Huanyu Xie
- Department of Sports Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong 518035, P.R. China
| | - Jianyi Xiong
- Department of Sports Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong 518035, P.R. China
| | - Weimin Zhu
- Department of Sports Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong 518035, P.R. China
| |
Collapse
|
26
|
Chai H, Sang S, Luo Y, He R, Yuan X, Zhang X. Icariin-loaded Sulfonated Polyetheretherketone with Osteogenesis Promotion and Osteoclastogenesis Inhibition Properties via Immunomodulation for Advanced Osseointegration. J Mater Chem B 2022; 10:3531-3540. [PMID: 35416810 DOI: 10.1039/d1tb02802b] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Preventing prosthesis loosening due to insufficient osseointegration is critical for patients with osteoporosis. Endowing implants with immunomodulatory function can effectively enhance osseointegration. In this work, we loaded icariin (ICA) onto...
Collapse
Affiliation(s)
- Haobu Chai
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai 200233, China.
| | - Shang Sang
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai 200233, China.
| | - Yao Luo
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai 200233, China.
| | - Renke He
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai 200233, China.
| | - Xiangwei Yuan
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai 200233, China.
| | - Xianlong Zhang
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai 200233, China.
| |
Collapse
|