1
|
Sokratous D, Charalambous CC, Zamba—Papanicolaou E, Michailidou K, Konstantinou N. A 12-week in-phase bilateral upper limb exercise protocol promoted neuroplastic and clinical changes in people with relapsing remitting multiple sclerosis: A registered report randomized single-case concurrent multiple baseline study. PLoS One 2024; 19:e0299611. [PMID: 39418242 PMCID: PMC11486400 DOI: 10.1371/journal.pone.0299611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 09/11/2024] [Indexed: 10/19/2024] Open
Abstract
INTRODUCTION Relapsing-Remitting Multiple Sclerosis manifests various motor symptoms including impairments in corticospinal tract integrity, whose symptoms can be assessed using transcranial magnetic stimulation. Several factors, such as exercise and interlimb coordination, can influence the plastic changes in corticospinal tract. Previous work in healthy and chronic stroke survivors showed that the greatest improvement in corticospinal plasticity occurred during in-phase bilateral exercises of the upper limbs. Altered corticospinal plasticity due to bilateral lesions in the central nervous system is common after Multiple Sclerosis, yet the effect of in-phase bilateral exercise on the bilateral corticospinal plasticity in this cohort remains unclear. Our aim was to investigate the effects of in-phase bilateral exercises on central motor conduction time, motor evoked potential amplitude and latency, motor threshold and clinical measures in people with Relapsing-Remitting Multiple Sclerosis. METHODS Five people were randomized and recruited in this single case concurrent multiple baseline design study. The intervention protocol lasted for 12 consecutive weeks (30-60 minutes /session x 3 sessions / week) and included in-phase bilateral upper limb movements, adapted to different sports activities and to functional motor training. To define the functional relation between the intervention and the results, we conducted a visual analysis. If a potential sizeable effect was observed, we subsequently performed a statistical analysis. RESULTS Results demonstrated bilateral reduction of the motor threshold alongside with improvement of all clinical measures, but not in any other corticospinal plasticity measures. CONCLUSION Our preliminary findings suggest that in-phase bilateral exercise affects motor threshold in people with Relapsing-Remitting Multiple Sclerosis. Therefore, this measure could potentially serve as a proxy for detecting corticospinal plasticity in this cohort. However, future studies with larger sample sizes should validate and potentially establish the effect of in-phase bilateral exercise on the corticospinal plasticity and clinical measures in this cohort. TRIAL REGISTRATION Clinical trial registration: ClinicalTrials.gov NCT05367947.
Collapse
Affiliation(s)
- Dimitris Sokratous
- Department of Rehabilitation Sciences, Faculty of Health Sciences, Cyprus University of Technology, Limassol, Cyprus
- Physiotherapy Unit, Neurology Clinics, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | | | | | - Kyriaki Michailidou
- Biostatistics Unit, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Nikos Konstantinou
- Department of Rehabilitation Sciences, Faculty of Health Sciences, Cyprus University of Technology, Limassol, Cyprus
| |
Collapse
|
2
|
Damercheli S, Morrenhof K, Ahmed K, Ortiz-Catalan M. Performance in myoelectric pattern recognition improves with transcranial direct current stimulation. Sci Rep 2024; 14:11744. [PMID: 38778042 PMCID: PMC11111686 DOI: 10.1038/s41598-024-62185-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 05/14/2024] [Indexed: 05/25/2024] Open
Abstract
Sensorimotor impairments, resulting from conditions like stroke and amputations, can profoundly impact an individual's functional abilities and overall quality of life. Assistive and rehabilitation devices such as prostheses, exo-skeletons, and serious gaming in virtual environments can help to restore some degree of function and alleviate pain after sensorimotor impairments. Myoelectric pattern recognition (MPR) has gained popularity in the past decades as it provides superior control over said devices, and therefore efforts to facilitate and improve performance in MPR can result in better rehabilitation outcomes. One possibility to enhance MPR is to employ transcranial direct current stimulation (tDCS) to facilitate motor learning. Twelve healthy able-bodied individuals participated in this crossover study to determine the effect of tDCS on MPR performance. Baseline training was followed by two sessions of either sham or anodal tDCS using the dominant and non-dominant arms. Assignments were randomized, and the MPR task consisted of 11 different hand/wrist movements, including rest or no movement. Surface electrodes were used to record EMG and the MPR open-source platform, BioPatRec, was used for decoding motor volition in real-time. The motion test was used to evaluate performance. We hypothesized that using anodal tDCS to increase the excitability of the primary motor cortex associated with non-dominant side in able-bodied individuals, will improve motor learning and thus MPR performance. Overall, we found that tDCS enhanced MPR performance, particularly in the non-dominant side. We were able to reject the null hypothesis and improvements in the motion test's completion rate during tDCS (28% change, p-value: 0.023) indicate its potential as an adjunctive tool to enhance MPR and motor learning. tDCS appears promising as a tool to enhance the learning phase of using assistive devices using MPR, such as myoelectric prostheses.
Collapse
Affiliation(s)
- Shahrzad Damercheli
- Center for Bionics and Pain Research, Mölndal, Sweden
- Department of Electrical Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Kelly Morrenhof
- Center for Bionics and Pain Research, Mölndal, Sweden
- Department of Electrical Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Kirstin Ahmed
- Center for Bionics and Pain Research, Mölndal, Sweden
- Department of Electrical Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Max Ortiz-Catalan
- Center for Bionics and Pain Research, Mölndal, Sweden.
- Department of Electrical Engineering, Chalmers University of Technology, Gothenburg, Sweden.
- Bionics Institute, Melbourne, Australia.
- Medical Bionics Department, University of Melbourne, Melbourne, Australia.
- NeuroBioniX, Melbourne, Australia.
- Prometei Pain Rehabilitation Center, Vinnytsia, Ukraine.
| |
Collapse
|
3
|
Bai Z, Zhu F, Lou X, Zhang JJ, Jin M, Qin W, Tang C, Li J, Lu J, Lin J, Jin L, Qi Q, Fong KNK. Considerable effects of lateralization and aging in intracortical excitation and inhibition. Front Neurosci 2023; 17:1269474. [PMID: 38033537 PMCID: PMC10687141 DOI: 10.3389/fnins.2023.1269474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023] Open
Abstract
Introduction Findings based on the use of transcranial magnetic stimulation and electromyography (TMS-EMG) to determine the effects of motor lateralization and aging on intracortical excitation and inhibition in the primary motor cortex (M1) are inconsistent in the literature. TMS and electroencephalography (TMS-EEG) measures the excitability of excitatory and inhibitory circuits in the brain cortex without contamination from the spine and muscles. This study aimed to investigate the effects of motor lateralization (dominant and non-dominant hemispheres) and aging (young and older) and their interaction effects on intracortical excitation and inhibition within the M1 in healthy adults, measured using TMS-EMG and TMS-EEG. Methods This study included 21 young (mean age = 28.1 ± 3.2 years) and 21 older healthy adults (mean age = 62.8 ± 4.2 years). A battery of TMS-EMG measurements and single-pulse TMS-EEG were recorded for the bilateral M1. Results Two-way repeated-measures analysis of variance was used to investigate lateralization and aging and the lateralization-by-aging interaction effect on neurophysiological outcomes. The non-dominant M1 presented a longer cortical silent period and larger amplitudes of P60, N100, and P180. Corticospinal excitability in older participants was significantly reduced, as supported by a larger resting motor threshold and lower motor-evoked potential amplitudes. N100 amplitudes were significantly reduced in older participants, and the N100 and P180 latencies were significantly later than those in young participants. There was no significant lateralization-by-aging interaction effect in any outcome. Conclusion Lateralization and aging have independent and significant effects on intracortical excitation and inhibition in healthy adults. The functional decline of excitatory and inhibitory circuits in the M1 is associated with aging.
Collapse
Affiliation(s)
- Zhongfei Bai
- Department of Rehabilitation, Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Centre), School of Medicine, Tongji University, Shanghai, China
| | - Feifei Zhu
- Department of Rehabilitation, Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Centre), School of Medicine, Tongji University, Shanghai, China
| | - Xiaoyu Lou
- Department of Rehabilitation, Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Centre), School of Medicine, Tongji University, Shanghai, China
| | - Jack Jiaqi Zhang
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Minxia Jin
- Department of Rehabilitation, Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Centre), School of Medicine, Tongji University, Shanghai, China
| | - Wenting Qin
- Department of Rehabilitation, Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Centre), School of Medicine, Tongji University, Shanghai, China
| | - Chaozheng Tang
- Capacity Building and Continuing Education Center, National Health Commission of the People's Republic of China, Beijing, China
| | - Jie Li
- School of Electronic and Information Engineering, Tongji University, Shanghai, China
| | - Jiani Lu
- Department of Rehabilitation, Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Centre), School of Medicine, Tongji University, Shanghai, China
| | - Jianhua Lin
- Department of Rehabilitation, Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Centre), School of Medicine, Tongji University, Shanghai, China
| | - Lingjing Jin
- Department of Rehabilitation, Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Centre), School of Medicine, Tongji University, Shanghai, China
| | - Qi Qi
- Department of Rehabilitation, Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Centre), School of Medicine, Tongji University, Shanghai, China
| | - Kenneth N. K. Fong
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| |
Collapse
|
4
|
Torell F, Franklin S, Franklin DW, Dimitriou M. Goal-directed modulation of stretch reflex gains is reduced in the non-dominant upper limb. Eur J Neurosci 2023; 58:3981-4001. [PMID: 37727025 DOI: 10.1111/ejn.16148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 08/08/2023] [Accepted: 08/31/2023] [Indexed: 09/21/2023]
Abstract
Most individuals experience their dominant arm as being more dexterous than the non-dominant arm, but the neural mechanisms underlying this asymmetry in motor behaviour are unclear. Using a delayed-reach task, we have recently demonstrated strong goal-directed tuning of stretch reflex gains in the dominant upper limb of human participants. Here, we used an equivalent experimental paradigm to address the neural mechanisms that underlie the preparation for reaching movements with the non-dominant upper limb. There were consistent effects of load, preparatory delay duration and target direction on the long latency stretch reflex. However, by comparing stretch reflex responses in the non-dominant arm with those previously documented in the dominant arm, we demonstrate that goal-directed tuning of short and long latency stretch reflexes is markedly weaker in the non-dominant limb. The results indicate that the motor performance asymmetries across the two upper limbs are partly due to the more sophisticated control of reflexive stiffness in the dominant limb, likely facilitated by the superior goal-directed control of muscle spindle receptors. Our findings therefore suggest that fusimotor control may play a role in determining performance of complex motor behaviours and support existing proposals that the dominant arm is better supplied than the non-dominant arm for executing more complex tasks, such as trajectory control.
Collapse
Affiliation(s)
- Frida Torell
- Physiology Section, Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| | - Sae Franklin
- Neuromuscular Diagnostics, Department of Sport and Health Sciences, Technical University of Munich, Munich, Germany
| | - David W Franklin
- Neuromuscular Diagnostics, Department of Sport and Health Sciences, Technical University of Munich, Munich, Germany
- Munich Institute of Robotics and Machine Intelligence (MIRMI), Technical University of Munich, Munich, Germany
- Munich Data Science Institute (MDSI), Technical University of Munich, Munich, Germany
| | - Michael Dimitriou
- Physiology Section, Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| |
Collapse
|
5
|
Nguyen DTA, Julkunen P, Säisänen L, Määttä S, Rissanen SM, Lintu N, Könönen M, Lakka T, Karjalainen PA. Developmental models of motor-evoked potential features by transcranial magnetic stimulation across age groups from childhood to adulthood. Sci Rep 2023; 13:10604. [PMID: 37391521 PMCID: PMC10313665 DOI: 10.1038/s41598-023-37775-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 06/27/2023] [Indexed: 07/02/2023] Open
Abstract
To derive the maturation of neurophysiological processes from childhood to adulthood reflected by the change of motor-evoked potential (MEP) features. 38 participants were recruited from four groups (age mean in years [SD in months], number (males)): children (7.3 [4.2], 7(4)), preadolescents (10.3 [6.9], 10(5)), adolescents (15.3 [9.8], 11(5)), and adults (26.9 [46.2], 10(5)). The navigated transcranial magnetic stimulation was performed on both hemispheres at seven stimulation intensity (SI) levels from sub- to supra-threshold and targeted to the representative cortical area of abductor pollicis brevis muscle. MEPs were measured from three hand- and two forearm-muscles. The input-output (I/O) curves of MEP features across age groups were constructed using linear mixed-effect models. Age and SI significantly affected MEP features, whereas the stimulated side had a minor impact. MEP size and duration increased from childhood to adulthood. MEP onset- and peak-latency dropped in adolescence, particularly in hand muscles. Children had the smallest MEPs with the highest polyphasia, whereas I/O curves were similar among preadolescents, adolescents, and adults. This study illustrates some of the changing patterns of MEP features across the ages, suggesting developing patterns of neurophysiological processes activated by TMS, and to motivate studies with larger sample size.
Collapse
Affiliation(s)
- Dao T A Nguyen
- Department of Technical Physics, University of Eastern Finland, POB 1627, 70211, Kuopio, Finland.
| | - Petro Julkunen
- Department of Technical Physics, University of Eastern Finland, POB 1627, 70211, Kuopio, Finland
- Department of Clinical Neurophysiology, Kuopio University Hospital, POB 100, 70029 KYS, Kuopio, Finland
| | - Laura Säisänen
- Department of Technical Physics, University of Eastern Finland, POB 1627, 70211, Kuopio, Finland
- Department of Clinical Neurophysiology, Kuopio University Hospital, POB 100, 70029 KYS, Kuopio, Finland
| | - Sara Määttä
- Department of Clinical Neurophysiology, Kuopio University Hospital, POB 100, 70029 KYS, Kuopio, Finland
| | - Saara M Rissanen
- Department of Technical Physics, University of Eastern Finland, POB 1627, 70211, Kuopio, Finland
| | - Niina Lintu
- Institute of Biomedicine, University of Eastern Finland, POB 162, 70211, Kuopio, Finland
| | - Mervi Könönen
- Department of Technical Physics, University of Eastern Finland, POB 1627, 70211, Kuopio, Finland
| | - Timo Lakka
- Institute of Biomedicine, University of Eastern Finland, POB 162, 70211, Kuopio, Finland
- Department of Clinical Physiology and Nuclear Medicine, Kuopio University Hospital, POB 100, 70029 KYS, Kuopio, Finland
- Foundation for Research in Health Exercise and Nutrition, Kuopio Research Institute of Exercise Medicine, Haapaniementie 16, 70100, Kuopio, Finland
| | - Pasi A Karjalainen
- Department of Technical Physics, University of Eastern Finland, POB 1627, 70211, Kuopio, Finland
| |
Collapse
|
6
|
Vucic S, Stanley Chen KH, Kiernan MC, Hallett M, Benninger DH, Di Lazzaro V, Rossini PM, Benussi A, Berardelli A, Currà A, Krieg SM, Lefaucheur JP, Long Lo Y, Macdonell RA, Massimini M, Rosanova M, Picht T, Stinear CM, Paulus W, Ugawa Y, Ziemann U, Chen R. Clinical diagnostic utility of transcranial magnetic stimulation in neurological disorders. Updated report of an IFCN committee. Clin Neurophysiol 2023; 150:131-175. [PMID: 37068329 PMCID: PMC10192339 DOI: 10.1016/j.clinph.2023.03.010] [Citation(s) in RCA: 91] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/28/2023] [Accepted: 03/09/2023] [Indexed: 03/31/2023]
Abstract
The review provides a comprehensive update (previous report: Chen R, Cros D, Curra A, Di Lazzaro V, Lefaucheur JP, Magistris MR, et al. The clinical diagnostic utility of transcranial magnetic stimulation: report of an IFCN committee. Clin Neurophysiol 2008;119(3):504-32) on clinical diagnostic utility of transcranial magnetic stimulation (TMS) in neurological diseases. Most TMS measures rely on stimulation of motor cortex and recording of motor evoked potentials. Paired-pulse TMS techniques, incorporating conventional amplitude-based and threshold tracking, have established clinical utility in neurodegenerative, movement, episodic (epilepsy, migraines), chronic pain and functional diseases. Cortical hyperexcitability has emerged as a diagnostic aid in amyotrophic lateral sclerosis. Single-pulse TMS measures are of utility in stroke, and myelopathy even in the absence of radiological changes. Short-latency afferent inhibition, related to central cholinergic transmission, is reduced in Alzheimer's disease. The triple stimulation technique (TST) may enhance diagnostic utility of conventional TMS measures to detect upper motor neuron involvement. The recording of motor evoked potentials can be used to perform functional mapping of the motor cortex or in preoperative assessment of eloquent brain regions before surgical resection of brain tumors. TMS exhibits utility in assessing lumbosacral/cervical nerve root function, especially in demyelinating neuropathies, and may be of utility in localizing the site of facial nerve palsies. TMS measures also have high sensitivity in detecting subclinical corticospinal lesions in multiple sclerosis. Abnormalities in central motor conduction time or TST correlate with motor impairment and disability in MS. Cerebellar stimulation may detect lesions in the cerebellum or cerebello-dentato-thalamo-motor cortical pathways. Combining TMS with electroencephalography, provides a novel method to measure parameters altered in neurological disorders, including cortical excitability, effective connectivity, and response complexity.
Collapse
Affiliation(s)
- Steve Vucic
- Brain, Nerve Research Center, The University of Sydney, Sydney, Australia.
| | - Kai-Hsiang Stanley Chen
- Department of Neurology, National Taiwan University Hospital Hsin-Chu Branch, Hsin-Chu, Taiwan
| | - Matthew C Kiernan
- Brain and Mind Centre, The University of Sydney; and Department of Neurology, Royal Prince Alfred Hospital, Australia
| | - Mark Hallett
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health, Bethesda, Maryland, United States
| | - David H Benninger
- Department of Neurology, University Hospital of Lausanne (CHUV), Switzerland
| | - Vincenzo Di Lazzaro
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, University Campus Bio-Medico of Rome, Rome, Italy
| | - Paolo M Rossini
- Department of Neurosci & Neurorehab IRCCS San Raffaele-Rome, Italy
| | - Alberto Benussi
- Centre for Neurodegenerative Disorders, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Alfredo Berardelli
- IRCCS Neuromed, Pozzilli; Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Antonio Currà
- Department of Medico-Surgical Sciences and Biotechnologies, Alfredo Fiorini Hospital, Sapienza University of Rome, Terracina, LT, Italy
| | - Sandro M Krieg
- Department of Neurosurgery, Technical University Munich, School of Medicine, Klinikum rechts der Isar, Munich, Germany
| | - Jean-Pascal Lefaucheur
- Univ Paris Est Creteil, EA4391, ENT, Créteil, France; Clinical Neurophysiology Unit, Henri Mondor Hospital, AP-HP, Créteil, France
| | - Yew Long Lo
- Department of Neurology, National Neuroscience Institute, Singapore General Hospital, Singapore, and Duke-NUS Medical School, Singapore
| | | | - Marcello Massimini
- Dipartimento di Scienze Biomediche e Cliniche, Università degli Studi di Milano, Milan, Italy; Istituto Di Ricovero e Cura a Carattere Scientifico, Fondazione Don Carlo Gnocchi, Milan, Italy
| | - Mario Rosanova
- Department of Biomedical and Clinical Sciences University of Milan, Milan, Italy
| | - Thomas Picht
- Department of Neurosurgery, Charité-Universitätsmedizin Berlin, Cluster of Excellence: "Matters of Activity. Image Space Material," Humboldt University, Berlin Simulation and Training Center (BeST), Charité-Universitätsmedizin Berlin, Germany
| | - Cathy M Stinear
- Department of Medicine Waipapa Taumata Rau, University of Auckland, Auckland, Aotearoa, New Zealand
| | - Walter Paulus
- Department of Neurology, Ludwig-Maximilians-Universität München, München, Germany
| | - Yoshikazu Ugawa
- Department of Human Neurophysiology, School of Medicine, Fukushima Medical University, Japan
| | - Ulf Ziemann
- Department of Neurology and Stroke, Eberhard Karls University of Tübingen, Hoppe-Seyler-Str. 3, 72076, Tübingen, Germany; Hertie Institute for Clinical Brain Research, Eberhard Karls University of Tübingen, Otfried-Müller-Straße 27, 72076 Tübingen, Germany
| | - Robert Chen
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital-UHN, Division of Neurology-University of Toronto, Toronto Canada
| |
Collapse
|
7
|
Ofir‐Geva S, Meilijson I, Frenkel‐Toledo S, Soroker N. Use of multi-perturbation Shapley analysis in lesion studies of functional networks: The case of upper limb paresis. Hum Brain Mapp 2023; 44:1320-1343. [PMID: 36206326 PMCID: PMC9921264 DOI: 10.1002/hbm.26105] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 09/07/2022] [Accepted: 09/19/2022] [Indexed: 11/07/2022] Open
Abstract
Understanding the impact of variation in lesion topography on the expression of functional impairments following stroke is important, as it may pave the way to modeling structure-function relations in statistical terms while pointing to constraints for adaptive remapping and functional recovery. Multi-perturbation Shapley-value analysis (MSA) is a relatively novel game-theoretical approach for multivariate lesion-symptom mapping. In this methodological paper, we provide a comprehensive explanation of MSA. We use synthetic data to assess the method's accuracy and perform parameter optimization. We then demonstrate its application using a cohort of 107 first-event subacute stroke patients, assessed for upper limb (UL) motor impairment (Fugl-Meyer Assessment scale). Under the conditions tested, MSA could correctly detect simulated ground-truth lesion-symptom relationships with a sensitivity of 75% and specificity of ~90%. For real behavioral data, MSA disclosed a strong hemispheric effect in the relative contribution of specific regions-of-interest (ROIs): poststroke UL motor function was mostly contributed by damage to ROIs associated with movement planning (supplementary motor cortex and superior frontal gyrus) following left-hemispheric damage (LHD) and by ROIs associated with movement execution (primary motor and somatosensory cortices and the ventral brainstem) following right-hemispheric damage (RHD). Residual UL motor ability following LHD was found to depend on a wider array of brain structures compared to the residual motor ability of RHD patients. The results demonstrate that MSA can provide a unique insight into the relative importance of different hubs in neural networks, which is difficult to obtain using standard univariate methods.
Collapse
Affiliation(s)
- Shay Ofir‐Geva
- Department of Neurological RehabilitationLoewenstein Rehabilitation Medical CenterRaananaIsrael
- Department of Rehabilitation Medicine, Sackler Faculty of MedicineTel Aviv UniversityTel AvivIsrael
| | - Isaac Meilijson
- School of Mathematical SciencesTel Aviv UniversityTel AvivIsrael
| | | | - Nachum Soroker
- Department of Neurological RehabilitationLoewenstein Rehabilitation Medical CenterRaananaIsrael
- Department of Rehabilitation Medicine, Sackler Faculty of MedicineTel Aviv UniversityTel AvivIsrael
| |
Collapse
|
8
|
Ouattas A, Rasmussen CM, Hunt NH. Severity of Unconstrained Simultaneous Bilateral Slips: The Impact of Frontal Plane Feet Velocities Relative to the Center of Mass to Classify Slip-Related Falls and Recoveries. Front Public Health 2022; 10:898161. [PMID: 35899166 PMCID: PMC9309647 DOI: 10.3389/fpubh.2022.898161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/16/2022] [Indexed: 11/17/2022] Open
Abstract
Targeted interventions to prevent slip-related falls may be informed by specific kinematic factors measured during the reactive response that accurately discriminate recoveries from falls. But reactive responses to diverse slipping conditions during unconstrained simultaneous bilateral slips, which are closely related to real-world slips, are currently unknown. It is challenging to identify these critical kinematic factors due to the wide variety of upper and lower body postural deviations that occur following the slip, which affect stability in both the sagittal and frontal planes. To explore the utility of kinematic measurements from each vertical plane to discriminate slip-related falls from recoveries, we compared the accuracy of four Linear Discriminant Analysis models informed by predetermined sagittal or frontal plane measurements from the lower body (feet velocities relative to the center of mass) or upper body (angular momentum of trunk and arms) during reactive responses after slip initiation. Unconstrained bilateral slips during over-ground walking were repeatedly administered using a wearable device to 10 younger (24.7 ± 3.2 years) and 10 older (72.4 ± 3.9 years) adults while whole-body kinematics were measured using motion capture. Falls (n = 20) and recoveries (n = 40) were classified by thresholding the dynamic tension forces measured in an overhead harness support system and verified through video observation. Frontal plane measurements of the peak feet velocities relative to the center of mass provided the best classification (classification accuracy = 73.3%), followed by sagittal plane measurements (classification accuracy = 68.3%). Measurements from the lower body resulted in higher accuracy models than those from the upper body, but the accuracy of all models was generally low compared to the null accuracy of 66.7% (i.e., predicting all trials as recoveries). Future work should investigate novel models that include potential interactions between kinematic factors. The performance of lower limb kinematics in the frontal plane in classifying slip-related falls demonstrates the importance of administering unconstrained slips and measuring kinematics outside the sagittal plane.
Collapse
|
9
|
Corbo D, Placidi D, Gasparotti R, Wright R, Smith DR, Lucchini RG, Horton MK, Colicino E. The Luria-Nebraska Neuropsychological Battery Neuromotor Tasks: From Conventional to Image-Derived Measures. Brain Sci 2022; 12:brainsci12060757. [PMID: 35741641 PMCID: PMC9221253 DOI: 10.3390/brainsci12060757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/04/2022] [Accepted: 06/07/2022] [Indexed: 02/01/2023] Open
Abstract
Background: Sensorimotor difficulties significantly interfere with daily activities, and when undiagnosed in early life, they may increase the risk of later life cognitive and mental health disorders. Subtests from the Luria-Nebraska Neuropsychological Battery (LNNB) discriminate sensorimotor impairments predictive of sensorimotor dysfunction. However, scoring the LNNB sensorimotor assessment is highly subjective and time consuming, impeding the use of this task in epidemiologic studies. Aim: To train and validate a novel automated and image-derived scoring approach to the LNNB neuro-motor tasks for use in adolescents and young adults. Methods: We selected 46 adolescents (19.6 +/− 2.3 years, 48% male) enrolled in the prospective Public Health Impact of Metal Exposure (PHIME) study. We visually recorded the administration of five conventional sensorimotor LNNB tasks and developed automated scoring alternatives using a novel mathematical approach combining optic flow fields from recorded image sequences on a frame-by-frame basis. We then compared the conventional and image-derived LNNB task scores using Pearson’s correlations. Finally, we provided the accuracy of the novel scoring approach with Receiver Operating Characteristic (ROC) curves and the area under the ROC curves (AUC). Results: Image-derived LNNB task scores strongly correlated with conventional scores, which were assessed and confirmed by multiple administrators to limit subjectivity (Pearson’s correlation ≥ 0.70). The novel image-derived scoring approach discriminated participants with low motility (<mean population levels) with a specificity ranging from 70% to 83%, with 70% sensitivity. Conclusions: The novel image-derived LNNB task scores may contribute to the timely assessment of sensorimotor abilities and delays, and may also be effectively used in telemedicine.
Collapse
Affiliation(s)
- Daniele Corbo
- Neuroradiology Unit, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia and ASST Spedali Civili Hospital, 25121 Brescia, Italy;
- Correspondence:
| | - Donatella Placidi
- Occupational Medicine, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, 25121 Brescia, Italy; (D.P.); (R.G.L.)
| | - Roberto Gasparotti
- Neuroradiology Unit, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia and ASST Spedali Civili Hospital, 25121 Brescia, Italy;
| | - Robert Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (R.W.); (M.K.H.); (E.C.)
| | - Donald R. Smith
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, CA 95064, USA;
| | - Roberto G. Lucchini
- Occupational Medicine, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, 25121 Brescia, Italy; (D.P.); (R.G.L.)
- Environmental Health Sciences, School of Public Health, Florida International University, Miami, FL 33199, USA
| | - Megan K. Horton
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (R.W.); (M.K.H.); (E.C.)
| | - Elena Colicino
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (R.W.); (M.K.H.); (E.C.)
| |
Collapse
|
10
|
Odintsova VV, Suderman M, Hagenbeek FA, Caramaschi D, Hottenga JJ, Pool R, Dolan CV, Ligthart L, van Beijsterveldt CEM, Willemsen G, de Geus EJC, Beck JJ, Ehli EA, Cuellar-Partida G, Evans DM, Medland SE, Relton CL, Boomsma DI, van Dongen J. DNA methylation in peripheral tissues and left-handedness. Sci Rep 2022; 12:5606. [PMID: 35379837 PMCID: PMC8980054 DOI: 10.1038/s41598-022-08998-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 03/07/2022] [Indexed: 01/08/2023] Open
Abstract
Handedness has low heritability and epigenetic mechanisms have been proposed as an etiological mechanism. To examine this hypothesis, we performed an epigenome-wide association study of left-handedness. In a meta-analysis of 3914 adults of whole-blood DNA methylation, we observed that CpG sites located in proximity of handedness-associated genetic variants were more strongly associated with left-handedness than other CpG sites (P = 0.04), but did not identify any differentially methylated positions. In longitudinal analyses of DNA methylation in peripheral blood and buccal cells from children (N = 1737), we observed moderately stable associations across age (correlation range [0.355-0.578]), but inconsistent across tissues (correlation range [- 0.384 to 0.318]). We conclude that DNA methylation in peripheral tissues captures little of the variance in handedness. Future investigations should consider other more targeted sources of tissue, such as the brain.
Collapse
Affiliation(s)
- Veronika V Odintsova
- Department of Biological Psychology, Vrije Universiteit Amsterdam, van der Boechorststraat 7-9, 1081 BT, Amsterdam, The Netherlands.
- Amsterdam Reproduction and Development, AR&D Research Institute, Amsterdam, The Netherlands.
- Amsterdam Public Health Research Institute, Amsterdam, The Netherlands.
| | - Matthew Suderman
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Fiona A Hagenbeek
- Department of Biological Psychology, Vrije Universiteit Amsterdam, van der Boechorststraat 7-9, 1081 BT, Amsterdam, The Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
| | - Doretta Caramaschi
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Jouke-Jan Hottenga
- Department of Biological Psychology, Vrije Universiteit Amsterdam, van der Boechorststraat 7-9, 1081 BT, Amsterdam, The Netherlands
| | - René Pool
- Department of Biological Psychology, Vrije Universiteit Amsterdam, van der Boechorststraat 7-9, 1081 BT, Amsterdam, The Netherlands
| | - Conor V Dolan
- Department of Biological Psychology, Vrije Universiteit Amsterdam, van der Boechorststraat 7-9, 1081 BT, Amsterdam, The Netherlands
| | - Lannie Ligthart
- Department of Biological Psychology, Vrije Universiteit Amsterdam, van der Boechorststraat 7-9, 1081 BT, Amsterdam, The Netherlands
| | - Catharina E M van Beijsterveldt
- Department of Biological Psychology, Vrije Universiteit Amsterdam, van der Boechorststraat 7-9, 1081 BT, Amsterdam, The Netherlands
| | - Gonneke Willemsen
- Department of Biological Psychology, Vrije Universiteit Amsterdam, van der Boechorststraat 7-9, 1081 BT, Amsterdam, The Netherlands
| | - Eco J C de Geus
- Department of Biological Psychology, Vrije Universiteit Amsterdam, van der Boechorststraat 7-9, 1081 BT, Amsterdam, The Netherlands
| | | | - Erik A Ehli
- Avera Institute for Human Genetics, Sioux Falls, USA
| | - Gabriel Cuellar-Partida
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, Australia
| | - David M Evans
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, Australia
| | - Sarah E Medland
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Caroline L Relton
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Dorret I Boomsma
- Department of Biological Psychology, Vrije Universiteit Amsterdam, van der Boechorststraat 7-9, 1081 BT, Amsterdam, The Netherlands
- Amsterdam Reproduction and Development, AR&D Research Institute, Amsterdam, The Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
| | - Jenny van Dongen
- Department of Biological Psychology, Vrije Universiteit Amsterdam, van der Boechorststraat 7-9, 1081 BT, Amsterdam, The Netherlands.
- Amsterdam Reproduction and Development, AR&D Research Institute, Amsterdam, The Netherlands.
- Amsterdam Public Health Research Institute, Amsterdam, The Netherlands.
| |
Collapse
|
11
|
Ma R, Xia X, Zhang W, Lu Z, Wu Q, Cui J, Song H, Fan C, Chen X, Zha R, Wei J, Ji GJ, Wang X, Qiu B, Zhang X. High Gamma and Beta Temporal Interference Stimulation in the Human Motor Cortex Improves Motor Functions. Front Neurosci 2022; 15:800436. [PMID: 35046771 PMCID: PMC8761631 DOI: 10.3389/fnins.2021.800436] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 11/29/2021] [Indexed: 12/14/2022] Open
Abstract
Background: Temporal interference (TI) stimulation is a new technique of non-invasive brain stimulation. Envelope-modulated waveforms with two high-frequency carriers can activate neurons in target brain regions without stimulating the overlying cortex, which has been validated in mouse brains. However, whether TI stimulation can work on the human brain has not been elucidated. Objective: To assess the effectiveness of the envelope-modulated waveform of TI stimulation on the human primary motor cortex (M1). Methods: Participants attended three sessions of 30-min TI stimulation during a random reaction time task (RRTT) or a serial reaction time task (SRTT). Motor cortex excitability was measured before and after TI stimulation. Results: In the RRTT experiment, only 70 Hz TI stimulation had a promoting effect on the reaction time (RT) performance and excitability of the motor cortex compared to sham stimulation. Meanwhile, compared with the sham condition, only 20 Hz TI stimulation significantly facilitated motor learning in the SRTT experiment, which was significantly positively correlated with the increase in motor evoked potential. Conclusion: These results indicate that the envelope-modulated waveform of TI stimulation has a significant promoting effect on human motor functions, experimentally suggesting the effectiveness of TI stimulation in humans for the first time and paving the way for further explorations.
Collapse
Affiliation(s)
- Ru Ma
- Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Science and Medicine, Department of Radiology, The First Affiliated Hospital of USTC, School of Life Science, University of Science and Technology of China, Hefei, China
| | - Xinzhao Xia
- Centers for Biomedical Engineering, School of Information Science and Technology, University of Science and Technology of China, Hefei, China
| | - Wei Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Science and Medicine, Department of Radiology, The First Affiliated Hospital of USTC, School of Life Science, University of Science and Technology of China, Hefei, China
| | - Zhuo Lu
- Centers for Biomedical Engineering, School of Information Science and Technology, University of Science and Technology of China, Hefei, China
| | - Qianying Wu
- Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Science and Medicine, Department of Radiology, The First Affiliated Hospital of USTC, School of Life Science, University of Science and Technology of China, Hefei, China.,Division of the Humanities and Social Sciences, California Institute of Technology, Pasadena, CA, United States
| | - Jiangtian Cui
- Centers for Biomedical Engineering, School of Information Science and Technology, University of Science and Technology of China, Hefei, China.,School of Optometry and Vision Sciences, Cardiff University, Cardiff, United Kingdom
| | - Hongwen Song
- Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Science and Medicine, Department of Radiology, The First Affiliated Hospital of USTC, School of Life Science, University of Science and Technology of China, Hefei, China
| | - Chuan Fan
- Centers for Biomedical Engineering, School of Information Science and Technology, University of Science and Technology of China, Hefei, China
| | - Xueli Chen
- Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Science and Medicine, Department of Radiology, The First Affiliated Hospital of USTC, School of Life Science, University of Science and Technology of China, Hefei, China
| | - Rujing Zha
- Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Science and Medicine, Department of Radiology, The First Affiliated Hospital of USTC, School of Life Science, University of Science and Technology of China, Hefei, China
| | - Junjie Wei
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Gong-Jun Ji
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xiaoxiao Wang
- Centers for Biomedical Engineering, School of Information Science and Technology, University of Science and Technology of China, Hefei, China
| | - Bensheng Qiu
- Centers for Biomedical Engineering, School of Information Science and Technology, University of Science and Technology of China, Hefei, China
| | - Xiaochu Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Science and Medicine, Department of Radiology, The First Affiliated Hospital of USTC, School of Life Science, University of Science and Technology of China, Hefei, China.,Centers for Biomedical Engineering, School of Information Science and Technology, University of Science and Technology of China, Hefei, China.,Department of Psychology, School of Humanities and Social Science, University of Science and Technology of China, Hefei, China.,Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, China
| |
Collapse
|
12
|
La Pegna GB, Quatrosi G, Vetri L, Reina F, Galati C, Manzo ML, Nocera GM, Brighina F, Raieli V. Migraine and handedness. Neurol Sci 2021; 42:2965-2968. [PMID: 33547971 DOI: 10.1007/s10072-021-05111-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 02/01/2021] [Indexed: 11/25/2022]
Abstract
Migraine is a typically unilateral disorder in adulthood; however, the reasons for painful lateralization have been little investigated. The possible influence of manual dominance was suggested. We aimed to investigate the localization of pain in migraine attacks in right-handed and left-handed subjects. The retrospective study collected 546 patients with migraine aged between 16 and 65 years, reporting the manual dominance to the Edinburgh test. We included 466 right-handed and 80 left-handed subjects with migraine. We registered 4215 unilateral painful attacks. The right-handers had 3412 unilateral episodes; 62.8% of the attacks were characterized by pain on the right side and 37.2% by pain on the left. The left-handed subjects reported 803 unilateral pain with 63.5% of unilateral pain episodes on the left side and 36.5% of attacks with lateralized pain on the right (p < 0.001). Our data suggest that manual dominance may influence the side of pain lateralization in migraine.
Collapse
Affiliation(s)
| | - Giuseppe Quatrosi
- Child Neuropsychiatry Unit Department, Pro.M.I.S.E. "G D'Alessandro", University of Palermo, Palermo, Italy
| | - Luigi Vetri
- Child Neuropsychiatry Unit Department, Pro.M.I.S.E. "G D'Alessandro", University of Palermo, Palermo, Italy
| | - Federica Reina
- Child Neuropsychiatry Unit Department, Pro.M.I.S.E. "G D'Alessandro", University of Palermo, Palermo, Italy
| | - Cristina Galati
- Child Neuropsychiatry Unit Department, Pro.M.I.S.E. "G D'Alessandro", University of Palermo, Palermo, Italy
| | - Maria Laura Manzo
- Child Neuropsychiatry Unit Department, Pro.M.I.S.E. "G D'Alessandro", University of Palermo, Palermo, Italy
| | - Giovanna Martina Nocera
- Child Neuropsychiatry Unit Department, Pro.M.I.S.E. "G D'Alessandro", University of Palermo, Palermo, Italy
| | - Filippo Brighina
- Department of Experimental Biomedicine and Clinical Neurosciences, University of Palermo, Palermo, Italy
| | - Vincenzo Raieli
- Child Neuropsychiatry Department, ISMEP - ARNAS Civico Palermo, via dei Benedettini 1, 90100, Palermo, Italy.
| |
Collapse
|
13
|
Frenkel-Toledo S, Ofir-Geva S, Mansano L, Granot O, Soroker N. Stroke Lesion Impact on Lower Limb Function. Front Hum Neurosci 2021; 15:592975. [PMID: 33597852 PMCID: PMC7882502 DOI: 10.3389/fnhum.2021.592975] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 01/12/2021] [Indexed: 12/13/2022] Open
Abstract
The impact of stroke on motor functioning is analyzed at different levels. ‘Impairment’ denotes the loss of basic characteristics of voluntary movement. ‘Activity limitation’ denotes the loss of normal capacity for independent execution of daily activities. Recovery from impairment is accomplished by ‘restitution’ and recovery from activity limitation is accomplished by the combined effect of ‘restitution’ and ‘compensation.’ We aimed to unravel the long-term effects of variation in lesion topography on motor impairment of the hemiparetic lower limb (HLL), and gait capacity as a measure of related activity limitation. Gait was assessed by the 3 m walk test (3MWT) in 67 first-event chronic stroke patients, at their homes. Enduring impairment of the HLL was assessed by the Fugl–Meyer Lower Extremity (FMA-LE) test. The impact of variation in lesion topography on HLL impairment and on walking was analyzed separately for left and right hemispheric damage (LHD, RHD) by voxel-based lesion-symptom mapping (VLSM). In the LHD group, HLL impairment tended to be affected by damage to the posterior limb of the internal capsule (PLIC). Walking capacity tended to be affected by a larger array of structures: PLIC and corona radiata, external capsule and caudate nucleus. In the RHD group, both HLL impairment and walking capacity were sensitive to damage in a much larger number of brain voxels. HLL impairment was affected by damage to the corona radiata, superior longitudinal fasciculus and insula. Walking was affected by damage to the same areas, plus the internal and external capsules, putamen, thalamus and parts of the perisylvian cortex. In both groups, voxel clusters have been found where damage affected FMA-LE and also 3MWT, along with voxels where damage affected only one of the measures (mainly 3MWT). In stroke, enduring ‘activity limitation’ is affected by damage to a much larger array of brain structures and voxels within specific structures, compared to enduring ‘impairment.’ Differences between the effects of left and right hemisphere damage are likely to reflect variation in motor-network organization and post-stroke re-organization related to hemispheric dominance. Further studies with larger sample size are required for the validation of these results.
Collapse
Affiliation(s)
- Silvi Frenkel-Toledo
- Department of Physical Therapy, Faculty of Health Sciences, Ariel University, Ariel, Israel.,Department of Neurological Rehabilitation, Loewenstein Rehabilitation Medical Center, Ra'anana, Israel
| | - Shay Ofir-Geva
- Department of Neurological Rehabilitation, Loewenstein Rehabilitation Medical Center, Ra'anana, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Lihi Mansano
- Department of Neurological Rehabilitation, Loewenstein Rehabilitation Medical Center, Ra'anana, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Osnat Granot
- Department of Neurological Rehabilitation, Loewenstein Rehabilitation Medical Center, Ra'anana, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Nachum Soroker
- Department of Neurological Rehabilitation, Loewenstein Rehabilitation Medical Center, Ra'anana, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
14
|
Clinical and Electrophysiological Hints to TMS in De Novo Patients with Parkinson's Disease and Progressive Supranuclear Palsy. J Pers Med 2020. [PMID: 33322688 DOI: 10.3390/jpm10040274.] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Transcranial magnetic stimulation (TMS) can non-invasively probe cortical excitability in movement disorders, although clinical significance is still controversial, especially at early stages. We compare single-pulse TMS in two prototypic synucleinopathy and tauopathy-i.e., Parkinson's disease (PD) and Progressive Supranuclear Palsy (PSP), respectively-to find neurophysiological differences and identify early measures associated with cognitive impairment. METHODS 28 PD and 23 PSP de novo patients were age-matched with 28 healthy controls, all right-handed and drug-free. Amplitude and latency of motor evoked potentials (MEP), central motor conduction time, resting motor threshold (rMT), and cortical silent period (CSP) were recorded through a figure-of-eight coil from the First Dorsal Interosseous muscle (FDI), bilaterally. RESULTS Mini Mental Examination and Frontal Assessment Battery (FAB) scored worse in PSP; PD had worse FAB than controls. Higher MEP amplitude from right FDI in PD and PSP than controls was found, without difference between them. CSP was bilaterally longer in patients than controls, but similar between patient groups. A positive correlation between FAB and rMT was observed in PSP, bilaterally. CONCLUSIONS Despite the small sample size, PD and PSP might share, at early stage, a similar global electrocortical asset. rMT might detect and possibly predict cognitive deterioration in PSP.
Collapse
|
15
|
Fisicaro F, Lanza G, Cantone M, Ferri R, Pennisi G, Nicoletti A, Zappia M, Bella R, Pennisi M. Clinical and Electrophysiological Hints to TMS in De Novo Patients with Parkinson's Disease and Progressive Supranuclear Palsy. J Pers Med 2020; 10:274. [PMID: 33322688 PMCID: PMC7768400 DOI: 10.3390/jpm10040274] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/06/2020] [Accepted: 12/10/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Transcranial magnetic stimulation (TMS) can non-invasively probe cortical excitability in movement disorders, although clinical significance is still controversial, especially at early stages. We compare single-pulse TMS in two prototypic synucleinopathy and tauopathy-i.e., Parkinson's disease (PD) and Progressive Supranuclear Palsy (PSP), respectively-to find neurophysiological differences and identify early measures associated with cognitive impairment. METHODS 28 PD and 23 PSP de novo patients were age-matched with 28 healthy controls, all right-handed and drug-free. Amplitude and latency of motor evoked potentials (MEP), central motor conduction time, resting motor threshold (rMT), and cortical silent period (CSP) were recorded through a figure-of-eight coil from the First Dorsal Interosseous muscle (FDI), bilaterally. RESULTS Mini Mental Examination and Frontal Assessment Battery (FAB) scored worse in PSP; PD had worse FAB than controls. Higher MEP amplitude from right FDI in PD and PSP than controls was found, without difference between them. CSP was bilaterally longer in patients than controls, but similar between patient groups. A positive correlation between FAB and rMT was observed in PSP, bilaterally. CONCLUSIONS Despite the small sample size, PD and PSP might share, at early stage, a similar global electrocortical asset. rMT might detect and possibly predict cognitive deterioration in PSP.
Collapse
Affiliation(s)
- Francesco Fisicaro
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via Santa Sofia, 97-95123 Catania, Italy; (F.F.); (M.P.)
| | - Giuseppe Lanza
- Department of Surgery and Medical-Surgical Specialties, University of Catania, Via Santa Sofia, 78-95123 Catania, Italy;
- Department of Neurology IC, Oasi Research Institute-IRCCS, Via Conte Ruggero, 73-94018 Troina, Italy;
| | - Mariagiovanna Cantone
- Department of Neurology, Sant’Elia Hospital, ASP Caltanissetta, Via Luigi Russo, 6-93100 Caltanissetta, Italy;
| | - Raffaele Ferri
- Department of Neurology IC, Oasi Research Institute-IRCCS, Via Conte Ruggero, 73-94018 Troina, Italy;
| | - Giovanni Pennisi
- Department of Surgery and Medical-Surgical Specialties, University of Catania, Via Santa Sofia, 78-95123 Catania, Italy;
| | - Alessandra Nicoletti
- Department of Medical and Surgical Sciences and Advanced Technologies, University of Catania, Via Santa Sofia, 87-95123 Catania, Italy; (A.N.); (M.Z.); (R.B.)
| | - Mario Zappia
- Department of Medical and Surgical Sciences and Advanced Technologies, University of Catania, Via Santa Sofia, 87-95123 Catania, Italy; (A.N.); (M.Z.); (R.B.)
| | - Rita Bella
- Department of Medical and Surgical Sciences and Advanced Technologies, University of Catania, Via Santa Sofia, 87-95123 Catania, Italy; (A.N.); (M.Z.); (R.B.)
| | - Manuela Pennisi
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via Santa Sofia, 97-95123 Catania, Italy; (F.F.); (M.P.)
| |
Collapse
|
16
|
Corp DT, He J, Cooke D, Perellón-Alfonso R, Joutsa J, Pascual-Leone A, Fox MD, Hyde C. 'Expedited Interhemispheric Inhibition': A Simple Method to Collect Additional IHI Data in the Same Amount of Time. Brain Topogr 2020; 34:1-5. [PMID: 33141335 DOI: 10.1007/s10548-020-00800-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 10/12/2020] [Indexed: 11/28/2022]
Abstract
Interhemispheric inhibition (IHI) is a dual-site TMS protocol measuring inhibitory interactions between the primary motor cortices (M1). IHI is performed by applying an initial conditioning stimulus followed by a test stimulus to the contralateral M1. Conventionally, the response in the contralateral hand to the conditioning TMS pulse is either not measured, or discarded. The aim of this experiment was to investigate whether MEPs evoked from these conditioning stimuli can be utilised as non-conditioned, or 'baseline', responses, and therefore expedite IHI data collection. We evaluated short-latency (10 ms) and long-latency (40 ms) IHI bidirectionally in 14 healthy participants. There was no difference in MEP amplitudes evoked by conventional single TMS pulses randomly inserted into IHI blocks, and those evoked by the conditioning stimulus. Nor was there any significant difference in IHI magnitude when using single pulse MEPs or conditioning stimulus MEPs as baseline responses. The utilisation of conditioning stimuli dispenses with the need to insert dedicated single TMS pulses into IHI blocks, allowing for additional IHI data to be collected in the same amount of time.
Collapse
Affiliation(s)
- Daniel T Corp
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, 221 Burwood Highway, 3125, Burwood, VIC, Australia. .,Division of Cognitive Neurology, Department of Neurology, Berenson-Allen Center for Non-Invasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, 02215, Boston, MA, USA.
| | - Jason He
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, 221 Burwood Highway, 3125, Burwood, VIC, Australia.,Russel H. Morgan Department of Radiology and Radiological Science, Bere, Baltimore, MA, 21205, USA
| | - Danielle Cooke
- Division of Cognitive Neurology, Department of Neurology, Berenson-Allen Center for Non-Invasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, 02215, Boston, MA, USA
| | - Ruben Perellón-Alfonso
- Department of Medicine, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, Barcelona, Spain.,Institute of Biomedical Research August Pi i Sunyer, Barcelona, Spain
| | - Juho Joutsa
- Division of Cognitive Neurology, Department of Neurology, Berenson-Allen Center for Non-Invasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, 02215, Boston, MA, USA.,Department of Neurology, University of Turku, Turku, Finland.,Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, 02129, Charlestown, MA, USA
| | - Alvaro Pascual-Leone
- Hinda and Arthur Marcus Institute for Aging Research and Center for Memory Health, Hebrew SeniorLife, Department of Neurology, Harvard Medical School, Boston, MA, USA.,Guttmann Brain Health Institute, Institut Guttmann de Neurorehabilitació, Universitat Autónoma, Barcelona, Spain
| | - Michael D Fox
- Division of Cognitive Neurology, Department of Neurology, Berenson-Allen Center for Non-Invasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, 02215, Boston, MA, USA.,Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, 02129, Charlestown, MA, USA.,Department of Neurology, Massachusetts General Hospital, Harvard Medical School, 02114, Boston, MA, USA
| | - Christian Hyde
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, 221 Burwood Highway, 3125, Burwood, VIC, Australia
| |
Collapse
|
17
|
Frenkel-Toledo S, Ofir-Geva S, Soroker N. Lesion Topography Impact on Shoulder Abduction and Finger Extension Following Left and Right Hemispheric Stroke. Front Hum Neurosci 2020; 14:282. [PMID: 32765245 PMCID: PMC7379861 DOI: 10.3389/fnhum.2020.00282] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 06/23/2020] [Indexed: 11/13/2022] Open
Abstract
The existence of shoulder abduction and finger extension movement capacity shortly after stroke onset is an important prognostic factor, indicating favorable functional outcomes for the hemiparetic upper limb (HUL). Here, we asked whether variation in lesion topography affects these two movements similarly or distinctly and whether lesion impact is similar or distinct for left and right hemisphere damage. Shoulder abduction and finger extension movements were examined in 77 chronic post-stroke patients using relevant items of the Fugl-Meyer test. Lesion effects were analyzed separately for left and right hemispheric damage patient groups, using voxel-based lesion-symptom mapping. In the left hemispheric damage group, shoulder abduction and finger extension were affected only by damage to the corticospinal tract in its passage through the corona radiata. In contrast, following the right hemispheric damage, these two movements were affected not only by corticospinal tract damage but also by damage to white matter association tracts, the putamen, and the insular cortex. In both groups, voxel clusters have been found where damage affected shoulder abduction and also finger extension, along with voxels where damage affected only one of the two movements. The capacity to execute shoulder abduction and finger extension movements following stroke is affected significantly by damage to shared and distinct voxels in the corticospinal tract in left-hemispheric damage patients and by damage to shared and distinct voxels in a larger array of cortical and subcortical regions in right hemispheric damage patients.
Collapse
Affiliation(s)
- Silvi Frenkel-Toledo
- Department of Physical Therapy, School of Health Sciences, Ariel University, Ariel, Israel.,Department of Neurological Rehabilitation, Loewenstein Rehabilitation Hospital, Raanana, Israel
| | - Shay Ofir-Geva
- Department of Neurological Rehabilitation, Loewenstein Rehabilitation Hospital, Raanana, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Nachum Soroker
- Department of Neurological Rehabilitation, Loewenstein Rehabilitation Hospital, Raanana, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
18
|
Effect of transcranial static magnetic stimulation on intracortical excitability in the contralateral primary motor cortex. Neurosci Lett 2020; 723:134871. [DOI: 10.1016/j.neulet.2020.134871] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/17/2020] [Accepted: 02/24/2020] [Indexed: 12/21/2022]
|
19
|
Fekri A, Jahan A, Moghadam Salimi M, Oskouei AE. Short-term Effects of Transcranial Near-Infrared Photobiomodulation on Motor Performance in Healthy Human Subjects: An Experimental SingleBlind Randomized Clinical Trial. J Lasers Med Sci 2019; 10:317-323. [PMID: 31875125 DOI: 10.15171/jlms.2019.51] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Introduction: Transcranial near-infrared photobiomodulation (NIR-PBM) is a new noninvasive procedure which transcranially applies a near-infrared wavelength to the scalp with a laser or a light-emitting diode (LED) source. Improvement in the neurological or psychological symptoms has been reported following light irradiation. However, to our knowledge, there is no study to investigate the effects of transcranial NIR-PBM on motor performance directly. Therefore, the objective of this study was to investigate the short-term effects of transcranial NIR-PBM on motor performance in healthy human subjects. Methods: In this experimental single-blind randomized clinical trial study, 56 right-handed healthy participants, whose ages ranged from 18 to 30, were randomly assigned to (1) Real transcranial NIR-PBMC3 group (n=14), (2) Sham transcranial NIR-PBMC3 group (n=14), (3) Real transcranial NIR-PBMC4 group (n=14), and (4) Sham transcranial NIR-PBMC4 group (n=14). We applied the 808 nm laser with irradiation energy density of 60 J/cm2 and power density of 200 mw/cm2 to the C3 or C4 points of the scalp. The number of finger taps as an indicator of motor performance was assessed by the finger-tapping test (FTT) before and after irradiation of transcranial NIR-PBM on the corresponding points of the scalp for 5 minutes. Results: The results showed that the number of finger taps in both right and left hands following the use of transcranial NIR-PBM in the real transcranial NIR-PBMC3 group significantly increased (P<0.05). Conclusion: We concluded that using transcranial NIR-PBM with a laser source on C3 point of the motor cortex in right-handed healthy people can increase the number of finger taps in both hands as an indicator of motor performance improvement.
Collapse
Affiliation(s)
- Atefeh Fekri
- Department of Physiotherapy, Faculty of Rehabilitation, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Jahan
- Department of Speech Therapy, Faculty of Rehabilitation, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Moghadam Salimi
- Department of Physiotherapy, Faculty of Rehabilitation, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali E Oskouei
- Physical Medicine and Rehabilitation Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
20
|
Frenkel-Toledo S, Fridberg G, Ofir S, Bartur G, Lowenthal-Raz J, Granot O, Handelzalts S, Soroker N. Lesion location impact on functional recovery of the hemiparetic upper limb. PLoS One 2019; 14:e0219738. [PMID: 31323056 PMCID: PMC6641167 DOI: 10.1371/journal.pone.0219738] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 07/02/2019] [Indexed: 11/18/2022] Open
Abstract
The effect of stroke topography on the recovery of hemiparetic upper limb (HUL) function is unclear due to limitations in previous studies-examination of lesion effects only in one point of time, or grouping together patients with left and right hemispheric damage (LHD, RHD), or disregard to different lesion impact on proximal and distal operations. Here we used voxel-based lesion symptom mapping (VLSM) to investigate the impact of stroke topography on HUL function taking into consideration the effects of (a) assessment time (subacute, chronic phases), (b) side of damaged hemisphere (left, right), (c) HUL part (proximal, distal). HUL function was examined in 3 groups of patients-Subacute (n = 130), Chronic (n = 66), and Delta (n = 49; patients examined both in the subacute and chronic phases)-using the proximal and distal sub-divisions of the Fugl-Meyer (FM) and the Box and Blocks (B&B) tests. HUL function following LHD tended to be affected in the subacute phase mainly by damage to white matter tracts, the putamen and the insula. In the chronic phase, a similar pattern was shown for B&B performance, whereas FM performance was affected by damage only to the white matter tracts. HUL function following RHD was affected in both phases, mainly by damage to the basal ganglia, white matter tracts and the insula, along with a restricted effect of damage to other cortical structures. In the chronic phase HUL function following RHD was affected also by damage to the thalamus. In the small Delta groups the following trends were found: In LHD patients, delayed motor recovery, captured by the B&B test, was affected by damage to the sensory-motor cortex, white matter association fibers and parts of the perisilvian cortex. In the RHD patients of the Delta group, delayed motor recovery was affected by damage to white matter projection fibers. Proximal and distal HUL functions examined in LHD patients (both in the subacute and chronic phases) tended to be affected by similar structures-mainly white matter projection tracts. In RHD patients, a distinction between proximal and distal HUL functions was found in the subacute but not in the chronic phase, with proximal and distal HUL functions affected by similar subcortical and cortical structures, except for an additional impact of damage to the superior temporal cortex and the retro-lenticular internal capsule only on proximal HUL function. The current study suggests the existence of important differences between the functional neuroanatomy underlying motor recovery following left and right hemisphere damage. A trend for different lesion effects was shown for residual proximal and distal HUL motor control. The study corroborates earlier findings showing an effect of the time after stroke onset (subacute, chronic) on the results of VLSM analyses. Further studies with larger sample size are required for the validation of these results.
Collapse
Affiliation(s)
- Silvi Frenkel-Toledo
- Department of Physical Therapy, Faculty of Health Sciences, Ariel University, Ariel, Israel
- Department of Neurological Rehabilitation, Loewenstein Hospital, Raanana, Israel
| | - Gil Fridberg
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Shay Ofir
- Department of Neurological Rehabilitation, Loewenstein Hospital, Raanana, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Gadi Bartur
- Department of Physical Therapy, Reuth Rehabilitation Hospital, Tel Aviv, Israel
| | - Justine Lowenthal-Raz
- Department of Neurological Rehabilitation, Loewenstein Hospital, Raanana, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Osnat Granot
- Department of Neurological Rehabilitation, Loewenstein Hospital, Raanana, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Shirley Handelzalts
- Department of Neurological Rehabilitation, Loewenstein Hospital, Raanana, Israel
- Recanati School for Community Health Professions, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Nachum Soroker
- Department of Neurological Rehabilitation, Loewenstein Hospital, Raanana, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
21
|
Vukelić M, Belardinelli P, Guggenberger R, Royter V, Gharabaghi A. Different oscillatory entrainment of cortical networks during motor imagery and neurofeedback in right and left handers. Neuroimage 2019; 195:190-202. [PMID: 30951847 DOI: 10.1016/j.neuroimage.2019.03.067] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 03/02/2019] [Accepted: 03/27/2019] [Indexed: 01/08/2023] Open
Abstract
Volitional modulation and neurofeedback of sensorimotor oscillatory activity is currently being evaluated as a strategy to facilitate motor restoration following stroke. Knowledge on the interplay between this regional brain self-regulation, distributed network entrainment and handedness is, however, limited. In a randomized cross-over design, twenty-one healthy subjects (twelve right-handers [RH], nine left-handers [LH]) performed kinesthetic motor imagery of left (48 trials) and right finger extension (48 trials). A brain-machine interface turned event-related desynchronization in the beta frequency-band (16-22 Hz) during motor imagery into passive hand opening by a robotic orthosis. Thereby, every participant subsequently activated either the dominant (DH) or non-dominant hemisphere (NDH) to control contralateral hand opening. The task-related cortical networks were studied with electroencephalography. The magnitude of the induced oscillatory modulation range in the sensorimotor cortex was independent of both handedness (RH, LH) and hemispheric specialization (DH, NDH). However, the regional beta-band modulation was associated with different alpha-band networks in RH and LH: RH presented a stronger inter-hemispheric connectivity, while LH revealed a stronger intra-hemispheric interaction. Notably, these distinct network entrainments were independent of hemispheric specialization. In healthy subjects, sensorimotor beta-band activity can be robustly modulated by motor imagery and proprioceptive feedback in both hemispheres independent of handedness. However, right and left handers show different oscillatory entrainment of cortical alpha-band networks during neurofeedback. This finding may inform neurofeedback interventions in future to align them more precisely with the underlying physiology.
Collapse
Affiliation(s)
- Mathias Vukelić
- Division of Functional and Restorative Neurosurgery, Tuebingen Neuro Campus, Eberhard Karls University Tuebingen, Germany
| | - Paolo Belardinelli
- Division of Functional and Restorative Neurosurgery, Tuebingen Neuro Campus, Eberhard Karls University Tuebingen, Germany
| | - Robert Guggenberger
- Division of Functional and Restorative Neurosurgery, Tuebingen Neuro Campus, Eberhard Karls University Tuebingen, Germany
| | - Vladislav Royter
- Division of Functional and Restorative Neurosurgery, Tuebingen Neuro Campus, Eberhard Karls University Tuebingen, Germany
| | - Alireza Gharabaghi
- Division of Functional and Restorative Neurosurgery, Tuebingen Neuro Campus, Eberhard Karls University Tuebingen, Germany.
| |
Collapse
|
22
|
Rhee J, Mehta RK. Functional Connectivity During Handgrip Motor Fatigue in Older Adults Is Obesity and Sex-Specific. Front Hum Neurosci 2018; 12:455. [PMID: 30483085 PMCID: PMC6243051 DOI: 10.3389/fnhum.2018.00455] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 10/25/2018] [Indexed: 12/12/2022] Open
Abstract
The prevalence of obesity in older adults, particularly in females, is increasing rapidly and is associated with declines in both the brain and physical health. Both the obese and the female populations have shown greater motor fatigue than their counterparts, however, the central neural mechanisms for fatigue are unclear. The present study measured fatigue-related functional connectivity across frontal and sensorimotor areas using functional near-infrared spectroscopy (fNIRS). Fifty-nine older adults (30 non-obese and 29 obese) performed submaximal handgrip motor fatigue until voluntary exhaustion. Functional connectivity and cerebral hemodynamics were compared across eight cortical areas during motor fatigue and across obesity and sex groups along with neuromuscular fatigue outcomes (i.e., endurance time, strength loss, and force steadiness). Both obesity- and sex-specific functional architecture and mean activation differences during motor fatigue in older adults were observed, which were accompanied by fatigue-related changes in variability of force steadiness that differed between groups. While primary indicators of fatigue, i.e., endurance and strength loss, did not differ between groups, the motor steadiness changes indicated different neural adaptation strategies between the groups. These findings indicate that obesity and sex differences exist in brain function in older adults, which may affect performance during motor fatigue.
Collapse
Affiliation(s)
- Joohyun Rhee
- Department of Occupational and Environmental Health, School of Public Health, Texas A&M University, College Station, TX, United States
| | - Ranjana K Mehta
- Department of Occupational and Environmental Health, School of Public Health, Texas A&M University, College Station, TX, United States.,Department of Industrial and Systems Engineering, Texas A&M University, College Station, TX, United States
| |
Collapse
|
23
|
Mooney RA, Cirillo J, Byblow WD. Adaptive threshold hunting reveals differences in interhemispheric inhibition between young and older adults. Eur J Neurosci 2018; 48:2247-2258. [DOI: 10.1111/ejn.14097] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 06/26/2018] [Accepted: 07/31/2018] [Indexed: 11/28/2022]
Affiliation(s)
- Ronan A. Mooney
- Department of Exercise Sciences; Movement Neuroscience Laboratory; The University of Auckland; Auckland New Zealand
- Centre for Brain Research; The University of Auckland; Auckland New Zealand
| | - John Cirillo
- Department of Exercise Sciences; Movement Neuroscience Laboratory; The University of Auckland; Auckland New Zealand
- Centre for Brain Research; The University of Auckland; Auckland New Zealand
| | - Winston D. Byblow
- Department of Exercise Sciences; Movement Neuroscience Laboratory; The University of Auckland; Auckland New Zealand
- Centre for Brain Research; The University of Auckland; Auckland New Zealand
| |
Collapse
|
24
|
Zipser CM, Premoli I, Belardinelli P, Castellanos N, Rivolta D, Heidegger T, Müller-Dahlhaus F, Ziemann U. Cortical Excitability and Interhemispheric Connectivity in Early Relapsing-Remitting Multiple Sclerosis Studied With TMS-EEG. Front Neurosci 2018; 12:393. [PMID: 29937712 PMCID: PMC6002497 DOI: 10.3389/fnins.2018.00393] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 05/22/2018] [Indexed: 12/26/2022] Open
Abstract
Evoked potentials (EPs) are well established in clinical practice for diagnosis and prognosis in multiple sclerosis (MS). However, their value is limited to the assessment of their respective functional systems. Here, we used transcranial magnetic stimulation (TMS) coupled with electroencephalography (TMS-EEG) to investigate cortical excitability and spatiotemporal dynamics of TMS-evoked neural activity in MS patients. Thirteen patients with early relapsing–remitting MS (RRMS) with a median Expanded Disability Status Scale (EDSS) of 1.0 (range 0–2.5) and 16 age- and gender-matched healthy controls received single-pulse TMS of left and right primary motor cortex (L-M1 and R-M1), respectively. Resting motor threshold for L-M1 and R-M1 was increased in MS patients. Latencies and amplitudes of N45, P70, N100, P180, and N280 TMS-evoked EEG potentials (TEPs) were not different between groups, except a significantly increased amplitude of the N280 TEP in the MS group, both for L-M1 and R-M1 stimulation. Interhemispheric signal propagation (ISP), estimated from the area under the curve of TEPs in the non-stimulated vs. stimulated M1, also did not differ between groups. In summary, findings show that ISP and TEPs were preserved in early-stage RRMS, except for an exaggerated N280 amplitude. Our findings indicate that TMS-EEG is feasible in testing excitability and connectivity in cortical neural networks in MS patients, complementary to conventional EPs. However, relevance and pathophysiological correlates of the enhanced N280 will need further study.
Collapse
Affiliation(s)
- Carl M Zipser
- Department of Neurology and Stroke, Hertie Institute for Clinical Brain Research, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Isabella Premoli
- Department of Neurology and Stroke, Hertie Institute for Clinical Brain Research, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Paolo Belardinelli
- Department of Neurology and Stroke, Hertie Institute for Clinical Brain Research, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Nazareth Castellanos
- Nirakara: Instituto de Investigación y Formación en Ciencias Cognitivas, Madrid, Spain
| | - Davide Rivolta
- Department of Education Science, Psychology and Communication Science, University of Bari Aldo Moro, Bari, Italy
| | - Tonio Heidegger
- Department of Neurology, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Florian Müller-Dahlhaus
- Department of Neurology and Stroke, Hertie Institute for Clinical Brain Research, Eberhard Karls University of Tübingen, Tübingen, Germany.,Department of Psychiatry and Psychotherapy, University Medical Center Mainz, Mainz, Germany
| | - Ulf Ziemann
- Department of Neurology and Stroke, Hertie Institute for Clinical Brain Research, Eberhard Karls University of Tübingen, Tübingen, Germany
| |
Collapse
|
25
|
O'Brien AT, Bertolucci F, Torrealba-Acosta G, Huerta R, Fregni F, Thibaut A. Non-invasive brain stimulation for fine motor improvement after stroke: a meta-analysis. Eur J Neurol 2018; 25:1017-1026. [PMID: 29744999 DOI: 10.1111/ene.13643] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 03/22/2018] [Indexed: 11/28/2022]
Abstract
The aim of this study was to determine whether non-invasive brain stimulation (NIBS) techniques improve fine motor performance in stroke. We searched PubMed, EMBASE, Web of Science, SciELO and OpenGrey for randomized clinical trials on NIBS for fine motor performance in stroke patients and healthy participants. We computed Hedges' g for active and sham groups, pooled data as random-effects models and performed sensitivity analysis on chronicity, montage, frequency of stimulation and risk of bias. Twenty-nine studies (351 patients and 152 healthy subjects) were reviewed. Effect sizes in stroke populations for transcranial direct current stimulation and repeated transcranial magnetic stimulation were 0.31 [95% confidence interval (CI), 0.08-0.55; P = 0.010; Tau2 , 0.09; I2 , 34%; Q, 18.23; P = 0.110] and 0.46 (95% CI, 0.00-0.92; P = 0.05; Tau2 , 0.38; I2 , 67%; Q, 30.45; P = 0.007). The effect size of non-dominant healthy hemisphere transcranial direct current stimulation on non-dominant hand function was 1.25 (95% CI, 0.09-2.41; P = 0.04; Tau2 , 1.26; I2 , 93%; Q, 40.27; P < 0.001). Our results show that NIBS is associated with gains in fine motor performance in chronic stroke patients and healthy subjects. This supports the effects of NIBS on motor learning and encourages investigation to optimize their effects in clinical and research settings.
Collapse
Affiliation(s)
- A T O'Brien
- Neuromodulation Center, Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA, USA
| | - F Bertolucci
- Neuromodulation Center, Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA, USA.,Department of Neuroscience and Neurorehabilitation, University Hospital of Pisa, Pisa, Italy
| | - G Torrealba-Acosta
- Department of Neurology, Neuroscience Research Center, University of Costa Rica, San José, Costa Rica
| | - R Huerta
- Department of Medicine, The National Autonomous University of Mexico, Mexico City, Mexico
| | - F Fregni
- Neuromodulation Center, Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA, USA
| | - A Thibaut
- Neuromodulation Center, Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA, USA.,Coma Science Group, GIGA-Consciousness, University and University Hospital of Liège, Liège, Belgium
| |
Collapse
|
26
|
Foerster Á, Dutta A, Kuo M, Paulus W, Nitsche MA. Effects of anodal transcranial direct current stimulation over lower limb primary motor cortex on motor learning in healthy individuals. Eur J Neurosci 2018; 47:779-789. [DOI: 10.1111/ejn.13866] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 02/07/2018] [Accepted: 02/07/2018] [Indexed: 12/28/2022]
Affiliation(s)
- Águida Foerster
- Department of Clinical Neurophysiology Universitätsmedizin Göttingen Georg‐August Universität Göttingen Germany
- Deptartment Psychology and Neurosciences Leibniz Research Centre for Working Environment and Human Factors Leibniz‐Institut für Arbeitsforschung Ardeystr. 67 44139 Dortmund Germany
| | - Anirban Dutta
- Department of Biomedical Engineering University at Buffalo Buffalo NY USA
| | - Min‐Fang Kuo
- Deptartment Psychology and Neurosciences Leibniz Research Centre for Working Environment and Human Factors Leibniz‐Institut für Arbeitsforschung Ardeystr. 67 44139 Dortmund Germany
| | - Walter Paulus
- Department of Clinical Neurophysiology Universitätsmedizin Göttingen Georg‐August Universität Göttingen Germany
| | - Michael A. Nitsche
- Deptartment Psychology and Neurosciences Leibniz Research Centre for Working Environment and Human Factors Leibniz‐Institut für Arbeitsforschung Ardeystr. 67 44139 Dortmund Germany
- Department of Neurology University Medical Hospital Bergmannsheil Bochum Germany
| |
Collapse
|
27
|
Kasikci T, Bek S, Koc G, Yucel M, Kutukcu Y, Odabasi Z. Transcallosal conduction in paroxysmal kinesigenic dyskinesia. Somatosens Mot Res 2018; 34:235-241. [PMID: 29334840 DOI: 10.1080/08990220.2017.1421158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
OBJECTIVES Detecting whether a possible disequilibrium between the excitatory and inhibitory interhemispheric interactions in paroxysmal kinesigenic dyskinesia (PKD) exists. METHODS This study assessed measures of motor threshold, motor evoked potential latency, the cortical silent period, the ipsilateral silent period and the transcallosal conduction time (TCT) in PKD patients. Data were compared between the clinically affected hemisphere (aH) and the fellow hemisphere (fH). RESULTS The transcallosal conduction time from the aH to the fH was 11.8 ms (range = 2.3-20.7) and 13.6 ms (range = 2.8-67.7) from the fH to the aH. The difference in TCT in the affected side was significant (p = .019). CONCLUSION The findings demonstrated that, although inhibitory interneurons act normally and symmetrically between the motor cortices and transcallosal inhibition was normal and symmetrical between both sides, the onset of transcallosal inhibition was asymmetrical. The affected hemisphere's inhibition toward the unaffected hemisphere is faster compared to the inhibition provided by the fellow hemisphere. These results are consistent with an inhibitory deficit in the level of interhemispheric interactions. SIGNIFICANCE This study revealed a defect in inhibition of the motor axis could be responsible in the pathological mechanisms of kinesigenic dyskinesia.
Collapse
Affiliation(s)
| | - Semai Bek
- a Gulhane Medical Faculty , Ankara , Turkey
| | - Guray Koc
- a Gulhane Medical Faculty , Ankara , Turkey
| | | | | | | |
Collapse
|
28
|
Bravi R, Cohen EJ, Martinelli A, Gottard A, Minciacchi D. When Non-Dominant Is Better than Dominant: Kinesiotape Modulates Asymmetries in Timed Performance during a Synchronization-Continuation Task. Front Integr Neurosci 2017; 11:21. [PMID: 28943842 PMCID: PMC5596084 DOI: 10.3389/fnint.2017.00021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 08/25/2017] [Indexed: 12/25/2022] Open
Abstract
There is a growing consensus regarding the specialization of the non-dominant limb (NDL)/hemisphere system to employ proprioceptive feedback when executing motor actions. In a wide variety of rhythmic tasks the dominant limb (DL) has advantages in speed and timing consistency over the NDL. Recently, we demonstrated that the application of Kinesio® Tex (KT) tape, an elastic therapeutic device used for treating athletic injuries, improves significantly the timing consistency of isochronous wrist’s flexion-extensions (IWFEs) of the DL. We argued that the augmented precision of IWFEs is determined by a more efficient motor control during movements due to the extra-proprioceptive effect provided by KT. In this study, we tested the effect of KT on timing precision of IWFEs performed with the DL and the NDL, and we evaluated the efficacy of KT to counteract possible timing precision difference between limbs. Young healthy subjects performed with and without KT (NKT) a synchronization-continuation task in which they first entrained IWFEs to paced auditory stimuli (synchronization phase), and subsequently continued to produce motor responses with the same temporal interval in the absence of the auditory stimulus (continuation phase). Two inter-onset intervals (IOIs) of 550-ms and 800-ms, one within and the other beyond the boundaries of the spontaneous motor tempo, were tested. Kinematics was recorded and temporal parameters were extracted and analyzed. Our results show that limb advantages in performing proficiently rhythmic movements are not side-locked but depend also on speed of movement. The application of KT significantly reduces the timing variability of IWFEs performed at 550-ms IOI. KT not only cancels the disadvantages of the NDL but also makes it even more precise than the DL without KT. The superior sensitivity of the NDL to use the extra-sensory information provided by KT is attributed to a greater competence of the NDL/hemisphere system to rely on sensory input. The findings in this study add a new piece of information to the context of motor timing literature. The performance asymmetries here demonstrated as preferred temporal environments could reflect limb differences in the choice of sensorimotor control strategies for the production of human movement.
Collapse
Affiliation(s)
- Riccardo Bravi
- Department of Experimental and Clinical Medicine, University of FlorenceFlorence, Italy
| | - Erez J Cohen
- Department of Experimental and Clinical Medicine, University of FlorenceFlorence, Italy
| | - Alessio Martinelli
- Department of Information Engineering, University of FlorenceFlorence, Italy
| | - Anna Gottard
- Department of Statistics, Informatics, Applications, University of FlorenceFlorence, Italy
| | - Diego Minciacchi
- Department of Experimental and Clinical Medicine, University of FlorenceFlorence, Italy
| |
Collapse
|
29
|
Grothe M, Doppl K, Roth C, Roschka S, Platz T, Lotze M. Changes in motor cortex excitability for the trained and non-trained hand after long-term unilateral motor training. Neurosci Lett 2017; 647:117-121. [PMID: 28330717 DOI: 10.1016/j.neulet.2017.03.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 02/15/2017] [Accepted: 03/11/2017] [Indexed: 11/16/2022]
Abstract
Repetitive unilateral upper limb motor training does not only affect behavior but also increases excitability of the contralateral primary motor cortex (M1). The behavioral gain is partially transferred to the non-trained side. Changes in M1 intracortical facilitation (ICF) might as well be observed for both hand sides. We measured ICF of both left and right abductor pollicis brevis muscles (APB) before and after a two-week period of arm ability training (AAT) of the left hand in 13 strongly right handed healthy volunteers. Performance with AAT-tasks improved for both the left trained and right untrained hand. ICF for the untrained hand decreased over training while it remained unchanged for the left trained hand. Decrease of ICF for the right hand was moderately associated with an increase of AAT-performance for the untrained right hand. We conclude that ICF-imbalance between dominant and non-dominant hand is sensitive to long-term motor training: training of the non-dominant hand results in a decrease of ICF of the dominant hand. The ICF-decrease is associated with a transfer of training-induced improvement of performance from the non-dominant to the dominant hand.
Collapse
Affiliation(s)
| | - Karla Doppl
- Functional Imaging Unit, Center for Diagnostic Radiology, University of Greifswald, Germany
| | - Charlotte Roth
- Functional Imaging Unit, Center for Diagnostic Radiology, University of Greifswald, Germany
| | - Sybille Roschka
- BDH-Klinik Greifswald, Neurorehabilitation Centre and Spinal Cord Injury Unit, University of Greifswald, Germany
| | - Thomas Platz
- BDH-Klinik Greifswald, Neurorehabilitation Centre and Spinal Cord Injury Unit, University of Greifswald, Germany
| | - Martin Lotze
- Functional Imaging Unit, Center for Diagnostic Radiology, University of Greifswald, Germany.
| |
Collapse
|
30
|
Yang BI, Song BK, Joung SM. Effects of two-handed task training on upper limb function of chronic hemiplegic patients after stroke. J Phys Ther Sci 2017; 29:102-105. [PMID: 28210051 PMCID: PMC5300817 DOI: 10.1589/jpts.29.102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 10/11/2016] [Indexed: 11/24/2022] Open
Abstract
[Purpose] The purpose of this study was to determine whether two-handed task training is
effective on motor learning of injured cerebral cortex activation and upper extremity
function recovery after stroke. [Subjects and Methods] Two hemiplegic subjects
participated in this study: one patient was affected on the dominant side of the body and
the other was affected on the non-dominant side of the body, and both scored in the range
of 58–66 in the Fugl-Meyer assessment. The excitability of the corticospinal tract and
Manual Function Test were examined. [Results] The excitability of the corticospinal tract
and the Manual Function Test showed significant differences in the activation of both
sides of the cerebral cortex and in the variation in learning effect of upper extremity
motor function recovery in patients with hemiplegic non-dominant hand (left). [Conclusion]
The results suggested that two-handed task training had a different influence on dominant
hand (right) and non-dominant hand (left) motor recovery.
Collapse
Affiliation(s)
- Byung Il Yang
- Department of Physical Therapy, Bobath Memorial Hospital, Republic of Korea
| | - Bo Kyoung Song
- Department of Occupational Therapy, Kangwon University, Republic of Korea
| | - Sang Mi Joung
- Department of Occupational Therapy, Sanggi Youngseo University, Republic of Korea
| |
Collapse
|
31
|
Strigaro G, Matino E, Falletta L, Pizzamiglio C, Tondo G, Badawy R, Cantello R. Defective interhemispheric inhibition in drug-treated focal epilepsies. Brain Stimul 2016; 10:579-587. [PMID: 28017318 DOI: 10.1016/j.brs.2016.12.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Revised: 10/22/2016] [Accepted: 12/03/2016] [Indexed: 10/20/2022] Open
Abstract
BACKGROUND Focal epilepsies (FEs) arise from a lateralized network, while in generalized epilepsies (GEs) there is a bilateral involvement from the outset. Intuitively, the corpus callosum is the anatomical substrate for interhemispheric spread. OBJECTIVE We used transcranial magnetic stimulation (TMS) to explore whether there are any physiological differences in the corpus callosum of drug-treated patients with FE and those with genetic GE (GGE), compared to healthy subjects (HS). METHODS TMS was used to measure the interhemispheric inhibition (IHI) from right-to-left primary motor cortex (M1) and viceversa in 16 patients with FE, 17 patients with GGE and 17 HS. A conditioning stimulus (CS) was given to one M1 10 and 50 ms before a test stimulus delivered to the contralateral M1. Motor evoked potentials (MEPs) were analysed both as a function of the side of stimulation and of the epileptic focus (left-right). RESULTS In HS, IHI was reproducible with suppression of MEPs at ISIs of 10 and 50 ms. Similar effects occurred in GGE patients. FE patients behaved differently, since IHI was significantly reduced bilaterally. When FE patients were stratified according to the side of their epileptic focus, the long-ISI IHI (=50 ms) appeared to be defective only when the CS was applied over the "focal" hemisphere. CONCLUSIONS FE patients had a defective inhibitory response of contralateral M1 to inputs travelling from the "focal" hemisphere that was residual to the drug action. Whilst IHI changes would not be crucial for the GGE pathophysiology, they may represent one key factor for the contralateral spread of focal discharges, and seizure generalization.
Collapse
Affiliation(s)
- Gionata Strigaro
- Department of Translational Medicine, Section of Neurology, University of Piemonte Orientale, Novara, Italy; CRRF Mons. L. Novarese, Moncrivello, VC, Italy.
| | - Erica Matino
- Department of Translational Medicine, Section of Neurology, University of Piemonte Orientale, Novara, Italy
| | - Lina Falletta
- Department of Translational Medicine, Section of Neurology, University of Piemonte Orientale, Novara, Italy
| | - Chiara Pizzamiglio
- Department of Translational Medicine, Section of Neurology, University of Piemonte Orientale, Novara, Italy
| | - Giacomo Tondo
- Department of Translational Medicine, Section of Neurology, University of Piemonte Orientale, Novara, Italy
| | - Radwa Badawy
- Department of Medicine, Melbourne University, Victoria, Australia; Tamayoz Clinic, Cairo, Egypt
| | - Roberto Cantello
- Department of Translational Medicine, Section of Neurology, University of Piemonte Orientale, Novara, Italy
| |
Collapse
|
32
|
Smith MC, Stinear JW, Alan Barber P, Stinear CM. Effects of non-target leg activation, TMS coil orientation, and limb dominance on lower limb motor cortex excitability. Brain Res 2016; 1655:10-16. [PMID: 27840187 DOI: 10.1016/j.brainres.2016.11.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 09/15/2016] [Accepted: 11/07/2016] [Indexed: 11/25/2022]
Abstract
Transcranial magnetic stimulation (TMS) is used to examine corticospinal tract integrity after stroke, however, generating motor-evoked potentials (MEPs) in the lower limb (LL) can be difficult. Previous studies have used activation of the target leg to facilitate MEPs in the LL but this may not be possible after stroke due to hemiplegia. The dominance of the target limb may also be important, however the neurophysiological effects of LL dominance are not known. We investigated whether voluntary activation of the non-target leg combined with optimal TMS coil orientation increases corticomotor excitability in healthy adults, and whether limb dominance influences these results. TMS was delivered to induce a posterior-anterior (PA) and a medial-lateral (ML) cortical current in 22 healthy adults. MEPs were recorded in tibialis anterior (TA) with the participant at rest and when activating the non-target leg. We found that non-target leg activation increased corticomotor excitability in the target leg (reduced rest motor threshold (RMT) and MEP latency, and increased recruitment curve slope). ML cortical current also reduced RMT and MEP latency. The degree of footedness correlated with the degree of RMT asymmetry, with a PA but not ML cortical current direction. In summary, cross-facilitation by activating the non-target leg in a task requiring postural stabilisation and inducing ML current increase corticomotor excitability regardless of limb dominance. This protocol may have practical application in testing CST integrity after stroke when paretic limb thresholds are high, by increasing the likelihood of eliciting a MEP.
Collapse
Affiliation(s)
- Marie-Claire Smith
- Department of Medicine, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - James W Stinear
- Department of Exercise Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - P Alan Barber
- Department of Medicine, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; Centre for Brain Research, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Cathy M Stinear
- Department of Medicine, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; Centre for Brain Research, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| |
Collapse
|
33
|
Neural correlates of unihemispheric and bihemispheric motor cortex stimulation in healthy young adults. Neuroimage 2016; 140:141-9. [DOI: 10.1016/j.neuroimage.2016.01.057] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 12/18/2015] [Accepted: 01/26/2016] [Indexed: 12/15/2022] Open
|
34
|
Corticospinal and transcallosal modulation of unilateral and bilateral contractions of lower limbs. Eur J Appl Physiol 2016; 116:2197-2214. [DOI: 10.1007/s00421-016-3475-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 09/11/2016] [Indexed: 10/21/2022]
|
35
|
ter Braack EM, Koopman AWE, van Putten MJ. Early TMS evoked potentials in epilepsy: A pilot study. Clin Neurophysiol 2016; 127:3025-3032. [DOI: 10.1016/j.clinph.2016.06.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 05/31/2016] [Accepted: 06/03/2016] [Indexed: 11/16/2022]
|
36
|
Montenegro RA, Midgley A, Massaferri R, Bernardes W, Okano AH, Farinatti P. Bihemispheric Motor Cortex Transcranial Direct Current Stimulation Improves Force Steadiness in Post-Stroke Hemiparetic Patients: A Randomized Crossover Controlled Trial. Front Hum Neurosci 2016; 10:426. [PMID: 27601988 PMCID: PMC4994243 DOI: 10.3389/fnhum.2016.00426] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 08/09/2016] [Indexed: 11/13/2022] Open
Abstract
Post-stroke patients usually exhibit reduced peak muscular torque (PT) and/or force steadiness during submaximal exercise. Brain stimulation techniques have been proposed to improve neural plasticity and help to restore motor performance in post-stroke patients. The present study compared the effects of bihemispheric motor cortex transcranial direct current stimulation (tDCS) on PT and force steadiness during maximal and submaximal resistance exercise performed by post-stroke patients vs. healthy controls. A double-blind randomized crossover controlled trial (identification number: TCTR20151112001; URL: http://www.clinicaltrials.in.th/) was conducted involving nine healthy and 10 post-stroke hemiparetic individuals who received either tDCS (2 mA) or sham stimulus upon the motor cortex for 20 min. PT and force steadiness (reflected by the coefficient of variation (CV) of muscular torque) were assessed during unilateral knee extension and flexion at maximal and submaximal workloads (1 set of 3 repetitions at 100% PT and 2 sets of 10 repetitions at 50% PT, respectively). No significant change in PT was observed in post-stroke and healthy subjects. Force steadiness during knee extension (~25–35%, P < 0.001) and flexion (~22–33%, P < 0.001) improved after tDCS compared to the sham condition in post-stroke patients, but improved only during knee extension (~13–27%, P < 0.001) in healthy controls. These results suggest that tDCS may improve force steadiness, but not PT in post-stroke hemiparetic patients, which might be relevant in the context of motor rehabilitation programs.
Collapse
Affiliation(s)
- Rafael A Montenegro
- Graduate Program in Clinical and Experimental Physiopathology, Faculty of Medical Sciences, University of Rio de Janeiro StateRio de Janeiro, Brazil; Laboratory of Physical Activity and Health Promotion, Institute of Physical Education and Sports, University of Rio de Janeiro StateRio de Janeiro, Brazil
| | - Adrian Midgley
- Department of Sport and Physical Activity, Edge Hill University Ormskirk, Lancashire, UK
| | - Renato Massaferri
- Graduate Program in Clinical and Experimental Physiopathology, Faculty of Medical Sciences, University of Rio de Janeiro StateRio de Janeiro, Brazil; Laboratory of Physical Activity and Health Promotion, Institute of Physical Education and Sports, University of Rio de Janeiro StateRio de Janeiro, Brazil
| | - Wendell Bernardes
- Laboratory of Physical Activity and Health Promotion, Institute of Physical Education and Sports, University of Rio de Janeiro State Rio de Janeiro, Brazil
| | - Alexandre H Okano
- Physical Education Department, Federal University of Rio Grande do Norte Natal, RN, Brazil
| | - Paulo Farinatti
- Laboratory of Physical Activity and Health Promotion, Institute of Physical Education and Sports, University of Rio de Janeiro State Rio de Janeiro, Brazil
| |
Collapse
|
37
|
Marquez J, Conley A, Karayanidis F, Lagopoulos J, Parsons M. Anodal direct current stimulation in the healthy aged: Effects determined by the hemisphere stimulated. Restor Neurol Neurosci 2016; 33:509-19. [PMID: 26409409 PMCID: PMC4923724 DOI: 10.3233/rnn-140490] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Purpose: Research popularity and scope for the application of transcranial direct current stimulation have been steadily increasing yet many fundamental questions remain unanswered. We sought to determine if anodal stimulation of either hemisphere leads to improved performance of the contralateral hand and/or altered function of the ipsilateral hand, or affects movement preparation, in older subjects. Method: In this cross-over, double blind, sham controlled study, 34 healthy aged participants (age range 40– 86) were randomised to receive 20 minutes of stimulation to either the dominant or non-dominant motor cortex. The primary outcome was functional performance of both upper limbs measured by the Jebsen Taylor Test and hand grip strength. Additionally, we measured motor preparation using electrophysiological (EEG) recordings. Results: Anodal stimulation resulted in statistically significantly improved performance of the non-dominant hand (p < 0.01) but did not produce significant changes in the dominant hand on any measure (p > 0.05). This effect occurred irrespective of the hemisphere stimulated. Stimulation did not produce significant effects on measures of gross function, grip strength, reaction times, or electrophysiological measures on the EEG data. Conclusion: This study demonstrated that the hemispheres respond differently to anodal stimulation and the response appears to be task specific but not mediated by age.
Collapse
Affiliation(s)
- Jodie Marquez
- Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Institute, New Lambton, NSW, Australia
| | - Alexander Conley
- Hunter Medical Institute, New Lambton, NSW, Australia.,Faculty of Science and IT, University of Newcastle, Callaghan, NSW, Australia
| | - Frini Karayanidis
- Hunter Medical Institute, New Lambton, NSW, Australia.,Faculty of Science and IT, University of Newcastle, Callaghan, NSW, Australia
| | - Jim Lagopoulos
- Brain and Mind Institute, Sydney University, Sydney, NSW, Australia
| | - Mark Parsons
- Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Institute, New Lambton, NSW, Australia.,Department of Neurology, John Hunter Hospital, New Lambton, NSW, Australia
| |
Collapse
|
38
|
McGrath RL, Kantak SS. Reduced asymmetry in motor skill learning in left-handed compared to right-handed individuals. Hum Mov Sci 2016; 45:130-41. [DOI: 10.1016/j.humov.2015.11.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 11/18/2015] [Accepted: 11/19/2015] [Indexed: 11/27/2022]
|
39
|
Li X, He W, Li C, Wang YC, Slavens BA, Zhou P. Motor unit number index examination in dominant and non-dominant hand muscles. Laterality 2015; 20:699-710. [PMID: 26227495 DOI: 10.1080/1357650x.2015.1041971] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
This study investigated the effect of handedness on motor unit number index (MUNIX). Maximal hand strength, compound muscle action potential (CMAP) and voluntary surface electromyography (EMG) signals were measured bilaterally for the first dorsal interosseous (FDI) and thenar muscles in 24 right-handed and 2 left-handed healthy subjects. Mean (±standard error) grip and pinch forces in the dominant hand were 43.99 ± 2.36 kg and 9.36 ± 0.52 kg respectively, significantly larger than those in the non-dominant hand (grip: 41.37 ± 2.29 kg, p < .001; pinch: 8.79 ± 0.46 kg, p < .01). Examination of myoelectric parameters did not show a significant difference among the CMAP area, the MUNIX or motor unit size index (MUSIX) between the two sides in the FDI and thenar muscles. In addition, there was a lack of correlation between the strength and myoelectric parameters in regression analysis. However, strong correlations were observed between dominant and non-dominant hand muscles in both strength and myoelectric measures. Our results indicate that the population of motor units or spinal motor neurons as estimated from MUNIX may not be associated with handedness. Such findings help understand and interpret the MUNIX during its application for clinical or laboratory investigations.
Collapse
Affiliation(s)
- Xiaoyan Li
- a Department of Physical Medicine and Rehabilitation , University of Texas Health Science Center at Houston, and TIRR Memorial Hermann Research Center , Houston , TX , USA
| | | | | | | | | | | |
Collapse
|
40
|
Simpson M, Macdonell R. The use of transcranial magnetic stimulation in diagnosis, prognostication and treatment evaluation in multiple sclerosis. Mult Scler Relat Disord 2015; 4:430-436. [PMID: 26346791 DOI: 10.1016/j.msard.2015.06.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 06/10/2015] [Accepted: 06/22/2015] [Indexed: 11/26/2022]
Abstract
Despite advances in brain imaging which have revolutionised the diagnosis and monitoring of patients with Multiple Sclerosis (MS), current imaging techniques have limitations, including poor correlation with clinical disability and prognosis. There is growing evidence that electrophysiological techniques may provide complementary functional information which can aid in diagnosis, prognostication and perhaps even monitoring of treatment response in patients with MS. Transcranial magnetic stimulation (TMS) is an underutilised technique with potential to assist diagnosis, predict prognosis and provide an objective surrogate marker of clinical progress and treatment response. This review explores the existing body of evidence relating to the use of TMS in patients with MS, outlines the practical aspects and scope of TMS testing and reviews the current evidence relating to the use of TMS in diagnosis, disease classification, prognostication and response to symptomatic and disease-modifying therapies.
Collapse
Affiliation(s)
- Marion Simpson
- Department of Neurology, Austin Health and Faculty of Medicine, The University of Melbourne, Melbourne, Vic, Australia.
| | - Richard Macdonell
- Department of Neurology, Austin Health and Faculty of Medicine, The University of Melbourne, Melbourne, Vic, Australia
| |
Collapse
|
41
|
Montenegro R, Okano A, Gurgel J, Porto F, Cunha F, Massaferri R, Farinatti P. Motor cortex tDCS does not improve strength performance in healthy subjects. MOTRIZ: REVISTA DE EDUCACAO FISICA 2015. [DOI: 10.1590/s1980-65742015000200009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The influence of transcranial direct current stimulation (tDCS) upon maximal strength performance in exercises recruiting large muscle mass has not been established in healthy populations. The purpose of this study was to investigate whether anodal tDCS was able to increase the performance during maximal strength exercise (MSEX) in healthy subjects. Fourteen volunteers (age: 26 ± 4 yrs) performed two MSEX after anodal or sham tDCS (2mA; 20min prior MSEX), involving knee extensors and flexors in concentric isokinetic muscle actions of the dominant limb (3 sets of 10 repetitions). The electrical muscle activity (sEMG) of four recruited muscles was recorded during MSEX. Anodal tDCS was not able to improve force production (i.e., total work and peak torque), fatigue resistance, or electromyographic activity during MSEX when compared to sham condition. In conclusion, anodal tDCS applied upon the contralateral motor cortex was not capable of increasing the strength performance of knee extensors and flexors in young healthy subjects.
Collapse
|
42
|
Guerra A, Curcio G, Pasqualetti P, Bressi F, Petrichella S, Scrascia F, Ponzo D, Ferilli M, Vernieri F, Rossini PM, Ferreri F. Unilateral cortical hyperexcitability in congenital hydrocephalus: a TMS study. Neurocase 2014; 20:456-65. [PMID: 23682715 DOI: 10.1080/13554794.2013.791866] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Changes in cortical excitability are considered to play an important role in promoting brain plasticity both in healthy people and in neurological diseases. Hydrocephalus is a brain development disorder related to an excessive accumulation of cerebrospinal fluid (CSF) in the ventricular system. The functional relevance of cortical structural changes described in this disease is largely unexplored in human. We investigated cortical excitability using multimodal transcranial magnetic stimulation (TMS) in a case of congenital hydrocephalus with almost no neurological signs. METHODS A caucasian 40 years old, ambidextrous and multilingual woman affected by occult spina bifida and congenital symmetrical hydrocephalous underwent a TMS study. The intracortical and interhemispheric paired pulse paradigms were used, together with the mapping technique. RESULTS No significant differences were found in the resting motor thresholds between the two hemispheres. Instead, the intracortical excitability curves were statistically different between the two hemispheres (with short intracortical inhibition (SICI) being strongly reduced and intracortical facilitation (ICF) enhanced in the right one), and the interhemispheric curves showed a general hyper-excitability on the right hemisphere (when conditioned by the left one) and a general hypo-excitability in the left hemisphere (when conditioned by the right one). It is noteworthy that an asymmetric right hemisphere (RH) change of excitability was observed by means of mapping technique. CONCLUSION We hypothesize that in this ambidextrous subject, the observed RH hyper-excitability could represent a mechanism of plasticity to preserve functionality of specific brain areas possibly devoted to some special skills, such as multilingualism.
Collapse
Affiliation(s)
- Andrea Guerra
- a Department of Neurology , University Campus Bio-Medico , Rome , Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Al Sawah M, Rimawi M, Concerto C, Amer B, Cao Y, D'Antoni AV, Chusid E, Battaglia F. Symmetric corticospinal excitability and representation of vastus lateralis muscle in right-handed healthy subjects. Clin Anat 2014; 27:1053-7. [PMID: 25066941 DOI: 10.1002/ca.22438] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 06/26/2014] [Accepted: 06/28/2014] [Indexed: 12/13/2022]
Abstract
The purpose of this study was to determine the size and location of the representations of the anterior thigh muscles on the human motor cortex in the dominant and non-dominant hemispheres. Motor-evoked potentials (MEPs) induced by transcranial magnetic stimulation were recorded from the right and left vastus lateralis (rVL, lVL) muscles. A total of ten right-handed healthy volunteers participated in the study. In a single session experiment, we investigated VL muscle corticospinal excitability (motor threshold, MEP size, short interval intracortical inhibition, intracortical facilitation) and cortical representation (map area, volume, and location) in the dominant and non-dominant hemispheres. The motor threshold, MEPs, and intracortical excitability did not differ significantly between the hemispheres (P > 0.05). Furthermore, no difference between sides was found in the location of VL motor representation (mediolateral and anteroposterior axis) or in map area and volume (P > 0.05). Vastus lateralis muscle corticospinal excitability and cortical map were symmetrical in right-handed subjects. Future studies on patients with unilateral lower extremity injuries could examine side-to-side plastic reorganization in corticomotor output and map location in both hemispheres.
Collapse
|
44
|
Kwon HG, Son SM, Jang SH. Development of the transcallosal motor fiber from the corticospinal tract in the human brain: diffusion tensor imaging study. Front Hum Neurosci 2014; 8:153. [PMID: 24672465 PMCID: PMC3957222 DOI: 10.3389/fnhum.2014.00153] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 02/28/2014] [Indexed: 12/05/2022] Open
Abstract
Transcallosal motor fiber (TCMF) plays a role in interhemispheric inhibition (IHI) between two primary motor cortices. IHI has been an important concept in development of the motor system of the brain. Many studies have focused on the research of the topography of TCMF, however, little is known about development of TCMF. In the current study, we attempted to investigate development of TCMF from the corticospinal tract (CST) in the human brain using diffusion tensor tractography. A total of 76 healthy subjects were recruited for this study. We reconstructed the TCMF, which was derived from the CST, by selection of two regions of interest below the corpus callosum (upper and middle pons). Termination criteria used for fiber tracking were fractional anisotropy <0.2 and three tract turning angles of <45, 60, and 75°. The subjects were classified into four groups according to age: group A (0–5 years), group B (6–10 years), group C (11–15 years), and group D (16–20 years). Significant differences in the incidence of TCMF were observed between group B and group C, and between group B and group D, with tract turning angles of 60 and 75° (p < 0.05). However, no significant differences in any tract turning angle were observed between group C and group D (p > 0.05). In addition, in terms of the incidence of TCMF, no significant differences were observed between the three tract turning angles (p > 0.05). We obtained visualized TCMF from the CST with development and found that the incidence of TCMF differed significantly around the approximate age of 10 years. As a result, we demonstrated structural evidence for development of TCMF in the human brain.
Collapse
Affiliation(s)
- Hyeok Gyu Kwon
- Department of Physical Medicine and Rehabilitation, College of Medicine, Yeungnam University Daegu, South Korea
| | - Su Min Son
- Department of Physical Medicine and Rehabilitation, College of Medicine, Yeungnam University Daegu, South Korea
| | - Sung Ho Jang
- Department of Physical Medicine and Rehabilitation, College of Medicine, Yeungnam University Daegu, South Korea
| |
Collapse
|
45
|
Uehara K, Morishita T, Kubota S, Hirano M, Funase K. Functional difference in short- and long-latency interhemispheric inhibitions from active to resting hemisphere during a unilateral muscle contraction. J Neurophysiol 2014; 111:17-25. [DOI: 10.1152/jn.00494.2013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The aim of the present study was to investigate whether there is a functional difference in short-latency (SIHI) and long-latency (LIHI) interhemispheric inhibition from the active to the resting primary motor cortex (M1) with paired-pulse transcranial magnetic stimulation during a unilateral muscle contraction. In nine healthy right-handed participants, IHI was tested from the dominant to the nondominant M1 and vice versa under resting conditions or during performance of a sustained unilateral muscle contraction with the right or left first dorsal interosseous muscle at 10% and 30% maximum voluntary contraction. To obtain measurements of SIHI and LIHI, a conditioning stimulus (CS) was applied over the M1 contralateral to the muscle contraction, followed by a test stimulus over the M1 ipsilateral to the muscle contraction at short (10 ms) and long (40 ms) interstimulus intervals. We used four CS intensities to investigate SIHI and LIHI from the active to the resting M1 systematically. The amount of IHI during the unilateral muscle contractions showed a significant difference between SIHI and LIHI, but the amount of IHI during the resting condition did not. In particular, SIHI during the muscle contractions, but not LIHI, significantly increased with increase in CS intensity compared with the resting condition. Laterality of IHI was not detected in any of the experimental conditions. The present study provides novel evidence that a functional difference between SIHI and LIHI from the active to the resting M1 exists during unilateral muscle contractions.
Collapse
Affiliation(s)
- Kazumasa Uehara
- Human Motor Control Laboratory, Division of Human Sciences, Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima, Japan
| | - Takuya Morishita
- Human Motor Control Laboratory, Division of Human Sciences, Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima, Japan
| | - Shinji Kubota
- Human Motor Control Laboratory, Division of Human Sciences, Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima, Japan
| | - Masato Hirano
- Human Motor Control Laboratory, Division of Human Sciences, Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima, Japan
| | - Kozo Funase
- Human Motor Control Laboratory, Division of Human Sciences, Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima, Japan
| |
Collapse
|
46
|
Davidson T, Tremblay F. Hemispheric differences in corticospinal excitability and in transcallosal inhibition in relation to degree of handedness. PLoS One 2013; 8:e70286. [PMID: 23936180 PMCID: PMC3723808 DOI: 10.1371/journal.pone.0070286] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 06/20/2013] [Indexed: 11/19/2022] Open
Abstract
In this study, we examined hemispheric differences in corticospinal excitability and in transcallosal inhibition in a selected group of young adults (n = 34) grouped into three handedness categories (RH: strongly right-handed, n = 17; LH: strongly left-handed, n = 10; MH: mixed-handed, n = 7) based on laterality quotients (LQ) derived from the Edinburgh Handedness Inventory. Performance measures were also used to derive a laterality index reflecting right-left asymmetries in manual dexterity (Dextli) and in finger tapping speed (Speedli). Corticospinal excitability was assessed in each hemisphere by means of transcranial magnetic stimulation (TMS) using the first dorsal interosseus as the target muscle. TMS measures consisted of resting motor threshold (rMT), motor evoked potential (MEP) recruitment curve (RC) and the contralateral silent period (cSP) with the accompanying MEP facilitation. Hemispheric interactions were assessed by means of the ipsilateral silent period (iSP) to determine the onset latency and the duration of transcallosal inhibition (i.e., LTI and DTI). Analysis of hemispheric variations in measures of corticospinal excitability revealed no major asymmetries in relation to degrees of laterality or handedness, with the exception of a rightward increase in rMTs in the LH group. Similarly, no clear asymmetries were found when looking at hemispheric variations in measures of transcallosal inhibition. However, a large group effect was detected for LTI measures, which were found to be significantly shorter in the MH group than in either the LH or RH group. MH participants also tended to show longer DTI than the other participants. Further inspection of overall variations in LTI and DTI measures as a function of LQs revealed that both variables followed a non-linear relationship, which was best described by a 2nd order polynomial function. Overall, these findings provide converging evidence for a link between mixed-handedness and more efficient interhemispheric communication when compared to either right- or left-handedness.
Collapse
Affiliation(s)
- Travis Davidson
- School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
- Bruyère Research Institute, Ottawa, Ontario, Canada
| | - François Tremblay
- School of Rehabilitation Sciences, University of Ottawa, Ottawa, Ontario, Canada
- Bruyère Research Institute, Ottawa, Ontario, Canada
- * E-mail:
| |
Collapse
|
47
|
|
48
|
Kidgell DJ, Goodwill AM, Frazer AK, Daly RM. Induction of cortical plasticity and improved motor performance following unilateral and bilateral transcranial direct current stimulation of the primary motor cortex. BMC Neurosci 2013; 14:64. [PMID: 23815634 PMCID: PMC3701480 DOI: 10.1186/1471-2202-14-64] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 06/21/2013] [Indexed: 12/03/2022] Open
Abstract
Background Transcranial direct current stimulation (tDCS) is a non-invasive technique that modulates the excitability of neurons within the primary motor cortex (M1). Research shows that anodal-tDCS applied over the non-dominant M1 (i.e. unilateral stimulation) improves motor function of the non-dominant hand. Similarly, previous studies also show that applying cathodal tDCS over the dominant M1 improves motor function of the non-dominant hand, presumably by reducing interhemispheric inhibition. In the present study, one condition involved anodal-tDCS over the non-dominant M1 (unilateral stimulation) whilst a second condition involved applying cathodal-tDCS over the dominant M1 and anodal-tDCS over non-dominant M1 (bilateral stimulation) to determine if unilateral or bilateral stimulation differentially modulates motor function of the non-dominant hand. Using a randomized, cross-over design, 11 right-handed participants underwent three stimulation conditions: 1) unilateral stimulation, that involved anodal-tDCS applied over the non-dominant M1, 2) bilateral stimulation, whereby anodal-tDCS was applied over the non-dominant M1, and cathodal-tDCS over the dominant M1, and 3) sham stimulation. Transcranial magnetic stimulation (TMS) was performed before, immediately after, 30 and 60 minutes after stimulation to elucidate the neural mechanisms underlying any potential after-effects on motor performance. Motor function was evaluated by the Purdue pegboard test. Results There were significant improvements in motor function following unilateral and bilateral stimulation when compared to sham stimulation at all-time points (all P < 0.05); however there was no difference across time points between unilateral and bilateral stimulation. There was also a similar significant increase in corticomotor excitability with both unilateral and bilateral stimulation immediately post, 30 minutes and 60 minutes compared to sham stimulation (all P < 0.05). Unilateral and bilateral stimulation reduced short-interval intracortical inhibition (SICI) immediately post and at 30 minutes (all P < 0.05), but returned to baseline in both conditions at 60 minutes. There was no difference between unilateral and bilateral stimulation for SICI (P > 0.05). Furthermore, changes in corticomotor plasticity were not related to changes in motor performance. Conclusion These results indicate that tDCS induced behavioural changes in the non-dominant hand as a consequence of mechanisms associated with use-dependant cortical plasticity that is independent of the electrode arrangement.
Collapse
Affiliation(s)
- Dawson J Kidgell
- Centre for Physical Activity and Nutrition Research, Deakin University, Melbourne, Australia.
| | | | | | | |
Collapse
|
49
|
van Ulzen NR, Fiorio M, Cesari P. Motor resonance evoked by observation of subtle nonverbal behavior. Soc Neurosci 2013; 8:347-55. [DOI: 10.1080/17470919.2013.804878] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
50
|
Davidson T, Tremblay F. Age and hemispheric differences in transcallosal inhibition between motor cortices: an ispsilateral silent period study. BMC Neurosci 2013; 14:62. [PMID: 23800346 PMCID: PMC3695846 DOI: 10.1186/1471-2202-14-62] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 06/20/2013] [Indexed: 11/10/2022] Open
Abstract
Background In this study, we investigated age and hemispheric differences in transcallosal inhibition (TCI) in the context of active contraction using the ipsilateral silent period (iSP). We also examined whether age-related changes in TCI would be related to corresponding changes in manual performance with age. Participants consisted of right-handed individuals from two age groups (young adults, n=13; seniors, n=17). The iSP was measured for each hemisphere using suprathreshold TMS pulses delivered over the primary motor cortex ipsilateral to the maximally contracting hand while the homologue muscles of the opposite hand were lightly contracting (~15% of the maximum). Manual performance was assessed bilaterally for both grip strength and fine dexterity. Results Our results yielded two main findings. First, TCI measures derived from iSP were strongly influenced by age, whereas differences between hemispheres were only minor. Second, correlation analyses revealed that age-related variations in TCI measures were related to changes in manual performance, so that left-to-right TCI correlated with right hand performance and vice-versa for the opposite hand/hemisphere. Conclusion Overall, these results concur with other recent reports indicating that mutual inhibition between motor cortices tends to decline with age. In this respect, our observations are in line with the notion that the balance of normally predominantly inhibitory interactions between motor cortices is shifted toward excitatory processes with age.
Collapse
Affiliation(s)
- Travis Davidson
- School of Human Kinetics, University of Ottawa, Montpetit Hall, 125 University Private, Ottawa, ON K1N 6N5, Canada
| | | |
Collapse
|