1
|
Helling RM, van Dijk JP, Bauer PR, Thijs RD, Sander JW, Zwarts M, Visser GH. Cortical Excitability Before and After Long-Term Perampanel Treatment for Epilepsy. Ann Clin Transl Neurol 2025. [PMID: 40244706 DOI: 10.1002/acn3.70044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 03/05/2025] [Accepted: 03/13/2025] [Indexed: 04/19/2025] Open
Abstract
OBJECTIVE Antiseizure medications (ASMs), which may influence cortical excitability, are the mainstay of epilepsy treatment. Transcranial magnetic stimulation (TMS) helps evaluate cortical excitability. We assessed changes in TMS responses using serial TMS measurements in people treated with an adjunctive noncompetitive AMPA-receptor antagonist. METHODS We included adults with refractory, active epilepsy (≥ 1 seizure/month), advised to start adjunctive treatment with the noncompetitive AMPA-receptor antagonist perampanel as outpatients. After informed consent, we performed TMS measurement at three points: baseline before starting perampanel, at around 2 months after starting (4 mg/day), and at a final/effective dose around 6 months. Dependent on seizure reduction (> 50%), participants were dichotomized into responders (Rs) and nonresponders (NRs). We compared changes in motor cortex excitability through the rMT using a linear mixed-effects model. We evaluated TMS-evoked potentials (TEPs) to single pulse and paired pulse using within-subject Monte Carlo-based permutation analysis. RESULTS We included 18 adults, of whom 17 (6 R, 11 NR, 1 lost to follow-up) had baseline and second-month measurements, and nine (4 R, 5 NR) had all three. In responders, motor cortex excitability, quantified by rMT, significantly increased with increasing dose. Conversely, no significant changes were seen in the NR subgroup. TEPs for the single pulse and paired pulse showed no significant clusters for any peaks between measurement and group comparisons. INTERPRETATION The TEPs showed no significant changes between measurements and/or groups. Motor cortex excitability quantified by rMT is a potential biomarker to track or predict treatment outcomes in people starting adjunctive perampanel for epilepsy.
Collapse
Affiliation(s)
- Robert M Helling
- Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, the Netherlands
| | - Johannes P van Dijk
- Academic Center of Epileptology Kempenhaeghe, Heeze, the Netherlands
- Faculty of Electrical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
- Department of Orthodontics, Ulm University, Ulm, Germany
| | - Prisca R Bauer
- Institute of Musicians' Medicine, University Medical Center Freiburg, Freiburg im Breisgau, Germany
| | - Roland D Thijs
- Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, the Netherlands
- Department of Neurology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Josemir W Sander
- Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, the Netherlands
- UCL Queen Square Institute of Neurology, London, UK
- Chalfond Centre for Epilepsy, Chalfont St Peter, UK
- Department of Neurology, West China Hospital, Chengdu, China
| | - Machiel Zwarts
- Academic Center of Epileptology Kempenhaeghe, Heeze, the Netherlands
| | - Gerhard H Visser
- Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, the Netherlands
| |
Collapse
|
2
|
Banach M, Borowicz KK. Subchronic Treatment with CBZ Transiently Attenuates Its Anticonvulsant Activity in the Maximal Electroshock-Induced Seizure Test in Mice. Int J Mol Sci 2024; 25:13563. [PMID: 39769325 PMCID: PMC11677119 DOI: 10.3390/ijms252413563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/11/2024] [Accepted: 12/14/2024] [Indexed: 01/11/2025] Open
Abstract
The objective of this study is to evaluate the anticonvulsant efficacy of carbamazepine (CBZ) following acute and chronic administration across four treatment protocols in a murine model of maximal electroshock-induced seizures. A single dose of the drug was utilized as a control. The neurotoxic effects were evaluated in the chimney test and the passive avoidance task. Furthermore, plasma and brain concentrations of CBZ were quantified across all treatment protocols. The subchronic administration of CBZ (7 × 2 protocol) resulted in an attenuation of its antielectroshock effect. In the three remaining treatment regimens (7 × 1, 14 × 1, and 14 × 2) the median effective doses of CBZ were comparable to the control. Neither acute nor chronic treatment with CBZ resulted in a discernible impact on motor coordination or long-term memory. The plasma and brain concentrations of CBZ were significantly lower in most chronic protocols when compared to a single-dose application. This may explain the transient attenuation of CBZ effectiveness in the 7 × 2 protocol, but not the return to the previous level. The anticonvulsant and neurotoxic profiles of CBZ did not differ after single and chronic administration. Therefore, experimental chronic studies with CBZ are not prerequisites for concluding and possibly translating results to clinical conditions.
Collapse
Affiliation(s)
| | - Kinga K. Borowicz
- Independent Experimental Neuropathophysiology Unit, Chair and Department of Toxicology, Medical University of Lublin, Jaczewskiego 8b, PL-20-090 Lublin, Poland;
| |
Collapse
|
3
|
Ali I, Jupp B, Hudson MR, Major B, Silva J, Yamakawa GR, Casillas-Espinosa PM, Braine E, Thergarajan P, Haskali MB, Vivash L, Brkljaca R, Shultz SR, Kwan P, Fukushima K, Sachdev P, Cheng JY, Mychasiuk R, Jones NC, Wright DK, OBrien TJ. In vivo biomarkers of GABAergic function in epileptic rats treated with the GAT-1 inhibitor E2730. Epilepsia 2024; 65:3376-3390. [PMID: 39302665 DOI: 10.1111/epi.18119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/23/2024] [Accepted: 08/27/2024] [Indexed: 09/22/2024]
Abstract
OBJECTIVE E2730, an uncompetitive γ-aminobutyric acid (GABA) transporter-1 (GAT-1) inhibitor, has potent anti-seizure effects in a rodent model of chronic temporal lobe epilepsy, the kainic acid status epilepticus (KASE) rat model. In this study, we examined purported neuroimaging and physiological surrogate biomarkers of the effect of E2730 on brain GABAergic function. METHODS We conducted a randomized cross-over study, incorporating 1-week treatments with E2730 (100 mg/kg/day subcutaneous infusion) or vehicle in epileptic post-KASE rats. KASE rats underwent serial 9.4 T magnetic resonance spectroscopy (MRS) measuring GABA and other brain metabolites, [18F]Flumazenil positron emission tomography (PET) quantifying GABAA receptor availability, quantitative electroencephalography (qEEG) and transcranial magnetic stimulation (TMS)-mediated motor activity, as well as continuous video-EEG recording to measure spontaneous seizures during each treatment. Age-matched, healthy control animals treated with E2730 or vehicle were also studied. RESULTS E2730 treatment significantly reduced spontaneous seizures, with 8 of 11 animals becoming seizure-free. MRS revealed that E2730-treated animals had significantly reduced taurine levels. [18F]Flumazenil PET imaging revealed no changes in GABA receptor affinity or density during E2730 treatment. The power of gamma frequency oscillations in the EEG was decreased significantly in the auditory cortex and hippocampus of KASE and control rats during E2730 treatment. Auditory evoked gamma frequency power was enhanced by E2730 treatment in the auditory cortex of KASE and healthy controls, but only in the hippocampus of KASE rats. E2730 did not influence motor evoked potentials triggered by TMS. SIGNIFICANCE This study identified clinically relevant changes in multimodality imaging and functional purported biomarkers of GABAergic activity during E2730 treatment in epileptic and healthy control animals. These biomarkers could be utilized in clinical trials of E2730 and potentially other GABAergic drugs to provide surrogate endpoints, thereby reducing the cost of such trials.
Collapse
Affiliation(s)
- Idrish Ali
- The Department of Neuroscience, Monash University, Melbourne, Australia
- Department of Medicine, The University of Melbourne, Parkville, Australia
- Department of Neurology, Alfred Health, Melbourne, Victoria, Australia
| | - Bianca Jupp
- The Department of Neuroscience, Monash University, Melbourne, Australia
| | - Matthew R Hudson
- The Department of Neuroscience, Monash University, Melbourne, Australia
| | - Brendan Major
- The Department of Neuroscience, Monash University, Melbourne, Australia
| | - Juliana Silva
- The Department of Neuroscience, Monash University, Melbourne, Australia
| | - Glenn R Yamakawa
- The Department of Neuroscience, Monash University, Melbourne, Australia
| | - Pablo M Casillas-Espinosa
- The Department of Neuroscience, Monash University, Melbourne, Australia
- Department of Medicine, The University of Melbourne, Parkville, Australia
- Department of Neurology, Alfred Health, Melbourne, Victoria, Australia
| | - Emma Braine
- The Department of Neuroscience, Monash University, Melbourne, Australia
| | | | - Mohammad B Haskali
- Department of Radiopharmaceutical Sciences, Cancer Imaging, The Peter MacCallum Cancer Centre, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Victoria, Australia
| | - Lucy Vivash
- The Department of Neuroscience, Monash University, Melbourne, Australia
- Department of Medicine, The University of Melbourne, Parkville, Australia
- Department of Neurology, Alfred Health, Melbourne, Victoria, Australia
| | | | - Sandy R Shultz
- The Department of Neuroscience, Monash University, Melbourne, Australia
- Department of Neurology, Alfred Health, Melbourne, Victoria, Australia
- Centre for Trauma and Mental Health Research, Vancouver Island University, Nanaimo, Canada
| | - Patrick Kwan
- The Department of Neuroscience, Monash University, Melbourne, Australia
- Department of Medicine, The University of Melbourne, Parkville, Australia
- Department of Neurology, Alfred Health, Melbourne, Victoria, Australia
| | | | - Pallavi Sachdev
- Clinical Evidence Generation, Translational Sciences, Eisai Inc., Bunkyo, Japan
| | - Jocelyn Y Cheng
- Clinical Evidence Generation, Translational Sciences, Eisai Inc., Bunkyo, Japan
| | | | - Nigel C Jones
- The Department of Neuroscience, Monash University, Melbourne, Australia
- Department of Medicine, The University of Melbourne, Parkville, Australia
- Department of Neurology, Alfred Health, Melbourne, Victoria, Australia
| | - David K Wright
- The Department of Neuroscience, Monash University, Melbourne, Australia
| | - Terence J OBrien
- The Department of Neuroscience, Monash University, Melbourne, Australia
- Department of Medicine, The University of Melbourne, Parkville, Australia
- Department of Neurology, Alfred Health, Melbourne, Victoria, Australia
| |
Collapse
|
4
|
Helling RM, Shmuely S, Bauer PR, Tolner EA, Visser GH, Thijs RD. Tracking cortical excitability dynamics with transcranial magnetic stimulation in focal epilepsy. Ann Clin Transl Neurol 2022; 9:540-551. [PMID: 35297209 PMCID: PMC8994988 DOI: 10.1002/acn3.51535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/21/2022] [Accepted: 02/23/2022] [Indexed: 11/05/2022] Open
Abstract
INTRODUCTION The lack of reliable biomarkers constrain epilepsy management. We assessed the potential of repeated transcranial magnetic stimulation with electromyography (TMS-EMG) to track dynamical changes in cortical excitability on a within-subject basis. METHODS We recruited people with refractory focal epilepsy who underwent video-EEG monitoring and drug tapering as part of the presurgical evaluation. We performed daily TMS-EMG measurements with additional postictal assessments 1-6 h following seizures to assess resting motor threshold (rMT), and motor evoked potentials (MEPs) with single- and paired-pulse protocols. Anti-seizure medication (ASM) regimens were recorded for the day before each measurement and expressed in proportion to the dosage before tapering. Additional measurements were performed in healthy controls to evaluate day-to-day rMT variability. RESULTS We performed 77 (58 baseline, 19 postictal) measurements in 16 people with focal epilepsy and 35 in seven healthy controls. Controls showed minimal day-to-day rMT variation. Withdrawal of ASMs was associated with a lower rMT without affecting MEPs of single- and paired-pulse TMS-EMG paradigms. Postictal measurements following focal to bilateral tonic-clonic seizures demonstrated unaltered rMT and increased short interval intracortical inhibition, while measurements following focal seizures with impaired awareness showed decreased rMT's and reduced short and long interval intracortical inhibition. CONCLUSION Serial within-subject rMT measurements yielded reproducible, stable results in healthy controls. ASM tapering and seizures had distinct effects on TMS-EMG excitability indices in people with epilepsy. Drug tapering decreased rMT, indicating increased overall corticospinal excitability, whereas seizures affected intracortical inhibition with contrasting effects between seizure types.
Collapse
Affiliation(s)
- Robert M Helling
- Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, The Netherlands
| | - Sharon Shmuely
- Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, The Netherlands.,NIHR University College London Hospitals Biomedical Research Centre, UCL Institute of Neurology, Queen Square, London, UK
| | - Prisca R Bauer
- Department of Psychosomatic Medicine and Psychotherapy, University Medical Center Freiburg, Germany
| | - Else A Tolner
- Department of Neurology, Leiden University Medical Centre, Leiden, The Netherlands.,Department of Human Genetics, Leiden University Medical Centre, Leiden, The Netherlands
| | - Gerhard H Visser
- Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, The Netherlands
| | - Roland D Thijs
- Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, The Netherlands.,NIHR University College London Hospitals Biomedical Research Centre, UCL Institute of Neurology, Queen Square, London, UK.,Department of Neurology, Leiden University Medical Centre, Leiden, The Netherlands
| |
Collapse
|
5
|
Hotta N, Miyamoto M, Suzuki K. Lamotrigine and retigabine increase motor threshold in transcranial magnetic stimulation at the dose required to produce an antiepileptic effect against maximal electroshock-induced seizure in rats. Neurosci Lett 2022; 771:136460. [PMID: 35051437 DOI: 10.1016/j.neulet.2022.136460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 01/07/2022] [Accepted: 01/11/2022] [Indexed: 10/19/2022]
Abstract
Transcranial magnetic stimulation (TMS) is a neurophysiological technique that enables noninvasive evaluation of neuronal excitability in the brain. In the past, a large number of antiepileptic drugs were shown to increase the motor threshold (MT) in clinical TMS studies, suggesting the inhibition of excessive neuronal excitability. To facilitate drug development, the confirmation of similar changes in neurophysiological biomarkers in both preclinical and clinical studies is crucial; however, until now, there have been no data showing the drug efficacies on neuronal excitabilities as measured using TMS in rodents. In this study, we found that the antiepileptic drugs, lamotrigine (10 mg/kg) and retigabine (5 mg/kg), significantly increased the MT in rats using TMS, which is similar to clinical study findings. In addition, we demonstrated that these drugs could inhibit maximal electroshock (MES)-induced seizures in rats when given at the same dose required to be effective in the TMS experiment. These findings suggest that the effects of antiepileptic drugs in our rat TMS system have a similar sensitivity to that of the antiepileptic effects in rats with MES-induced seizures. The measurement of MT in a TMS study may be a noninvasive translational approach for predicting antiepileptic efficacy in drug development.
Collapse
Affiliation(s)
- Natsu Hotta
- Neuroscience Drug Discovery Unit, Research, Takeda Pharmaceutical Company Limited
| | - Maki Miyamoto
- Drug Metabolism and Pharmacokinetics Research Laboratories, Research, Takeda Pharmaceutical Company Limited
| | - Kazunori Suzuki
- Neuroscience Drug Discovery Unit, Research, Takeda Pharmaceutical Company Limited.
| |
Collapse
|
6
|
Tsuboyama M, Liu J, Kaye H, DiBacco M, Pearl PL, Rotenberg A. Transcranial Magnetic Stimulation in Succinic Semialdehyde Dehydrogenase Deficiency: A Measure of Maturational Trajectory of Cortical Excitability. J Child Neurol 2021; 36:1169-1176. [PMID: 34058900 PMCID: PMC8630082 DOI: 10.1177/08830738211008735] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Succinic semialdehyde dehydrogenase deficiency (SSADHD) is a disorder of GABA degradation with use-dependent downregulation of postsynaptic GABAA/B receptors. We aim to measure the resulting cortical excitation: inhibition ratio using transcranial magnetic stimulation. METHODS In this single-center observational study, 18 subjects with SSADHD and 8 healthy controls underwent transcranial magnetic stimulation. Resting motor threshold, cortical silent period, and long-interval intracortical inhibition were measured in both groups. Resting motor threshold in focal epilepsy patients from an institutional transcranial magnetic stimulation database were also included. RESULTS SSADHD subjects had higher resting motor threshold than healthy controls but lower relative to focal epilepsy patients. Resting motor threshold decreased with age in all groups. Cortical silent period was longer in SSADHD subjects than in healthy controls. No difference was detected in long-interval intracortical inhibition between the 2 groups. CONCLUSION Findings suggest abnormal corticospinal tract physiology in SSADHD, but with preserved developmental trajectory for corticospinal tract maturation. Defining features of these transcranial magnetic stimulation metrics in SSADHD will be better elucidated through this ongoing longitudinal study.
Collapse
Affiliation(s)
- Melissa Tsuboyama
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, 1862Boston Children's Hospital, Boston, MA, USA
| | - Jingjing Liu
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, 1862Boston Children's Hospital, Boston, MA, USA.,F.M. Kirby Neurobiology Center, 1862Boston Children's Hospital, Boston, MA, USA
| | - Harper Kaye
- 12259Boston University School of Medicine, Behavioral Neuroscience Program, Boston, MA, USA
| | - Melissa DiBacco
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, 1862Boston Children's Hospital, Boston, MA, USA
| | - Phillip L Pearl
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, 1862Boston Children's Hospital, Boston, MA, USA
| | - Alexander Rotenberg
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, 1862Boston Children's Hospital, Boston, MA, USA.,F.M. Kirby Neurobiology Center, 1862Boston Children's Hospital, Boston, MA, USA.,Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| |
Collapse
|
7
|
Miron JP, Jodoin VD, Lespérance P, Blumberger DM. Repetitive transcranial magnetic stimulation for major depressive disorder: basic principles and future directions. Ther Adv Psychopharmacol 2021; 11:20451253211042696. [PMID: 34589203 PMCID: PMC8474312 DOI: 10.1177/20451253211042696] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 08/11/2021] [Indexed: 12/14/2022] Open
Abstract
Repetitive transcranial magnetic stimulation (rTMS) is a safe and well-tolerated intervention for major depressive disorder (MDD). Over 150 randomized controlled trials (RCTs) have been carried out, and its efficacy has been confirmed in dozens of meta-analyses. Real world data has also confirmed the effectiveness of rTMS for MDD in clinical practice, with the most recent literature indicating response rates of 40-50% and remission rates of 25-30%. In this review, we first offer an historical perspective, followed by a review of basic principles, such as putative mechanisms, procedures and protocols, stimulation targets, efficacy and durability of response, side effects, and the placebo controversy. In the second part of this review, we first discuss solutions to increase accessibility to rTMS, such as modifications to treatment equipment, protocols and setting. We continue with possible means to further increase effectiveness, such as treatment personalization and extension. We conclude by addressing the scheduling issue, with accelerated rTMS (arTMS) as a possible solution.
Collapse
Affiliation(s)
- Jean-Philippe Miron
- Centre de Recherche du CHUM (CRCHUM), Centre Hospitalier de l'Université de Montréal (CHUM) and Département de Psychiatrie, Faculté de Médecine, Université́ de Montréal, Montréal, QC, Canada Institute of Medical Science and Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, ON, Canada CHUM, 1051 Sanguinet, Montréal, QC, H2X 3E4, Canada
| | - Véronique Desbeaumes Jodoin
- CRCHUM, CHUM and Département de Psychiatrie, Faculté de Médecine, Université́ de Montréal, Montréal, QC, Canada
| | - Paul Lespérance
- CRCHUM, CHUM and Département de Psychiatrie, Faculté de Médecine, Université́ de Montréal, Montréal, QC, Canada
| | - Daniel M Blumberger
- Institute of Medical Science and Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
8
|
Antidepressant effect of repetitive transcranial magnetic stimulation is not impaired by intake of lithium or antiepileptic drugs. Eur Arch Psychiatry Clin Neurosci 2021; 271:1245-1253. [PMID: 34218305 PMCID: PMC8429361 DOI: 10.1007/s00406-021-01287-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 06/21/2021] [Indexed: 12/29/2022]
Abstract
INTRODUCTION The effect of concomitant medication on repetitive transcranial magnetic stimulation (rTMS) outcomes in depression remains understudied. Recent analyses show attenuation of rTMS effects by antipsychotic medication and benzodiazepines, but data on the effects of antiepileptic drugs and lithium used as mood stabilizers or augmenting agents are sparse despite clinical relevance. Preclinical electrophysiological studies suggest relevant impact of the medication on treatment, but this might not translate into clinical practice. We aimed to investigate the role of lithium (Li), lamotrigine (LTG) and valproic acid (VPA) by analyzing rTMS treatment outcomes in depressed patients. METHODS 299 patients with uni- and bipolar depression treated with rTMS were selected for analysis in respect to intake of lithium, lamotrigine and valproic acid. The majority (n = 251) were treated with high-frequency (10-20 Hz) rTMS of the lDLPFC for an average of 17 treatment sessions with a figure-of-8 coil with a MagVenture system aiming for 110% resting motor threshold, and smaller groups of patients were being treated with other protocols including intermittent theta-burst stimulation and bilateral prefrontal and medial prefrontal protocols. For group comparisons, we used analysis of variance with the between-subjects factor group or Chi-Square Test of Independence depending on the scales of measurement. For post-hoc tests, we used least significant difference (LSD). For differences in treatment effects between groups, we used an ANOVA with the between-subjects factor group (groups: no mood stabilizer, Li, LTG, VPA, Li + LTG) the within-subjects factor treatment (pre vs. post treatment with rTMS) and also Chi-Square Tests of independence for response and remission. RESULTS Overall, patients showed an amelioration of symptoms with no significant differences for the main effect of group and for the interaction effect treatment by group. Based on direct comparisons between the single groups taking mood stabilizers against the group taking no mood stabilizers, we see a superior effect of lamotrigine, valproic acid and combination of lithium and lamotrigine for the response and remission rates. Motor threshold was significantly and markedly higher for patients taking valproic acid. CONCLUSION Being treated with lithium, lamotrigine and valproic acid had no relevant influence on rTMS treatment outcome. The results suggest there is no reason for clinicians to withhold or withdraw these types of medication from patients who are about to undergo a course of rTMS. Prospective controlled work on the subject is encouraged.
Collapse
|
9
|
Hamed SA. Cortical excitability in epilepsy and the impact of antiepileptic drugs: transcranial magnetic stimulation applications. Expert Rev Neurother 2020; 20:707-723. [PMID: 32510285 DOI: 10.1080/14737175.2020.1780122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 06/05/2020] [Indexed: 11/08/2022]
Abstract
INTRODUCTION Epileptic conditions are characterized by impaired cortical excitation/inhibition balance and interneuronal disinhibition. Transcranial magnetic stimulation (TMS) is a neurophysiological method that assesses brain excitation/inhibition. AREA COVERED This review was written after a detailed search in PubMed, EMBASE, ISI web of science, SciELO, Scopus, and Cochrane Controlled Trials databases from 1990 to 2020. It summarizes TMS applications for diagnostic and therapeutic purposes in epilepsy. TMS studies help to distinguish different epilepsy conditions and explore the antiepileptic drugs' (AEDs') effects on neuronal microcircuits and plasticity mechanisms. Repetitive TMS studies showed that low-frequency rTMS (0.33-1 Hz) can reduce seizures' frequency in refractory epilepsy or pause ongoing seizures; however, there is no current approval for its use in such patients as adjunctive treatment to AEDs. EXPERT OPINION There are variable and conflicting TMS results which reflect the distinct pathogenic mechanisms of each epilepsy condition, the dynamic epileptogenic process over the long disease course resulting in the development of recurrent spontaneous seizures and/or progression of epilepsy after it is established, and the differential effect of AEDs on cortical excitability. Future epilepsy research should focus on combined TMS/functional connectivity studies that explore the complex cortical excitability circuits and networks using different TMS parameters and techniques.
Collapse
Affiliation(s)
- Sherifa Ahmed Hamed
- Department of Neurology and Psychiatry, Assiut University Hospital , Assiut, Egypt
| |
Collapse
|
10
|
Tsuboyama M, Kaye HL, Rotenberg A. Review of Transcranial Magnetic Stimulation in Epilepsy. Clin Ther 2020; 42:1155-1168. [PMID: 32624320 DOI: 10.1016/j.clinthera.2020.05.016] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 05/18/2020] [Accepted: 05/27/2020] [Indexed: 12/25/2022]
Abstract
PURPOSE Despite the availability of numerous pharmacologic and nonpharmacologic antiseizure therapies, a fraction of patients with epilepsy remain refractory to current treatment options, underscoring the need for novel drugs and neuromodulatory therapies. Transcranial magnetic stimulation (TMS), coupled with either electromyography or electroencephalography, enables rapid measurement of the cortical excitation/inhibition ratio, which is pathologically shifted toward excess excitability in patients with epilepsy. In this review, we summarize: (1) TMS protocols that have been deployed to identify promising compounds in the antiepilepsy drug (AED)-development pipeline, and (2) the therapeutic potential of TMS in the treatment of drug-resistant seizures. METHODS A focused literature review of the use of TMS in epilepsy, using a PubMed search, was performed. Over 70 articles were included that pertained to: (1) the use of TMS-EMG and TMS-EEG in elucidating the mechanisms of action of AEDs and in discovering potential new AEDs; and (2) the use of repetitive TMS in the treatment of seizures. FINDINGS Studies from the literature have reported that AEDs alter TMS-derived metrics, typically by leading to a net increase in cortical inhibition with successful therapy. Preclinical TMS work in rodent models of epilepsy has led to the development of novel antiseizure drug compounds. Clinical translational studies of TMS have been used to determine guidelines on the dosages of other agents in the AED pipeline in preparation for clinical trials. Several studies have described the use of therapeutic repetitive TMS in both the ictal and interictal states of epilepsy, with inconsistent results. IMPLICATIONS TMS has diagnostic and therapeutic potential in epilepsy. TMS-derived markers can enable early-stage measures of AED target engagement, and can facilitate studies of the pharmacokinetic and pharmacodynamic properties of AEDs. TMS may also be used in the early prediction of the efficacy of different AEDs in treating patients, and in direct neuromodulation of epileptic networks. From the therapeutics perspective, despite favorable results in some trials, the optimization of treatment paradigms and the determination of ideal candidates for TMS are still needed. Finally, preclinical experiments of TMS have provided mechanistic insight into its effects on the excitation/inhibition ratio, and may facilitate rational drug-device coupling paradigms. Overall, the capacity of TMS in both the modulation and measurement of changes in cortical excitability highlights its unique role in advancing antiepilepsy therapeutics.
Collapse
Affiliation(s)
- Melissa Tsuboyama
- Neuromodulation Program, Department of Neurology, Division of Epilepsy and Clinical Neurophysiology, Boston Children's Hospital, Boston, MA, USA; FM Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Boston, MA, USA
| | - Harper L Kaye
- Behavioral Neuroscience Program, Boston University School of Medicine, Boston, MA, USA
| | - Alexander Rotenberg
- Neuromodulation Program, Department of Neurology, Division of Epilepsy and Clinical Neurophysiology, Boston Children's Hospital, Boston, MA, USA; FM Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Boston, MA, USA; Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, Boston, MA, USA.
| |
Collapse
|
11
|
Huang HW, Tsai JJ, Su PF, Mau YL, Wu YJ, Wang WC, Lin CCK. Cortical Excitability by Transcranial Magnetic Stimulation as Biomarkers for Seizure Controllability in Temporal Lobe Epilepsy. Neuromodulation 2020; 23:399-406. [PMID: 31840383 DOI: 10.1111/ner.13093] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 11/08/2019] [Accepted: 11/25/2019] [Indexed: 12/01/2022]
Abstract
OBJECTIVE To investigate whether indicators of cortical excitability are good biomarkers of seizure controllability in temporal lobe epilepsy (TLE). MATERIALS AND METHODS Three groups of subjects were recruited: those with poorly controlled (PC) TLE (N = 41), well-controlled (WC) TLE (N = 71), and healthy controls (N = 44). Short- and long-latency recovery curves were obtained by paired-pulse transcranial magnetic stimulation. Linear mixed effect models were used to study the effects of group, interstimulus interval (ISI), and antiepileptic drugs on long-interval intracortical inhibition (LICI) and short-interval intracortical inhibition (SICI) and intracortical facilitation (ICF). RESULTS The mixed effect model that did not incorporate antiepileptic drugs showed that group and ISI were significant factors for LICI and SICI/ICF. LICI in the healthy control group was greater than in the two epilepsy groups, and the difference was significant at ISIs of 50, 150, and 200 msec. In contrast, SICI/ICF in the PC group was greater than in the healthy control and WC groups, and the difference was significant at an ISI of 15 msec. However, due to large variance, it was difficult to identify a cutoff value with both good sensitivity and good specificity. Incorporating the information of antiepileptic drugs to the mixed effect model did not change the overall results. CONCLUSIONS Although LICI and SICI/ICF parameters were significantly different at the group level, they may not be suitable biomarkers for the controllability of TLE at the subject level.
Collapse
Affiliation(s)
- Han-Wei Huang
- Department of Neurology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jing-Jane Tsai
- Department of Neurology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Pei-Fang Su
- Department of Statistics, College of Management, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Lin Mau
- Department of Statistics, College of Management, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Jen Wu
- Department of Neurology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Wen-Chi Wang
- Department of Neurology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chou-Ching K Lin
- Department of Neurology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
12
|
Hamed SA, Tohamy AM, Mohamed KO, El Mageed Abd El Zaher MA. The Effect of Epilepsy and Antiepileptic Drugs on Cortical Motor Excitability in Patients With Temporal Lobe Epilepsy. Clin Neuropharmacol 2020; 43:175-184. [PMID: 32969972 DOI: 10.1097/wnf.0000000000000412] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVES Transcranial magnetic stimulation (TMS) has been used to assess cortical disinhibition/excitation with epilepsy and determine the degree of patients' response to antiepileptic drugs (AEDs). However, the results of studies are variable and conflicting. We assessed cortical motor excitability in adults with temporal lobe epilepsy (TLE). METHODS The TMS parameters used for assessment were: resting (RMT) and active (AMT) motor thresholds, cortical silent period (CSP), and central motor conduction time (CMCT). RESULTS AND CONCLUSIONS This study included 40 adults (males, 22; females, 18) with TLE with impaired awareness or to bilateral tonic clonic seizures (mean age, 32.50 ± 3.38 years; duration of illness, 6.15 ± 2.02 years) and on treatment with AEDs (valproate, 15; carbamazepine, 15; levetiracetam, 10]. The majority (62.5%) were seizure-free for ≥1 year on AEDs before TMS testing. All had normal brain magnetic resonance imaging except two, who had mesial temporal sclerosis. Comparing the entire patients with controls, patients had significantly bihemispheric higher RMT and AMT particularly over the epileptic hemisphere and shorter CSP and CMCT in the epileptic hemisphere. Shorter CSP and CMCT were observed in patients on valproate or carbamazepine and those who were uncontrolled on medications but not with levetiracetam. Significant correlations were identified between RMT and AMT (P = 0.01) and between CSP and CMCT (P = 0.001). We conclude that chronic TLE had increased cortical disinhibition in the epileptic hemisphere which can spread outside the epileptogenic zone despite the apparent control on AEDs. The TMS studies using CSP and CMCT may help future prediction of pharmacoresistance and, therefore, the need of combined AEDs with multiple mechanisms of action.
Collapse
Affiliation(s)
- Sherifa Ahmed Hamed
- Department of Neurology and Psychiatry, Assiut University Hospital, Assiut, Egypt
| | | | | | | |
Collapse
|
13
|
Tsuboyama M, Lee Kaye H, Rotenberg A. Biomarkers Obtained by Transcranial Magnetic Stimulation of the Motor Cortex in Epilepsy. Front Integr Neurosci 2019; 13:57. [PMID: 31736722 PMCID: PMC6837164 DOI: 10.3389/fnint.2019.00057] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 09/23/2019] [Indexed: 12/13/2022] Open
Abstract
Epilepsy is associated with numerous neurodevelopmental disorders. Transcranial magnetic stimulation (TMS) of the motor cortex coupled with electromyography (EMG) enables biomarkers that provide measures of cortical excitation and inhibition that are particularly relevant to epilepsy and related disorders. The motor threshold (MT), cortical silent period (CSP), short interval intracortical inhibition (SICI), intracortical facilitation (ICF), and long interval intracortical inhibition (LICI) are among TMS-derived metrics that are modulated by antiepileptic drugs. TMS may have a practical role in optimization of antiepileptic medication regimens, as studies demonstrate dose-dependent relationships between TMS metrics and acute medication administration. A close association between seizure freedom and normalization of cortical excitability with long-term antiepileptic drug use highlights a plausible utility of TMS in measures of anti-epileptic drug efficacy. Finally, TMS-derived biomarkers distinguish patients with various epilepsies from healthy controls and thus may enable development of disorder-specific biomarkers and therapies both within and outside of the epilepsy realm.
Collapse
Affiliation(s)
- Melissa Tsuboyama
- Neuromodulation Program, Department of Neurology, Division of Epilepsy and Clinical Neurophysiology, Boston Children's Hospital, Boston, MA, United States.,FM Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Boston, MA, United States
| | - Harper Lee Kaye
- Neuromodulation Program, Department of Neurology, Division of Epilepsy and Clinical Neurophysiology, Boston Children's Hospital, Boston, MA, United States.,FM Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Boston, MA, United States
| | - Alexander Rotenberg
- Neuromodulation Program, Department of Neurology, Division of Epilepsy and Clinical Neurophysiology, Boston Children's Hospital, Boston, MA, United States.,FM Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Boston, MA, United States.,Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, Boston, MA, United States
| |
Collapse
|
14
|
Minzenberg MJ, Leuchter AF. The effect of psychotropic drugs on cortical excitability and plasticity measured with transcranial magnetic stimulation: Implications for psychiatric treatment. J Affect Disord 2019; 253:126-140. [PMID: 31035213 DOI: 10.1016/j.jad.2019.04.067] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 03/03/2019] [Accepted: 04/08/2019] [Indexed: 01/08/2023]
Abstract
OBJECTIVE Repetitive transcranial magnetic stimulation (rTMS) is an emerging treatment for neuropsychiatric disorders. Patients in rTMS treatment typically receive concomitant psychotropic medications, which affect neuronal excitability and plasticity and may interact to affect rTMS treatment outcomes. A greater understanding of these drug effects may have considerable implications for optimizing multi-modal treatment of psychiatric patients, and elucidating the mechanism(s) of action (MOA) of rTMS. METHOD We summarized the empirical literature that tests how psychotropic drugs affect cortical excitability and plasticity, using varied experimental TMS paradigms. RESULTS Glutamate antagonists robustly attenuate plasticity, largely without changes in excitability per se; antiepileptic drugs show the opposite pattern of effects, while calcium channel blockers attenuate plasticity. Benzodiazepines have moderate and variable effects on plasticity, and negligible effects on excitability. Antidepressants with potent 5HT transporter inhibition reduce both excitability and alter plasticity, while antidepressants with other MOAs generally lack either effect. Catecholaminergic drugs, cholinergic agents and lithium have minimal effects on excitability but exhibit robust and complex, non-linear effects in TMS plasticity paradigms. LIMITATIONS These effects remain largely untested in sustained treatment protocols, nor in clinical populations. In addition, how these medications impact clinical response to rTMS remains largely unknown. CONCLUSIONS Psychotropic medications exert robust and varied effects on cortical excitability and plasticity. We encourage the field to more directly and fully investigate clinical pharmaco-TMS studies to improve outcomes.
Collapse
Affiliation(s)
- M J Minzenberg
- Neuromodulation Division, Department of Psychiatry, Semel Institute for Neuroscience and Human Behavior, University of California, 760 Westwood Plaza, Los Angeles, CA 90024, United States.
| | - A F Leuchter
- Neuromodulation Division, Department of Psychiatry, Semel Institute for Neuroscience and Human Behavior, University of California, 760 Westwood Plaza, Los Angeles, CA 90024, United States
| |
Collapse
|
15
|
Hartl E, Seethaler M, Lauseker M, Rémi J, Vollmar C, Noachtar S. Impact of withdrawal of antiepileptic medication on the duration of focal onset seizures. Seizure 2019; 67:40-44. [DOI: 10.1016/j.seizure.2019.03.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 02/11/2019] [Accepted: 03/07/2019] [Indexed: 10/27/2022] Open
|
16
|
Single and paired pulse transcranial magnetic stimulation in drug naïve epilepsy. Clin Neurophysiol 2016; 127:3140-3155. [DOI: 10.1016/j.clinph.2016.06.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 06/03/2016] [Accepted: 06/26/2016] [Indexed: 01/06/2023]
|
17
|
Ziemann U, Reis J, Schwenkreis P, Rosanova M, Strafella A, Badawy R, Müller-Dahlhaus F. TMS and drugs revisited 2014. Clin Neurophysiol 2014; 126:1847-68. [PMID: 25534482 DOI: 10.1016/j.clinph.2014.08.028] [Citation(s) in RCA: 507] [Impact Index Per Article: 46.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Revised: 08/03/2014] [Accepted: 08/24/2014] [Indexed: 12/18/2022]
Abstract
The combination of pharmacology and transcranial magnetic stimulation to study the effects of drugs on TMS-evoked EMG responses (pharmaco-TMS-EMG) has considerably improved our understanding of the effects of TMS on the human brain. Ten years have elapsed since an influential review on this topic has been published in this journal (Ziemann, 2004). Since then, several major developments have taken place: TMS has been combined with EEG to measure TMS evoked responses directly from brain activity rather than by motor evoked potentials in a muscle, and pharmacological characterization of the TMS-evoked EEG potentials, although still in its infancy, has started (pharmaco-TMS-EEG). Furthermore, the knowledge from pharmaco-TMS-EMG that has been primarily obtained in healthy subjects is now applied to clinical settings, for instance, to monitor or even predict clinical drug responses in neurological or psychiatric patients. Finally, pharmaco-TMS-EMG has been applied to understand the effects of CNS active drugs on non-invasive brain stimulation induced long-term potentiation-like and long-term depression-like plasticity. This is a new field that may help to develop rationales of pharmacological treatment for enhancement of recovery and re-learning after CNS lesions. This up-dated review will highlight important knowledge and recent advances in the contribution of pharmaco-TMS-EMG and pharmaco-TMS-EEG to our understanding of normal and dysfunctional excitability, connectivity and plasticity of the human brain.
Collapse
Affiliation(s)
- Ulf Ziemann
- Department of Neurology & Stroke, and Hertie Institute for Clinical Brain Research, Eberhard-Karls-University Tübingen, Tübingen, Germany.
| | - Janine Reis
- Department of Neurology, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Peter Schwenkreis
- Department of Neurology, BG-University Hospital Bergmannsheil Bochum, Bochum, Germany
| | - Mario Rosanova
- Department of Biomedical and Clinical Sciences "Luigi Sacco", University of Milan, Milan, Italy; Fondazione Europea di Ricerca Biomedica, FERB Onlus, Milan, Italy
| | - Antonio Strafella
- Morton and Gloria Shulman Movement Disorder Unit & E.J. Safra Parkinson Disease Program, Toronto Western Hospital, UHN, University of Toronto, Ontario, Canada; Research Imaging Centre, Centre for Addiction and Mental Health, University of Toronto, Ontario, Canada
| | - Radwa Badawy
- Department of Neurology, Saint Vincent's Hospital, Fitzroy, The University of Melbourne, Parkville, Victoria, Australia; Department of Medicine, The University of Melbourne, Parkville, Victoria, Australia
| | - Florian Müller-Dahlhaus
- Department of Neurology & Stroke, and Hertie Institute for Clinical Brain Research, Eberhard-Karls-University Tübingen, Tübingen, Germany
| |
Collapse
|
18
|
Brain Stimulation for Epilepsy – Local and Remote Modulation of Network Excitability. Brain Stimul 2014; 7:350-8. [DOI: 10.1016/j.brs.2014.02.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 01/28/2014] [Accepted: 02/05/2014] [Indexed: 01/13/2023] Open
|
19
|
Lang N, Rothkegel H, Peckolt H, Deuschl G. Effects of lacosamide and carbamazepine on human motor cortex excitability: A double-blind, placebo-controlled transcranial magnetic stimulation study. Seizure 2013; 22:726-30. [DOI: 10.1016/j.seizure.2013.05.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2012] [Revised: 05/17/2013] [Accepted: 05/19/2013] [Indexed: 01/26/2023] Open
|
20
|
Bauer PR, Vansteensel MJ, Bleichner MG, Hermes D, Ferrier CH, Aarnoutse EJ, Ramsey NF. Mismatch Between Electrocortical Stimulation and Electrocorticography Frequency Mapping of Language. Brain Stimul 2013; 6:524-31. [DOI: 10.1016/j.brs.2013.01.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Revised: 12/06/2012] [Accepted: 01/02/2013] [Indexed: 11/28/2022] Open
|
21
|
Lee M, Kim SE, Kim WS, Han J, Kim HJ, Kim HJ, Kim BS, Kim JY, Hong SB, Kim BG, Lee HW. Cortico-cortical modulation induced by 1-Hz repetitive transcranial magnetic stimulation of the temporal cortex. J Clin Neurol 2013; 9:75-82. [PMID: 23626644 PMCID: PMC3633194 DOI: 10.3988/jcn.2013.9.2.75] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Revised: 08/24/2012] [Accepted: 08/24/2012] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND AND PURPOSE Repetitive transcranial magnetic stimulation (rTMS) has potential as a noninvasive neuromodulation treatment method for various neuropsychiatric disorders, and repeated sessions of rTMS are more likely to enhance the therapeutic efficacy. This study investigated neurophysiologic and spatiodynamic changes induced by repeated 1-Hz rTMS of the temporal cortex using transcranial magnetic stimulation (TMS) indices and fluorodeoxyglucose positron emission tomography (FDG-PET). METHODS Twenty-seven healthy subjects underwent daily 1-Hz active or sham rTMS of the right temporal cortex for 5 consecutive days. TMS indices of motor cortical excitability were measured in both hemispheres daily before and after each rTMS session, and 2 weeks after the last stimulation. FDG-PET was performed at baseline and after the 5 days of rTMS sessions. RESULTS All subjects tolerated all of the sessions well, with only three of them (11.1%) reporting mild transient side effects (i.e., headache, tinnitus, or local irritation). One-Hz rTMS decreased motor evoked potential amplitudes and delayed cortical silent periods in the stimulated hemisphere. Statistical parametric mapping of FDG-PET data revealed a focal reduction of glucose metabolism in the stimulated temporal area and an increase in the bilateral precentral, ipsilateral superior and middle frontal, prefrontal and cingulate gyri. CONCLUSIONS Repeated rTMS sessions for 5 consecutive days were tolerated in all subjects, with only occasional minor side effects. Focal 1-Hz rTMS of the temporal cortex induces cortico-cortical modulation with widespread functional changes in brain neural networks via long-range neural connections.
Collapse
Affiliation(s)
- Mina Lee
- Department of Neurology, Ewha Womans University School of Medicine, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Joo EY, Kim HJ, Lim YH, Ji KH, Hong SB. Zonisamide changes unilateral cortical excitability in focal epilepsy patients. J Clin Neurol 2010; 6:189-95. [PMID: 21264199 PMCID: PMC3024523 DOI: 10.3988/jcn.2010.6.4.189] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Revised: 06/25/2010] [Accepted: 06/25/2010] [Indexed: 11/17/2022] Open
Abstract
Background and Purpose To evaluate changes in cortical excitability induced by zonisamide (ZNS) in focal epilepsy patients. Methods Twenty-four drug-naїve focal epilepsy patients (15 males; overall mean age 29.8 years) were enrolled. The transcranial magnetic stimulation parameters obtained using two Magstim 200 stimulators were the resting motor threshold, amplitude of the motor-evoked potential (MEP), cortical silent period, short intracortical inhibition, and intracortical facilitation. These five transcranial magnetic stimulation parameters were measured before and after ZNS, and the findings were compared. Results All 24 patients were treated with ZNS monotherapy (200-300 mg/day) for 8-12 weeks. After ZNS, MEP amplitudes decreased (-36.9%) significantly in epileptic hemispheres (paired t-test with Bonferroni's correction for multiple comparisons, p<0.05), whereas the mean resting motor threshold, cortical silent period, short intracortical inhibition, and intracortical facilitation were unchanged (p>0.05). ZNS did not affect cortical excitability in nonepileptic hemispheres. Conclusions These findings suggest that ZNS decreases cortical excitability only in the epileptic hemispheres of focal epilepsy patients. MEP amplitudes may be useful for evaluating ZNS-induced changes in cortical excitability.
Collapse
Affiliation(s)
- Eun Yeon Joo
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | | | | | | | | |
Collapse
|
23
|
Changes in interhemispheric inhibition following successful epilepsy surgery: a TMS study. J Neurol 2010; 258:68-73. [DOI: 10.1007/s00415-010-5683-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Revised: 07/19/2010] [Accepted: 07/19/2010] [Indexed: 10/19/2022]
|
24
|
Badawy RAB, Macdonell RAL, Berkovic SF, Newton MR, Jackson GD. Predicting seizure control: Cortical excitability and antiepileptic medication. Ann Neurol 2010; 67:64-73. [DOI: 10.1002/ana.21806] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
25
|
Cortical excitability in juvenile myoclonic epileptic patients and their asymptomatic siblings: A transcranial magnetic stimulation study. Seizure 2009; 18:387-91. [DOI: 10.1016/j.seizure.2009.02.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2008] [Revised: 12/16/2008] [Accepted: 02/06/2009] [Indexed: 11/19/2022] Open
|
26
|
Lamotrigine and valproic acid have different effects on motorcortical neuronal excitability. J Neural Transm (Vienna) 2009; 116:423-9. [PMID: 19238517 DOI: 10.1007/s00702-009-0195-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2008] [Accepted: 02/03/2009] [Indexed: 10/21/2022]
Abstract
To investigate different cortical effects of lamotrigine and valproic acid, 30 paid healthy adult men were given, in a randomized/blinded fashion on three separate days (separated by a week), either a single dose of lamotrigine 325 mg, or a single dose of valproic acid 1,250 mg, or placebo. Resting motor threshold (RMT), cortical silent period (CSP) and motor evoked potential recruitment curves (RC) were assessed at baseline and 3 h after administration of each medication (or placebo). Lamotrigine caused a significant increase (63.32 vs. 69.25) in the RMT, compared with an insignificant increase following valproic acid (62.50 vs. 63.35), and a decrease (62.60 vs. 62.36) following placebo (F (2,26) = 18.58, P < 0.0001). No significant difference in CSP was found between placebo and drugs (F (2,26) = 0.119, P > 0.05). RCs were significantly suppressed by lamotrigine (t = 2.07, P < 0.05) and enhanced by valproic acid (t = 2.39, P < 0.05). Lamotrigine and valproic acid have different effects on cortical neuronal excitability as demonstrated by TMS.
Collapse
|
27
|
Sokal DM, Girlanda E, Sabattini G, Large CH. The relationship between lamotrigine concentration and change in resting motor threshold in a rodent model of motor cortex stimulation. Epilepsy Res 2009; 83:103-11. [DOI: 10.1016/j.eplepsyres.2008.10.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2008] [Revised: 08/10/2008] [Accepted: 10/13/2008] [Indexed: 10/21/2022]
|
28
|
Paulus W, Classen J, Cohen LG, Large CH, Di Lazzaro V, Nitsche M, Pascual-Leone A, Rosenow F, Rothwell JC, Ziemann U. State of the art: Pharmacologic effects on cortical excitability measures tested by transcranial magnetic stimulation. Brain Stimul 2008; 1:151-63. [PMID: 20633382 DOI: 10.1016/j.brs.2008.06.002] [Citation(s) in RCA: 334] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2008] [Revised: 06/02/2008] [Accepted: 06/06/2008] [Indexed: 11/19/2022] Open
Abstract
The combination of brain stimulation techniques like transcranial magnetic stimulation (TMS) with CNS active drugs in humans now offers a unique opportunity to explore the physiologic effects of these substances in vivo in the human brain. Motor threshold, motor evoked potential size, motor evoked potential intensity curves, cortical silent period, short-interval intracortical inhibition, intracortical facilitation, short-interval intracortical facilitation, long-interval intracortical inhibition and short latency afferent inhibition represent the repertoire for investigating drug effects on motor cortical excitability by TMS. Here we present an updated overview on the pharmacophysiologic mechanisms with special emphasis on methodologic pitfalls and possible future developments or requirements.
Collapse
Affiliation(s)
- Walter Paulus
- Department of Clinical Neurophysiology, University of Göttingen, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Joo EY, Kim SH, Seo DW, Hong SB. Zonisamide decreases cortical excitability in patients with idiopathic generalized epilepsy. Clin Neurophysiol 2008; 119:1385-92. [DOI: 10.1016/j.clinph.2008.02.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2007] [Revised: 01/22/2008] [Accepted: 02/12/2008] [Indexed: 11/24/2022]
|
30
|
Changes in intracortical excitability after successful epilepsy surgery. Epilepsy Res 2008; 79:55-62. [DOI: 10.1016/j.eplepsyres.2007.12.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2007] [Revised: 10/31/2007] [Accepted: 12/29/2007] [Indexed: 11/17/2022]
|
31
|
Azar NJ, Wang L, Song Y, Abou-Khalil BW. Temporal pattern of oxcarbazepine and phenytoin withdrawal seizures during epilepsy monitoring. Epilepsy Res 2008; 79:78-83. [DOI: 10.1016/j.eplepsyres.2007.12.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2007] [Revised: 12/06/2007] [Accepted: 12/29/2007] [Indexed: 10/22/2022]
|
32
|
Bast T, Wright T, Boor R, Harting I, Feneberg R, Rupp A, Hoechstetter K, Rating D, Baumgärtner U. Combined EEG and MEG analysis of early somatosensory evoked activity in children and adolescents with focal epilepsies. Clin Neurophysiol 2007; 118:1721-35. [PMID: 17572142 DOI: 10.1016/j.clinph.2007.03.037] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2006] [Revised: 03/13/2007] [Accepted: 03/15/2007] [Indexed: 11/24/2022]
Abstract
OBJECTIVE The study aimed to evaluate differences between EEG and MEG analysis of early somatosensory evoked activity in patients with focal epilepsies in localizing eloquent areas of the somatosensory cortex. METHODS Twenty-five patients (12 male, 13 female; age 4-25 years, mean 11.7 years) were included. Syndromes were classified as symptomatic in 17, idiopathic in 2 and cryptogenic in 6 cases. 10 patients presented with malformations of cortical development (MCD). 122 channel MEG and simultaneous 33-channel EEG were recorded during tactile stimulation of the thumb (sampling rate 769 Hz, band-pass 0.3-260 Hz). Forty-four hemispheres were analyzed. Hemispheres were classified as type I: normal (15), II: central structural lesion (16), III: no lesion, but central epileptic discharges (ED, 8), IV: lesion or ED outside the central region (5). Analysis of both sides including one normal and one type II or III hemisphere was possible in 15 patients. Recordings were repeated in 18 hemispheres overall. Averaged data segments were filtered (10-250 Hz) and analyzed off-line with BESA. Latencies and amplitudes of N20 and P30 were analyzed. A regional source was fitted for localizing S1 by MRI co-registration. Orientation of EEG N20 was calculated from a single dipole model. RESULTS EEG and MEG lead to comparable good results in all normal hemispheres. Only EEG detected N20/P30 in 3 hemispheres of types II/III while MEG showed no signal. N20 dipoles had a more radial orientation in these cases. MEG added information in one hemisphere, when EEG source analysis of a clear N20 was not possible because of a low signal-to-noise ratio. Overall N20 dipoles had a more radial orientation in type II when compared to type I hemispheres (p=0.01). Further N20/P30 parameters (amplitudes, latencies, localization related to central sulcus) showed no significant differences between affected and normal hemispheres. Early somatosensory evoked activity was preserved within the visible lesion in 5 of the 10 patients with MCD. CONCLUSIONS MEG should be combined with EEG when analyzing tactile evoked activities in hemispheres with a central structural lesion or ED focus. SIGNIFICANCE At time, MEG analysis is frequently applied without simultaneous EEG. Our results clearly show that EEG may be superior under specific circumstances and combination is necessary when analyzing activity from anatomically altered cortex.
Collapse
Affiliation(s)
- T Bast
- Department of Pediatric Neurology, University Children's Hospital, INF 150, 69120 Heidelberg, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
Brain stimulation has been receiving increasing attention as an alternative therapy for epilepsy that cannot be treated by either antiepileptic medication or surgical resection of the epileptogenic focus. The stimulation methods include transcranial magnetic stimulation (TMS) or electrical stimulation by implanted devices of the vagus nerve (VNS), deep brain structures (DBS) (thalamic or hippocampal), cerebellar or cortical areas. TMS is the simplest and least invasive approach. However, the most common epileptogenic areas (mesial temporal structures) probably lie too deep beneath the surface of the skull for effective TMS. The efficacy of VNS in reducing the frequency or severity of seizures is quite variable and depends on many factors which are currently investigated. VNS is well-tolerated and approved in many countries. DBS is much more invasive than either TMS or VNS. Currently, a number of targets for DBS are investigated including caudate, centromedian or anterior thalamic nuclei, and subthalamic nucleus. Direct stimulation of the epileptic cortical focus is another approach to the neuromodulation in epilepsy. Finally, another line of research investigates the usefulness of implantable seizure detection devices. The current chapter presents the most important evidence on the above methods. Furthermore, other important issues are reviewed such as the selection criteria of patients for brain stimulation and the potential role of brain stimulation in the treatment of depression in epileptic patients.
Collapse
Affiliation(s)
- W H Theodore
- Clinical Epilepsy Section, National Institutes of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA.
| | | |
Collapse
|
34
|
Cantello R, Civardi C, Varrasi C, Vicentini R, Cecchin M, Boccagni C, Monaco F. Excitability of the human epileptic cortex after chronic valproate: A reappraisal. Brain Res 2006; 1099:160-6. [PMID: 16774745 DOI: 10.1016/j.brainres.2006.04.094] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2006] [Revised: 04/22/2006] [Accepted: 04/27/2006] [Indexed: 11/16/2022]
Abstract
We explored the action of chronic valproic acid (VPA) on the human epileptic cortex by means of transcranial magnetic stimulation (TMS). TMS is an emerging biomarker for neurotropic drugs. We had 15 drug-naive patients with different epileptic syndromes. Interictally, we measured several TMS indexes of cortical excitability before commencing VPA and 3 months later. At that time, all patients were clinical responders to the drug, whose plasma levels were in the "therapeutic range". We then compared the two conditions, while 18 healthy subjects, of whom 12 were retested at a similar delay, acted as controls. In the pooled patients, the baseline resting motor threshold to TMS was similar to that of controls, but it increased significantly (P < 0.05) after VPA. Intracortical facilitation, another index of cortical excitability, was abnormally enhanced at baseline but decreased significantly after VPA (P < 0.05). On splitting patients according to their diagnosis, the threshold increase was significant (P < 0.05) among partial, but not generalized epilepsies. The reverse was true for changes in intracortical facilitation. TMS phenomena had no linear relation to VPA serum levels. Based on the known pharmacology of TMS effects, VPA reduced the intrinsic membrane excitability of motor cortical neurons, possibly through changes in Na+ channel activity. Then, VPA corrected a transmitter-mediated interneuronal hyper-excitability of the primary motor cortex. The former effect was best seen in partial, and the latter in generalized epilepsy patients.
Collapse
Affiliation(s)
- Roberto Cantello
- Department of Clinical and Experimental Medicine, Section of Neurology, Università del Piemonte Orientale A. Avogadro, Novara, Italy.
| | | | | | | | | | | | | |
Collapse
|
35
|
Lang N, Sueske E, Hasan A, Paulus W, Tergau F. Pregabalin Exerts Oppositional Effects on Different Inhibitory Circuits in Human Motor Cortex: A Double-blind, Placebo-controlled Transcranial Magnetic Stimulation Study. Epilepsia 2006; 47:813-9. [PMID: 16686645 DOI: 10.1111/j.1528-1167.2006.00544.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
PURPOSE To explore acute effects of pregabalin (PGB) on human motor cortex excitability with transcranial magnetic stimulation (TMS). METHODS PGB, 600 mg/day, was orally administered in 19 healthy subjects twice daily in a randomized, double-blind, placebo-controlled crossover design. Several measures of motor cortex excitability were tested with single- and paired-pulse TMS. RESULTS Mean short-interval intracortical inhibition (SICI) was reduced after PGB (74 +/- 7% of unconditioned response) compared with placebo (60 +/- 6% of unconditioned response). In contrast, mean long-interval intracortical inhibition (LICI) was increased by PGB (26 +/- 4% of unconditioned response) compared with placebo (45 +/- 8% of unconditioned response), and mean cortical silent period (CSP) showed an increase from 139 +/- 8 ms or 145 +/- 8 ms after placebo to 162 +/- 7 ms or 161 +/- 10 ms after PGB. Motor thresholds, intracortical facilitation, and corticospinal excitability were unaffected. CONCLUSIONS The observed excitability changes with oppositional effects on SICI and LICI or CSP suggest gamma-aminobutyric acid (GABA)B-receptor activation. They are markedly distinct from those induced by gabapentin, although both PGB and gabapentin are thought to mediate their function by binding to the alpha2-delta subunit of voltage-gated calcium channels. Conversely, the TMS profile of PGB shows striking similarities with the pattern evoked by the GABA-reuptake inhibitor tiagabine.
Collapse
Affiliation(s)
- Nicolas Lang
- Department of Clinical Neurophysiology, Georg-August-University, Goettingen, Germany.
| | | | | | | | | |
Collapse
|