1
|
Payet JM, Baratta MV, Christianson JP, Lowry CA, Hale MW. Modulation of dorsal raphe nucleus connectivity and serotonergic signalling to the insular cortex in the prosocial effects of chronic fluoxetine. Neuropharmacology 2025; 272:110406. [PMID: 40081797 DOI: 10.1016/j.neuropharm.2025.110406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/22/2025] [Accepted: 03/09/2025] [Indexed: 03/16/2025]
Abstract
Long-term exposure to fluoxetine and other selective serotonin reuptake inhibitors alters social and anxiety-related behaviours, including social withdrawal, which is a symptom of several neuropsychiatric disorders. Adaptive changes in serotonergic neurotransmission likely mediate this delayed effect, although the exact mechanisms are still unclear. Here we investigated the functional circuitry underlying the biphasic effects of fluoxetine on social approach-avoidance behaviour and explored the place of serotonergic dorsal raphe nucleus (DR) ensembles in this network, using c-Fos-immunoreactivity as a correlate of activity. Graph theory-based network analysis revealed changes in patterns of functional connectivity and identified neuronal populations in the insular cortex (IC) and serotonergic populations in the DR as central targets to the prosocial effects of chronic fluoxetine. To determine the role of serotonergic projections to the IC, a retrograde tracer was micro-injected in the IC prior to fluoxetine treatment and social behaviour testing. Chronic fluoxetine increased c-Fos immunoreactivity in insula-projecting neurons of the rostral, ventral part of the DR (DRV). Using a virally delivered Tet-Off platform for temporally-controlled marking of neuronal activation, we observed that chronic fluoxetine may affect social behaviour by influencing independent but interconnected populations of serotonergic DR ensembles. These findings suggest that sustained fluoxetine exposure causes adaptive changes in functional connectivity due to altered serotonergic neurotransmission in DR projection targets, and the increased serotonergic signalling to the IC likely mediates some of the therapeutic effects of fluoxetine on social behaviour.
Collapse
Affiliation(s)
- Jennyfer M Payet
- School of Psychology and Public Health, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Michael V Baratta
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado Boulder, Boulder, CO 80301, USA
| | - John P Christianson
- Department of Psychology and Neuroscience, Boston College, Chestnut Hill, MA, 02467, USA
| | - Christopher A Lowry
- Department of Integrative Physiology, Center for Neuroscience, and Center for Microbial Exploration, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Matthew W Hale
- School of Psychology and Public Health, La Trobe University, Melbourne, VIC, 3086, Australia.
| |
Collapse
|
2
|
Tertikas G, Kampoureli CN, Campbell-Meiklejohn DK, Critchley HD. Regional brain structure at the intersection of novelty-seeking trait and anxiety. Brain Res Bull 2025; 225:111337. [PMID: 40209945 DOI: 10.1016/j.brainresbull.2025.111337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 03/26/2025] [Accepted: 04/07/2025] [Indexed: 04/12/2025]
Abstract
The interplay between novelty-seeking (NS) and anxiety is critical in decision-making and adaptive behaviour, yet its neuroanatomical underpinnings remain poorly understood. Given that NS reflects a propensity for exploration and risk-taking, while anxiety modulates threat sensitivity, understanding their interaction may provide insight into neural mechanisms underlying approach-avoidance behaviour. In this study, we investigated the association between regional grey matter (GM) structure, NS, anxiety, and their interaction using voxel-based morphometry (VBM) and source-based morphometry (SBM). Structural MRI data from 50 healthy participants were analysed in relation to NS (Tridimensional Personality Questionnaire) and anxiety (State-Trait Anxiety Inventory). Key findings revealed that NS alone was not associated with GM structure potentially due to more stringent inclusion criteria than previous studies. In contrast, trait anxiety correlated with increased subcallosal gyrus volume in VBM and was negatively associated with SBM-derived components encompassing the temporal and frontal cortices (e.g., left inferior temporal gyrus, inferior frontal gyrus, middle temporal gyrus, left middle frontal gyrus). Importantly, a significant NS-anxiety interaction emerged in the left inferior frontal gyrus (LIFG) GM volume (GMV) in VBM, suggesting a structural basis for the modulation of exploratory behaviour by anxiety. No significant interaction effects were observed in SBM analyses. These findings provide novel insights into the neural correlates of reward-related decision-making and anxiety regulation. The LIFG, in particular, may represent a key region where NS and anxiety converge to shape behaviour. Given its role in impulse control and harm avoidance, these results highlight the potential for targeted interventions aimed at modulating prefrontal circuits in impulsivity-related disorders.
Collapse
Affiliation(s)
- Georgios Tertikas
- Clinical Imaging Sciences Centre, Brighton and Sussex Medical School, University of Sussex, Brighton, UK; Department of Clinical Neuroscience, Brighton and Sussex Medical School, University of Sussex, Brighton, UK.
| | - Christina N Kampoureli
- Department of Clinical Neuroscience, Brighton and Sussex Medical School, University of Sussex, Brighton, UK; School of Psychology, University of Sussex, Brighton, UK
| | | | - Hugo D Critchley
- Department of Clinical Neuroscience, Brighton and Sussex Medical School, University of Sussex, Brighton, UK
| |
Collapse
|
3
|
Zhao Z, Zhang B, Gan R, Xie H, Shao Y, Xu K, Jia Z. Causal relationships between white matter connectome and mental disorders: a large-scale genetic correlation study. J Affect Disord 2025; 386:119469. [PMID: 40419157 DOI: 10.1016/j.jad.2025.119469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 05/18/2025] [Accepted: 05/23/2025] [Indexed: 05/28/2025]
Abstract
BACKGROUND Abnormalities in white matter integrity in mental disorders have attracted widespread attention, yet the genetic correlations and causal effects between white matter structural connectome and various psychiatric conditions remain largely unexplored. METHODS In this study, we employed linkage disequilibrium score (LDSC) and high-definition likelihood (HDL) methods to analyze genetic correlations between white matter connectome and mental disorders, followed by bidirectional two-sample Mendelian randomization (MR) analysis to investigate causal relationships. We utilized 206 white matter connectome magnetic resonance imaging (MRI) phenotypes derived from the processed UK Biobank dataset (n = 26,333 individuals) and 12 mental disorders from the latest FinnGen database (n = 402,965 to 449,029 individuals). RESULTS Using both methods, we observed 26 pairs of brain white matter connectivity phenotypes and mental disorders showing significant correlations. Forward MR analysis identified two white matter structural connectome phenotypes causally associated with psychiatric disorder risk. Increased connectivity in left-hemisphere visual network(VIS) to right-hemisphere limbic network(LIM)white-matter structural connectivity was associated with increased risk of anxiety disorders. Additionally, decreased connectivity in left-hemisphere visual network to hippocampus white-matter structural connectivity was associated with reduced risk of post-traumatic stress disorder (PTSD). However, reverse MR analysis results did not survive multiple testing correction. CONCLUSION These findings provide crucial insights into the complex interplay between white matter structural connectivity and mental disorders, potentially offering new avenues for understanding the neurobiological underpinnings of psychiatric conditions and informing future diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Ziru Zhao
- Department of Nuclear Medicine, West China Hospital of Sichuan University, Chengdu 610041, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Baoshuai Zhang
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China; Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
| | - Ruoqiu Gan
- Department of Nuclear Medicine, West China Hospital of Sichuan University, Chengdu 610041, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Hongsheng Xie
- Department of Nuclear Medicine, West China Hospital of Sichuan University, Chengdu 610041, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Yingbo Shao
- Department of Nuclear Medicine, West China Hospital of Sichuan University, Chengdu 610041, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Kun Xu
- Department of Nuclear Medicine, West China Hospital of Sichuan University, Chengdu 610041, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Zhiyun Jia
- Department of Nuclear Medicine, West China Hospital of Sichuan University, Chengdu 610041, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China.
| |
Collapse
|
4
|
Lv D, Ou Y, Li H, Liu F, Li P, Lv D, Zhao J, Guo W. Disrupted brain functional asymmetry at rest in patients with major depressive disorder associated with sleep disturbances. Brain Imaging Behav 2024; 18:1366-1375. [PMID: 39276300 DOI: 10.1007/s11682-024-00924-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2024] [Indexed: 09/16/2024]
Abstract
Sleep disturbances (SD) are common in major depressive disorder (MDD) patients. Brain functional asymmetry is crucial for understanding MDD pathophysiology. Previous studies using the parameter of asymmetry (PAS) approach have found brain functional asymmetry disruption in MDD. However, this has not been explored in MDD patients with SD. This study examined 26 MDD patients with SD, 34 MDD patients without SD, and 34 healthy controls using resting-state functional magnetic resonance imaging scans. SD symptoms were quantified using the 17-item Hamilton Rating Scale for Depression. PAS approach was used to evaluate functional asymmetry. MDD patients with SD displayed increased PAS in the left middle frontal gyrus (MFG)/inferior frontal gyrus (IFG) and decreased PAS in the left parahippocampal gyrus (PHG) compared to MDD patients without SD. Increased PAS in the left MFG/IFG was positively correlated with SD severity, and a negative correlation was found between decreased PAS in the left PHG and SD scores in all MDD patients. Receiver operating characteristic analysis indicated that increased PAS in the left MFG/IFG and decreased PAS in the left PHG may serve as potential neuroimaging markers to differentiate MDD patients with SD from those without SD with Area Under Curve values of 0.8157 and 0.8068, respectively. These results highlighted that increased PAS in the left MFG/IFG and decreased PAS in the left PHG may be considered a prominent feature associated with SD symptoms of MDD patients, potentially serving as imaging markers to discriminate between MDD patients with and without SD.
Collapse
Affiliation(s)
- Dan Lv
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Department of Psychiatry, Qiqihar Medical University, Qiqihar, Heilongjiang, 161006, China
| | - Yangpan Ou
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Huabing Li
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Feng Liu
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin, 300000, China
| | - Ping Li
- Department of Psychiatry, Qiqihar Medical University, Qiqihar, Heilongjiang, 161006, China
| | - Dongsheng Lv
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Center of Mental Health, Inner Mongolia Autonomous Region, Hohhot, 010010, China
| | - Jingping Zhao
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Wenbin Guo
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China.
| |
Collapse
|
5
|
Qu J, Tian M, Zhu R, Song C, Wu Y, Xu G, Liu Y, Wang D. Aberrant dynamic functional network connectivity in progressive supranuclear palsy. Neurobiol Dis 2024; 195:106493. [PMID: 38579913 DOI: 10.1016/j.nbd.2024.106493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/07/2024] [Accepted: 04/02/2024] [Indexed: 04/07/2024] Open
Abstract
BACKGROUND The clinical symptoms of progressive supranuclear palsy (PSP) may be mediated by aberrant dynamic functional network connectivity (dFNC). While earlier research has found altered functional network connections in PSP patients, the majority of those studies have concentrated on static functional connectivity. Nevertheless, in this study, we sought to evaluate the modifications in dynamic characteristics and establish the correlation between these disease-related changes and clinical variables. METHODS In our study, we conducted a study on 53 PSP patients and 65 normal controls. Initially, we employed a group independent component analysis (ICA) to derive resting-state networks (RSNs), while employing a sliding window correlation approach to produce dFNC matrices. The K-means algorithm was used to cluster these matrices into distinct dynamic states, and then state analysis was subsequently employed to analyze the dFNC and temporal metrics between the two groups. Finally, we made a correlation analysis. RESULTS PSP patients showed increased connectivity strength between medulla oblongata (MO) and visual network (VN) /cerebellum network (CBN) and decreased connections were found between default mode network (DMN) and VN/CBN, subcortical cortex network (SCN) and CBN. In addition, PSP patients spend less fraction time and shorter dwell time in a diffused state, especially the MO and SCN. Finally, the fraction time and mean dwell time in the distributed connectivity state (state 2) is negatively correlated with duration, bulbar and oculomotor symptoms. DISCUSSION Our findings were that the altered connectivity was mostly concentrated in the CBN and MO. In addition, PSP patients had different temporal dynamics, which were associated with bulbar and oculomotor symptoms in PSPRS. It suggest that variations in dynamic functional network connectivity properties may represent an essential neurological mechanism in PSP.
Collapse
Affiliation(s)
- Junyu Qu
- Department of Radiology, Qilu Hospital of Shandong University; Qilu Medical Imaging Institute of Shandong University, Ji'nan, China
| | - Min Tian
- Department of Neurology, Qilu Hospital of Shandong University, Ji'nan, China
| | - Rui Zhu
- Department of Radiology, Qilu Hospital of Shandong University; Qilu Medical Imaging Institute of Shandong University, Ji'nan, China
| | - Chengyuan Song
- Department of Neurology, Qilu Hospital of Shandong University, Ji'nan, China
| | - Yongsheng Wu
- Department of Radiology, Qilu Hospital of Shandong University; Qilu Medical Imaging Institute of Shandong University, Ji'nan, China
| | - Guihua Xu
- Department of Radiology, Qilu Hospital of Shandong University; Qilu Medical Imaging Institute of Shandong University, Ji'nan, China
| | - Yiming Liu
- Department of Neurology, Qilu Hospital of Shandong University, Ji'nan, China.
| | - Dawei Wang
- Department of Radiology, Qilu Hospital of Shandong University; Qilu Medical Imaging Institute of Shandong University, Ji'nan, China; Research Institute of Shandong University: Magnetic Field-free Medicine & Functional Imaging, Ji'nan, China; Shandong Key Laboratory: Magnetic Field-free Medicine & Functional Imaging (MF), Ji'nan, China.
| |
Collapse
|
6
|
Su S, Zhao J, Dai Y, Lin L, Zhou Q, Yan Z, Qian L, Cui W, Liu M, Zhang H, Yang Z, Chen Y. Altered neurovascular coupling in the children with attention-deficit/hyperactivity disorder: a comprehensive fMRI analysis. Eur Child Adolesc Psychiatry 2024; 33:1081-1091. [PMID: 37222790 DOI: 10.1007/s00787-023-02238-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 05/17/2023] [Indexed: 05/25/2023]
Abstract
The coupling between resting-state cerebral blood flow (CBF) and blood oxygenation level-dependent (BOLD) signals reflects the mechanism of neurovascular coupling (NVC), which have not been illustrated in attention-deficit/hyperactivity disorder (ADHD). Fifty ADHD and 42 age- and gender-matched typically developing controls (TDs) were enrolled. The NVC imaging metrics were investigated by exploring the Pearson correlation coefficients between CBF and BOLD-derived quantitative maps (ALFF, fALFF, DCP maps). Three types of NVC metrics (CBF-ALFF, CBF-fALFF, CBF-DCP coupling) were compared between ADHD and TDs group, and the inner association between altered NVC metrics and clinical variables in ADHD group was further analyzed. Compared to TDs, ADHD showed significantly reduced whole-brain CBF-ALFF coupling (P < 0.001). Among regional level (all PFDR < 0.05), ADHD showed significantly lower CBF-ALFF coupling in bilateral thalamus, default-mode network (DMN) involving left anterior cingulate (ACG.L) and right parahippocampal gyrus (PHG.R), execution control network (ECN) involving right middle orbital frontal gyrus (ORBmid.R) and right inferior frontal triangular gyrus (IFGtriang.R), and increased CBF-ALFF coupling in attention network (AN)-related left superior temporal gyrus (STG.L) and somatosensory network (SSN))-related left rolandic operculum (ROL.L). Furthermore, increased CBF-fALFF coupling was found in the visual network (VN)-related left cuneus and negatively correlated with the concentration index of ADHD (R = - 0.299, PFDR = 0.035). Abnormal regional NVC metrics were at widespread neural networks in ADHD, mainly involved in DMN, ECN, SSN, AN, VN and bilateral thalamus. Notably, this study reinforced the insights into the neural basis and pathophysiological mechanism underlying ADHD.
Collapse
Affiliation(s)
- Shu Su
- Department of Radiology, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jing Zhao
- Department of Radiology, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yan Dai
- Department of Radiology, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Liping Lin
- Department of Radiology, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Qin Zhou
- Department of Radiology, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Zi Yan
- Department of Radiology, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Long Qian
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, China
| | - Wei Cui
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, China
| | - Meina Liu
- Department of Pediatric, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Hongyu Zhang
- Department of Pediatric, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Zhiyun Yang
- Department of Radiology, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China.
| | - Yingqian Chen
- Department of Radiology, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
7
|
Fang A, Baran B, Feusner JD, Phan KL, Beatty CC, Crane J, Jacoby RJ, Manoach DS, Wilhelm S. Self-focused brain predictors of cognitive behavioral therapy response in a transdiagnostic sample. J Psychiatr Res 2024; 171:108-115. [PMID: 38266332 PMCID: PMC10922639 DOI: 10.1016/j.jpsychires.2024.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 01/09/2024] [Accepted: 01/15/2024] [Indexed: 01/26/2024]
Abstract
BACKGROUND Effective biomarkers of cognitive behavioral therapy (CBT) response provide information beyond available behavioral or self-report measures and may optimize treatment selection for patients based on likelihood of benefit. No single biomarker reliably predicts CBT response. In this study, we evaluated patterns of brain connectivity associated with self-focused attention (SFA) as biomarkers of CBT response for anxiety and obsessive-compulsive disorders. We hypothesized that pre-treatment as well as pre-to post-treatment changes in functional connectivity would be associated with improvement during CBT in a transdiagnostic sample. METHODS Twenty-seven patients with primary social anxiety disorder (n = 14) and primary body dysmorphic disorder (n = 13) were scanned before and after 12 sessions of CBT targeting their primary disorder. Eligibility was based on elevated trait SFA scores on the Public Self-Consciousness Scale. Seed-based resting state functional connectivity associated with symptom improvement was computed using a seed in the posterior cingulate cortex of the default mode network. RESULTS At pre-treatment, stronger positive connectivity of the seed with the cerebellum, and stronger negative connectivity with the putamen, were associated with greater clinical improvement. Between pre-to post-treatment, greater anticorrelation between the seed and postcentral gyrus, extending into the inferior parietal lobule and precuneus/superior parietal lobule was associated with clinical improvement, although this did not survive thresholding. CONCLUSIONS Pre-treatment functional connectivity with the default mode network was associated with CBT response. Behavioral and self-report measures of SFA did not contribute to predictions, thus highlighting the value of neuroimaging-based measures of SFA. CLINICAL TRIALS REGISTRATION ClinicalTrials.gov Identifier: NCT02808702 https://clinicaltrials.gov/ct2/show/NCT02808702.
Collapse
Affiliation(s)
- Angela Fang
- Department of Psychology, University of Washington, Seattle, WA, 98195-1525, USA.
| | - Bengi Baran
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA, 52242-1407, USA
| | - Jamie D Feusner
- Centre for Addiction and Mental Health, Brain Imaging Health Center, Ontario, Toronto, Canada, M5T1R8; Department of Psychiatry, University of Toronto, Ontario, Toronto, Canada, M5T1R8; Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - K Luan Phan
- Department of Psychiatry and Behavioral Health, Ohio State University Wexner Medical Center, Columbus, OH, 43210-1240, USA
| | - Clare C Beatty
- Department of Psychology, Stony Brook University, Stony Brook, NY, 11794-2500, USA
| | - Jessica Crane
- Department of Psychology, University of Washington, Seattle, WA, 98195-1525, USA
| | - Ryan J Jacoby
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114-2696, USA
| | - Dara S Manoach
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114-2696, USA; Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, 02129-2020, USA
| | - Sabine Wilhelm
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114-2696, USA
| |
Collapse
|
8
|
Zugman A, Jett L, Antonacci C, Winkler AM, Pine DS. A systematic review and meta-analysis of resting-state fMRI in anxiety disorders: Need for data sharing to move the field forward. J Anxiety Disord 2023; 99:102773. [PMID: 37741177 PMCID: PMC10753861 DOI: 10.1016/j.janxdis.2023.102773] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/25/2023]
Abstract
Anxiety disorders are among the most prevalent psychiatric disorders. Neuroimaging findings remain uncertain, and resting state functional magnetic resonance (rs-fMRI) connectivity is of particular interest since it is a scalable functional imaging modality. Given heterogeneous past findings for rs-fMRI in anxious individuals, we characterize patterns across anxiety disorders by conducting a systematic review and meta-analysis. Studies were included if they contained at the time of scanning both a healthy group and a patient group. Due to insufficient study numbers, the quantitative meta-analysis only included seed-based studies. We performed an activation likelihood estimation (ALE) analysis that compared patients and healthy volunteers. All analyses were corrected for family-wise error with a cluster-level threshold of p < .05. Patients exhibited hypo-connectivity between the amygdala and the medial frontal gyrus, anterior cingulate cortex, and cingulate gyrus. This finding, however, was not robust to potential file-drawer effects. Though limited by strict inclusion criteria, our results highlight the heterogeneous nature of reported findings. This underscores the need for data sharing when attempting to detect reliable patterns of disruption in brain activity across anxiety disorders.
Collapse
Affiliation(s)
- André Zugman
- Section on Development and Affective Neuroscience (SDAN), Emotion and Development Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States.
| | - Laura Jett
- Section on Development and Affective Neuroscience (SDAN), Emotion and Development Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States; Child Emotion Lab, University of Wisconsin, Madison, Madison, WI, United States.
| | - Chase Antonacci
- Section on Development and Affective Neuroscience (SDAN), Emotion and Development Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States; Department of Psychology, Stanford University, Stanford, CA, United States.
| | - Anderson M Winkler
- Section on Development and Affective Neuroscience (SDAN), Emotion and Development Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States; Division of Human Genetics, School of Medicine, The University of Texas Rio Grande Valley, Brownsville, Texas, United States.
| | - Daniel S Pine
- Section on Development and Affective Neuroscience (SDAN), Emotion and Development Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States.
| |
Collapse
|
9
|
Zhang X, Yang X, Wu B, Pan N, He M, Wang S, Kemp GJ, Gong Q. Large-scale brain functional network abnormalities in social anxiety disorder. Psychol Med 2023; 53:6194-6204. [PMID: 36330833 PMCID: PMC10520603 DOI: 10.1017/s0033291722003439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 09/06/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND Although aberrant brain regional responses are reported in social anxiety disorder (SAD), little is known about resting-state functional connectivity at the macroscale network level. This study aims to identify functional network abnormalities using a multivariate data-driven method in a relatively large and homogenous sample of SAD patients, and assess their potential diagnostic value. METHODS Forty-six SAD patients and 52 demographically-matched healthy controls (HC) were recruited to undergo clinical evaluation and resting-state functional MRI scanning. We used group independent component analysis to characterize the functional architecture of brain resting-state networks (RSNs) and investigate between-group differences in intra-/inter-network functional network connectivity (FNC). Furtherly, we explored the associations of FNC abnormalities with clinical characteristics, and assessed their ability to discriminate SAD from HC using support vector machine analyses. RESULTS SAD patients showed widespread intra-network FNC abnormalities in the default mode network, the subcortical network and the perceptual system (i.e. sensorimotor, auditory and visual networks), and large-scale inter-network FNC abnormalities among those high-order and primary RSNs. Some aberrant FNC signatures were correlated to disease severity and duration, suggesting pathophysiological relevance. Furthermore, intrinsic FNC anomalies allowed individual classification of SAD v. HC with significant accuracy, indicating potential diagnostic efficacy. CONCLUSIONS SAD patients show distinct patterns of functional synchronization abnormalities both within and across large-scale RSNs, reflecting or causing a network imbalance of bottom-up response and top-down regulation in cognitive, emotional and sensory domains. Therefore, this could offer insights into the neurofunctional substrates of SAD.
Collapse
Affiliation(s)
- Xun Zhang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
- Functional & Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan 610041, China
| | - Xun Yang
- School of Public Affairs, Chongqing University, Chongqing 400044, China
| | - Baolin Wu
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
- Functional & Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan 610041, China
| | - Nanfang Pan
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
- Functional & Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan 610041, China
| | - Min He
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
- Functional & Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan 610041, China
| | - Song Wang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
- Functional & Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan 610041, China
| | - Graham J. Kemp
- Liverpool Magnetic Resonance Imaging Centre (LiMRIC) and Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L69 3BX, UK
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
- Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen, Fujian 361000, China
| |
Collapse
|
10
|
Fang A, Baran B, Feusner JD, Phan KL, Beatty CC, Crane J, Jacoby RJ, Manoach DS, Wilhelm S. Self-Focused Brain Predictors of Cognitive Behavioral Therapy Response in a Transdiagnostic Sample. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.08.30.23294878. [PMID: 37693433 PMCID: PMC10491350 DOI: 10.1101/2023.08.30.23294878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Background Effective biomarkers of cognitive behavioral therapy (CBT) response provide information beyond available behavioral or self-report measures and may optimize treatment selection for patients based on likelihood of benefit. No single biomarker reliably predicts CBT response. In this study, we evaluated patterns of brain connectivity associated with self-focused attention (SFA) as biomarkers of CBT response for anxiety and obsessive-compulsive disorders. We hypothesized that pre-treatment as well as pre- to post-treatment changes in functional connectivity would be associated with improvement during CBT in a transdiagnostic sample. Methods Twenty-seven patients with primary social anxiety disorder (n=14) and primary body dysmorphic disorder (n=13) were scanned before and after 12 sessions of CBT targeting their primary disorder. Eligibility was based on elevated trait SFA scores on the Public Self-Consciousness Scale. Seed-based resting state functional connectivity associated with symptom improvement was computed using a seed in the posterior cingulate cortex/precuneus that delineated a self-other functional network. Results At pre-treatment, stronger positive connectivity of the seed with the cerebellum, insula, middle occipital gyrus, postcentral gyrus, and precuneus/superior parietal lobule, and stronger negative connectivity with the putamen, were associated with greater clinical improvement. Between pre- to post-treatment, greater anticorrelation between the seed and precuneus/superior parietal lobule was associated with clinical improvement, although this did not survive thresholding. Conclusions Pre-treatment functional connectivity between regions involved in attentional salience, self-generated thoughts, and external attention predicted greater CBT response. Behavioral and self-report measures of SFA did not contribute to predictions, thus highlighting the value of neuroimaging-based measures of SFA. Clinical Trials Registration ClinicalTrials.gov Identifier: NCT02808702 https://clinicaltrials.gov/ct2/show/NCT02808702.
Collapse
Affiliation(s)
- Angela Fang
- Department of Psychology, University of Washington, Seattle, WA, 98195-1525
| | - Bengi Baran
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA, 52242-1407
| | - Jamie D. Feusner
- Centre for Addiction and Mental Health, Brain Imaging Health Center, Ontario, Toronto, Canada, M5T1R8
- Department of Psychiatry, University of Toronto, Ontario, Toronto, Canada, M5T1R8
- Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden
| | - K. Luan Phan
- Department of Psychiatry and Behavioral Health, Ohio State University Wexner Medical Center, Columbus, OH, 43210-1240
| | - Clare C. Beatty
- Department of Psychology, Stony Brook University, Stony Brook, NY, 11794-2500
| | - Jessica Crane
- Department of Psychology, University of Washington, Seattle, WA, 98195-1525
| | - Ryan J. Jacoby
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114-2696
| | - Dara S. Manoach
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114-2696
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, 02129-2020
| | - Sabine Wilhelm
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114-2696
| |
Collapse
|
11
|
Jiang Y, Zhang T, Zhang M, Xie X, Tian Y, Wang K, Bai T. Apathy in melancholic depression and abnormal neural activity within the reward-related circuit. Behav Brain Res 2023; 444:114379. [PMID: 36870397 DOI: 10.1016/j.bbr.2023.114379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023]
Abstract
Major depressive disorder is a heterogeneous syndrome, of which the most common subtype is melancholic depression (MEL). Previous studies have indicated that anhedonia is frequently a cardinal feature in MEL. As a common syndrome of motivational deficit, anhedonia is closely associated with dysfunction in reward-related networks. However, little is currently known about apathy, another syndrome of motivational deficits, and the underlying neural mechanisms in MEL and non-melancholic depression (NMEL). Herein, the Apathy Evaluation Scale (AES) was used to compare apathy between MEL and NMEL. On the basis of resting-state functional magnetic resonance imaging, functional connectivity strength (FCS) and seed-based functional connectivity (FC) were calculated within reward-related networks and compared among 43 patients with MEL, 30 patients with NMEL, and 35 healthy controls. Patients with MEL had higher AES scores than those with NMEL (t = -2.20, P = 0.03). Relative to NMEL, MEL was associated with greater FCS (t = 4.27, P < 0.001) in the left ventral striatum (VS), and greater FC of the VS with the ventral medial prefrontal cortex (t = 5.03, P < 0.001) and dorsolateral prefrontal cortex (t = 3.18, P = 0.005). Taken together the results indicate that reward-related networks may play diverse pathophysiological roles in MEL and NMEL, thus providing potential directions for future interventions in the treatment of various depression subtypes.
Collapse
Affiliation(s)
- Yu Jiang
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Ting Zhang
- Department of Psychiatry, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Mengdan Zhang
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Xiaohui Xie
- Department of Neurology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Yanghua Tian
- Department of Neurology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230022, China; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei 230022, China
| | - Kai Wang
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei 230022, China.
| | - Tongjian Bai
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei 230022, China.
| |
Collapse
|
12
|
Lucherini Angeletti L, Scalabrini A, Ricca V, Northoff G. Topography of the Anxious Self: Abnormal Rest-Task Modulation in Social Anxiety Disorder. Neuroscientist 2023; 29:221-244. [PMID: 34282680 DOI: 10.1177/10738584211030497] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Social anxiety disorder (SAD) is characterized by social anxiety/fear, self-attention, and interoception. Functional magnetic resonance imaging studies demonstrate increased activity during symptom-sensitive tasks in regions of the default-mode network (DMN), amygdala (AMG), and salience network (SN). What is the source of this task-unspecific symptom-sensitive hyperactivity in DMN? We address this question by probing SAD resting state (rs) changes in DMN including their relation to other regions as possible source of task-unspecific hyperactivity in the same regions. Our findings show the following: (1) rs-hypoconnectivity within-DMN regions; (2) rs-hyperconnectivity between DMN and AMG/SN; (3) task-evoked hyperactivity in the abnormal rs-regions of DMN and AMG/SN during different symptom-sensitive tasks; (4) negative relationship of rest and task changes in especially anterior DMN regions as their rs-hypoconnectivity is accompanied by task-unspecific hyperactivity; (5) abnormal top-down/bottom-up modulation between anterior DMN regions and AMG during rest and task. Findings demonstrate that rs-hypoconnectivity among DMN regions is negatively related to task-unspecific hyperactivity in DMN and AMG/SN. We propose a model of "Topography of the Anxious Self" in SAD (TAS-SAD). Abnormal DMN-AMG/SN topography during rest, as trait feature of an "unstable social self", is abnormally aggravated during SAD-sensitive situations resulting in task-related hyperactivity in the same regions with an "anxious self" as state feature.
Collapse
Affiliation(s)
| | - Andrea Scalabrini
- Department of Psychological Health and Territorial Sciences (DiSPuTer), G. d'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Valdo Ricca
- Psychiatry Unit, Department of Health Sciences, University of Florence, Florence, Italy
| | - Georg Northoff
- Mental Health Centre, Zhejiang University School of Medicine, Hangzhou, China.,Centre for Cognition and Brain Disorders, Hangzhou Normal University, Hangzhou, China.,The Royal's Institute of Mental Health Research & University of Ottawa, Ottawa, Ontario, Canada.,Centre for Neural Dynamics, Faculty of Medicine, Brain and Mind Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
13
|
Zhang C, Jing H, Yan H, Li X, Liang J, Zhang Q, Liang W, Ou Y, Peng C, Yu Y, Wu W, Xie G, Guo W. Disrupted interhemispheric coordination of sensory-motor networks and insula in major depressive disorder. Front Neurosci 2023; 17:1135337. [PMID: 36960171 PMCID: PMC10028102 DOI: 10.3389/fnins.2023.1135337] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 02/22/2023] [Indexed: 03/09/2023] Open
Abstract
Objective Prior researches have identified distinct differences in neuroimaging characteristics between healthy controls (HCs) and patients with major depressive disorder (MDD). However, the correlations between homotopic connectivity and clinical characteristics in patients with MDD have yet to be fully understood. The present study aimed to investigate common and unique patterns of homotopic connectivity and their relationships with clinical characteristics in patients with MDD. Methods We recruited 42 patients diagnosed with MDD and 42 HCs. We collected a range of clinical variables, as well as exploratory eye movement (EEM), event-related potentials (ERPs) and resting-state functional magnetic resonance imaging (rs-fMRI) data. The data were analyzed using correlation analysis, support vector machine (SVM), and voxel-mirrored homotopic connectivity (VMHC). Results Compared with HCs, patients with MDD showed decreased VMHC in the insula, and increased VMHC in the cerebellum 8/vermis 8/vermis 9 and superior/middle occipital gyrus. SVM analysis using VMHC values in the cerebellum 8/vermis 8/vermis 9 and insula, or VMHC values in the superior/middle occipital gyrus and insula as inputs can distinguish HCs and patients with MDD with high accuracy, sensitivity, and specificity. Conclusion The study demonstrated that decreased VMHC in the insula and increased VMHC values in the sensory-motor networks may be a distinctive neurobiological feature for patients with MDD, which could potentially serve as imaging markers to discriminate HCs and patients with MDD.
Collapse
Affiliation(s)
- Chunguo Zhang
- Department of Psychiatry, The Third People’s Hospital of Foshan, Foshan, Guangdong, China
| | - Huan Jing
- Department of Psychiatry, The Third People’s Hospital of Foshan, Foshan, Guangdong, China
| | - Haohao Yan
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Xiaoling Li
- Department of Psychiatry, The Third People’s Hospital of Foshan, Foshan, Guangdong, China
| | - Jiaquan Liang
- Department of Psychiatry, The Third People’s Hospital of Foshan, Foshan, Guangdong, China
| | - Qinqin Zhang
- Department of Psychiatry, The Third People’s Hospital of Foshan, Foshan, Guangdong, China
| | - Wenting Liang
- Department of Psychiatry, The Third People’s Hospital of Foshan, Foshan, Guangdong, China
| | - Yangpan Ou
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Can Peng
- Department of Psychiatry, The Third People’s Hospital of Foshan, Foshan, Guangdong, China
| | - Yang Yu
- Department of Psychiatry, The Third People’s Hospital of Foshan, Foshan, Guangdong, China
| | - Weibin Wu
- Department of Psychiatry, The Third People’s Hospital of Foshan, Foshan, Guangdong, China
| | - Guojun Xie
- Department of Psychiatry, The Third People’s Hospital of Foshan, Foshan, Guangdong, China
- *Correspondence: Guojun Xie,
| | - Wenbin Guo
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Wenbin Guo,
| |
Collapse
|
14
|
Lv D, Ou Y, Chen Y, Ding Z, Ma J, Zhan C, Yang R, Shang T, Zhang G, Bai X, Sun Z, Xiao J, Wang X, Guo W, Li P. Anatomical distance affects functional connectivity at rest in medicine-free obsessive-compulsive disorder. BMC Psychiatry 2022; 22:462. [PMID: 36221076 PMCID: PMC9555180 DOI: 10.1186/s12888-022-04103-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 06/27/2022] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Brain functional abnormalities at rest have been observed in obsessive-compulsive disorder (OCD). However, whether and how anatomical distance influences functional connectivity (FC) at rest is ambiguous in OCD. METHODS Using resting-state functional magnetic resonance imaging data, we calculated the FC of each voxel in the whole-brain and divided FC into short- and long-range FCs in 40 medicine-free patients with OCD and 40 healthy controls (HCs). A support vector machine (SVM) was used to determine whether the altered short- and long-range FCs could be utilized to distinguish OCD from HCs. RESULTS Patients had lower short-range positive FC (spFC) and long-range positive FC (lpFC) in the left precentral/postcentral gyrus (t = -5.57 and -5.43; P < 0.05, GRF corrected) and higher lpFC in the right thalamus/caudate, left thalamus, left inferior parietal lobule (IPL) and left cerebellum CrusI/VI (t = 4.59, 4.61, 4.41, and 5.93; P < 0.05, GRF corrected). Furthermore, lower spFC in the left precentral/postcentral gyrus might be used to distinguish OCD from HCs with an accuracy of 80.77%, a specificity of 81.58%, and a sensitivity of 80.00%. CONCLUSION These findings highlight that anatomical distance has an effect on the whole-brain FC patterns at rest in OCD. Meanwhile, lower spFC in the left precentral/postcentral gyrus might be applied in distinguishing OCD from HCs.
Collapse
Affiliation(s)
- Dan Lv
- grid.412613.30000 0004 1808 3289Department of Psychiatry, Qiqihar Medical University, Qiqihar, China
| | - Yangpan Ou
- grid.452708.c0000 0004 1803 0208Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yunhui Chen
- grid.412613.30000 0004 1808 3289Department of Psychiatry, Qiqihar Medical University, Qiqihar, China
| | - Zhenning Ding
- grid.412613.30000 0004 1808 3289Department of Psychiatry, Qiqihar Medical University, Qiqihar, China
| | - Jidong Ma
- Department of Psychiatry, Baiyupao Psychiatric Hospital of Harbin, Harbin, China
| | - Chuang Zhan
- Department of Psychiatry, Baiyupao Psychiatric Hospital of Harbin, Harbin, China
| | - Ru Yang
- grid.452708.c0000 0004 1803 0208Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Tinghuizi Shang
- grid.412613.30000 0004 1808 3289Department of Psychiatry, Qiqihar Medical University, Qiqihar, China
| | - Guangfeng Zhang
- grid.412613.30000 0004 1808 3289Department of Radiology, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| | - Xiaoyu Bai
- grid.454868.30000 0004 1797 8574CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing, 100101 China ,grid.410726.60000 0004 1797 8419Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Zhenghai Sun
- grid.412613.30000 0004 1808 3289Department of Psychiatry, Qiqihar Medical University, Qiqihar, China
| | - Jian Xiao
- grid.412613.30000 0004 1808 3289Department of Psychiatry, Qiqihar Medical University, Qiqihar, China
| | - Xiaoping Wang
- grid.452708.c0000 0004 1803 0208Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Wenbin Guo
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China.
| | - Ping Li
- Department of Psychiatry, Qiqihar Medical University, Qiqihar, China.
| |
Collapse
|
15
|
Čermaková P, Andrýsková L, Brázdil M, Marečková K. Socioeconomic deprivation in early life and symptoms of depression and anxiety in young adulthood: mediating role of hippocampal connectivity. Psychol Med 2022; 52:2671-2680. [PMID: 33327969 PMCID: PMC9647532 DOI: 10.1017/s0033291720004754] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 10/22/2020] [Accepted: 11/19/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND Experience of early-life socioeconomic deprivation (ELSD) may increase the risk of mental disorders in young adulthood. This association may be mediated by structural and functional alterations of the hippocampus. METHODS We conducted a prospective cohort study on 122 participants of the European Longitudinal Study of Pregnancy and Childhood. Information about ELSD was collected via questionnaire from mothers during the first 18 months of participants' lives. At age 23-24, participants underwent examination by structural magnetic resonance imaging, resting-state functional connectivity and assessment of depressive symptoms (Mood and Feelings Questionnaire) and anxiety (Spielberger State-Trait Anxiety Inventory). The association of ELSD with brain outcomes in young adulthood was assessed with correlations, linear regression (adjusting for sex, socioeconomic position and mother's mental health) and moderated mediation analysis. RESULTS Higher ELSD was associated with greater depressive symptoms (B = 0.22; p = 0.001), trait anxiety (B = 0.07; p = 0.02) and lower global connectivity of the right hippocampus (B = -0.01; p = 0.02). These associations persisted when adjusted for covariates. In women, lower global connectivity of the right hippocampus was associated with stronger trait anxiety (B = -4.14; p = 0.01). Global connectivity of the right hippocampus as well as connectivity between the right hippocampus and the left middle temporal gyrus mediated the association between ELSD and trait anxiety in women. Higher ELSD correlated with a lower volume of the right hippocampus in men, but the volume of the right hippocampus was not related to mental health. CONCLUSIONS Early preventive strategies targeted at children from socioeconomically deprived families may yield long-lasting benefits for the mental health of the population.
Collapse
Affiliation(s)
- Pavla Čermaková
- Third Faculty of Medicine, Charles University Prague, Prague, Czech Republic
- National Institute of Mental Health, Klecany, Czech Republic
- Second Faculty of Medicine, Charles University Prague, Prague, Czech Republic
| | | | - Milan Brázdil
- Brain and Mind Research, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Klára Marečková
- Third Faculty of Medicine, Charles University Prague, Prague, Czech Republic
- Brain and Mind Research, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| |
Collapse
|
16
|
Predicting social anxiety in young adults with machine learning of resting-state brain functional radiomic features. Sci Rep 2022; 12:13932. [PMID: 35977968 PMCID: PMC9385624 DOI: 10.1038/s41598-022-17769-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 07/30/2022] [Indexed: 12/05/2022] Open
Abstract
Social anxiety is a symptom widely prevalent among young adults, and when present in excess, can lead to maladaptive patterns of social behavior. Recent approaches that incorporate brain functional radiomic features and machine learning have shown potential for predicting certain phenotypes or disorders from functional magnetic resonance images. In this study, we aimed to predict the level of social anxiety in young adult participants by training machine learning models with resting-state brain functional radiomic features including the regional homogeneity, fractional amplitude of low-frequency fluctuation, fractional resting-state physiological fluctuation amplitude, and degree centrality. Among the machine learning models, the XGBoost model achieved the best performance with balanced accuracy of 77.7% and F1 score of 0.815. Analysis of input feature importance demonstrated that the orbitofrontal cortex and the degree centrality were most relevant to predicting the level of social anxiety among the input brain regions and the input type of radiomic features, respectively. These results suggest potential validity for predicting social anxiety with machine learning of the resting-state brain functional radiomic features and provide further understanding of the neural basis of the symptom.
Collapse
|
17
|
Fang A, Baran B, Beatty CC, Mosley J, Feusner JD, Phan KL, Wilhelm S, Manoach DS. Maladaptive self-focused attention and default mode network connectivity: a transdiagnostic investigation across social anxiety and body dysmorphic disorders. Soc Cogn Affect Neurosci 2022; 17:645-654. [PMID: 34875086 PMCID: PMC9250304 DOI: 10.1093/scan/nsab130] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 11/12/2021] [Accepted: 12/06/2021] [Indexed: 11/13/2022] Open
Abstract
Maladaptive self-focused attention (SFA) is a bias toward internal thoughts, feelings and physical states. Despite its role as a core maintaining factor of symptoms in cognitive theories of social anxiety and body dysmorphic disorders (BDDs), studies have not examined its neural basis. In this study, we hypothesized that maladaptive SFA would be associated with hyperconnectivity in the default mode network (DMN) in self-focused patients with these disorders. Thirty patients with primary social anxiety disorder or primary BDD and 28 healthy individuals were eligible and scanned. Eligibility was determined by scoring greater than 1SD or below 1SD of the Public Self-Consciousness Scale normative mean, respectively, for each group. Seed-to-voxel functional connectivity was computed using a DMN posterior cingulate cortex (PCC) seed. There was no evidence of increased DMN functional connectivity in patients compared to controls. Patients (regardless of diagnosis) showed reduced functional connectivity of the PCC with several brain regions, including the bilateral superior parietal lobule (SPL), compared to controls, which was inversely correlated with maladaptive SFA but not associated with social anxiety, body dysmorphic, depression severity or rumination. Abnormal PCC-SPL connectivity may represent a transdiagnostic neural marker of SFA that reflects difficulty shifting between internal versus external attention.
Collapse
Affiliation(s)
- Angela Fang
- Department of Psychology, University of Washington, Seattle, WA 98195-1525, USA
| | - Bengi Baran
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA 52242-1407, USA
| | - Clare C Beatty
- Department of Psychology, Stony Brook University, Stony Brook, NY 11794-2500, USA
| | - Jennifer Mosley
- Department of Psychology, University of Washington, Seattle, WA 98195-1525, USA
| | - Jamie D Feusner
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA 90095-8346, USA.,Centre for Addiction and Mental Health, Toronto, Ontario M5T 1R8, Canada.,Department of Psychiatry, University of Toronto, Toronto, Ontario M5T 1R8, Canada
| | - K Luan Phan
- Department of Psychiatry and Behavioral Health, Ohio State University Wexner Medical Center, Columbus, OH 43210-1240, USA
| | - Sabine Wilhelm
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114-2696, USA
| | - Dara S Manoach
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114-2696, USA.,Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129-2020, USA
| |
Collapse
|
18
|
Zhang Q, Li B, Jin S, Liu W, Liu J, Xie S, Zhang L, Kang Y, Ding Y, Zhang X, Cheng W, Yang Z. Comparing the Effectiveness of Brain Structural Imaging, Resting-state fMRI, and Naturalistic fMRI in Recognizing Social Anxiety Disorder in Children and Adolescents. Psychiatry Res Neuroimaging 2022; 323:111485. [PMID: 35567906 DOI: 10.1016/j.pscychresns.2022.111485] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 04/07/2022] [Accepted: 04/16/2022] [Indexed: 01/11/2023]
Abstract
Social anxiety disorder (SAD) is a common anxiety disorder in childhood and adolescence. Studies on SAD in adults have reported both structural and functional aberrancies of the brain at the group level. However, evidence has shown differences in anxiety-related brain abnormalities between adolescents and adults. Since children and adolescents can afford limited scan time, optimizing the scan tasks is essential for SAD research in children and adolescents. Thus, we need to address whether brain structure, resting-state fMRI, and naturalistic imaging enable individualized identification of SAD in children and adolescents, which measurement is more effective, and whether pooling multi-modal features can improve the identification of SAD. We comprehensively addressed these questions by building machine learning models based on parcel-wise brain features. We found that naturalistic fMRI yielded higher classification accuracy (69.17%) than the other modalities and the classification performance showed dependence on the contents of the movie. The classification models also identified contributing brain regions, some of which exhibited correlations with the symptoms scores of SAD. However, pooling brain features from the three modalities did not help enhance the classification accuracy. These results support the application of carefully designed naturalistic imaging in recognizing children and adolescents at risk of SAD.
Collapse
Affiliation(s)
- Qinjian Zhang
- School of Computer Science and Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Baobin Li
- School of Computer Science and Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Shuyu Jin
- Laboratory of Psychological Health and Imaging, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenjing Liu
- Department of Child and Adolescent Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jingjing Liu
- Laboratory of Psychological Health and Imaging, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuqi Xie
- Laboratory of Psychological Health and Imaging, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lei Zhang
- Laboratory of Psychological Health and Imaging, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yinzhi Kang
- Laboratory of Psychological Health and Imaging, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yue Ding
- Laboratory of Psychological Health and Imaging, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaochen Zhang
- Laboratory of Psychological Health and Imaging, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenhong Cheng
- Department of Child and Adolescent Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Zhi Yang
- Laboratory of Psychological Health and Imaging, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Institute of Psychological and Behavioral Science, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
19
|
Yan M, Fu X, Ou Y, Liu F, Li H, Guo W. Multiple-Network Alterations in Major Depressive Disorder With Gastrointestinal Symptoms at Rest Revealed by Global Functional Connectivity Analysis. Front Neurosci 2022; 16:897707. [PMID: 35812223 PMCID: PMC9263397 DOI: 10.3389/fnins.2022.897707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/06/2022] [Indexed: 11/29/2022] Open
Abstract
Objective Gastrointestinal (GI) symptoms are prominent in major depressive disorder (MDD) and bring patients lots of complaints and troubles. We aimed to explore whether there were some distinctive brain image alterations in MDD with GI symptoms, which could be used to distinguish MDD with GI symptoms from those without GI symptoms and healthy controls (HCs). Methods A total of 35 outpatients with GI symptoms, 17 outpatients without GI symptoms, and 28 HCs were recruited. All the participants were scanned by a resting-state functional magnetic resonance imaging. Imaging data were analyzed with the global functional connectivity (GFC) and support vector machine methods. Results MDD with GI symptoms showed decreased GFC in the left superior medial prefrontal cortex (MPFC) compared with MDD without GI symptoms. Compared with HCs, MDD with GI symptoms showed decreased GFC in the bilateral middle temporal pole (MTP) and left posterior cingulate cortex/precuneus (PCC/Pcu), and increased GFC in the right insula and bilateral thalamus. SVM analysis showed that an accuracy was 78.85% in differentiating MDD with GI symptoms from MDD without GI symptoms by using the GFC of the left superior MPFC. A combination of GFC of the left PCC/Pcu and bilateral MTP exhibited the highest accuracy (87.30%) in differentiating patients with MDD with GI symptoms from HCs. Conclusion MDD with GI symptoms showed abnormal GFC in multiple networks, including the default mode network and cortico-limbic mood-regulating circuit. Using abnormal GFC might work well to discriminate MDD with GI symptoms from MDD without GI symptoms and HCs.
Collapse
Affiliation(s)
- Meiqi Yan
- Department of Psychiatry and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xiaoya Fu
- Department of Psychiatry and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yangpan Ou
- Department of Psychiatry and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Feng Liu
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Huabing Li
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Wenbin Guo
- Department of Psychiatry and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
- Department of Psychiatry, Qiqihar Medical University, Qiqihar, China
- Department of Psychiatry, The Third People’s Hospital of Foshan, Foshan, China
- *Correspondence: Wenbin Guo,
| |
Collapse
|
20
|
Li X, Yan R, Yue Z, Zhang M, Ren J, Wu B. Abnormal Dynamic Functional Connectivity in Patients With End-Stage Renal Disease. Front Neurosci 2022; 16:852822. [PMID: 35669490 PMCID: PMC9163405 DOI: 10.3389/fnins.2022.852822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 04/06/2022] [Indexed: 11/23/2022] Open
Abstract
Dynamic functional connectivity (FC) analysis can capture time-varying properties of connectivity; however, studies focusing on dynamic FC in patients with end-stage renal disease (ESRD) are very limited. This is the first study to explore the dynamic aspects of whole-brain FC and topological properties in ESRD patients. Resting-state functional magnetic resonance imaging data were acquired from 100 ESRD patients [50 hemodialysis (HD) patients and 50 non-dialysis patients] and 64 healthy controls (HCs). Independent component analysis, a sliding-window approach and graph-theory methods were used to study the dynamic FC properties. The intrinsic brain FC were clustered into four configuration states. Compared with HCs, both patient groups spent longer time in State 3, in which decreased FC between subnetworks of the default mode network (DMN) and between the dorsal DMN and language network was observed in these patients, and a further reduction in FC between the DMN subnetworks was found in HD patients compared to non-dialysis patients. The number of transitions and the variability of global and local efficiency progressively decreased from that in HCs to that of non-dialysis patients to that of HD patients. The completion time of Trail Making Test A and Trail Making Test B positively correlated with the mean dwell time of State 3 and negatively correlated with the number of transitions in ESRD patients. Our findings suggest impaired functional flexibility of network connections and state-specific FC disruptions in patients with ESRD, which may underlie their cognitive deficits. HD may have an adverse effect on time-varying FC.
Collapse
|
21
|
Luo Q, Yu H, Chen J, Lin X, Wu Z, Yao J, Li Y, Wu H, Peng H. Altered Variability and Concordance of Dynamic Resting-State Functional Magnetic Resonance Imaging Indices in Patients With Major Depressive Disorder and Childhood Trauma. Front Neurosci 2022; 16:852799. [PMID: 35615286 PMCID: PMC9124829 DOI: 10.3389/fnins.2022.852799] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/18/2022] [Indexed: 11/13/2022] Open
Abstract
Childhood trauma is a non-specific risk factor for major depressive disorder (MDD). resting-state functional magnetic resonance imaging (R-fMRI) studies have demonstrated changes in regional brain activity in patients with MDD who experienced childhood trauma. However, previous studies have mainly focused on static characteristics of regional brain activity. This study aimed to determine the specific brain regions associated with MDD with childhood trauma by performing temporal dynamic analysis of R-fMRI data in three groups of patients: patients with childhood trauma-associated MDD (n = 48), patients without childhood trauma-associated MDD (n = 30), and healthy controls (n = 103). Dynamics and concordance of R-fMRI indices were calculated and analyzed. In patients with childhood trauma-associated MDD, a lower dynamic amplitude of low-frequency fluctuations was found in the left lingual gyrus, whereas a lower dynamic degree of centrality was observed in the right lingual gyrus and right calcarine cortex. Patients with childhood trauma-associated MDD showed a lower voxel-wise concordance in the left middle temporal and bilateral calcarine cortices. Moreover, group differences (depressed or not) significantly moderated the relationship between voxel-wise concordance in the right calcarine cortex and childhood trauma history. Overall, patients with childhood trauma-associated MDD demonstrated aberrant variability and concordance in intrinsic brain activity. These aberrances may be an underlying neurobiological mechanism that explains MDD from the perspective of temporal dynamics.
Collapse
Affiliation(s)
- Qianyi Luo
- Department of Clinical Psychology, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Huiwen Yu
- Department of Clinical Psychology, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Juran Chen
- Department of Clinical Psychology, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xinyi Lin
- Department of Clinical Psychology, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhiyao Wu
- Department of Clinical Psychology, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jiazheng Yao
- Department of Clinical Psychology, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yuhong Li
- Department of Clinical Psychology, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Huawang Wu
- Department of Radiology, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Hongjun Peng
- Department of Clinical Psychology, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
22
|
Chen J, Xue K, Yang M, Wang K, Xu Y, Wen B, Cheng J, Han S, Wei Y. Altered Coupling of Cerebral Blood Flow and Functional Connectivity Strength in First-Episode Schizophrenia Patients With Auditory Verbal Hallucinations. Front Neurosci 2022; 16:821078. [PMID: 35546878 PMCID: PMC9083321 DOI: 10.3389/fnins.2022.821078] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 02/09/2022] [Indexed: 11/13/2022] Open
Abstract
Objective Auditory verbal hallucinations (AVHs) are a major symptom of schizophrenia and are connected with impairments in auditory and speech-related networks. In schizophrenia with AVHs, alterations in resting-state cerebral blood flow (CBF) and functional connectivity have been described. However, the neurovascular coupling alterations specific to first-episode drug-naïve schizophrenia (FES) patients with AVHs remain unknown. Methods Resting-state functional MRI and arterial spin labeling (ASL) was performed on 46 first-episode drug-naïve schizophrenia (FES) patients with AVHs (AVH), 39 FES drug-naïve schizophrenia patients without AVHs (NAVH), and 48 healthy controls (HC). Then we compared the correlation between the CBF and functional connection strength (FCS) of the entire gray matter between the three groups, as well as the CBF/FCS ratio of each voxel. Correlation analyses were performed on significant results between schizophrenia patients and clinical measures scale. Results The CBF/FCS ratio was reduced in the cognitive and emotional brain regions in both the AVH and NAVH groups, primarily in the crus I/II, vermis VI/VII, and cerebellum VI. In the AVH group compared with the HC group, the CBF/FCS ratio was higher in auditory perception and language-processing areas, primarily the left superior and middle temporal gyrus (STG/MTG). The CBF/FCS ratio in the left STG and left MTG positively correlates with the score of the Auditory Hallucination Rating Scale in AVH patients. Conclusion These findings point to the difference in neurovascular coupling failure between AVH and NAVH patients. The dysfunction of the forward model based on the predictive and computing role of the cerebellum may increase the excitability in the auditory cortex, which may help to understand the neuropathological mechanism of AVHs.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jingliang Cheng
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shaoqiang Han
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yarui Wei
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
23
|
Resting-state neuroimaging in social anxiety disorder: a systematic review. Mol Psychiatry 2022; 27:164-179. [PMID: 34035474 DOI: 10.1038/s41380-021-01154-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/21/2021] [Accepted: 04/30/2021] [Indexed: 02/04/2023]
Abstract
There has been a growing interest in resting-state brain alterations in people with social anxiety disorder. However, the evidence has been mixed and contested and further understanding of the neurobiology of this disorder may aid in informing methods to increase diagnostic accuracy and treatment targets. With this systematic review, we aimed to synthesize the findings of the neuroimaging literature on resting-state functional activity and connectivity in social anxiety disorder, and to summarize associations between brain and social anxiety symptoms to further characterize the neurobiology of the disorder. We systematically searched seven databases for empirical research studies. Thirty-five studies met the inclusion criteria, with a total of 1611 participants (795 people with social anxiety disorder and 816 controls). Studies involving resting-state seed-based functional connectivity analyses were the most common. Individuals with social anxiety disorder (vs. controls) displayed both higher and lower connectivity between frontal-amygdala and frontal-parietal regions. Frontal regions were the most consistently implicated across other analysis methods, and most associated with social anxiety symptoms. Small sample sizes and variation in the types of analyses used across studies may have contributed to the inconsistencies in the findings of this review. This review provides novel insights into established neurobiological models of social anxiety disorder and provides an update on what is known about the neurobiology of this disorder in the absence of any overt tasks (i.e., resting state). The knowledge gained from this body of research enabled us to also provide recommendations for a more standardized imaging pre-processing approach to examine resting-state brain activity and connectivity that could help advance knowledge in this field. We believe this is warranted to take the next step toward clinical translation in social anxiety disorder that may lead to better treatment outcomes by informing the identification of neurobiological targets for treatment.
Collapse
|
24
|
Ji B, Dai M, Guo Z, Li J, Cao Y, Zhang Z, Zhang Y, Liu X. Functional Connectivity Density in the Sensorimotor Area is Associated with Sleep Latency in Patients with Primary Insomnia. Neuropsychiatr Dis Treat 2022; 18:1-10. [PMID: 35035217 PMCID: PMC8755708 DOI: 10.2147/ndt.s338489] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/23/2021] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVE It is unclear whether the patterns of functional connectivity density (FCD) differ between patients with primary insomnia (PI) and healthy subjects. In the present study, we investigated the features of FCD in patients with PI using resting-state functional MRI (rsfMRI). METHODS rsfMRI datasets of 32 patients with PI and 34 healthy controls (HCs) were obtained using a 3-Tesla scanner. FCD analysis was performed to compare voxels with abnormal whole-brain functional connectivity with other voxels among patients with PI and HCs. Abnormal brain regions were then used as seed points for FC analysis. RESULTS Compared with HCs, patients with PI exhibited significantly decreased FCD in the left medial frontal gyrus and increased FCD in the left supplementary motor area (SMA). With the left medial frontal gyrus as the seed point, patients with PI showed decreased FC between the left medial frontal gyrus and the left fusiform gyrus compared with HCs. With the left SMA as the seed point, patients with PI exhibited increased FC between the left SMA and the right anterior cingulate gyrus. Correlation analysis revealed that the increased FCD values in the left SMA were positively correlated with sleep latency in patients with PI. CONCLUSION Default-mode network and SMA dysfunctions may be related to the pathophysiology of PI.
Collapse
Affiliation(s)
- Bin Ji
- Department of Anesthesiologyand Perioperative Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, People's Republic of China
| | - Min Dai
- Department of Radiology of the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, People's Republic of China
| | - Zhongwei Guo
- The Sleep Medical Center of Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, 310012, People's Republic of China
| | - Jiapeng Li
- Department of Radiology of Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, 310012, People's Republic of China
| | - Yulin Cao
- Department of Radiology of Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, 310012, People's Republic of China
| | - Zhenzhong Zhang
- The Sleep Medical Center of Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, 310012, People's Republic of China
| | - Yan Zhang
- The Sleep Medical Center of Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, 310012, People's Republic of China
| | - Xiaozheng Liu
- Department of Radiology of the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, People's Republic of China
| |
Collapse
|
25
|
Huang H, Zhao K, Zhu W, Li H, Zhu W. Abnormal Cerebral Blood Flow and Functional Connectivity Strength in Subjects With White Matter Hyperintensities. Front Neurol 2021; 12:752762. [PMID: 34744987 PMCID: PMC8564178 DOI: 10.3389/fneur.2021.752762] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 09/13/2021] [Indexed: 11/16/2022] Open
Abstract
White matter hyperintensities (WMHs) are common neuroimaging findings in the aging population and are associated with various clinical symptoms, especially cognitive impairment. Abnormal global cerebral blood flow (CBF) and specific functional connections have been reported in subjects with higher WMH loads. Nevertheless, the comprehensive functional mechanisms underlying WMH are yet to be established. In this study, by combining resting-state functional magnetic resonance imaging and arterial spin labeling, we investigated the neurovascular dysfunction in subjects with WMH in CBF, functional connectivity strength (FCS), and CBF–FCS coupling. The whole-brain alterations of all these measures were explored among non-dementia subjects with different WMH loads using a fine-grained Human Brainnetome Atlas. In addition, exploratory mediation analyses were conducted to further determine the relationships between these neuroimaging indicators, WMH load, and cognition. The results showed that subjects with higher WMH loads displayed decreased CBF and FCS mainly in regions involving the cognitive- and emotional-related brain networks, including the default mode network, salience network, and central executive network. Notably, subjects with higher WMH loads also showed an abnormal regional CBF–FCS coupling in several regions of the thalamus, posterior cingulate cortex, and parahippocampal gyrus involving the default mode network. Furthermore, regional CBF in the right inferior temporal gyrus and right dorsal caudate may mediate the relationship between WMH load and cognition in WMH subjects. These findings indicated characteristic changes in cerebral blood supply, brain activity, and neurovascular coupling in regions involving specific brain networks with the development of WMH, providing further information on pathophysiology underpinnings of the WMH and related cognitive impairment.
Collapse
Affiliation(s)
- Hao Huang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kun Zhao
- School of Biological Science & Medical Engineering, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
| | - Wenzhen Zhu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenhao Zhu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
26
|
Pregnancy leads to changes in the brain functional network: a connectome analysis. Brain Imaging Behav 2021; 16:811-819. [PMID: 34590214 DOI: 10.1007/s11682-021-00561-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/13/2021] [Indexed: 10/20/2022]
Abstract
Pregnancy leads to long-lasting changes in human brain structure; however, little is known regarding alterations in the topological organization of functional networks. In this study, we investigated the effect of pregnancy on human brain function networks. Resting-state fMRI data was collected from eighteen primiparous mothers and twenty-four nulliparous control women of similar age, education level and body mass index (BMI). The functional brain network and topological properties were calculated by using GRETNA toolbox. The demographic data differences between two groups were computed by the independent two sample t-test. We tested group differences in network metrics' area under curve (AUC) using non-parametric permutation test of 1,000 permutations and corrected for false discovery rate (FDR). Differences in regional networks between groups were evaluated using non-parametric permutation tests by network-based statistical analysis (NBS). Compared with the nulliparous control women, a hub node changed from left inferior temporal gyrus to right precentral gyrus in primiparous mothers, while primiparous mothers showed enhanced network global efficiency (p = 0.247), enhanced local efficiency (p = 0.410), larger clustering coefficient (p = 0.410), but shorter characteristic path length (p = 0.247), smaller normalized clustering coefficient (p = 0.111), and shorter normalized characteristic path length (p = 0.705). Although both groups of functional networks have small-world property (σ > 1), the σ values of primiparous mothers were decreased significantly. NBS evaluation showed the majority of altered connected sub-network in the primiparous mothers occurred in the bilateral frontal lobe gyrus (p < 0.05). Altered functional network metrics and an abnormal sub-network were found in primiparous mothers, suggested that pregnancy may lead to changes in the brain functional network.
Collapse
|
27
|
Bas-Hoogendam JM, van Steenbergen H, Cohen Kadosh K, Westenberg PM, van der Wee NJA. Intrinsic functional connectivity in families genetically enriched for social anxiety disorder - an endophenotype study. EBioMedicine 2021; 69:103445. [PMID: 34161885 PMCID: PMC8237289 DOI: 10.1016/j.ebiom.2021.103445] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 05/18/2021] [Accepted: 06/04/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Social anxiety disorder (SAD) is a serious psychiatric condition with a high prevalence, and a typical onset during childhood/adolescence. The condition runs in families, but it is largely unknown which neurobiological characteristics transfer this genetic vulnerability ('endophenotypes'). Using data from the Leiden Family Lab study on SAD, including two generations of families genetically enriched for SAD, we investigated whether social anxiety (SA) co-segregated with changes in intrinsic functional connectivity (iFC), and examined heritability. METHODS Functional MRI data were acquired during resting-state in 109 individuals (56 males; mean age: 31·5, range 9·2-61·5 years). FSL's tool MELODIC was used to perform independent component analysis. Six networks of interest (default mode, dorsal attention, executive control, frontoparietal, limbic and salience) were identified at the group-level and used to generate subject-specific spatial maps. Voxel-wise regression models, with SA-level as predictor and voxel-wise iFC as candidate endophenotypes, were performed to investigate the association with SA, within masks of the networks of interest. Subsequently, heritability was estimated. FINDINGS SA co-segregated with iFC within the dorsal attention network (positive association in left middle frontal gyrus and right postcentral gyrus) and frontoparietal network (positive association within left middle temporal gyrus) (cluster-forming-threshold z>2·3, cluster-corrected extent-threshold p<0·05). Furthermore, iFC of multiple voxels within these clusters was at least moderately heritable. INTERPRETATION These findings provide initial evidence for increased iFC as candidate endophenotype of SAD, particularly within networks involved in attention. These changes might underlie attentional biases commonly present in SAD. FUNDING Leiden University Research Profile 'Health, Prevention and the Human Lifecycle'.
Collapse
Affiliation(s)
- Janna Marie Bas-Hoogendam
- Institute of Psychology, Leiden University, Wassenaarseweg 52, 2333, AK, Leiden, the Netherlands; Department of Psychiatry, Leiden University Medical Center, Albinusdreef 2, 2333, ZA, Leiden, the Netherlands; Leiden Institute for Brain and Cognition, Leiden, the Netherlands.
| | - Henk van Steenbergen
- Institute of Psychology, Leiden University, Wassenaarseweg 52, 2333, AK, Leiden, the Netherlands; Leiden Institute for Brain and Cognition, Leiden, the Netherlands.
| | | | - P Michiel Westenberg
- Institute of Psychology, Leiden University, Wassenaarseweg 52, 2333, AK, Leiden, the Netherlands; Leiden Institute for Brain and Cognition, Leiden, the Netherlands.
| | - Nic J A van der Wee
- Department of Psychiatry, Leiden University Medical Center, Albinusdreef 2, 2333, ZA, Leiden, the Netherlands; Leiden Institute for Brain and Cognition, Leiden, the Netherlands.
| |
Collapse
|
28
|
Al-Ezzi A, Kamel N, Faye I, Gunaseli E. Analysis of Default Mode Network in Social Anxiety Disorder: EEG Resting-State Effective Connectivity Study. SENSORS (BASEL, SWITZERLAND) 2021; 21:4098. [PMID: 34203578 PMCID: PMC8232236 DOI: 10.3390/s21124098] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/07/2021] [Accepted: 04/09/2021] [Indexed: 12/27/2022]
Abstract
Recent brain imaging findings by using different methods (e.g., fMRI and PET) have suggested that social anxiety disorder (SAD) is correlated with alterations in regional or network-level brain function. However, due to many limitations associated with these methods, such as poor temporal resolution and limited number of samples per second, neuroscientists could not quantify the fast dynamic connectivity of causal information networks in SAD. In this study, SAD-related changes in brain connections within the default mode network (DMN) were investigated using eight electroencephalographic (EEG) regions of interest. Partial directed coherence (PDC) was used to assess the causal influences of DMN regions on each other and indicate the changes in the DMN effective network related to SAD severity. The DMN is a large-scale brain network basically composed of the mesial prefrontal cortex (mPFC), posterior cingulate cortex (PCC)/precuneus, and lateral parietal cortex (LPC). The EEG data were collected from 88 subjects (22 control, 22 mild, 22 moderate, 22 severe) and used to estimate the effective connectivity between DMN regions at different frequency bands: delta (1-3 Hz), theta (4-8 Hz), alpha (8-12 Hz), low beta (13-21 Hz), and high beta (22-30 Hz). Among the healthy control (HC) and the three considered levels of severity of SAD, the results indicated a higher level of causal interactions for the mild and moderate SAD groups than for the severe and HC groups. Between the control and the severe SAD groups, the results indicated a higher level of causal connections for the control throughout all the DMN regions. We found significant increases in the mean PDC in the delta (p = 0.009) and alpha (p = 0.001) bands between the SAD groups. Among the DMN regions, the precuneus exhibited a higher level of causal influence than other regions. Therefore, it was suggested to be a major source hub that contributes to the mental exploration and emotional content of SAD. In contrast to the severe group, HC exhibited higher resting-state connectivity at the mPFC, providing evidence for mPFC dysfunction in the severe SAD group. Furthermore, the total Social Interaction Anxiety Scale (SIAS) was positively correlated with the mean values of the PDC of the severe SAD group, r (22) = 0.576, p = 0.006 and negatively correlated with those of the HC group, r (22) = -0.689, p = 0.001. The reported results may facilitate greater comprehension of the underlying potential SAD neural biomarkers and can be used to characterize possible targets for further medication.
Collapse
Affiliation(s)
- Abdulhakim Al-Ezzi
- Centre for Intelligent Signal and Imaging Research (CISIR), Department of Electrical and Electronic Engineering, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Malaysia; (A.A.-E.); (N.K.)
| | - Nidal Kamel
- Centre for Intelligent Signal and Imaging Research (CISIR), Department of Electrical and Electronic Engineering, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Malaysia; (A.A.-E.); (N.K.)
| | - Ibrahima Faye
- Centre for Intelligent Signal and Imaging Research (CISIR), Department of Electrical and Electronic Engineering, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Malaysia; (A.A.-E.); (N.K.)
| | - Esther Gunaseli
- Psychiatry Discipline Sub Unit, Universiti Kuala Lumpur Royal College of Medicine Perak, Ipoh 30450, Malaysia;
| |
Collapse
|
29
|
Jia C, Ou Y, Chen Y, Ma J, Zhan C, Lv D, Yang R, Shang T, Sun L, Wang Y, Zhang G, Sun Z, Wang W, Wang X, Guo W, Li P. Disrupted Asymmetry of Inter- and Intra-Hemispheric Functional Connectivity at Rest in Medication-Free Obsessive-Compulsive Disorder. Front Neurosci 2021; 15:634557. [PMID: 34177445 PMCID: PMC8220135 DOI: 10.3389/fnins.2021.634557] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 05/07/2021] [Indexed: 11/13/2022] Open
Abstract
Disrupted functional asymmetry of cerebral hemispheres may be altered in patients with obsessive-compulsive disorder (OCD). However, little is known about whether anomalous brain asymmetries originate from inter- and/or intra-hemispheric functional connectivity (FC) at rest in OCD. In this study, resting-state functional magnetic resonance imaging was applied to 40 medication-free patients with OCD and 38 gender-, age-, and education-matched healthy controls (HCs). Data were analyzed using the parameter of asymmetry (PAS) and support vector machine methods. Patients with OCD showed significantly increased PAS in the left posterior cingulate cortex, left precentral gyrus/postcentral gyrus, and right inferior occipital gyrus and decreased PAS in the left dorsolateral prefrontal cortex (DLPFC), bilateral middle cingulate cortex (MCC), left inferior parietal lobule, and left cerebellum Crus I. A negative correlation was found between decreased PAS in the left DLPFC and Yale-Brown Obsessive-compulsive Scale compulsive behavior scores in the patients. Furthermore, decreased PAS in the bilateral MCC could be used to distinguish OCD from HCs with a sensitivity of 87.50%, an accuracy of 88.46%, and a specificity of 89.47%. These results highlighted the contribution of disrupted asymmetry of intra-hemispheric FC within and outside the cortico-striato-thalamocortical circuits at rest in the pathophysiology of OCD, and reduced intra-hemispheric FC in the bilateral MCC may serve as a potential biomarker to classify individuals with OCD from HCs.
Collapse
Affiliation(s)
- Cuicui Jia
- Department of Psychiatry, Qiqihar Medical University, Qiqihar, China
| | - Yangpan Ou
- National Clinical Research Center for Mental Disorders, and Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yunhui Chen
- Department of Psychiatry, Qiqihar Medical University, Qiqihar, China
| | - Jidong Ma
- Department of Psychiatry, Baiyupao Psychiatric Hospital of Harbin, Harbin, China
| | - Chuang Zhan
- Department of Psychiatry, Baiyupao Psychiatric Hospital of Harbin, Harbin, China
| | - Dan Lv
- Department of Psychiatry, Qiqihar Medical University, Qiqihar, China
| | - Ru Yang
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Tinghuizi Shang
- Department of Psychiatry, Qiqihar Medical University, Qiqihar, China
| | - Lei Sun
- Department of Psychiatry, Qiqihar Medical University, Qiqihar, China
| | - Yuhua Wang
- Department of Psychiatry, Qiqihar Medical University, Qiqihar, China
| | - Guangfeng Zhang
- Department of Radiology, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| | - Zhenghai Sun
- Department of Psychiatry, Qiqihar Medical University, Qiqihar, China
| | - Wei Wang
- Department of Library, Qiqihar Medical University, Qiqihar, China
| | - Xiaoping Wang
- National Clinical Research Center for Mental Disorders, and Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Wenbin Guo
- National Clinical Research Center for Mental Disorders, and Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Ping Li
- Department of Psychiatry, Qiqihar Medical University, Qiqihar, China
| |
Collapse
|
30
|
Out-of-step: brain-heart desynchronization in anxiety disorders. Mol Psychiatry 2021; 26:1726-1737. [PMID: 33504952 DOI: 10.1038/s41380-021-01029-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 12/30/2020] [Accepted: 01/12/2021] [Indexed: 12/11/2022]
Abstract
Imaging studies in anxiety disorders (AD) show abnormal functional connectivity primarily in the salience network (SN), somatomotor network (SMN), and default mode network (DMN). However, it is not clear how precisely these network changes occur including their relation to psychopathological symptoms. Here, we show that the functional networks affected in AD overlap with cortical regions that receive visceral inputs (the so-called central/visceral autonomic network). Focusing on cardiac afferents, we suggest that network changes in AD may be due to reduced phase synchronization between ongoing neural and cardiac activity. This neuro-cardiac desynchronization occurs due to the abnormal phase resetting of neural activity at the onset of each heartbeat, as measured by a lower intertrial coherence and heartbeat-evoked potential. Biochemically, cardiac afferents reach subcortical serotonergic raphe nuclei and noradrenergic locus coeruleus (among others) which, in turn, are known to reciprocally modulate the DMN and SMN/SN on the cortical level. Consistent with the network changes in AD, decreases in serotonergic and noradrenergic activity are known to increase connectivity in both SMN and SN while, at the same time, they decrease DMN connectivity. SMN and SN increases, in turn, lead to increased emotional arousal/anxiety and bodily awareness whereas decreased DMN connectivity leads to an unstable sense-of-self in AD. Finally, we integrate our proposal with interoceptive predictive processing models suggesting neuro-cardiac desynchronization as a mechanism for "noisy" bottom-up information leading to a persistently uncertain bodily state in top-down models. In sum, integrating theories on active interference and hyperarousal, we propose a precise neuro-cardiac and biochemically -driven mechanisms for key psychopathological symptoms of AD.
Collapse
|
31
|
Sheng J, Zhang L, Feng J, Liu J, Li A, Chen W, Shen Y, Wang J, He Y, Xue G. The coupling of BOLD signal variability and degree centrality underlies cognitive functions and psychiatric diseases. Neuroimage 2021; 237:118187. [PMID: 34020011 DOI: 10.1016/j.neuroimage.2021.118187] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 05/16/2021] [Accepted: 05/17/2021] [Indexed: 11/16/2022] Open
Abstract
Brain signal variability has been consistently linked to functional integration; however, whether this coupling is associated with cognitive functions and/or psychiatric diseases has not been clarified. Using multiple multimodality datasets, including resting-state functional magnetic resonance imaging (rsfMRI) data from the Human Connectome Project (HCP: N = 927) and a Beijing sample (N = 416) and cerebral blood flow (CBF) and rsfMRI data from a Hangzhou sample (N = 29), we found that, compared with the existing variability measure (i.e., SDBOLD), the mean-scaled (standardized) fractional standard deviation of the BOLD signal (mfSDBOLD) maintained very high test-retest reliability, showed greater cross-site reliability and was less affected by head motion. We also found strong reproducible couplings between the mfSDBOLD and functional integration measured by the degree centrality (DC), both cross-voxel and cross-subject, which were robust to scanning and preprocessing parameters. Moreover, both mfSDBOLD and DC were correlated with CBF, suggesting a common physiological basis for both measures. Critically, the degree of coupling between mfSDBOLD and long-range DC was positively correlated with individuals' cognitive total composite scores. Brain regions with greater mismatches between mfSDBOLD and long-range DC were more vulnerable to brain diseases. Our results suggest that BOLD signal variability could serve as a meaningful index of local function that underlies functional integration in the human brain and that a strong coupling between BOLD signal variability and functional integration may serve as a hallmark of balanced brain networks that are associated with optimal brain functions.
Collapse
Affiliation(s)
- Jintao Sheng
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute of Brain Research, Beijing Normal University, Beijing 100875, PR China
| | - Liang Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute of Brain Research, Beijing Normal University, Beijing 100875, PR China
| | - Junjiao Feng
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute of Brain Research, Beijing Normal University, Beijing 100875, PR China
| | - Jing Liu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute of Brain Research, Beijing Normal University, Beijing 100875, PR China
| | - Anqi Li
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute of Brain Research, Beijing Normal University, Beijing 100875, PR China
| | - Wei Chen
- Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, and the Collaborative Innovation Center for Brain Science, Hangzhou, Zhejiang 310000, PR China
| | - Yuedi Shen
- The Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang 310000, PR China
| | - Jinhui Wang
- Guangdong Key Laboratory of Mental Health and Cognitive Science, Center for Studies of Psychological Application, South China Normal University, Institute for Brain Research and Rehabilitation, Guangzhou 510631, PR China; Key Laboratory of Brain, Ministry of Education, Cognition and Education Sciences (South China Normal University), PR China
| | - Yong He
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute of Brain Research, Beijing Normal University, Beijing 100875, PR China
| | - Gui Xue
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute of Brain Research, Beijing Normal University, Beijing 100875, PR China.
| |
Collapse
|
32
|
Distinctive Alterations of Functional Connectivity Strength between Vascular and Amnestic Mild Cognitive Impairment. Neural Plast 2021; 2021:8812490. [PMID: 34104193 PMCID: PMC8159649 DOI: 10.1155/2021/8812490] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 11/02/2020] [Accepted: 04/30/2021] [Indexed: 11/18/2022] Open
Abstract
Widespread structural and functional alterations have been reported in the two highly prevalent mild cognitive impairment (MCI) subtypes, amnestic MCI (aMCI) and vascular MCI (VaMCI). However, the changing pattern in functional connectivity strength (FCS) remains largely unclear. The aim of the present study is to detect the differences of FCS and to further explore the detailed resting-state functional connectivity (FC) alterations among VaMCI subjects, aMCI subjects, and healthy controls (HC). Twenty-six aMCI subjects, 31 VaMCI participants, and 36 HC participants underwent cognitive assessments and resting-state functional MRI scans. At first, one-way ANCOVA and post hoc analysis indicated significant decreased FCS in the left middle temporal gyrus (MTG) in aMCI and VaMCI groups compared to HC, especially in the VaMCI group. Then, we selected the left MTG as a seed to further explore the detailed resting-state FC alterations among the three groups, and the results indicated that FC between the left MTG and some frontal brain regions were significantly decreased mainly in VaMCI. Finally, partial correlation analysis revealed that the FC values between the left MTG and left inferior frontal gyrus were positively correlated with the cognitive performance episodic memory and negatively related to the living status. The present study demonstrated that different FCS alterations existed in aMCI and VaMCI. These findings may provide a novel insight into the understanding of pathophysiological mechanisms underlying different MCI subtypes.
Collapse
|
33
|
Chu T, Li J, Zhang Z, Gong P, Che K, Li Y, Zhang G, Mao N. Altered structural covariance of hippocampal subregions in patients with Alzheimer's disease. Behav Brain Res 2021; 409:113327. [PMID: 33930469 DOI: 10.1016/j.bbr.2021.113327] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 04/22/2021] [Accepted: 04/25/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND AND PURPOSE Different atrophy of hippocampus subregions is a valuable indicator of patients with Alzheimer's disease (AD). To explore the relationship among the hippocampal subregions of patients with AD, altered gray matter structural covariance of hippocampal subregions in patients with AD was studied. MATERIALS AND METHODS Participants were selected from the Open Access Series of Imaging Studies Database. Pearson correlations among the volume of the hippocampal subregions were generated as structural covariance network. Topological metrics for all selected sparsity ranges were calculated in the healthy controls (HCs) and patients with AD by using the GRETNA software package. Spearman correlation analysis was performed to statistically analyze the volume and Mini-mental State Examination (MMSE) scores of the hippocampal subregions of the patients with AD, with age and gender as interference covariates and corrected for false discovery rate (FDR) (p < 0.05). RESULTS The structural covariance network properties of the hippocampal subregions of patients with AD changed. The clustering coefficient (Cp) and network efficiency (Ne) decreased, characteristic path length (Lp) increased, and the hub nodes changed. The volumes of left parasubiculum, right granule cell layer of dentate gyrus (GC-DG), right molecular layer of the hippocampus (molecular_layer_HP), right Cornu Ammonis (CA) regions CA1 of the hippocampus proper, right fimbria and right CA4 were significantly correlated with the MMSE scores. CONCLUSIONS The structural covariance network of the hippocampal subregions of patients with AD was reorganized, and the transmission efficiency was weakened. This study explored the changes in these subregions from the network level, which may provide a new perspective and theoretical basis for the neurobiological mechanisms of patients with AD.
Collapse
Affiliation(s)
- Tongpeng Chu
- Department of Radiology, Yantai Yuhuangding Hospital, Affiliated Hospital of Qingdao University, Yantai, Shandong, 264000, PR China
| | - Jian Li
- Department of Radiology, Yantai Yuhuangding Hospital, Affiliated Hospital of Qingdao University, Yantai, Shandong, 264000, PR China
| | - Zhongsheng Zhang
- Department of Radiology, Yantai Yuhuangding Hospital, Affiliated Hospital of Qingdao University, Yantai, Shandong, 264000, PR China
| | - Peiyou Gong
- Department of Radiology, Yantai Yuhuangding Hospital, Affiliated Hospital of Qingdao University, Yantai, Shandong, 264000, PR China
| | - Kaili Che
- Department of Radiology, Yantai Yuhuangding Hospital, Affiliated Hospital of Qingdao University, Yantai, Shandong, 264000, PR China
| | - Yuna Li
- Department of Radiology, Yantai Yuhuangding Hospital, Affiliated Hospital of Qingdao University, Yantai, Shandong, 264000, PR China
| | - Gang Zhang
- Department of Radiology, Yantai Yuhuangding Hospital, Affiliated Hospital of Qingdao University, Yantai, Shandong, 264000, PR China.
| | - Ning Mao
- Department of Radiology, Yantai Yuhuangding Hospital, Affiliated Hospital of Qingdao University, Yantai, Shandong, 264000, PR China.
| |
Collapse
|
34
|
Zhu D, Yuan T, Gao J, Xu Q, Xue K, Zhu W, Tang J, Liu F, Wang J, Yu C. Correlation between cortical gene expression and resting-state functional network centrality in healthy young adults. Hum Brain Mapp 2021; 42:2236-2249. [PMID: 33570215 PMCID: PMC8046072 DOI: 10.1002/hbm.25362] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 01/11/2021] [Accepted: 01/21/2021] [Indexed: 12/18/2022] Open
Abstract
Resting‐state functional connectivity in the human brain is heritable, and previous studies have investigated the genetic basis underlying functional connectivity. However, at present, the molecular mechanisms associated with functional network centrality are still largely unknown. In this study, functional networks were constructed, and the graph‐theory method was employed to calculate network centrality in 100 healthy young adults from the Human Connectome Project. Specifically, functional connectivity strength (FCS), also known as the “degree centrality” of weighted networks, is calculated to measure functional network centrality. A multivariate technique of partial least squares regression (PLSR) was then conducted to identify genes whose spatial expression profiles best predicted the FCS distribution. We found that FCS spatial distribution was significantly positively correlated with the expression of genes defined by the first PLSR component. The FCS‐related genes we identified were significantly enriched for ion channels, axon guidance, and synaptic transmission. Moreover, FCS‐related genes were preferentially expressed in cortical neurons and young adulthood and were enriched in numerous neurodegenerative and neuropsychiatric disorders. Furthermore, a series of validation and robustness analyses demonstrated the reliability of the results. Overall, our results suggest that the spatial distribution of FCS is modulated by the expression of a set of genes associated with ion channels, axon guidance, and synaptic transmission.
Collapse
Affiliation(s)
- Dan Zhu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Tengfei Yuan
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Junfeng Gao
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Qiang Xu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Kaizhong Xue
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Wenshuang Zhu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Jie Tang
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Feng Liu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Junping Wang
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Chunshui Yu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
35
|
Arithmetic success and gender-based characterization of brain connectivity across EEG bands. Biomed Signal Process Control 2021. [DOI: 10.1016/j.bspc.2020.102222] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
36
|
Lv X, Lu F, Zhang J, Chen H, Zhang L, Wang X, Fan Y, Fang J, Hong L, Wang J, Liu C, Yuan Z, He Z, Wang W. Effects of TIP treatment on brain network topology of frontolimbic circuit in first-episode, treatment-naïve major depressive disorder. J Affect Disord 2021; 279:122-130. [PMID: 33045554 DOI: 10.1016/j.jad.2020.09.127] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 08/20/2020] [Accepted: 09/27/2020] [Indexed: 12/28/2022]
Abstract
BACKGROUND The Low Resistance Thought Induction Psychotherapy (TIP) is a comprehensive psychological treatment which could improve the clinical symptoms of major depressive disorder (MDD). However, the neural mechanisms for TIP treating MDD still remain unclear. This study aimed to investigate the topology of intrinsic connectivity network and the therapeutic effects of TIP in MDD on these topological properties. METHODS Longitudinal study was conducted in 20 first-episode, treatment-naive MDD patients at baseline and after 6 weeks (12 sessions) of TIP treatment based on resting-state functional magnetic resonance image (rsfMRI) in conjunction with graph theoretical analysis. We constructed functional connectivity matrices and extracted the attribute features of the small-world networks in both MDD and age-, education level-, and gender-matched healthy controls (HCs). The global and local small-world network properties were explored and compared between MDD at baseline and HCs. The therapeutic effect of TIP was examined by comparing alterations in global and local network properties between MDD at baseline and after treatment. RESULTS At baseline, MDD showed altered small-worldness and aberrant nodal properties in the frontolimbic circuit particularly in the orbital frontal gyrus, insula, precuneus and middle cingulate gyrus as compared with HCs. Following 6 weeks treatment, the abnormalities in the small-worldness and the nodal metrics were modulated, which were accompanied by a significant improvement in the clinical symptoms. CONCLUSIONS Our findings contributed to the understanding of the abnormal topological patterns in the frontolimbic systems in MDD and implicated that these disruptions may be modified by TIP treatment.
Collapse
Affiliation(s)
- Xueyu Lv
- Psychology Department of Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No. 5 Bei Xian Ge Street, Xi Cheng District, Beijing 100053, China
| | - Fengmei Lu
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of life Science and technology, University of Electronic Science and Technology of China, Chengdu 610054, China; Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Jinhua Zhang
- Psychology Department of Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No. 5 Bei Xian Ge Street, Xi Cheng District, Beijing 100053, China
| | - Heng Chen
- School of Medicine, Guizhou University, Guizhou, China
| | - Liang Zhang
- Psychology Department of Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No. 5 Bei Xian Ge Street, Xi Cheng District, Beijing 100053, China
| | - Xiaoling Wang
- Psychology Department of Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No. 5 Bei Xian Ge Street, Xi Cheng District, Beijing 100053, China
| | - Yangyang Fan
- Psychology Department of Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No. 5 Bei Xian Ge Street, Xi Cheng District, Beijing 100053, China
| | - Jiliang Fang
- Psychology Department of Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No. 5 Bei Xian Ge Street, Xi Cheng District, Beijing 100053, China
| | - Lan Hong
- Psychology Department of Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No. 5 Bei Xian Ge Street, Xi Cheng District, Beijing 100053, China
| | - Jian Wang
- Psychology Department of Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No. 5 Bei Xian Ge Street, Xi Cheng District, Beijing 100053, China
| | - Chunhong Liu
- Acupuncture and Moxibustion Department, Beijing Hospital of Traditional Chinese Medicine affiliated to Capital Medical University, Beijing, China
| | - Zhen Yuan
- Faculty of Health Sciences, University of Macau, Macau SAR, China; Centre for Cognitive and Brain Sciences, University of Macau, Macau, China
| | - Zongling He
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of life Science and technology, University of Electronic Science and Technology of China, Chengdu 610054, China.
| | - Weidong Wang
- Psychology Department of Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No. 5 Bei Xian Ge Street, Xi Cheng District, Beijing 100053, China.
| |
Collapse
|
37
|
Su Q, Yu M, Liu F, Li Y, Li D, Deng M, Lu J, Wu C, Guo W. Abnormal Functional Asymmetry in the Salience and Auditory Networks in First-episode, Drug-naive Somatization Disorder. Neuroscience 2020; 444:1-8. [DOI: 10.1016/j.neuroscience.2020.07.043] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/21/2020] [Accepted: 07/22/2020] [Indexed: 11/16/2022]
|
38
|
Frewen P, Schroeter ML, Riva G, Cipresso P, Fairfield B, Padulo C, Kemp AH, Palaniyappan L, Owolabi M, Kusi-Mensah K, Polyakova M, Fehertoi N, D’Andrea W, Lowe L, Northoff G. Neuroimaging the consciousness of self: Review, and conceptual-methodological framework. Neurosci Biobehav Rev 2020; 112:164-212. [DOI: 10.1016/j.neubiorev.2020.01.023] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 01/06/2020] [Accepted: 01/20/2020] [Indexed: 01/04/2023]
|
39
|
Bas-Hoogendam JM, Westenberg PM. Imaging the socially-anxious brain: recent advances and future prospects. F1000Res 2020; 9:F1000 Faculty Rev-230. [PMID: 32269760 PMCID: PMC7122428 DOI: 10.12688/f1000research.21214.1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/23/2020] [Indexed: 12/20/2022] Open
Abstract
Social anxiety disorder (SAD) is serious psychiatric condition with a genetic background. Insight into the neurobiological alterations underlying the disorder is essential to develop effective interventions that could relieve SAD-related suffering. In this expert review, we consider recent neuroimaging work on SAD. First, we focus on new results from magnetic resonance imaging studies dedicated to outlining biomarkers of SAD, including encouraging findings with respect to structural and functional brain alterations associated with the disorder. Furthermore, we highlight innovative studies in the field of neuroprediction and studies that established the effects of treatment on brain characteristics. Next, we describe novel work aimed to delineate endophenotypes of SAD, providing insight into the genetic susceptibility to develop the disorder. Finally, we outline outstanding questions and point out directions for future research.
Collapse
Affiliation(s)
- Janna Marie Bas-Hoogendam
- Developmental and Educational Psychology, Institute of Psychology, Leiden University, Wassenaarseweg 52, 2333 AK Leiden, The Netherlands
- Leiden Institute for Brain and Cognition, c/o LUMC, postzone C2-S, P.O.Box 9600, 2300 RC Leiden, The Netherlands
- Department of Psychiatry, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - P. Michiel Westenberg
- Developmental and Educational Psychology, Institute of Psychology, Leiden University, Wassenaarseweg 52, 2333 AK Leiden, The Netherlands
- Leiden Institute for Brain and Cognition, c/o LUMC, postzone C2-S, P.O.Box 9600, 2300 RC Leiden, The Netherlands
| |
Collapse
|
40
|
Diao Q, Liu J, Zhang X. Enhanced positive functional connectivity strength in left-sided chronic subcortical stroke. Brain Res 2020; 1733:146727. [PMID: 32061738 DOI: 10.1016/j.brainres.2020.146727] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 02/08/2020] [Accepted: 02/13/2020] [Indexed: 01/20/2023]
Abstract
Patients with stroke often exhibit evidence of abnormal functional connectivity (FC). However, whether and how anatomical distance affects FC at rest remains unclear in patients with chronic subcortical stroke. Eighty-six patients with chronic (more than six months post-onset) subcortical stroke (44 left-sided patients and 42 right-sided patients) with different degrees of functional recovery, and 75 matched healthy controls underwent resting-state functional magnetic resonance imaging scanning. Positive functional connectivity strength (FCS) was computed for each voxel in the brain using a data-driven whole-brain resting state FCS method, which was further divided into short- and long-range FCS. Compared with healthy controls, patients with left-sided infarctions exhibited stronger global- and long-range FCS in the left sensorimotor cortex (SMC), and no significant intergroup difference was found for short-range FCS. No significant differences were found between the patients with right-sided infarctions and healthy controls for global, long- and short-range FCS. These findings suggested that the positive FCS alteration was connection-distance dependent within patients with left-sided chronic subcortical stroke. Also, a positive correlation was found between the FCS in the left SMC and the accuracy of the Flanker test, reflecting a compensatory FCS alteration for altered attention and executive function abilities exhibited by those with left-sided stroke.
Collapse
Affiliation(s)
- Qingqing Diao
- Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Jingchun Liu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Xuejun Zhang
- School of Medical Imaging, Tianjin Medical University, Tianjin, China.
| |
Collapse
|
41
|
Yang Y, Zhu DM, Zhang C, Zhang Y, Wang C, Zhang B, Zhao W, Zhu J, Yu Y. Brain Structural and Functional Alterations Specific to Low Sleep Efficiency in Major Depressive Disorder. Front Neurosci 2020; 14:50. [PMID: 32082117 PMCID: PMC7005201 DOI: 10.3389/fnins.2020.00050] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 01/13/2020] [Indexed: 11/13/2022] Open
Abstract
Background Sleep disturbance is common in patients with major depressive disorder (MDD), but the exploration of its neural underpinnings is limited by subjective sleep measurement and single-modality neuroimaging analyses. Methods Ninety six patients with MDD underwent polysomnography examinations and multi-modal magnetic resonance imaging (MRI) scans. According to sleep efficiency, patients were subdivided into well-matched normal sleep efficiency (NSE, N = 42; 14 men; aged 43 ± 10 years) and low sleep efficiency (LSE, N = 54; 23 men; aged 45 ± 12 years) groups. Inter-group differences in brain structure and function were examined by applying voxel-based morphometry (VBM), regional homogeneity (ReHo) and functional connectivity strength (FCS), and tract-based spatial statistics (TBSS) approaches to structural, functional, and diffusion MRI data, respectively. Results There was no significant difference in gray matter volume (GMV) between the NSE and LSE groups. Compared with the NSE group, the LSE group showed increased axial diffusivity in the left superior and posterior corona radiata, and left posterior limb and retrolenticular part of internal capsule. In addition, the LSE group exhibited decreased ReHo in the bilateral lingual gyri and right postcentral gyrus yet increased FCS in the left angular gyrus relative to the NSE group. Moreover, validation analyses revealed that these results remained after adjusting for the medication effect. Conclusion Our data indicate that preserved gray matter morphology, impaired white matter integrity, and decreased local synchronization degree yet increased FCS are specific to low SE in MDD patients. These findings of disassociation between structural and functional alterations might provide insights into the neural mechanisms of sleep disturbance in depression.
Collapse
Affiliation(s)
- Ying Yang
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Dao-Min Zhu
- Department of Sleep Disorders, Affiliated Psychological Hospital of Anhui Medical University, Hefei, China.,Hefei Fourth People's Hospital, Hefei, China.,Anhui Mental Health Center, Hefei, China
| | - Cun Zhang
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yu Zhang
- Department of Sleep Disorders, Affiliated Psychological Hospital of Anhui Medical University, Hefei, China.,Hefei Fourth People's Hospital, Hefei, China.,Anhui Mental Health Center, Hefei, China
| | - Chunli Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Biao Zhang
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Wenming Zhao
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jiajia Zhu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yongqiang Yu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
42
|
Pan P, Wei S, Ou Y, Jiang W, Li W, Lei Y, Liu F, Guo W, Luo S. Reduced Global-Brain Functional Connectivity and Its Relationship With Symptomatic Severity in Cervical Dystonia. Front Neurol 2020; 10:1358. [PMID: 31998218 PMCID: PMC6965314 DOI: 10.3389/fneur.2019.01358] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 12/09/2019] [Indexed: 01/17/2023] Open
Abstract
Background: Altered functional connectivity (FC) is related to pathophysiology of patients with cervical dystonia (CD). However, inconsistent results may be obtained due to different selected regions of interest. We explored voxel-wise brain-wide FC changes in patients with CD at rest in an unbiased manner and analyzed their correlations with symptomatic severity using the Tsui scale. Method: A total of 19 patients with CD and 21 sex- and age-matched healthy controls underwent resting-state functional magnetic resonance imaging scans. Global-brain FC (GFC) was applied to analyze the images. Support vector machine was used to distinguish the patients from the controls. Results: Patients with CD exhibited decreased GFC in the right precentral gyrus and right supplementary motor area (SMA) that belonged to the M1-SMA motor network. Significantly negative correlation was observed between GFC values in the right precentral gyrus and symptomatic severity in the patients (r = −0.476, p = 0.039, uncorrected). Decreased GFC values in these two brain regions could be utilized to differentiate the patients from the controls with good accuracies, sensitivities and specificities (83.33, 85.71, and 80.95% in the right precentral gyrus; and 87.59, 89.49, and 85.71% in the right SMA). Conclusions: Our investigation suggests that patients with CD show reduced GFC in brain regions of the M1-SMA motor network and provides further insights into the pathophysiology of CD. GFC values in the right precentral gyrus and right SMA may be used as potential biomarkers to recognize the patients from the controls.
Collapse
Affiliation(s)
- Pan Pan
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China.,National Clinical Research Center on Mental Disorders, Changsha, China
| | - Shubao Wei
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yangpan Ou
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China.,National Clinical Research Center on Mental Disorders, Changsha, China
| | - Wenyan Jiang
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Wenmei Li
- Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yiwu Lei
- Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Feng Liu
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Wenbin Guo
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China.,National Clinical Research Center on Mental Disorders, Changsha, China
| | - Shuguang Luo
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
43
|
Reduced connectivity in anterior cingulate cortex as an early predictor for treatment response in drug-naive, first-episode schizophrenia: A global-brain functional connectivity analysis. Schizophr Res 2020; 215:337-343. [PMID: 31522869 DOI: 10.1016/j.schres.2019.09.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 08/27/2019] [Accepted: 09/02/2019] [Indexed: 01/13/2023]
Abstract
BACKGROUND Antipsychotic medications may have acute effect on brain functional connectivity (FC) after only a few days of treatment. It is unclear if early changes in FC can predict treatment response in patients with schizophrenia. METHODS The study included 32 patients with drug-naive, first-episode schizophrenia and 32 healthy controls. Resting-state functional magnetic resonance imaging was obtained from the patients at two time-points (pre-treatment baseline and 1 week after treatment) and healthy controls at baseline. Patients were treated with olanzapine for 8 weeks, and clinical symptoms were assessed using the Positive and Negative Syndrome Scale (PANSS) at three time points (baseline, 1 week and 8 weeks after treatment). Imaging data were analyzed using global-brain FC (GFC) and support vector regression (SVR). RESULTS At baseline, an increased GFC was observed in bilateral anterior cingulate cortex (ACC) in patients compared with healthy controls. After 1 week of olanzapine treatment, patients showed decreased GFC in bilateral ACC compared to the baseline values. SVR analysis suggested a positive relationship between GFC changes in bilateral ACC at week 1 and improvement in negative symptoms at week 8 (r = 0.957, p < 0.001). CONCLUSION An early decrease in GFC in bilateral ACC may serve as a predictor for treatment response in patients with schizophrenia. If further confirmed, our finding may be able to help clinicians decide, during the early treatment course, whether the patient should stay on the chosen antipsychotic medication or switch to a different one.
Collapse
|
44
|
Cui G, Ou Y, Chen Y, Lv D, Jia C, Zhong Z, Yang R, Wang Y, Meng X, Cui H, Li C, Sun Z, Wang X, Guo W, Li P. Altered Global Brain Functional Connectivity in Drug-Naive Patients With Obsessive-Compulsive Disorder. Front Psychiatry 2020; 11:98. [PMID: 32194450 PMCID: PMC7062961 DOI: 10.3389/fpsyt.2020.00098] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 02/06/2020] [Indexed: 12/14/2022] Open
Abstract
Abnormal functional connectivity (FC) within discrete brain networks is involved in the pathophysiology of obsessive-compulsive disorder (OCD) with inconsistent results. In the present study, we investigated the FC patterns of 40 drug-naive patients with OCD and 38 healthy controls (HCs) through an unbiased voxel-wise global brain FC (GFC) analysis at rest. Compared with HCs, patients with OCD showed decreased GFC within the default mode network (DMN) (i.e., left posterior cingulate cortex/lingual gyrus) and sensorimotor network (i.e., left precentral gyrus/postcentral gyrus) and increased GFC within the executive control network (ECN) (i.e., left dorsal lateral prefrontal cortex and left inferior parietal lobule). Receiver operating characteristic curve analyses further indicated that the altered GFC values within the DMN, ECN, and sensorimotor network may be used as neuroimaging markers to differentiate patients with OCD from HCs. These findings indicated the aberrant FC patterns of the DMN, ECN, and sensorimotor network associated with the pathophysiology of OCD and provided new insights into the changes in brain organization function in OCD.
Collapse
Affiliation(s)
- Guangcheng Cui
- Department of Psychiatry, Qiqihar Medical University, Qiqihar, China
| | - Yangpan Ou
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yunhui Chen
- Department of Psychiatry, Qiqihar Medical University, Qiqihar, China
| | - Dan Lv
- Department of Psychiatry, Qiqihar Medical University, Qiqihar, China
| | - Cuicui Jia
- Department of Psychiatry, Qiqihar Medical University, Qiqihar, China
| | - Zhaoxi Zhong
- Henan Key Lab of Biological Psychiatry, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Ru Yang
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yuhua Wang
- Department of Psychiatry, Qiqihar Medical University, Qiqihar, China
| | - Xin Meng
- Department of Radiology, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| | - Hongsheng Cui
- Department of Radiology, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| | - Chengchong Li
- Department of Psychiatry, Qiqihar Medical University, Qiqihar, China
| | - Zhenghai Sun
- Department of Psychiatry, Qiqihar Medical University, Qiqihar, China
| | - Xiaoping Wang
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Wenbin Guo
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Ping Li
- Department of Psychiatry, Qiqihar Medical University, Qiqihar, China
| |
Collapse
|
45
|
Zhang W, Cai S, Huang K, Lv Y, Kang Y, Wang Q, Huang L. Association between schizophrenia risk allele dosage of rs6994992 and whole-brain structural and functional characteristics. Psychiatry Res Neuroimaging 2019; 294:110956. [PMID: 31202487 DOI: 10.1016/j.pscychresns.2019.05.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 05/17/2019] [Accepted: 05/22/2019] [Indexed: 01/10/2023]
Abstract
The rs6994992 polymorphism has been reported as a candidate variant associated with schizophrenia (SZ). Neuroimaging studies have revealed that SZ is associated with widespread structural and functional alterations in brain. However, whether the allele dosage of rs6994992 is associated with brain structural or functional features is unclear. We aimed to investigate the association between the risk allele dosage of rs6994992 and whole-brain structural and functional characteristics and to further explore the relationship between these characteristics and cognition. Magnetic resonance images and the rs6994992 genotype were obtained from 53 healthy participants. A general linear model was used to determine the effects of risk allele dosage of rs6994992 on brain characteristics. Spearman correlation analysis was employed to calculate the correlation between altered brain characteristics and cognitive scores. Our results demonstrated that regions with significant differences in structural characteristics between groups with different dosages of rs6994992 were mainly located in the frontal and temporal lobes, hippocampus and angular gyrus. Moreover, significant regions of functional connectivity (FC) partly overlapped with the structural results. Measurements in those significant regions and FCs were correlated with the cognition scales. This association can inform our understanding of the mechanisms through which rs6994992 variants increase the risk for SZ.
Collapse
Affiliation(s)
- Wei Zhang
- School of Life Sciences and Technology, Xidian University, Xi'an, Shaanxi 710071, PR China
| | - Suping Cai
- School of Life Sciences and Technology, Xidian University, Xi'an, Shaanxi 710071, PR China
| | - Kexin Huang
- School of Life Sciences and Technology, Xidian University, Xi'an, Shaanxi 710071, PR China
| | - Yahui Lv
- School of Life Sciences and Technology, Xidian University, Xi'an, Shaanxi 710071, PR China
| | - Yafei Kang
- School of Life Sciences and Technology, Xidian University, Xi'an, Shaanxi 710071, PR China
| | - Qiang Wang
- The First Affiliated Hospital, Xi 'an Jiaotong university, Shaanxi 710048, PR China
| | - Liyu Huang
- School of Life Sciences and Technology, Xidian University, Xi'an, Shaanxi 710071, PR China.
| |
Collapse
|
46
|
Multi-modal MRI Reveals the Neurovascular Coupling Dysfunction in Chronic Migraine. Neuroscience 2019; 419:72-82. [DOI: 10.1016/j.neuroscience.2019.09.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 09/12/2019] [Accepted: 09/13/2019] [Indexed: 12/27/2022]
|
47
|
Li C, Mai Y, Dong M, Yin Y, Hua K, Fu S, Wu Y, Jiang G. Multivariate Pattern Classification of Primary Insomnia Using Three Types of Functional Connectivity Features. Front Neurol 2019; 10:1037. [PMID: 31632335 PMCID: PMC6783513 DOI: 10.3389/fneur.2019.01037] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 09/12/2019] [Indexed: 01/09/2023] Open
Abstract
Objective: To explore whether or not functional connectivity (FC) could be used as a potential biomarker for classification of primary insomnia (PI) at the individual level by using multivariate pattern analysis (MVPA). Methods: Thirty-eight drug-naive patients with PI, and 44 healthy controls (HC) underwent resting-state functional MR imaging. Voxel-wise functional connectivity strength (FCS), large-scale functional connectivity (large-scale FC) and regional homogeneity (ReHo) were calculated for each participant. We used support vector machine (SVM) with the three types of metrics as features separately to classify patients from healthy controls. Then we evaluated its classification performances. Finally, FC metrics with significant high classification performance were compared between the two groups and were correlated with clinical characteristics, i.e., Insomnia Severity Index (ISI), Pittsburgh Sleep Quality Index (PSQI), Self-rating Anxiety Scale (SAS), Self-rating Depression Scale (SDS) in the patients' group. Results: The best classifier could reach up to an accuracy of 81.5%, with a sensitivity of 84.9%, specificity of 79.1%, and area under the receiver operating characteristic curve (AUC) of 83.0% (all P < 0.001). Right anterior insular cortex (BA48), left precuneus (BA7), and left middle frontal gyrus (BA8) showed high classification weights. In addition, the right anterior insular cortex (BA48) and left middle frontal gyrus (BA8) were the overlapping regions between MVPA and group comparison. Correlation analysis showed that FCS in left middle frontal gyrus and head of right caudate nucleus were correlated with PSQI and SDS, respectively. Conclusion: The current study suggests abnormal FCS in right anterior insular cortex (BA48) and left middle frontal gyrus (BA8) might serve as a potential neuromarkers for PI.
Collapse
Affiliation(s)
- Chao Li
- Department of Medical Imaging, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Yuanqi Mai
- Maoming People's Hospital, Guangdong, China
| | - Mengshi Dong
- Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yi Yin
- Department of Medical Imaging, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Kelei Hua
- Department of Medical Imaging, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Shishun Fu
- Department of Medical Imaging, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Yunfan Wu
- Department of Medical Imaging, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Guihua Jiang
- Department of Medical Imaging, Guangdong Second Provincial General Hospital, Guangzhou, China
- Department of Medical Imaging, The Affiliated Guangdong Second Provincial General Hospital of Southern Medical University, Guangzhou, China
| |
Collapse
|
48
|
Voxel-based global-brain functional connectivity alterations in first-episode drug-naive patients with somatization disorder. J Affect Disord 2019; 254:82-89. [PMID: 31121532 DOI: 10.1016/j.jad.2019.04.099] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 04/27/2019] [Accepted: 04/30/2019] [Indexed: 12/27/2022]
Abstract
BACKGROUND Altered functional connectivity (FC) is associated with the pathophysiology of patients with somatization disorder (SD). However, inconsistent results were obtained due to different selections of regions of interest (ROIs) in previous researches. This study aims to examine voxel-wise brain-wide FC alterations in patients with first-episode, drug-naive SD in an unbiased way. METHODS A total of 25 patients with SD and 28 age-, sex-, and education-matched healthy controls underwent resting-state functional magnetic resonance imaging. Global-brain FC (GFC) was applied to analyze the images. Receiver operating characteristic curves and support vector machine were used to differentiate the patients from the controls. RESULTS Compared with healthy controls, patients with SD exhibited increased GFC in the right inferior temporal gyrus (t-value = 4.0663, p < 0.001) and left superior occipital gyrus (t-value = 3.8197, p < 0.001). Decreased GFC in the right insula (t-value = ‒4.1667, p < 0.001) was observed in the patients relative to the controls. The GFC values in the right insula of the patients were positively correlated to their scores of the sleep subscale of the Hamilton Depression Scale (r = 0.455, p = 0.022) and the lie subscale of the Eysenck Personality Questionnaire (r = 0.436, p = 0.029). A combination of GFC values in the right insula and left superior occipital gyrus can be applied to discriminate the patients from the controls with optimal sensitivity, specificity, and accuracy of 88.00%, 85.71%, and 86.79%, respectively. CONCLUSIONS Our study indicates that patients with SD show abnormal GFC in the brain areas of insula-centered sensorimotor network, and thus providing a new perspective for understanding the pathological changes of FC in SD. Furthermore, a combination of the GFC values in the right insula and left superior occipital gyrus may be used as a potential biomarker to identify the patients from the controls.
Collapse
|
49
|
Hu S, Wu H, Xu C, Wang A, Wang Y, Shen T, Huang F, Kan H, Li C. Aberrant Coupling Between Resting-State Cerebral Blood Flow and Functional Connectivity in Wilson's Disease. Front Neural Circuits 2019; 13:25. [PMID: 31057370 PMCID: PMC6482267 DOI: 10.3389/fncir.2019.00025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Accepted: 03/25/2019] [Indexed: 12/17/2022] Open
Abstract
Both abnormalities of resting-state cerebral blood flow (CBF) and functional connectivity in Wilson’s disease (WD) have been identified by several studies. Whether the coupling of CBF and functional connectivity is imbalanced in WD remains largely unknown. To assess this possibility, 27 patients with WD and 27 sex- and age-matched healthy controls were recruited to acquire functional MRI and arterial spin labeling imaging data. Functional connectivity strength (FCS) and CBF were calculated based on standard gray mask. Compared to healthy controls, the CBF–FCS correlations of patients with WD were significantly decreased in the basal ganglia and the cerebellum and slightly increased in the prefrontal cortex and thalamus. In contrast, decreased CBF of patients with WD occurred predominately in subcortical and cognitive- and emotion-related brain regions, including the basal ganglia, thalamus, insular, and inferior prefrontal cortex, whereas increased CBF occurred primarily in the temporal cortex. The FCS decrease in WD patients was predominately in the basal ganglia and thalamus, and the increase was primarily in the prefrontal cortex. These findings suggest that aberrant neurovascular coupling in the brain may be a possible neuropathological mechanism underlying WD.
Collapse
Affiliation(s)
- Sheng Hu
- Medical Information Engineering, Anhui University of Chinese Medicine, Hefei, China
| | - Hongli Wu
- Medical Information Engineering, Anhui University of Chinese Medicine, Hefei, China
| | - ChunSheng Xu
- Laboratory of Digital Medical Imaging, Medical Imaging Center, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Anqin Wang
- Laboratory of Digital Medical Imaging, Medical Imaging Center, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Yi Wang
- Medical Information Engineering, Anhui University of Chinese Medicine, Hefei, China
| | - Tongping Shen
- Medical Information Engineering, Anhui University of Chinese Medicine, Hefei, China
| | - Fangliang Huang
- Medical Information Engineering, Anhui University of Chinese Medicine, Hefei, China
| | - Hongxing Kan
- Medical Information Engineering, Anhui University of Chinese Medicine, Hefei, China
| | - Chuanfu Li
- Laboratory of Digital Medical Imaging, Medical Imaging Center, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| |
Collapse
|
50
|
Liu R, Chen H, Qin R, Gu Y, Chen X, Zou J, Jiang Y, Li W, Bai F, Zhang B, Wang X, Xu Y. The Altered Reconfiguration Pattern of Brain Modular Architecture Regulates Cognitive Function in Cerebral Small Vessel Disease. Front Neurol 2019; 10:324. [PMID: 31024423 PMCID: PMC6461194 DOI: 10.3389/fneur.2019.00324] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 03/15/2019] [Indexed: 12/03/2022] Open
Abstract
Background: Cerebral small vessel disease (SVD) is a common cause of cognitive dysfunction. However, little is known whether the altered reconfiguration pattern of brain modular architecture regulates cognitive dysfunction in SVD. Methods: We recruited 25 cases of SVD without cognitive impairment (SVD-NCI) and 24 cases of SVD with mild cognitive impairment (SVD-MCI). According to the Framingham Stroke Risk Profile, healthy controls (HC) were divided into 17 subjects (HC-low risk) and 19 subjects (HC-high risk). All individuals underwent resting-state functional magnetic resonance imaging and cognitive assessments. Graph-theoretical analysis was used to explore alterations in the modular organization of functional brain networks. Multiple regression and mediation analyses were performed to investigate the relationship between MRI markers, network metrics and cognitive performance. Results: We identified four modules corresponding to the default mode network (DMN), executive control network (ECN), sensorimotor network and visual network. With increasing vascular risk factors, the inter- and intranetwork compensation of the ECN and a relatively reserved DMN itself were observed in individuals at high risk for SVD. With declining cognitive ability, SVD-MCI showed a disrupted ECN intranetwork and increased DMN connection. Furthermore, the intermodule connectivity of the right inferior frontal gyrus of the ECN mediated the relationship between periventricular white matter hyperintensities and visuospatial processing in SVD-MCI. Conclusions: The reconfiguration pattern of the modular architecture within/between the DMN and ECN advances our understanding of the neural underpinning in response to vascular risk and SVD burden. These observations may provide novel insight into the underlying neural mechanism of SVD-related cognitive impairment and may serve as a potential non-invasive biomarker to predict and monitor disease progression.
Collapse
Affiliation(s)
- Renyuan Liu
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China.,Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China
| | - Haifeng Chen
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China.,Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China
| | - Ruomeng Qin
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China.,Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China
| | - Yucheng Gu
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China.,Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China
| | - Xin Chen
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China.,Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China
| | - Junhui Zou
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China.,Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China
| | - YongCheng Jiang
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China.,Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China
| | - Weikai Li
- College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Feng Bai
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China.,Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China
| | - Bing Zhang
- Department of Radiology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Xiaoying Wang
- Departments of Neurology, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA, United States
| | - Yun Xu
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China
| |
Collapse
|