1
|
Nyulas KI, Simon-Szabó Z, Pál S, Fodor MA, Dénes L, Cseh MJ, Barabás-Hajdu E, Csipor B, Szakács J, Preg Z, Germán-Salló M, Nemes-Nagy E. Cardiovascular Effects of Herbal Products and Their Interaction with Antihypertensive Drugs-Comprehensive Review. Int J Mol Sci 2024; 25:6388. [PMID: 38928095 PMCID: PMC11203894 DOI: 10.3390/ijms25126388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Hypertension is a highly prevalent population-level disease that represents an important risk factor for several cardiovascular complications and occupies a leading position in mortality statistics. Antihypertensive therapy includes a wide variety of drugs. Additionally, the potential antihypertensive and cardioprotective effects of several phytotherapy products have been evaluated, as these could also be a valuable therapeutic option for the prevention, improvement or treatment of hypertension and its complications. The present review includes an evaluation of the cardioprotective and antihypertensive effects of garlic, Aloe vera, green tea, Ginkgo biloba, berberine, ginseng, Nigella sativa, Apium graveolens, thyme, cinnamon and ginger, and their possible interactions with antihypertensive drugs. A literature search was undertaken via the PubMed, Google Scholar, Embase and Cochrane databases. Research articles, systematic reviews and meta-analyses published between 2010 and 2023, in the English, Hungarian, and Romanian languages were selected.
Collapse
Affiliation(s)
- Kinga-Ilona Nyulas
- Doctoral School of Medicine and Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureş, 540139 Târgu Mureș, Romania
| | - Zsuzsánna Simon-Szabó
- Department of Pathophysiology, Faculty of Medicine, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureş, 540139 Târgu Mureș, Romania
| | - Sándor Pál
- Department of Laboratory Medicine, Department of Transfusion Medicine, Medical School, University of Pécs, 7622 Pécs, Hungary
| | - Márta-Andrea Fodor
- Department of Laboratory Medicine, Faculty of Medicine, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureş, 540139 Târgu Mureș, Romania
| | - Lóránd Dénes
- Department of Anatomy and Embryology, Faculty of Medicine, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureş, 540139 Târgu Mureș, Romania
| | - Margit Judit Cseh
- Master Program of Nutrition and Dietetics, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureş, 540139 Târgu Mureș, Romania
| | - Enikő Barabás-Hajdu
- Department of Cell Biology and Microbiology, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureş, 540139 Târgu Mureș, Romania
| | - Bernadett Csipor
- Doctoral School of Medicine and Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureş, 540139 Târgu Mureș, Romania
| | - Juliánna Szakács
- Department of Biophysics, Faculty of Medicine, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureş, 540139 Târgu Mureș, Romania
| | - Zoltán Preg
- Department of Family Medicine, Faculty of Medicine, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureş, 540139 Târgu Mureș, Romania
| | - Márta Germán-Salló
- Department of Internal Medicine III, Faculty of Medicine, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureş, 540139 Târgu Mureș, Romania
| | - Enikő Nemes-Nagy
- Department of Chemistry and Medical Biochemistry, Faculty of Medicine in English, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureş, 540139 Târgu Mureș, Romania;
| |
Collapse
|
2
|
Li Z, Wang C, Liu J, Li P, Feng H. In Vitro Investigations into the Potential Drug Interactions of Pseudoginsenoside DQ Mediated by Cytochrome P450 and Human Drug Transporters. Molecules 2024; 29:2482. [PMID: 38893358 PMCID: PMC11173382 DOI: 10.3390/molecules29112482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/03/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024] Open
Abstract
Pseudoginsenoside DQ (PDQ), an ocotillol-type ginsenoside, is synthesized with protopanaxadiol through oxidative cyclization. PDQ exhibits good anti-arrhythmia activity. However, the inhibitory effect of PDQ on the cytochrome 450 (CYP450) enzymes and major drug transporters is still unclear. Inhibition of CYP450 and drug transporters may affect the efficacy of the drugs being used together with PDQ. These potential drug-drug interactions (DDIs) are essential for the clinical usage of drugs. In this study, we investigated the inhibitory effect of PDQ on seven CYP450 enzymes and seven drug transporters with in vitro models. PDQ has a significant inhibitory effect on CYP2C19 and P-glycoprotein (P-gp) with a half-inhibitory concentration (IC50) of 0.698 and 0.41 μM, respectively. The inhibition of CYP3A4 and breast cancer-resistant protein (BCRP) is less potent, with IC50 equal to 2.02-6.79 and 1.08 μM, respectively.
Collapse
Affiliation(s)
- Zhuo Li
- School of Pharmaceutical Sciences, Jilin University, 126 Xinmin Street, Changchun 130021, China; (Z.L.); (C.W.); (J.L.); (P.L.)
| | - Cuizhu Wang
- School of Pharmaceutical Sciences, Jilin University, 126 Xinmin Street, Changchun 130021, China; (Z.L.); (C.W.); (J.L.); (P.L.)
| | - Jinping Liu
- School of Pharmaceutical Sciences, Jilin University, 126 Xinmin Street, Changchun 130021, China; (Z.L.); (C.W.); (J.L.); (P.L.)
| | - Pingya Li
- School of Pharmaceutical Sciences, Jilin University, 126 Xinmin Street, Changchun 130021, China; (Z.L.); (C.W.); (J.L.); (P.L.)
| | - Hao Feng
- Department of Human Anatomy, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun 130021, China
| |
Collapse
|
3
|
Bernardo J, Valentão P. Herb-drug interactions: A short review on central and peripheral nervous system drugs. Phytother Res 2024; 38:1903-1931. [PMID: 38358734 DOI: 10.1002/ptr.8120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/24/2023] [Accepted: 12/27/2023] [Indexed: 02/16/2024]
Abstract
Herbal medicines are widely perceived as natural and safe remedies. However, their concomitant use with prescribed drugs is a common practice, often undertaken without full awareness of the potential risks and frequently without medical supervision. This practice introduces a tangible risk of herb-drug interactions, which can manifest as a spectrum of consequences, ranging from acute, self-limited reactions to unpredictable and potentially lethal scenarios. This review offers a comprehensive overview of herb-drug interactions, with a specific focus on medications targeting the Central and Peripheral Nervous Systems. Our work draws upon a broad range of evidence, encompassing preclinical data, animal studies, and clinical case reports. We delve into the intricate pharmacodynamics and pharmacokinetics underpinning each interaction, elucidating the mechanisms through which these interactions occur. One pressing issue that emerges from this analysis is the need for updated guidelines and sustained pharmacovigilance efforts. The topic of herb-drug interactions often escapes the attention of both consumers and healthcare professionals. To ensure patient safety and informed decision-making, it is imperative that we address this knowledge gap and establish a framework for continued monitoring and education. In conclusion, the use of herbal remedies alongside conventional medications is a practice replete with potential hazards. This review not only underscores the real and significant risks associated with herb-drug interactions but also underscores the necessity for greater awareness, research, and vigilant oversight in this often-overlooked domain of healthcare.
Collapse
Affiliation(s)
- João Bernardo
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Patrícia Valentão
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| |
Collapse
|
4
|
Kwak YB, Lee E, Choi H, Park T, Kim A, Kim J, Yoon J, Yoo HH. A pharmacokinetic study on red ginseng with furosemide in equine. Front Vet Sci 2023; 10:1319998. [PMID: 38076549 PMCID: PMC10704239 DOI: 10.3389/fvets.2023.1319998] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 11/10/2023] [Indexed: 06/29/2024] Open
Abstract
Red ginseng (RG) is a popular ingredient in traditional Korean medicine that has various health benefits. It is commonly taken orally as a dietary supplement; however, its potential interactions with concomitantly administered drugs are unclear. In this study, we examined the pharmacokinetic interaction between furosemide and RG in equine plasma. Liquid chromatography with tandem mass spectrometry analysis was performed to evaluate ginsenosides in the plasma of horses after feeding them RG and furosemide and validate the results. A single bolus of furosemide (0.5 mg/kg) was administered intravenously to female horses that had consumed RG (600 mg/kg/day) every morning for 3 weeks (experimental group), and blood samples were collected from 0 to 24 h, analyzed, and compared with those from female horses that did not consume RG (control group). Four (20s)-protopanaxadiol ginsenosides (Rb1, Rb2, Rc, and Rd) were detected in the plasma. Rb1 and Rc individually showed a high concentration distribution in the plasma. The Cmax, AUC0-t, and AUC0-∞ of furosemide was significantly increased in the experimental group (p < 0.05), while the CL, Vz, and Vss was decreased (p < 0.05, p < 0.01). These changes indicate the potential for pharmacokinetic interactions between furosemide and RG.
Collapse
Affiliation(s)
- Young Beom Kwak
- Racing Laboratory, Korea Racing Authority, Jeju-si, Jeju, Republic of Korea
| | - Eunkyu Lee
- Institute of Pharmaceutical Science and Technology and College of Pharmacy, Hanyang University, Ansan, Republic of Korea
| | - Hyunjoo Choi
- Training Support Team, Jeju Stud Farm, Korea Racing Authority, Jeju-si, Jeju, Republic of Korea
| | - Taemook Park
- Equine Clinic, Korea Racing Authority, Jeju-si, Jeju, Republic of Korea
| | - Ahram Kim
- Equine Clinic, Jeju Stud Farm, Korea Racing Authority, Jeju-si, Jeju, Republic of Korea
| | - Jungon Kim
- Management Team, Jeju Stud Farm, Korea Racing Authority, Jeju-si, Jeju, Republic of Korea
| | - Jungho Yoon
- Equine Clinic, Jeju Stud Farm, Korea Racing Authority, Jeju-si, Jeju, Republic of Korea
| | - Hye Hyun Yoo
- Institute of Pharmaceutical Science and Technology and College of Pharmacy, Hanyang University, Ansan, Republic of Korea
| |
Collapse
|
5
|
Niu Z, Qiang T, Lin W, Li Y, Wang K, Wang D, Wang X. Evaluation of Potential Herb-Drug Interactions Between Shengmai Injection and Losartan Potassium in Rat and In Vitro. Front Pharmacol 2022; 13:878526. [PMID: 35517807 PMCID: PMC9065348 DOI: 10.3389/fphar.2022.878526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 03/30/2022] [Indexed: 11/13/2022] Open
Abstract
Aim: The present study aimed to explore the potential herb-drug interactions (HDI) between Shengmai injection (SMI) and losartan potassium (LOS) based on the expression profiles of cytochromes P450 (CYP450) and drug transporters in rat and in vitro. Methods: Different concentrations of SMI were used to explore the influence of SMI on the antihypertensive efficacy of LOS in the hypertension rat model established by N (omega)-nitro-L-arginine methyl ester (L-NAME) for 4 weeks. Subsequently, the serum concentration levels of LOS and losartan carboxylic acid (EXP3174) were determined by Liquid Chromatography Mass Spectrometry (LC-MS) and pharmacokinetic analysis. Human liver microsomes, human multidrug resistance protein 1 (MDR1/P-gp), and breast cancer resistance protein (BCRP) vesicles, human embryonic kidney 293 cell line with stable expression of the organic anion transporting polypeptide 1B1 (HEK293-OATP1B1 cells) and mock-transfected HEK293 (HEK293-MOCK) cells were used to verify the effects of SMI on CYP450 enzymes and drug transporters in vitro. Results: Low, medium, and high concentrations of SMI increased the antihypertensive efficacy of LOS to varying degrees. The high dose SMI increased the half-life (t 1/2 ), the maximum plasma concentration (C max), the area under the plasma concentration-time curve (AUC) from time zero to the time of the last measurable plasma concentration (AUC 0-t ), AUC from time zero to infinity (AUC 0-∞ ), and mean residence time (MRT) values of LOS and decreased its apparent volume of distribution (Vd) and clearance (CL) values. The AUC 0-t , AUC 0-∞ , and MRT of LOS were increased, whereas the CL was decreased by the medium concentration of SMI. In addition, the high, medium, and low doses of SMI increased the relative bioavailability (Frel) of LOS. SMI exhibited no significant effects on the pharmacokinetics of EXP3174. In vitro, SMI exhibited different suppressive effects on the enzyme activity levels of CYP1A2 (6.12%), CYP2B6 (2.72%), CYP2C9 (14.31%), CYP2C19 (12.96%), CYP2D6 (12.26%), CYP3A4 (3.72%), CYP2C8 (10.00-30.00%), MDR1 (0.75%), OATP1B1(2.03%), and BCRP (0.15%). Conclusion: In conclusion, SMI improved the antihypertensive efficacy of LOS in the L-NAME-induced hypertension rat model by increasing the concentration of LOS, while leaving the concentration of EXP3174 intact. SMI affected the pharmacokinetic properties of LOS by decreasing the elimination of LOS. These effects might partly be attributed to the inhibition of the activities of CYP3A4, CYP2C9, and of the drug transporters (P-gp, BCRP, and OATP1B1) by SMI, which need further scrutiny.
Collapse
Affiliation(s)
- Zhenchao Niu
- Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Cardiovascular Research Institute of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tingting Qiang
- Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Cardiovascular Research Institute of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wenyong Lin
- Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Cardiovascular Research Institute of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yiping Li
- Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Cardiovascular Research Institute of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Keyan Wang
- Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Cardiovascular Research Institute of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Dan Wang
- Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Cardiovascular Research Institute of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaolong Wang
- Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Cardiovascular Research Institute of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
6
|
Lippert A, Renner B. Herb-Drug Interaction in Inflammatory Diseases: Review of Phytomedicine and Herbal Supplements. J Clin Med 2022; 11:1567. [PMID: 35329893 PMCID: PMC8951360 DOI: 10.3390/jcm11061567] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/28/2022] [Accepted: 03/09/2022] [Indexed: 02/06/2023] Open
Abstract
Many people worldwide use plant preparations for medicinal purposes. Even in industrialized regions, such as Europe, where conventional therapies are accessible for the majority of patients, there is a growing interest in and usage of phytomedicine. Plant preparations are not only used as alternative treatment, but also combined with conventional drugs. These combinations deserve careful contemplation, as the complex mixtures of bioactive substances in plants show a potential for interactions. Induction of CYP enzymes and pGP by St John's wort may be the most famous example, but there is much more to consider. In this review, we shed light on what is known about the interactions between botanicals and drugs, in order to make practitioners aware of potential drug-related problems. The main focus of the article is the treatment of inflammatory diseases, accompanied by plant preparations used in Europe. Several of the drugs we discuss here, as basal medication in chronic inflammatory diseases (e.g., methotrexate, janus kinase inhibitors), are also used as oral tumor therapeutics.
Collapse
Affiliation(s)
- Annemarie Lippert
- Institute of Clinical Pharmacology, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, 01069 Dresden, Germany;
| | | |
Collapse
|
7
|
Zuo HL, Huang HY, Lin YCD, Cai XX, Kong XJ, Luo DL, Zhou YH, Huang HD. Enzyme Activity of Natural Products on Cytochrome P450. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27020515. [PMID: 35056827 PMCID: PMC8779343 DOI: 10.3390/molecules27020515] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 12/27/2022]
Abstract
Drug-metabolizing enzymes, particularly the cytochrome P450 (CYP450) monooxygenases, play a pivotal role in pharmacokinetics. CYP450 enzymes can be affected by various xenobiotic substrates, which will eventually be responsible for most metabolism-based herb–herb or herb–drug interactions, usually involving competition with another drug for the same enzyme binding site. Compounds from herbal or natural products are involved in many scenarios in the context of such interactions. These interactions are decisive both in drug discovery regarding the synergistic effects, and drug application regarding unwanted side effects. Herein, this review was conducted as a comprehensive compilation of the effects of herbal ingredients on CYP450 enzymes. Nearly 500 publications reporting botanicals’ effects on CYP450s were collected and analyzed. The countries focusing on this topic were summarized, the identified herbal ingredients affecting enzyme activity of CYP450s, as well as methods identifying the inhibitory/inducing effects were reviewed. Inhibitory effects of botanicals on CYP450 enzymes may contribute to synergistic effects, such as herbal formulae/prescriptions, or lead to therapeutic failure, or even increase concentrations of conventional medicines causing serious adverse events. Conducting this review may help in metabolism-based drug combination discovery, and in the evaluation of the safety profile of natural products used therapeutically.
Collapse
Affiliation(s)
- Hua-Li Zuo
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China; (H.-L.Z.); (H.-Y.H.); (Y.-C.-D.L.); (X.-X.C.); (D.-L.L.); (Y.-H.Z.)
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China
- School of Computer Science and Technology, University of Science and Technology of China, Hefei 230027, China
| | - Hsi-Yuan Huang
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China; (H.-L.Z.); (H.-Y.H.); (Y.-C.-D.L.); (X.-X.C.); (D.-L.L.); (Y.-H.Z.)
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China
| | - Yang-Chi-Dung Lin
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China; (H.-L.Z.); (H.-Y.H.); (Y.-C.-D.L.); (X.-X.C.); (D.-L.L.); (Y.-H.Z.)
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China
| | - Xiao-Xuan Cai
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China; (H.-L.Z.); (H.-Y.H.); (Y.-C.-D.L.); (X.-X.C.); (D.-L.L.); (Y.-H.Z.)
| | - Xiang-Jun Kong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China;
| | - Dai-Lin Luo
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China; (H.-L.Z.); (H.-Y.H.); (Y.-C.-D.L.); (X.-X.C.); (D.-L.L.); (Y.-H.Z.)
| | - Yu-Heng Zhou
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China; (H.-L.Z.); (H.-Y.H.); (Y.-C.-D.L.); (X.-X.C.); (D.-L.L.); (Y.-H.Z.)
| | - Hsien-Da Huang
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China; (H.-L.Z.); (H.-Y.H.); (Y.-C.-D.L.); (X.-X.C.); (D.-L.L.); (Y.-H.Z.)
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China
- Correspondence: ; Tel.: +86-0755-2351-9601
| |
Collapse
|
8
|
D’Alessandro C, Benedetti A, Di Paolo A, Giannese D, Cupisti A. Interactions between Food and Drugs, and Nutritional Status in Renal Patients: A Narrative Review. Nutrients 2022; 14:nu14010212. [PMID: 35011087 PMCID: PMC8747252 DOI: 10.3390/nu14010212] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 12/14/2021] [Accepted: 12/16/2021] [Indexed: 12/17/2022] Open
Abstract
Drugs and food interact mutually: drugs may affect the nutritional status of the body, acting on senses, appetite, resting energy expenditure, and food intake; conversely, food or one of its components may affect bioavailability and half-life, circulating plasma concentrations of drugs resulting in an increased risk of toxicity and its adverse effects, or therapeutic failure. Therefore, the knowledge of these possible interactions is fundamental for the implementation of a nutritional treatment in the presence of a pharmacological therapy. This is the case of chronic kidney disease (CKD), for which the medication burden could be a problem, and nutritional therapy plays an important role in the patient’s treatment. The aim of this paper was to review the interactions that take place between drugs and foods that can potentially be used in renal patients, and the changes in nutritional status induced by drugs. A proper definition of the amount of food/nutrient intake, an adequate definition of the timing of meal consumption, and a proper adjustment of the drug dosing schedule may avoid these interactions, safeguarding the quality of life of the patients and guaranteeing the effectiveness of drug therapy. Hence, a close collaboration between the nephrologist, the renal dietitian, and the patient is crucial. Dietitians should consider that food may interact with drugs and that drugs may affect nutritional status, in order to provide the patient with proper dietary suggestions, and to allow the maximum effectiveness and safety of drug therapy, while preserving/correcting the nutritional status.
Collapse
|
9
|
Jang SN, Park SY, Lee H, Jeong H, Jeon JH, Song IS, Kwon MJ, Liu KH. In vitro modulatory effects of ginsenoside compound K, 20( S)-protopanaxadiol and 20( S)-protopanaxatriol on uridine 5'-diphospho-glucuronosyltransferase activity and expression. Xenobiotica 2021; 51:1087-1094. [PMID: 34338601 DOI: 10.1080/00498254.2021.1963503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
We explored the inhibitory effect of ginsenoside compound K (CK), 20(S)-protopanaxadiol (PPD), and 20(S)-protopanaxatriol (PPT) on six uridine 5'-diphospho-glucuronosyltransferase (UGT) enzyme (UGT1A1, 1A3, 1A4, 1A6, 1A9, and 2B7) activities in human liver microsomes (HLMs) and 10 UGT enzyme (UGT1A1, 1A3, 1A4, 1A6, 1A9, 2B4, 2B7, 2B10, 2B15, and 2B17) activities in recombinant UGT isoforms.PPD was a potent inhibitor of UGT1A3 activity with half-maximal inhibitory concentration values of 5.62 and 3.38 μM in HLMs and recombinant UGT1A3, respectively. UGT1A3 inhibition by CK and PPD was competitive with inhibitory constant (Ki) values of 17.4 and 1.21 μM, respectively, and inhibition by PPT was non-competitive with a Ki value of 8.07 μM in HLMs. PPD exhibited more than 3.4-fold selectivity for UGT1A3 inhibition compared with other UGT isoforms inhibition, while CK and PPT showed more than 2.16- and 2.21-fold selectivity, respectively.PPD did not significantly increase the mRNA expression of UGT1A1, 1A3, 1A4, 1A9, and 2B7 in hepatocytes.Given the low plasma concentrations of PPD in healthy human subjects and the absence of induction potential on UGT isoforms, we conclude that PPD cause no pharmacokinetic interactions with other co-administered drugs metabolised by UGT1A3.
Collapse
Affiliation(s)
- Su-Nyeong Jang
- BK21 FOUR KNU Community-Based Intelligent Novel Drug Discovery Education Unit, College of Pharmacy, Kyungpook National University, Daegu, South Korea.,College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, South Korea
| | - So-Young Park
- BK21 FOUR KNU Community-Based Intelligent Novel Drug Discovery Education Unit, College of Pharmacy, Kyungpook National University, Daegu, South Korea.,College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, South Korea
| | - Hyunyoung Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, South Korea
| | - Hyojin Jeong
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, South Korea
| | - Ji-Hyeon Jeon
- BK21 FOUR KNU Community-Based Intelligent Novel Drug Discovery Education Unit, College of Pharmacy, Kyungpook National University, Daegu, South Korea.,College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, South Korea
| | - Im-Sook Song
- BK21 FOUR KNU Community-Based Intelligent Novel Drug Discovery Education Unit, College of Pharmacy, Kyungpook National University, Daegu, South Korea.,College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, South Korea
| | - Mi Jeong Kwon
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, South Korea
| | - Kwang-Hyeon Liu
- BK21 FOUR KNU Community-Based Intelligent Novel Drug Discovery Education Unit, College of Pharmacy, Kyungpook National University, Daegu, South Korea.,College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, South Korea.,Mass Spectrometry Based Convergence Research Institute, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
10
|
Petersen MJ, Bergien SO, Staerk D. A systematic review of possible interactions for herbal medicines and dietary supplements used concomitantly with disease-modifying or symptom-alleviating multiple sclerosis drugs. Phytother Res 2021; 35:3610-3631. [PMID: 33624893 DOI: 10.1002/ptr.7050] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 12/18/2022]
Abstract
Multiple Sclerosis (MS) is a demyelinating disease affecting the central nervous system, with no curative medicine available. The use of herbal drugs and dietary supplements is increasing among people with MS (PwMS), raising a need for knowledge about potential interactions between conventional MS medicine and herbal drugs/dietary supplements. This systematic review provides information about the safety of simultaneous use of conventional MS-drugs and herbal drugs frequently used by PwMS. The study included 14 selected disease-modifying treatments and drugs frequently used for symptom-alleviation. A total of 129 published papers found via PubMed and Web of Science were reviewed according to defined inclusion- and exclusion criteria. Findings suggested that daily recommended doses of Panax ginseng and Ginkgo biloba should not be exceeded, and herbal preparations differing from standardized products should be avoided, especially when combined with anticoagulants or substrates of certain cytochrome P450 isoforms. Further studies are required regarding ginseng's ability to increase aspirin bioavailability. Combinations between chronic cannabis use and selective serotonin reuptake inhibitors or non-steroidal antiinflammatory drugs should be carefully monitored, whereas no significant evidence for drug-interactions between conventional MS-drugs and ginger, cranberry, vitamin D, fatty acids, turmeric, probiotics or glucosamine was found.
Collapse
Affiliation(s)
- Malene J Petersen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Dan Staerk
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
11
|
Kwon M, Jeon JH, Choi MK, Song IS. The Development and Validation of a Novel "Dual Cocktail" Probe for Cytochrome P450s and Transporter Functions to Evaluate Pharmacokinetic Drug-Drug and Herb-Drug Interactions. Pharmaceutics 2020; 12:E938. [PMID: 33007943 PMCID: PMC7600799 DOI: 10.3390/pharmaceutics12100938] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/25/2020] [Accepted: 09/29/2020] [Indexed: 11/30/2022] Open
Abstract
This study was designed to develop and validate a 10 probe drug cocktail named "Dual Cocktail", composed of caffeine (Cyp1a2 in rat and CYP1A2 in human, 1 mg/kg), diclofenac (Cyp2c11 in rat and CYP2C9 in human, 2 mg/kg), omeprazole (Cyp2c11 in rat and CYP2C19 in human, 2 mg/kg), dextromethorphan (Cyp2d2 in rat and CYP2D6 in human, 10 mg/kg), nifedipine (Cyp3a1 in rat and CYP3A4 in human, 0.5 mg/kg), metformin (Oct1/2 in rat and OCT1/2 in human, 0.5 mg/kg), furosemide (Oat1/3 in rat and OAT1/3 in human, 0.1 mg/kg), valsartan (Oatp2 in rat and OATP1B1/1B3 in human, 0.2 mg/kg), digoxin (P-gp in rat and human, 2 mg/kg), and methotrexate (Mrp2 in rat and MRP2 in human, 0.5 mg/kg), for the evaluation of pharmacokinetic drug-drug and herb-drug interactions through the modulation of a representative panel of CYP enzymes or transporters in rats. To ensure no interaction among the ten probe substrates, we developed a 2-step evaluation protocol. In the first step, the pharmacokinetic properties of five individual CYP probe substrates and five individual transporter substrates were compared with the pharmacokinetics of five CYP cocktail or five transporters cocktails in two groups of randomly assigned rats. Next, a pharmacokinetic comparison was conducted between the CYP or transporter cocktail group and the dual cocktail group, respectively. None of the ten comparison groups was found to be statistically significant, indicating the CYP and transporter substrate sets or dual cocktail set could be concomitantly administered in rats. The "Dual Cocktail" was further validated by assessing the metabolism of nifedipine and omeprazole, which was significantly reduced by a single oral dose of ketoconazole (10 mg/kg); however, no changes were observed in the pharmacokinetic parameters of other probe substrates. Additionally, multiple oral doses of rifampin (20 mg/kg) reduced the plasma concentrations of nifedipine and digoxin, although not any of the other substrates. In conclusion, the dual cocktail can be used to characterize potential pharmacokinetic drug-drug interactions by simultaneously monitoring the activity of multiple CYP isoforms and transporters.
Collapse
Affiliation(s)
- Mihwa Kwon
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Korea; (M.K.); (J.-H.J.)
| | - Ji-Hyeon Jeon
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Korea; (M.K.); (J.-H.J.)
| | - Min-Koo Choi
- College of Pharmacy, Dankook University, Cheon-an 31116, Korea;
| | - Im-Sook Song
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Korea; (M.K.); (J.-H.J.)
- Vessel-Organ Interaction Research Center (VOICE), Kyungpook National University, Daegu 41566, Korea
| |
Collapse
|
12
|
Qin Z, Jia M, Yang J, Xing H, Yin Z, Yao Z, Zhang X, Yao X. Multiple circulating alkaloids and saponins from intravenous Kang-Ai injection inhibit human cytochrome P450 and UDP-glucuronosyltransferase isozymes: potential drug-drug interactions. Chin Med 2020; 15:69. [PMID: 32655683 PMCID: PMC7339578 DOI: 10.1186/s13020-020-00349-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 06/26/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Kang-Ai injection is widely used as an adjuvant therapy drug for many cancers, leukopenia, and chronic hepatitis B. Circulating alkaloids and saponins are believed to be responsible for therapeutic effects. However, their pharmacokinetics (PK) and excretion in vivo and the risk of drug-drug interactions (DDI) through inhibiting human cytochrome P450 (CYP) and UDP-glucuronosyltransferase (UGT) enzymes remain unclear. METHODS PK and excretion of circulating compounds were investigated in rats using a validated ultra-high-performance liquid chromatography tandem mass spectrometry (UHPLC-MS) method. Further, the inhibitory effects of nine major compounds against eleven CYP and UGT isozymes were assayed using well-accepted specific substrate for each enzyme. RESULTS After dosing, 9 alkaloids were found with C max and t 1/2 values of 0.17-422.70 μmol/L and 1.78-4.33 h, respectively. Additionally, 28 saponins exhibited considerable systemic exposure with t 1/2 values of 0.63-7.22 h, whereas other trace saponins could be negligible or undetected. Besides, over 90% of alkaloids were excreted through hepatobiliary and renal excretion. Likewise, astragalosides and protopanaxatriol (PPT) type ginsenosides also involved in hepatobiliary and/or renal excretion. Protopanaxadiol (PPD) type ginsenosides were mainly excreted to urine. Furthermore, PPD-type ginsenosides were extensively bound (f u-plasma approximately 1%), whereas astragalosides and PPT-type ginsenosides displayed f u-plasma values of 12.35% and 60.23-87.36%, respectively. Moreover, matrine, oxymatrine, astragaloside IV, ginsenoside Rg1, ginsenoside Re, ginsenoside Rd, ginsenoside Rc, and ginsenoside Rb1 exhibited no inhibition or weak inhibition against several common CYP and UGT enzymes IC50 values between 8.81 and 92.21 μM. Through kinetic modeling, their inhibition mechanisms towards those CYP and UGT isozymes were explored with obtained Ki values. In vitro-in vivo extrapolation showed the inhibition of systemic clearance for CYP or UGT substrates seemed impossible due to [I]/Ki no more than 0.1. CONCLUSIONS We summarized the PK behaviors, excretion characteristics and protein binding rates of circulating alkaloids, astragalosides and ginsenosides after intravenous Kang-Ai injection. Furthermore, weak inhibition or no inhibition towards these CYP and UGT activities could not trigger harmful DDI when Kang-Ai injection is co-administered with clinical drugs primarily cleared by these CYP or UGT isozymes.
Collapse
Affiliation(s)
- Zifei Qin
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, 450052 China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, 510632 China
| | - Mengmeng Jia
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, 450052 China
| | - Jing Yang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, 450052 China
| | - Han Xing
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, 450052 China
| | - Zhao Yin
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, 450052 China
| | - Zhihong Yao
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, 510632 China
- College of Pharmacy, Jinan University, Guangzhou, 510632 China
| | - Xiaojian Zhang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, 450052 China
| | - Xinsheng Yao
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, 510632 China
- College of Pharmacy, Jinan University, Guangzhou, 510632 China
| |
Collapse
|
13
|
Kim JH, Choi SM, Shreatha R, Jeong GS, Jeong TC, Lee S. Deoxyshikonin reversibly inhibits cytochrome P450 2B6. Biopharm Drug Dispos 2020; 41:221-225. [PMID: 32364297 DOI: 10.1002/bdd.2230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 04/13/2020] [Accepted: 04/26/2020] [Indexed: 11/07/2022]
Abstract
Deoxyshikonin, a natural shikonin derivative, is the major component of Lithospermum erythrorhizon and exhibits various pharmacological effects such as lymphangiogenetic, antibacterial, wound healing, and anticancer effects. To investigate the herb-drug interaction potential associated with deoxyshikonin, the inhibitory effects of deoxyshikonin on eight major cytochrome P450 (CYP) enzymes were examined using cocktail substrate-incubated human liver microsomes. Deoxyshikonin strongly inhibited CYP2B6-catalyzed bupropion hydroxylation, with a Ki value of 3.5 μM, and the inhibition was confirmed using purified human CYP2B6. The inhibition was reversible because the inhibitory effect of deoxyshikonin was not dependent on the preincubation time. The results indicated that deoxyshikonin-induced drug-drug interaction should be considered when any herb containing deoxyshikonin is used for conventional medications.
Collapse
Affiliation(s)
- Ju-Hyun Kim
- College of Pharmacy, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Su Min Choi
- BK21 Plus KNU Multi-Omics based Creative Drug Research Team, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Riya Shreatha
- BK21 Plus KNU Multi-Omics based Creative Drug Research Team, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Gil-Saeng Jeong
- College of Pharmacy, Keimyung University, Daegu, 42601, Republic of Korea
| | - Tae Cheon Jeong
- College of Pharmacy, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Sangkyu Lee
- BK21 Plus KNU Multi-Omics based Creative Drug Research Team, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| |
Collapse
|
14
|
HPLC-MS/MS Analysis of Aconiti Lateralis Radix Praeparata and Its Combination with Red Ginseng Effect on Rat CYP450 Activities Using the Cocktail Approach. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:8603934. [PMID: 32215046 PMCID: PMC7085374 DOI: 10.1155/2020/8603934] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 01/01/2020] [Accepted: 01/18/2020] [Indexed: 12/11/2022]
Abstract
Red ginseng is often combined with Aconiti Lateralis Radix Praeparata to reduce alkaloids-related toxicity of the latter. Such herb-pairing also results in better therapeutic effect in heart failure, as compared to the singular use of either herb. The purpose of this study was to investigate the effect of Aconiti Lateralis Radix Praeparata and its combination with red ginseng on the activities of CYP450 enzymes in rats. A sensitive and reliable HPLC-MS/MS method was established and validated for the simultaneous determination of eight probe drugs, phenacetin (CYP1A2), tolbutamide (CYP2C9), omeprazole (CYP2C19), dextromethorphan (CYP2D6), dapsone (CYP3A4), 7-hydroxycoumarin (CYP2A6), bupropion (CYP2B6), and amodiaquine (CYP2C8), in rat plasma using diazepam as internal standard (IS). The chromatographic separation was performed on a Waters XBridge™ C18 column (2.1 mm × 100 mm, 3.5 μm) using a gradient elution with the mobile phase consisting of acetonitrile and water (containing 0.1% formic acid) at a flow rate of 0.3 mL/min. The method was successfully applied in evaluating the effect of Aconiti Lateralis Radix Praeparata and red ginseng on the activities of CYP450 enzymes. The pharmacokinetic results of the eight probe drugs suggested that Aconiti Lateralis Radix Praeparata may inhibit the activity of CYP2A6, CYP2C19, CYP2B6, CYP1A2, CYP3A4, and CYP2C9 enzymes in rats. Comparison between the two groups, Aconiti Lateralis Radix Praeparata combined with red ginseng and Aconiti Lateralis Radix Praeparata, indicated that red ginseng may inhibit the activity of CYP2D6 and CYP2B6 enzymes while inducing the activity of CYP1A2, CYP3A4, and CYP2C9 enzymes.
Collapse
|
15
|
Jeon JH, Lee S, Lee W, Jin S, Kwon M, Shin CH, Choi MK, Song IS. Herb-Drug Interaction of Red Ginseng Extract and Ginsenoside Rc with Valsartan in Rats. Molecules 2020; 25:E622. [PMID: 32023909 PMCID: PMC7037682 DOI: 10.3390/molecules25030622] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 01/14/2020] [Accepted: 01/29/2020] [Indexed: 02/07/2023] Open
Abstract
The purpose of this study was to investigate the herb-drug interactions involving red ginseng extract (RGE) or ginsenoside Rc with valsartan, a substrate for organic anion transporting polypeptide (OATP/Oatp) transporters. In HEK293 cells overexpressing drug transporters, the protopanaxadiol (PPD)-type ginsenosides- Rb1, Rb2, Rc, Rd, Rg3, compound K, and Rh2-inhibited human OATP1B1 and OATP1B3 transporters (IC50 values of 7.99-68.2 µM for OATP1B1; 1.36-30.8 µM for OATP1B3), suggesting the herb-drug interaction of PPD-type ginsenosides involving OATPs. Protopanaxatriol (PPT)-type ginsenosides-Re, Rg1, and Rh1-did not inhibit OATP1B1 and OATP1B3 and all ginsenosides tested didn't inhibit OCT and OAT transporters. However, in rats, neither RGE nor Rc, a potent OATP inhibitor among PPD-type ginsenoside, changed in vivo pharmacokinetics of valsartan following repeated oral administration of RGE (1.5 g/kg/day for 7 days) or repeated intravenous injection of Rc (3 mg/kg for 5 days). The lack of in vivo herb-drug interaction between orally administered RGE and valsartan could be attributed to the low plasma concentration of PPD-type ginsenosides (5.3-48.4 nM). Even high plasma concentration of Rc did not effectively alter the pharmacokinetics of valsartan because of high protein binding and the limited liver distribution of Rc. The results, in conclusion, would provide useful information for herb-drug interaction between RGE or PPD-type ginsenosides and Oatp substrate drugs.
Collapse
Affiliation(s)
- Ji-Hyeon Jeon
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Korea; (J.-H.J.); (S.L.); (M.K.); (C.H.S.)
| | - Sowon Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Korea; (J.-H.J.); (S.L.); (M.K.); (C.H.S.)
| | - Wonpyo Lee
- College of Pharmacy, Dankook University, Cheon-an 31116, Korea; (W.L.); (S.J.)
| | - Sojeong Jin
- College of Pharmacy, Dankook University, Cheon-an 31116, Korea; (W.L.); (S.J.)
| | - Mihwa Kwon
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Korea; (J.-H.J.); (S.L.); (M.K.); (C.H.S.)
| | - Chul Hwi Shin
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Korea; (J.-H.J.); (S.L.); (M.K.); (C.H.S.)
| | - Min-Koo Choi
- College of Pharmacy, Dankook University, Cheon-an 31116, Korea; (W.L.); (S.J.)
| | - Im-Sook Song
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Korea; (J.-H.J.); (S.L.); (M.K.); (C.H.S.)
| |
Collapse
|
16
|
Lee H, Heo JK, Lee GH, Park SY, Jang SN, Kim HJ, Kwon MJ, Song IS, Liu KH. Ginsenoside Rc Is a New Selective UGT1A9 Inhibitor in Human Liver Microsomes and Recombinant Human UGT Isoforms. Drug Metab Dispos 2019; 47:1372-1379. [PMID: 31578207 DOI: 10.1124/dmd.119.087965] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 09/25/2019] [Indexed: 02/13/2025] Open
Abstract
Ginseng is known to have inhibitory effects on UGT1A9 activity. However, little is known about the inhibitory effects of ginsenosides, the major active compounds in ginseng, on UGT1A9 activity. In vitro investigation of UGT1A9 inhibition by ginsenosides was carried out using human liver microsomes (HLMs). Among 10 ginsenosides, ginsenoside Rc was the strongest inhibitor of UGT1A9-mediated mycophenolic acid glucuronidase activity. Further inhibition kinetic studies using HLMs suggested that ginsenoside Rc competitively and noncompetitively inhibited UGT1A9-mediated propofol and mycophenolic acid glucuronidation activities, with K i values of 2.83 and 3.31 μM, respectively. Next, to investigate whether the inhibitory effect of ginsenoside Rc is specific to the UGT1A9 isoform, we studied the inhibitory potency of ginsenoside Rc on nine human uridine diphospho-glucuronosyltransferase (UGT) activities using recombinant human UGT isoforms. Ginsenoside Rc exhibited a 12.9-fold selectivity (which was similar to niflumic acid at 12.5-fold) for UGT1A9 inhibition. Ginsenoside Rc at 50 μM also inhibited none of the other UGT isoform-specific activities above 12.0%, except for UGT1A9 (>91.5%) in HLMs, indicating that ginsenoside Rc might be used as a selective UGT1A9 inhibitor in reaction phenotyping studies of new chemical entities. Considering lower plasma concentrations (0.01 μM) of ginsenoside Rc in healthy subjects and no induction potential on UGT isoforms, ginsenoside Rc does not cause pharmacokinetic drug interactions with other coadministered drugs metabolized by UGT1A9. SIGNIFICANCE STATEMENT: Ginsenoside Rc selectively inhibited UGT1A9-mediated propofol and mycophenolic acid glucuronidation activities in human liver microsomes and recombinant uridine diphospho-glucuronosyltransferase (UGT) isoforms. It exhibited a 12.9-fold selectivity for UGT1A9 inhibition. Therefore, ginsenoside Rc might be used as a selective UGT1A9 inhibitor in reaction phenotyping studies of new chemical entities, such as niflumic acid.
Collapse
Affiliation(s)
- Hyunyoung Lee
- BK21 Plus KNU Multi-Omics based Creative Drug Research Team, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, South Korea
| | - Jae-Kyung Heo
- BK21 Plus KNU Multi-Omics based Creative Drug Research Team, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, South Korea
| | - Ga-Hyun Lee
- BK21 Plus KNU Multi-Omics based Creative Drug Research Team, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, South Korea
| | - So-Young Park
- BK21 Plus KNU Multi-Omics based Creative Drug Research Team, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, South Korea
| | - Su-Nyeong Jang
- BK21 Plus KNU Multi-Omics based Creative Drug Research Team, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, South Korea
| | - Hyun-Ji Kim
- BK21 Plus KNU Multi-Omics based Creative Drug Research Team, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, South Korea
| | - Mi Jeong Kwon
- BK21 Plus KNU Multi-Omics based Creative Drug Research Team, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, South Korea
| | - Im-Sook Song
- BK21 Plus KNU Multi-Omics based Creative Drug Research Team, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, South Korea
| | - Kwang-Hyeon Liu
- BK21 Plus KNU Multi-Omics based Creative Drug Research Team, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
17
|
Intravenous formulation of Panax notoginseng root extract: human pharmacokinetics of ginsenosides and potential for perpetrating drug interactions. Acta Pharmacol Sin 2019; 40:1351-1363. [PMID: 31358899 DOI: 10.1038/s41401-019-0273-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 06/11/2019] [Indexed: 12/12/2022]
Abstract
XueShuanTong, a lyophilized extract of Panax notoginseng roots (Sanqi) for intravenous administration, is extensively used as add-on therapy in the treatment of ischemic heart and cerebrovascular diseases and comprises therapeutically active ginsenosides. Potential for XueShuanTong-drug interactions was determined; the investigation focused on cytochrome P450 (CYP)3A induction and organic anion-transporting polypeptide (OATP)1B inhibition. Ginsenosides considerably bioavailable for drug interactions were identified by dosing XueShuanTong in human subjects and their interaction-related pharmacokinetics were determined. The CYP3A induction potential was determined by repeatedly dosing XueShuanTong for 15 days in human subjects and by treating cryopreserved human hepatocytes with circulating ginsenosides; midazolam served as a probe substrate. Joint inhibition of OATP1B by XueShuanTong ginsenosides was assessed in vitro, and the data were processed using the Chou-Talalay method. Samples were analyzed by liquid chromatography/mass spectrometry. Ginsenosides Rb1, Rd, and Rg1 and notoginsenoside R1 were the major circulating XueShuanTong compounds; their interaction-related pharmacokinetics comprised compound dose-dependent levels of systemic exposure and, for ginsenosides Rb1 and Rd, long terminal half-lives (32‒57 and 58‒307 h, respectively) and low unbound fractions in plasma (0.8%‒2.9% and 0.4%‒3.0%, respectively). Dosing XueShuanTong did not induce CYP3A. Based on the pharmacokinetics and inhibitory potency of the ginsenosides, XueShuanTong was predicted to have high potential for OATP1B3-mediated drug interactions (attributed chiefly to ginsenoside Rb1) suggesting the need for further model-based determination of the interaction potential for XueShuanTong and, if necessary, a clinical drug interaction study. Increased awareness of ginsenosides' pharmacokinetics and XueShuanTong-drug interaction potential will help ensure the safe use of XueShuanTong and coadministered synthetic drugs.
Collapse
|
18
|
Interactions of ginseng with therapeutic drugs. Arch Pharm Res 2019; 42:862-878. [PMID: 31493264 DOI: 10.1007/s12272-019-01184-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 08/26/2019] [Indexed: 02/08/2023]
Abstract
Ginseng is the most frequently used herbal medicine for immune system stimulation and as an adjuvant with prescribed drugs owing to its numerous pharmacologic activities. It is important to investigate the beneficial effects and interaction of ginseng with therapeutic drugs. This review comprehensively discusses drug metabolizing enzyme- and transporter-mediated ginseng-drug interaction by analyzing in vitro and clinical results with a focus on ginsenoside, a pharmacologically active marker of ginseng. Impact of ginseng therapy or ginseng combination therapy on diabetic patients and of ginseng interaction with antiplatelets and anticoagulants were evaluated based on ginseng origin and ginsenoside content. Daily administration of Korean red ginseng (0.5-3 g extract; dried ginseng > 60%) did not cause significant herb-drug interaction with drug metabolizing enzymes and transporters. Among various therapeutic drugs administered in combination with ginseng, adjuvant chemotherapy, comprising ginseng (1-3 g extract) and anticancer drugs, was effective for reducing cancer-related fatigue and improving the quality of life and emotional scores. Limited information regarding ginsenoside content in each ginseng product and plasma ginsenoside concentration among patients necessitates standardization of ginseng product and establishment of pharmacokinetic-pharmacodynamic correlation to further understand beneficial effects of ginseng-therapeutic drug interactions in future clinical studies.
Collapse
|
19
|
In Vitro Inhibitory Effects of APINACA on Human Major Cytochrome P450, UDP-Glucuronosyltransferase Enzymes, and Drug Transporters. Molecules 2019; 24:molecules24163000. [PMID: 31430908 PMCID: PMC6720883 DOI: 10.3390/molecules24163000] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 08/14/2019] [Accepted: 08/17/2019] [Indexed: 11/17/2022] Open
Abstract
APINACA (known as AKB48, N-(1-adamantyl)-1-pentyl-1H-indazole-3-carboxamide), an indazole carboxamide synthetic cannabinoid, has been used worldwide as a new psychoactive substance. Drug abusers take various drugs concomitantly, and therefore, it is necessary to characterize the potential of APINACA-induced drug–drug interactions due to the modulation of drug-metabolizing enzymes and transporters. In this study, the inhibitory effects of APINACA on eight major human cytochrome P450s (CYPs) and six uridine 5′-diphospho-glucuronosyltransferases (UGTs) in human liver microsomes, as well as on the transport activities of six solute carrier transporters and two efflux transporters in transporter-overexpressed cells, were investigated. APINACA exhibited time-dependent inhibition of CYP3A4-mediated midazolam 1′-hydroxylation (Ki, 4.5 µM; kinact, 0.04686 min−1) and noncompetitive inhibition of UGT1A9-mediated mycophenolic acid glucuronidation (Ki, 5.9 µM). APINACA did not significantly inhibit the CYPs 1A2, 2A6, 2B6, 2C8/9/19, or 2D6 or the UGTs 1A1, 1A3, 1A4, 1A6, or 2B7 at concentrations up to 100 µM. APINACA did not significantly inhibit the transport activities of organic anion transporter (OAT)1, OAT3, organic anion transporting polypeptide (OATP)1B1, OATP1B3, organic cation transporter (OCT)1, OCT2, P-glycoprotein, or breast cancer resistance protein at concentrations up to 250 μM. These data suggest that APINACA can cause drug interactions in the clinic via the inhibition of CYP3A4 or UGT1A9 activities.
Collapse
|
20
|
Jin S, Jeon JH, Lee S, Kang WY, Seong SJ, Yoon YR, Choi MK, Song IS. Detection of 13 Ginsenosides (Rb1, Rb2, Rc, Rd, Re, Rf, Rg1, Rg3, Rh2, F1, Compound K, 20( S)-Protopanaxadiol, and 20( S)-Protopanaxatriol) in Human Plasma and Application of the Analytical Method to Human Pharmacokinetic Studies Following Two Week-Repeated Administration of Red Ginseng Extract. Molecules 2019; 24:E2618. [PMID: 31323835 PMCID: PMC6680484 DOI: 10.3390/molecules24142618] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/10/2019] [Accepted: 07/17/2019] [Indexed: 12/30/2022] Open
Abstract
We aimed to develop a sensitive method for detecting 13 ginsenosides using liquid chromatography-tandem mass spectrometry and to apply this method to pharmacokinetic studies in human following repeated oral administration of red ginseng extract. The chromatograms of Rb1, Rb2, Rc, Rd, Re, Rf, Rg1, Rg3, Rh2, F1, compound K (CK), protopanaxadiol (PPD), and protopanaxatriol (PPT) in human plasma were well separated. The calibration curve range for 13 ginsenosides was 0.5-200 ng/mL and the lower limit of quantitation was 0.5 ng/mL for all ginsenosides. The inter- and intra-day accuracy, precision, and stability were less than 15%. Among the 13 ginsenosides tested, nine ginsenosides (Rb1, Rb2, Rc, Rd, Rg3, CK, Rh2, PPD, and PPT) were detected in the human plasma samples. The plasma concentrations of Rb1, Rb2, Rc, Rd, and Rg3 were correlated with the content in red ginseng extract; however, CK, Rh2, PPD, and PPT were detected although they are not present in red ginseng extract, suggesting the formation of these ginsenosides through the human metabolism. In conclusion, our analytical method could be effectively used to evaluate pharmacokinetic properties of ginsenosides, which would be useful for establishing the pharmacokinetic-pharmacodymic relationship of ginsenosides as well as ginsenoside metabolism in humans.
Collapse
Affiliation(s)
- Sojeong Jin
- College of Pharmacy, Dankook University, Cheon-an 31116, Korea
| | - Ji-Hyeon Jeon
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Korea
| | - Sowon Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Korea
| | - Woo Youl Kang
- Clinical Trial Center, Kyungpook National University Hospital, Daegu 41944, Korea
- Department of Biomedical Science, BK21 Plus KNU Bio-Medical Convergence Program for Creative Talent, College of Medicine, Kyungpook National University, Daegu 41944, Korea
| | - Sook Jin Seong
- Clinical Trial Center, Kyungpook National University Hospital, Daegu 41944, Korea
- Department of Biomedical Science, BK21 Plus KNU Bio-Medical Convergence Program for Creative Talent, College of Medicine, Kyungpook National University, Daegu 41944, Korea
| | - Young-Ran Yoon
- Clinical Trial Center, Kyungpook National University Hospital, Daegu 41944, Korea
- Department of Biomedical Science, BK21 Plus KNU Bio-Medical Convergence Program for Creative Talent, College of Medicine, Kyungpook National University, Daegu 41944, Korea
| | - Min-Koo Choi
- College of Pharmacy, Dankook University, Cheon-an 31116, Korea.
| | - Im-Sook Song
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Korea.
| |
Collapse
|
21
|
Davis MP, Behm B. Ginseng: A Qualitative Review of Benefits for Palliative Clinicians. Am J Hosp Palliat Care 2019; 36:630-659. [PMID: 30686023 DOI: 10.1177/1049909118822704] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Ginseng has been used for centuries to treat various diseases and has been commercially developed and cultivated in the past 300 years. Ginseng products may be fresh, dried (white), or dried and steamed (red). Extracts may be made using water or alcohol. There are over 50 different ginsenosides identified by chromatography. We did an informal systematic qualitative review that centered on fatigue, cancer, dementia, respiratory diseases, and heart failure, and we review 113 studies in 6 tables. There are multiple potential benefits to ginseng in cancer. Ginseng, in certain circumstances, has been shown to improve dementia, chronic obstructive pulmonary disease, and heart failure through randomized trials. Most trials had biases or unknown biases and so most evidence is of low quality. We review the gaps in the evidence and make some recommendations regarding future studies.
Collapse
Affiliation(s)
- Mellar P Davis
- 1 Palliative Care Department, Knapper Cancer Center, Geisinger Medical Center, Danville, PA, USA
| | - Bertrand Behm
- 1 Palliative Care Department, Knapper Cancer Center, Geisinger Medical Center, Danville, PA, USA
| |
Collapse
|
22
|
Lee S, Kwon M, Choi MK, Song IS. Effects of Red Ginseng Extract on the Pharmacokinetics and Elimination of Methotrexate via Mrp2 Regulation. Molecules 2018; 23:molecules23112948. [PMID: 30424502 PMCID: PMC6278279 DOI: 10.3390/molecules23112948] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 11/07/2018] [Accepted: 11/08/2018] [Indexed: 12/18/2022] Open
Abstract
We aimed to investigate the effects of red ginseng extract (RGE) on the expression of efflux transporters and to study the pharmacokinetics of representative substrate. For this, rats received single or repeated administration of RGE (1.5 g/kg/day) for 1 and 2 weeks via oral gavage. mRNA and protein levels of multidrug resistance-associated protein2 (Mrp2), bile salt export pump (Bsep), and P-glycoprotein (P-gp) in the rat liver were measured via real-time polymerase chain reaction and Western blot analysis. Ginsenosides concentrations from the rat plasma were also monitored using a liquid chromatography–tandem mass spectrometry (LC–MS/MS) system. Plasma concentrations of ginsenoside Rb1, Rb2, Rc, and Rd following repeated administration of RGE for 1 and 2 weeks were comparable but significantly higher than those after single administration of RGE. These dosing regimens did not induce significant biochemical abnormalities in the liver, kidneys, and lipid homeostasis. In the RGE repeated oral administration groups, the mRNA and protein levels of Mrp2 significantly decreased. Accordingly, we investigated the changes in the pharmacokinetics of methotrexate, a probe substrate for Mrp2, following intravenous administration of 3 mg/kg methotrexate to rats in the RGE 1-week repeated oral administration group, compared to that in the control group. Biliary excretion, but not urinary excretion, of methotrexate decreased in the RGE repeated administration group, compared to that in the control group. Consequently, the plasma concentrations of methotrexate slightly increased in the RGE repeated administration group. In conclusion, repeated administration of RGE for 1 week resulted in a decrease in Mrp2 expression without inducing significant liver or kidney damage. Pharmacokinetic herb–drug interaction between RGE and methotrexate might occur owing to the decrease in the mRNA and protein levels of Mrp2.
Collapse
Affiliation(s)
- Sowon Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Korea.
| | - Mihwa Kwon
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Korea.
| | - Min-Koo Choi
- College of Pharmacy, Dankook University, Cheon-an 31116, Korea.
| | - Im-Sook Song
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Korea.
| |
Collapse
|