1
|
Alkhudaydi HMS, Muriuki EN, Spencer JPE. Determination of the Polyphenol Composition of Raspberry Leaf Using LC-MS/MS. Molecules 2025; 30:970. [PMID: 40005280 PMCID: PMC11858761 DOI: 10.3390/molecules30040970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 02/06/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND Raspberry leaf (RL; Rubus idaeus) is a by-product of raspberry cultivation and has been proposed to be a rich source of micronutrients and potential bioactive components, including polyphenols. However, the precise chemical composition of the non-nutrient (poly)phenols in RL has not been as extensively studied. OBJECTIVE To evaluate the (poly)phenolic content of six RL samples from different geographical locations and to explore the impact of brewing duration on the levels of phenolic compounds available for absorption following consumption. METHODS A total of 52 polyphenolic constituents were investigated in the RL samples using Liquid Chromatography-Mass Spectrometry (LC-MS), and RL tea samples were analysed for ellagitannins, flavonoids, and phenolic acids. Tea samples were extracted using 80:20 (v/v) methanol/acidified water (0.1% formic acid) to maximise polyphenol recovery, with two sonication steps (30 and 25 min), followed by centrifugation, filtration, and storage at -18 °C. Extractions were performed in triplicate for comprehensive profiling. Additionally, raspberry leaf tea (2 g) was brewed in 200 mL of boiling water at various times (0.5-20 min) to simulate standard consumption practices; this was also performed in triplicate. This approach aimed to quantify polyphenols in the brew and identify optimal steeping times for maximum polyphenol release. RESULTS Raspberry leaf (RL) samples from six geographical sources were analysed, with 37 compounds identified in methanol and 37 in water out of the 52 targeted compounds, with only 7 compounds not detected in either methanol or water extracts. The analysis indicated that the total measured polyphenol content across the six samples from various sources ranged between 358.66 and 601.65 mg/100 g (p < 0.001). Ellagitannins were identified as the predominant polyphenolic compound in all RL samples, ranging from 155.27 to 394.22 mg/100 g. The phenolic acid and flavonoid concentrations in these samples exhibited a relatively narrow range, with the phenolic acids spanning from 38.87 to 119.03 mg/100 g and the flavonoids ranging from 125.03 to 156.73 mg/100 g. When brewing the tea, the 5 min extraction time was observed to yield the highest level of polyphenols (505.65 mg/100 g) (p< 0.001), which was significantly higher than that with shorter (409.84 mg/100g) and longer extraction times (429.28 mg/100 g). Notably, ellagic acid levels were highest at 5 min (380.29 mg/100 g), while phenolic acid peaked at 15 min (50.96 mg/100 g). The flavonoid content was shown to be highest at 4 min (82.58 mg/100 g). CONCLUSIONS RL contains a relatively high level of polyphenols, particularly ellagic acid; thus, its consumption may contribute to the daily intake of these health-beneficial non-nutrient components.
Collapse
Affiliation(s)
- Hind Mesfer S. Alkhudaydi
- Department of Food and Nutritional Sciences, School of Chemistry, Food and Pharmacy, University of Reading, Reading RG6 6DZ, UK
- Food Science and Nutrition Department, Faculty of Science, Taif University, Taif 26571, Saudi Arabia
| | - Esther Njeri Muriuki
- Department of Food and Nutritional Sciences, School of Chemistry, Food and Pharmacy, University of Reading, Reading RG6 6DZ, UK
| | - Jeremy P. E. Spencer
- Department of Food and Nutritional Sciences, School of Chemistry, Food and Pharmacy, University of Reading, Reading RG6 6DZ, UK
| |
Collapse
|
2
|
Stankovic S, Mutavdzin Krneta S, Djuric D, Milosevic V, Milenkovic D. Plant Polyphenols as Heart's Best Friends: From Health Properties, to Cellular Effects, to Molecular Mechanisms of Action. Int J Mol Sci 2025; 26:915. [PMID: 39940685 PMCID: PMC11816429 DOI: 10.3390/ijms26030915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 12/22/2024] [Accepted: 01/18/2025] [Indexed: 02/16/2025] Open
Abstract
Polyphenols are micronutrients found in fruits, vegetables, tea, coffee, cocoa, medicinal herbs, fish, crustaceans, and algae. They can also be synthesized using recombinant microorganisms. Interest in plant-derived natural compounds has grown due to their potential therapeutic effects with minimal side effects. This is particularly important as the aging population faces increasing rates of chronic diseases such as cancer, diabetes, arthritis, cardiovascular, and neurological disorders. Studies have highlighted polyphenols' capacity to reduce risk factors linked to the onset of chronic illnesses. This narrative review discusses polyphenol families and their metabolism, and the cardioprotective effects of polyphenols evidenced from in vitro studies, as well as from in vivo studies, on different animal models of cardiac disease. This study also explores the molecular mechanisms underlying these benefits. Current research suggests that polyphenols may protect against ischemia, hypertension, cardiac hypertrophy, heart failure, and myocardial injury through complex mechanisms, including epigenetic and genomic modulation. However, further studies under nutritionally and physiologically relevant conditions, using untargeted multigenomic approaches, are needed to more comprehensively elucidate these mechanisms and firmly prove the cardioprotective effects of polyphenols.
Collapse
Affiliation(s)
- Sanja Stankovic
- Center for Medical Biochemistry, University Clinical Center of Serbia, 11000 Belgrade, Serbia
- Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Slavica Mutavdzin Krneta
- Institute of Medical Physiology “Richard Burian”, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (S.M.K.); (D.D.)
| | - Dragan Djuric
- Institute of Medical Physiology “Richard Burian”, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (S.M.K.); (D.D.)
| | - Verica Milosevic
- Department of Anatomy, Faculty of Medicine, University of Niš, 18000 Nis, Serbia;
| | - Dragan Milenkovic
- Department of Food, Bioprocessing and Nutrition Sciences, Plants for Human Health Institute, North Carolina State University, Kannapolis, NC 28081, USA
- Department of Nutrition, University of California Davis, Davis, CA 95616, USA
| |
Collapse
|
3
|
Gál R, Halmosi R, Gallyas F, Tschida M, Mutirangura P, Tóth K, Alexy T, Czopf L. Resveratrol and beyond: The Effect of Natural Polyphenols on the Cardiovascular System: A Narrative Review. Biomedicines 2023; 11:2888. [PMID: 38001889 PMCID: PMC10669290 DOI: 10.3390/biomedicines11112888] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/11/2023] [Accepted: 10/19/2023] [Indexed: 11/26/2023] Open
Abstract
Cardiovascular diseases (CVDs) are among the leading causes of morbidity and mortality worldwide. Unhealthy dietary habits have clearly been shown to contribute to the development of CVDs. Beyond the primary nutrients, a healthy diet is also rich in plant-derived compounds. Natural polyphenols, found in fruits, vegetables, and red wine, have a clear role in improving cardiovascular health. In this review, we strive to summarize the results of the relevant pre-clinical and clinical trials that focused on some of the most important natural polyphenols, such as resveratrol and relevant flavonoids. In addition, we aim to identify their common sources, biosynthesis, and describe their mechanism of action including their regulatory effect on signal transduction pathways. Finally, we provide scientific evidence regarding the cardiovascular benefits of moderate, long-term red wine consumption.
Collapse
Affiliation(s)
- Roland Gál
- Division of Cardiology, 1st Department of Medicine, Medical School, University of Pecs, 7624 Pecs, Hungary; (R.G.); (R.H.); (K.T.)
- Szentágothai Research Centre, University of Pecs, 7624 Pecs, Hungary
| | - Róbert Halmosi
- Division of Cardiology, 1st Department of Medicine, Medical School, University of Pecs, 7624 Pecs, Hungary; (R.G.); (R.H.); (K.T.)
- Szentágothai Research Centre, University of Pecs, 7624 Pecs, Hungary
| | - Ferenc Gallyas
- Department of Biochemistry and Medical Chemistry, University of Pecs, 7624 Pecs, Hungary;
| | - Michael Tschida
- Medical School, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Pornthira Mutirangura
- Department of Medicine, University of Minnesota Medical School, Minneapolis, MN 55455, USA;
| | - Kálmán Tóth
- Division of Cardiology, 1st Department of Medicine, Medical School, University of Pecs, 7624 Pecs, Hungary; (R.G.); (R.H.); (K.T.)
- Szentágothai Research Centre, University of Pecs, 7624 Pecs, Hungary
| | - Tamás Alexy
- Department of Medicine, Division of Cardiology, University of Minnesota, Minneapolis, MN 55455, USA;
| | - László Czopf
- Division of Cardiology, 1st Department of Medicine, Medical School, University of Pecs, 7624 Pecs, Hungary; (R.G.); (R.H.); (K.T.)
| |
Collapse
|
4
|
Patanè GT, Putaggio S, Tellone E, Barreca D, Ficarra S, Maffei C, Calderaro A, Laganà G. Catechins and Proanthocyanidins Involvement in Metabolic Syndrome. Int J Mol Sci 2023; 24:ijms24119228. [PMID: 37298181 DOI: 10.3390/ijms24119228] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
Recent studies on natural antioxidant compounds have highlighted their potentiality against various pathological conditions. The present review aims to selectively evaluate the benefits of catechins and their polymeric structure on metabolic syndrome, a common disorder characterized by a cluster of three main risk factors: obesity, hypertension, and hyperglycemia. Patients with metabolic syndrome suffer chronic low inflammation state and oxidative stress both conditions effectively countered by flavanols and their polymers. The mechanism behind the activity of these molecules has been highlighted and correlated with the characteristic features present on their basic flavonoidic skelethon, as well as the efficient doses needed to perform their activity in both in vitro and in vivo studies. The amount of evidence provided in this review offers a starting point for flavanol dietary supplementation as a potential strategy to counteract several metabolic targets associated with metabolic syndrome and suggests a key role of albumin as flavanol-delivery system to the different target of action inside the organism.
Collapse
Affiliation(s)
- Giuseppe Tancredi Patanè
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Stefano Putaggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Ester Tellone
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Davide Barreca
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Silvana Ficarra
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Carlo Maffei
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Antonella Calderaro
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Giuseppina Laganà
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy
| |
Collapse
|
5
|
Holt RR, Barile D, Wang SC, Munafo JP, Arvik T, Li X, Lee F, Keen CL, Tagkopoulos I, Schmitz HH. Chardonnay Marc as a New Model for Upcycled Co-products in the Food Industry: Concentration of Diverse Natural Products Chemistry for Consumer Health and Sensory Benefits. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:15007-15027. [PMID: 36409321 PMCID: PMC9732887 DOI: 10.1021/acs.jafc.2c04519] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
Research continues to provide compelling insights into potential health benefits associated with diets rich in plant-based natural products (PBNPs). Coupled with evidence from dietary intervention trials, dietary recommendations increasingly include higher intakes of PBNPs. In addition to health benefits, PBNPs can drive flavor and sensory perceptions in foods and beverages. Chardonnay marc (pomace) is a byproduct of winemaking obtained after fruit pressing that has not undergone fermentation. Recent research has revealed that PBNP diversity within Chardonnay marc has potential relevance to human health and desirable sensory attributes in food and beverage products. This review explores the potential of Chardonnay marc as a valuable new PBNP ingredient in the food system by combining health, sensory, and environmental sustainability benefits that serves as a model for development of future ingredients within a sustainable circular bioeconomy. This includes a discussion on the potential role of computational methods, including artificial intelligence (AI), in accelerating research and development required to discover and commercialize this new source of PBNPs.
Collapse
Affiliation(s)
- Roberta R Holt
- Department of Nutrition, University of California, Davis, Davis, California 95616, United States
| | - Daniela Barile
- Department of Food Science and Technology, University of California, Davis, Davis, California 95616, United States
| | - Selina C Wang
- Department of Food Science and Technology, University of California, Davis, Davis, California 95616, United States
| | - John P Munafo
- Department of Food Science, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Torey Arvik
- Sonomaceuticals, LLC, Santa Rosa, California 95403, United States
| | - Xueqi Li
- Department of Food Science and Technology, University of California, Davis, Davis, California 95616, United States
| | - Fanny Lee
- Sonomaceuticals, LLC, Santa Rosa, California 95403, United States
| | - Carl L Keen
- Department of Nutrition, University of California, Davis, Davis, California 95616, United States
| | - Ilias Tagkopoulos
- PIPA, LLC, Davis, California 95616, United States
- Department of Computer Science and Genome Center, USDA/NSF AI Institute for Next Generation Food Systems (AIFS), University of California, Davis, Davis, California 95616 United States
| | - Harold H Schmitz
- March Capital US, LLC, Davis, California 95616, United States
- T.O.P., LLC, Davis, California 95616, United States
- Graduate School of Management, University of California, Davis, Davis, California 95616, United States
| |
Collapse
|
6
|
From Cocoa to Chocolate: Effect of Processing on Flavanols and Methylxanthines and Their Mechanisms of Action. Int J Mol Sci 2022; 23:ijms232214365. [PMID: 36430843 PMCID: PMC9698929 DOI: 10.3390/ijms232214365] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022] Open
Abstract
Despite the health benefits associated with the ingestion of the bioactive compounds in cocoa, the high concentrations of polyphenols and methylxanthines in the raw cocoa beans negatively influence the taste, confer the astringency and bitterness, and affect the stability and digestibility of the cocoa products. It is, therefore, necessary to process cocoa beans to develop the characteristic color, taste, and flavor, and reduce the astringency and bitterness, which are desirable in cocoa products. Processing, however, affects the composition and quantities of the bioactive compounds, resulting in the modification of the health-promoting properties of cocoa beans and chocolate. In this advanced review, we sought to better understand the effect of cocoa's transformational process into chocolate on polyphenols and methylxanthine and the mechanism of action of the original flavanols and methylxanthines. More data on the cocoa processing effect on cocoa bioactives are still needed for better understanding the effect of each processing step on the final polyphenolic and methylxanthine composition of chocolate and other cocoa products. Regarding the mechanisms of action, theobromine acts through the modulation of the fatty acid metabolism, mitochondrial function, and energy metabolism pathways, while flavanols mainly act though the protein kinases and antioxidant pathways. Both flavanols and theobromine seem to be involved in the nitric oxide and neurotrophin regulation.
Collapse
|
7
|
Dicks L, Haddad Z, Deisling S, Ellinger S. Effect of an (-)-Epicatechin Intake on Cardiometabolic Parameters-A Systematic Review of Randomized Controlled Trials. Nutrients 2022; 14:4500. [PMID: 36364762 PMCID: PMC9657629 DOI: 10.3390/nu14214500] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/18/2022] [Accepted: 10/20/2022] [Indexed: 10/21/2024] Open
Abstract
Growing evidence exists that consumption of cocoa-rich food improves the parameters of cardiometabolic health. These effects are ascribed to cocoa flavanols, particularly to (-)-epicatechin (EC), a natural ingredient of cocoa. Hence, to evaluate if EC may explain the effects of cocoa, this systematic review aimed to provide an overview on randomized controlled trials (RCTs) investigating the impact of an EC intake on cardiometabolic biomarkers. For this, the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) 2020 statement was considered and the risk of bias (RoB) was assessed by using the Cochrane RoB 2 tool. In total, 11 studies were included examining parameters on vascular function, glucose/lipid metabolism, oxidative stress, inflammation, appetite sensations, and body weight before and after EC treatment. Except for a dose-dependent acute increase in flow-mediated dilatation (FMD) and in the peripheral arterial tonometry (PAT) index in healthy young adults, effects by EC treatment were not observed. For most trials, some concerns exist for overall RoB. Thus, EC intake may improve endothelial function in healthy young adults. For further parameters (mostly secondary outcomes), it remains unclear if EC has no effect or if this was not detectable. Unbiased RCTs on the impact of an EC intake are needed, which should also investigate the additive or synergistic effects of EC with other cocoa ingredients.
Collapse
Affiliation(s)
| | | | | | - Sabine Ellinger
- Department of Nutrition and Food Sciences, Human Nutrition, University of Bonn, Meckenheimer Allee 166a, 53115 Bonn, Germany
| |
Collapse
|
8
|
Andrade JKS, Barros RGC, Pereira UC, Gualberto NC, de Oliveira CS, Shanmugam S, Narain N. α-Amylase inhibition, cytotoxicity and influence of the in vitro gastrointestinal digestion on the bioaccessibility of phenolic compounds in the peel and seed of Theobroma grandiflorum. Food Chem 2021; 373:131494. [PMID: 34753077 DOI: 10.1016/j.foodchem.2021.131494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 10/21/2021] [Accepted: 10/26/2021] [Indexed: 11/18/2022]
Abstract
The aim of this work was to evaluate the bioaccessibility, cytotoxicity, antioxidant and antidiabetic potential of peel and seeds of cupuassu (Theobroma grandiflorum). Thus, the extracts of cupuassu were evaluated for inhibition of α-amylase, cytotoxicity, and bioaccessibility after gastrointestinal digestion and probiotic fermentation (Lactobacillus delbrueckii, Lactobacillus jhonsoni, Lactobacillus rhamus and Bifidobacterium longum). Digestion increased concentrations of phenolics, showing bioaccessibility of up to 274.13% (total phenolics) and 1105.15% (ORAC). β-carotene, quinic, tartaric, malic, citric, epicatechin, ethyl gallate, epigallocatechin gallate, gallic acid, pyrocatechol, vanillin, ramnetine were the main compounds while the epicatechin, ethyl gallate, gallic acid and pyrocatechol were the major effective phenolic compounds. The extracts did not show toxic effects and the cupuassu seeds showed 97% inhibition of α-amylase and 47.91% bioaccessibility of pyrocatechol. This study suggests that cupuassu extracts are sources of natural antioxidants with promising antidiabetic potential, and probiotics are able to increase phenolic compounds, responsible for health benefits.
Collapse
Affiliation(s)
| | - Romy Gleyse Chagas Barros
- Laboratory of Flavor and Chromatographic Analysis, PROCTA, Federal University of Sergipe, São Cristóvão, SE, Brazil
| | - Ubatã Corrêa Pereira
- Laboratory of Flavor and Chromatographic Analysis, PROCTA, Federal University of Sergipe, São Cristóvão, SE, Brazil
| | - Nayjara Carvalho Gualberto
- Laboratory of Flavor and Chromatographic Analysis, PROCTA, Federal University of Sergipe, São Cristóvão, SE, Brazil
| | - Christean Santos de Oliveira
- Laboratory of Flavor and Chromatographic Analysis, PROCTA, Federal University of Sergipe, São Cristóvão, SE, Brazil
| | - Saravanan Shanmugam
- Department of Pharmacy, Federal University of Sergipe, Av. Marechal Rondon, Jardim Rosa Elze, CEP 49100-000, São Cristóvão, SE, Brazil
| | - Narendra Narain
- Laboratory of Flavor and Chromatographic Analysis, PROCTA, Federal University of Sergipe, São Cristóvão, SE, Brazil.
| |
Collapse
|
9
|
Sinrod AJ, Li X, Bhattacharya M, Paviani B, Wang SC, Barile D. A second life for wine grapes: Discovering potentially bioactive oligosaccharides and phenolics in chardonnay marc and its processing fractions. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111192] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
10
|
López-Fernández-Sobrino R, Soliz-Rueda JR, Suárez M, Mulero M, Arola L, Bravo FI, Muguerza B. Blood Pressure-Lowering Effect of Wine Lees: Dose-Response Study, Effect of Dealcoholization and Possible Mechanisms of Action. Nutrients 2021; 13:nu13041142. [PMID: 33808475 PMCID: PMC8066631 DOI: 10.3390/nu13041142] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 03/24/2021] [Accepted: 03/29/2021] [Indexed: 02/07/2023] Open
Abstract
The antihypertensive effect of wine lees (WL) has been previously evidenced. In this study, the antihypertensive properties of different doses of WL were evaluated in spontaneously hypertensive rats (SHR). In addition, the blood pressure (BP)-lowering effect of dried (dealcoholized) WL powder (WLPW) and the mechanisms involved in its functionality were investigated. Furthermore, a possible hypotensive effect of WLPW was discarded in Wistar-Kyoto (WKY) rats. The administration of WL at different doses caused a dose-dependent decrease in BP of SHR up to 5.0 mL/kg bw, exhibiting the maximum decrease at 6 h post-administration. WLPW caused a greater drop in BP than WL, showing an antihypertensive effect higher and more prolonged than the drug Captopril. Moreover, the BP-lowering effect of WLPW was specific to the hypertensive state since an undesirable hypotensive effect in normotensive WKY rats was ruled out. Finally, WLPW improved oxidative stress and increased the activity of the antioxidant endogen system of SHR. These results suggest that WLPW could be used as functional ingredient for foods or nutraceuticals to ameliorate hypertension. Nevertheless, further clinical studies are needed to evaluate its long-term antihypertensive efficiency.
Collapse
|
11
|
Enzyme-Assisted Extraction to Obtain Phenolic-Enriched Wine Lees with Enhanced Bioactivity in Hypertensive Rats. Antioxidants (Basel) 2021; 10:antiox10040517. [PMID: 33810336 PMCID: PMC8065631 DOI: 10.3390/antiox10040517] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/21/2021] [Accepted: 03/23/2021] [Indexed: 02/06/2023] Open
Abstract
The antihypertensive effect of the soluble fraction of wine lees (WL) from Cabernet variety grapes was recently reported by our group. This blood pressure (BP)-lowering effect was attributed to the presence of flavanols and anthocyanins. In this context, phenolic-enriched wine lees (PWL) could potentially exhibit a stronger bioactivity. Therefore, the aim of this study was to obtain a soluble fraction of WL with increased phenolic content and evaluate its functionality. The PWL were obtained using an enzyme-assisted extraction based on the hydrolysis of WL proteins with Flavourzyme®. They contained 57.20% more total phenolic compounds than WL, with anthocyanins and flavanols being the largest families present. In addition, PWL also showed greater angiotensin-converting enzyme inhibitory and antioxidant activities. Finally, the antihypertensive activity of the PWL was evaluated in spontaneously hypertensive rats. A single dose of 5 mL/kg body weight of PWL showed a greater BP-lowering effect than the one shown by WL. Moreover, this antihypertensive effect was more prolonged than the one produced by the antihypertensive drug Captopril. These results demonstrate that enzymatic protein hydrolysis is a useful method to maximize the extraction of phenolic compounds from WL and to obtain extracts with enhanced functionalities.
Collapse
|
12
|
López-Fernández-Sobrino R, Soliz-Rueda JR, Margalef M, Arola-Arnal A, Suárez M, Bravo FI, Muguerza B. ACE Inhibitory and Antihypertensive Activities of Wine Lees and Relationship among Bioactivity and Phenolic Profile. Nutrients 2021; 13:nu13020679. [PMID: 33672674 PMCID: PMC7924335 DOI: 10.3390/nu13020679] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/10/2021] [Accepted: 02/16/2021] [Indexed: 12/11/2022] Open
Abstract
Wine lees (WL) are by-products generated in the winemaking process. The aim of this study was to investigate the angiotensin-converting enzyme inhibitory (ACEi) activity, and the blood pressure (BP) lowering effect of WL from individual grape varieties. The relationship among their activities and phenolic profiles was also studied. Three WL, from Cabernet, Mazuela, and Garnacha grape varieties, were firstly selected based on their ACEi properties. Their phenolic profiles were fully characterized by UHPLC-ESI-Q-TOF-MS. Then, their potential antihypertensive effects were evaluated in spontaneously hypertensive rats (SHR). BP was recorded before and after their oral administrations (2, 4, 6, 8, 24, and 48 h) at a dose of 5 mL/kg bw. Cabernet WL (CWL) exhibited a potent antihypertensive activity, similar to that obtained with the drug Captopril. This BP-lowering effect was related to the high amount of anthocyanins and flavanols present in these lees. In addition, a potential hypotensive effect of CWL was discarded in normotensive Wistar-Kyoto rats. Finally, the ACEi and antihypertensive activities of CWL coming from a different harvest were confirmed. Our results suggest the potential of CWL for controlling arterial BP, opening the door to commercial use within the wine industry.
Collapse
|
13
|
Ethnopharmacology of Fruit Plants: A Literature Review on the Toxicological, Phytochemical, Cultural Aspects, and a Mechanistic Approach to the Pharmacological Effects of Four Widely Used Species. Molecules 2020; 25:molecules25173879. [PMID: 32858815 PMCID: PMC7504726 DOI: 10.3390/molecules25173879] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 07/31/2020] [Accepted: 07/31/2020] [Indexed: 02/07/2023] Open
Abstract
Fruit plants have been widely used by the population as a source of food, income and in the treatment of various diseases due to their nutritional and pharmacological properties. The aim of this study was to review information from the most current research about the phytochemical composition, biological and toxicological properties of four fruit species widely used by the world population in order to support the safe medicinal use of these species and encourage further studies on their therapeutic properties. The reviewed species are: Talisia esculenta, Brosimum gaudichaudii, Genipa americana, and Bromelia antiacantha. The review presents the botanical description of these species, their geographical distribution, forms of use in popular medicine, phytochemical studies and molecules isolated from different plant organs. The description of the pharmacological mechanism of action of secondary metabolites isolated from these species was detailed and toxicity studies related to them were reviewed. The present study demonstrates the significant concentration of phenolic compounds in these species and their anti-inflammatory, anti-tumor, photosensitizing properties, among others. Such species provide important molecules with pharmacological activity that serve as raw materials for the development of new drugs, making further studies necessary to elucidate mechanisms of action not yet understood and prove the safety for use in humans.
Collapse
|
14
|
Roberts SB, Franceschini MA, Silver RE, Taylor SF, de Sa AB, Có R, Sonco A, Krauss A, Taetzsch A, Webb P, Das SK, Chen CY, Rogers BL, Saltzman E, Lin PY, Schlossman N, Pruzensky W, Balé C, Chui KKH, Muentener P. Effects of food supplementation on cognitive function, cerebral blood flow, and nutritional status in young children at risk of undernutrition: randomized controlled trial. BMJ 2020; 370:m2397. [PMID: 32699176 PMCID: PMC7374799 DOI: 10.1136/bmj.m2397] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/04/2020] [Indexed: 01/06/2023]
Abstract
OBJECTIVE To assess the effects of food supplementation on improving working memory and additional measures including cerebral blood flow in children at risk of undernutrition. DESIGN Randomized controlled trial. SETTING 10 villages in Guinea-Bissau. PARTICIPANTS 1059 children aged 15 months to 7 years; children younger than 4 were the primary population. INTERVENTIONS Supervised isocaloric servings (≈1300 kJ, five mornings each week, 23 weeks) of a new food supplement (NEWSUP, high in plant polyphenols and omega 3 fatty acids, within a wide variety and high fortification of micronutrients, and a high protein content), or a fortified blended food (FBF) used in nutrition programs, or a control meal (traditional rice breakfast). MAIN OUTCOME MEASUREMENTS The primary outcome was working memory, a core executive function predicting long term academic achievement. Additional outcomes were hemoglobin concentration, growth, body composition, and index of cerebral blood flow (CBFi). In addition to an intention-to-treat analysis, a predefined per protocol analysis was conducted in children who consumed at least 75% of the supplement (820/925, 89%). The primary outcome was assessed by a multivariable Poisson model; other outcomes were assessed by multivariable linear mixed models. RESULTS Among children younger than 4, randomization to NEWSUP increased working memory compared with the control meal (rate ratio 1.20, 95% confidence interval 1.02 to 1.41, P=0.03), with a larger effect in the per protocol population (1.25, 1.06 to 1.47, P=0.009). NEWSUP also increased hemoglobin concentration among children with anemia (adjusted mean difference 0.65 g/dL, 95% confidence interval 0.23 to 1.07, P=0.003) compared with the control meal, decreased body mass index z score gain (-0.23, -0.43 to -0.02, P=0.03), and increased lean tissue accretion (2.98 cm2, 0.04 to 5.92, P=0.046) with less fat (-5.82 cm2, -11.28 to -0.36, P=0.04) compared with FBF. Additionally, NEWSUP increased CBFi compared with the control meal and FBF in both age groups combined (1.14 mm2/s×10-8, 0.10 to 2.23, P=0.04 for both comparisons). Among children aged 4 and older, NEWSUP had no significant effect on working memory or anemia, but increased lean tissue compared with FBF (4.31 cm2, 0.34 to 8.28, P=0.03). CONCLUSIONS Childhood undernutrition is associated with long term impairment in cognition. Contrary to current understanding, supplementary feeding for 23 weeks could improve executive function, brain health, and nutritional status in vulnerable young children living in low income countries. Further research is needed to optimize nutritional prescriptions for regenerative improvements in cognitive function, and to test effectiveness in other vulnerable groups. TRIAL REGISTRATION ClinicalTrials.gov NCT03017209.
Collapse
Affiliation(s)
- Susan B Roberts
- Gerald J and Dorothy R Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Maria A Franceschini
- Athinoula A Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| | - Rachel E Silver
- Gerald J and Dorothy R Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Salima F Taylor
- Gerald J and Dorothy R Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Augusto Braima de Sa
- International Partnership for Human Development, Leesburg, VA, USA and Bissau, Guinea Bissau
| | - Raimundo Có
- International Partnership for Human Development, Leesburg, VA, USA and Bissau, Guinea Bissau
| | - Aliu Sonco
- International Partnership for Human Development, Leesburg, VA, USA and Bissau, Guinea Bissau
| | | | - Amy Taetzsch
- Gerald J and Dorothy R Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Patrick Webb
- Gerald J and Dorothy R Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Sai Krupa Das
- Gerald J and Dorothy R Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - C-Y Chen
- Biofortis, Mérieux NutriSciences, Addison, IL, USA
| | - Beatrice L Rogers
- Gerald J and Dorothy R Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Edward Saltzman
- Gerald J and Dorothy R Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Pei-Yi Lin
- Athinoula A Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| | - Nina Schlossman
- Gerald J and Dorothy R Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
- Global Food and Nutrition, Washington, DC, USA
| | - William Pruzensky
- International Partnership for Human Development, Leesburg, VA, USA and Bissau, Guinea Bissau
| | - Carlito Balé
- International Partnership for Human Development, Leesburg, VA, USA and Bissau, Guinea Bissau
| | - Kenneth Kwan Ho Chui
- Department of Public Health and Community Medicine, Tufts School of Medicine, Boston, MA, USA
| | - Paul Muentener
- Department of Psychology, Tufts University, Medford, MA, USA
| |
Collapse
|
15
|
Qu Z, Liu A, Li P, Liu C, Xiao W, Huang J, Liu Z, Zhang S. Advances in physiological functions and mechanisms of (-)-epicatechin. Crit Rev Food Sci Nutr 2020; 61:211-233. [PMID: 32090598 DOI: 10.1080/10408398.2020.1723057] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
(-)-Epicatechin (EC) is a flavanol easily obtained through the diet and is present in tea, cocoa, vegetables, fruits, and cereals. Recent studies have shown that EC protects human health and exhibits prominent anti-oxidant and anti-inflammatory activities, enhances muscle performance, improves symptoms of cardiovascular and cerebrovascular diseases, prevents diabetes, and protects the nervous system. With the development of modern medical and biotechnology research, the mechanisms of action associated with EC toward various chronic diseases are becoming more apparent, and the pharmacological development and utilization of EC has been increasingly clarified. Currently, there is no comprehensive systematic introduction to the effects of EC and its mechanisms of action. This review presents the latest research progress and the role of EC in the prevention and treatment of various chronic diseases and its protective health effects and provides a theoretical basis for future research on EC.
Collapse
Affiliation(s)
- Zhihao Qu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, China.,National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Centre of Utilisation of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan, China
| | - Ailing Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, China
| | - Penghui Li
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, China.,National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Centre of Utilisation of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan, China
| | - Changwei Liu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, China.,National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Centre of Utilisation of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan, China
| | - Wenjun Xiao
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, China.,National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Centre of Utilisation of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan, China
| | - Jianan Huang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, China.,National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Centre of Utilisation of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan, China
| | - Zhonghua Liu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, China.,National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Centre of Utilisation of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan, China
| | - Sheng Zhang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, China.,National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Centre of Utilisation of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan, China
| |
Collapse
|
16
|
Philip P, Sagaspe P, Taillard J, Mandon C, Constans J, Pourtau L, Pouchieu C, Angelino D, Mena P, Martini D, Del Rio D, Vauzour D. Acute Intake of a Grape and Blueberry Polyphenol-Rich Extract Ameliorates Cognitive Performance in Healthy Young Adults During a Sustained Cognitive Effort. Antioxidants (Basel) 2019; 8:antiox8120650. [PMID: 31861125 PMCID: PMC6943592 DOI: 10.3390/antiox8120650] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/10/2019] [Accepted: 12/12/2019] [Indexed: 11/16/2022] Open
Abstract
Despite an increasing level of evidence supporting the individual beneficial effect of polyphenols on cognitive performance, information related to the potential synergistic action of these phytonutrients on cognitive performance during a prolonged cognitive effort is currently lacking. This study investigated the acute and sustained action of a polyphenols-rich extract from grape and blueberry (PEGB), on working memory and attention in healthy students during a prolonged and intensive cognitive effort. In this randomised, cross-over, double blind study, 30 healthy students consumed 600 mg of PEGB or a placebo. Ninety minutes after product intake, cognitive functions were assessed for one hour using a cognitive demand battery including serial subtraction tasks, a rapid visual information processing (RVIP) task and a visual analogical scale. Flow-mediated dilation (FMD) and plasma flavan-3-ols metabolites quantification were also performed. A 2.5-fold increase in serial three subtraction variation net scores was observed following PEGB consumption versus placebo (p < 0.001). A trend towards significance was also observed with RVIP percentage of correct answers (p = 0.058). No treatment effect was observed on FMD. Our findings suggest that consumption of PEGB coupled with a healthy lifestyle may be a safe alternative to acutely improve working memory and attention during a sustained cognitive effort.
Collapse
Affiliation(s)
- Pierre Philip
- Pôle Neurosciences Cliniques, Centre Hospitalier Universitaire de Bordeaux, F-33076 Bordeaux, France; (P.P.); (P.S.)
- Sommeil, Addiction et NeuroPSYchiatrie, Université de Bordeaux, CNRS, SANPSY, USR 3413, F-33000 Bordeaux, France;
- Centre d’Investigation Clinique Bordeaux, INSERM CIC 1401, Centre Hospitalier Universitaire de Bordeaux, F-33000 Bordeaux, France
| | - Patricia Sagaspe
- Pôle Neurosciences Cliniques, Centre Hospitalier Universitaire de Bordeaux, F-33076 Bordeaux, France; (P.P.); (P.S.)
- Sommeil, Addiction et NeuroPSYchiatrie, Université de Bordeaux, CNRS, SANPSY, USR 3413, F-33000 Bordeaux, France;
| | - Jacques Taillard
- Sommeil, Addiction et NeuroPSYchiatrie, Université de Bordeaux, CNRS, SANPSY, USR 3413, F-33000 Bordeaux, France;
| | - Claire Mandon
- Vascular Medicine Service, Centre Hospitalier Universitaire de Bordeaux, F-33000 Bordeaux, France; (C.M.); (J.C.)
| | - Joël Constans
- Vascular Medicine Service, Centre Hospitalier Universitaire de Bordeaux, F-33000 Bordeaux, France; (C.M.); (J.C.)
| | - Line Pourtau
- Activ’Inside, F-33750 Beychac et Caillau, France; (L.P.); (C.P.)
| | - Camille Pouchieu
- Activ’Inside, F-33750 Beychac et Caillau, France; (L.P.); (C.P.)
| | - Donato Angelino
- Department of Food & Drugs, University of Parma, 43125 Parma, Italy; (D.A.); (P.M.)
| | - Pedro Mena
- Department of Food & Drugs, University of Parma, 43125 Parma, Italy; (D.A.); (P.M.)
| | - Daniela Martini
- Department of Veterinary Science, University of Parma, 43125 Parma, Italy; (D.M.); (D.D.R.)
| | - Daniele Del Rio
- Department of Veterinary Science, University of Parma, 43125 Parma, Italy; (D.M.); (D.D.R.)
- School of Advanced Studies on Food and Nutrition, University of Parma, 43125 Parma, Italy
- Microbiome Research Hub, University of Parma, 43124 Parma, Italy
| | - David Vauzour
- Norwich Medical School, Biomedical Research Centre, Faculty of Medicine and Health Sciences, University of East Anglia, Norwich NR4 7TJ, UK
- Correspondence: ; Tel.: +44-1603-591-732
| |
Collapse
|