1
|
Randeni N, Luo J, Xu B. Critical Review on Anti-Obesity Effects of Anthocyanins Through PI3K/Akt Signaling Pathways. Nutrients 2025; 17:1126. [PMID: 40218884 PMCID: PMC11990295 DOI: 10.3390/nu17071126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 03/18/2025] [Accepted: 03/23/2025] [Indexed: 04/14/2025] Open
Abstract
Obesity is a global health crisis and is one of the major reasons for the rising prevalence of metabolic disorders such as type 2 diabetes, cardiovascular diseases, and certain cancers. There has been growing interest in the search for natural molecules with potential anti-obesity effects; among the phytochemicals of interest are anthocyanins, which are flavonoid pigments present in many fruits and vegetables. Anthocyanins influence obesity via several signaling pathways. The PI3K/Akt signaling pathway plays a major role with a focus on downstream targets such as GLUT4, FOXO, GSK3β, and mTOR, which play a central role in the regulation of glucose metabolism, lipid storage, and adipogenesis. The influence of critical factors such as oxidative stress and inflammation also affect the pathophysiology of obesity. However, the studies reviewed have certain limitations, including variations in experimental models, bioavailability challenges, and a lack of extensive clinical validation. While anthocyanin shows tremendous potential, challenges such as poor bioavailability, stability, and regulatory matters must be overcome for successful functional food inclusion of anthocyanins. The future of anthocyanin-derived functional foods lies in their ability to overcome hurdles. Therefore, this review highlights the molecular mechanisms of obesity through the PI3K/Akt signaling pathways and explores how anthocyanins can modulate these signaling pathways to address obesity and related metabolic disorders. It also addresses some ways to solve the challenges, like bioavailability and stability, while emphasizing future possibilities for anthocyanin-based functional foods in obesity management.
Collapse
Affiliation(s)
| | | | - Baojun Xu
- Food Science and Technology Program, Department of Life Sciences, Beijing Normal-Hong Kong Baptist University, Zhuhai 519087, China; (N.R.); (J.L.)
| |
Collapse
|
2
|
Zhang Z, Wang H, Chen Y. Association between composite dietary antioxidant index and metabolic dysfunction associated steatotic liver disease: result from NHANES, 2017-2020. Front Nutr 2024; 11:1412516. [PMID: 39104752 PMCID: PMC11299214 DOI: 10.3389/fnut.2024.1412516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 07/11/2024] [Indexed: 08/07/2024] Open
Abstract
Background The development of metabolic dysfunction associated steatotic liver disease (MASLD) has been associated with lipid accumulation, oxidative stress, endoplasmic reticulum stress, and lipotoxicity. The Composite Dietary Antioxidant Index (CDAI) is a comprehensive score representing an individual intake of various dietary antioxidants, including vitamin A, vitamin C, vitamin E, selenium, zinc, and carotenoids. This study investigated the association between CDAI and MASLD. Materials and methods Clinical and demographic data, as well as ultrasound transient elastography measurements at baseline, were collected from the National Health and Nutrition Examination Survey 2017-2020 (NHANES 2017-2020). The controlled attenuation parameter was utilized to diagnose the presence of hepatic steatosis and to categorize individuals into those with and without MASLD. Liver stiffness was measured by ultrasound transient elastography, and subjects were classified as those with and without advanced liver fibrosis. Results This study included 5,884 adults, of whom 3,433 were diagnosed with MASLD, resulting in a weighted prevalence of 57.3%. After adjusting for covariates, the odds ratios for MASLD were 0.96 (95% CI: 0.82, 1.12) in the second quartile, 0.80 (95% CI: 0.68, 0.95) in the third quartile and 0.60 (95% CI: 0.49, 0.73) in the fourth quartile, respectively. CDAI, however, was not significantly associated with advanced liver fibrosis. Conclusion These findings suggested that scores on the CDAI were linearly and negatively associated with the prevalence of MASLD in the United States adults.
Collapse
Affiliation(s)
| | | | - Youpeng Chen
- Department of Infectious Diseases, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
3
|
Monteiro CEDS, de Cerqueira Fiorio B, Silva FGO, de Fathima Felipe de Souza M, Franco ÁX, Lima MADS, Sales TMAL, Mendes TS, Havt A, Barbosa ALR, Resende ÂC, de Moura RS, de Souza MHLP, Soares PMG. A polyphenol-rich açaí seed extract protects against 5-fluorouracil-induced intestinal mucositis in mice through the TLR-4/MyD88/PI3K/mTOR/NF-κBp65 signaling pathway. Nutr Res 2024; 125:1-15. [PMID: 38428258 DOI: 10.1016/j.nutres.2024.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 01/30/2024] [Accepted: 01/30/2024] [Indexed: 03/03/2024]
Abstract
Açaí seed extract (ASE) is obtained from Euterpe oleracea Mart. (açaí) plant (Amazon region) has high nutritional and functional value. ASE is rich in polyphenolic compounds, mainly proanthocyanidins. Proanthocyanidins can modulate the immune system and oxidative stress by inhibiting the toll-like receptor-4 (TLR-4)/myeloid differentiation primary response 88 (MyD88)/nuclear factor-κB (NF-κB) pathway. A great deal of evidence suggests that inflammatory cytokines and oxidative stress contribute to the pathogenesis of intestinal mucositis, and these events can lead to intestinal dysmotility. We hypothesized that ASE acts as an anti-inflammatory and antioxidant compound in intestinal mucositis induced by 5-fluorouracil (5-FU) through modulation of the TLR-4/MyD88/phosphatidylinositol-3-kinase α/mechanistic target of rapamycin/NF-κBp65 pathway. The animals were divided into linear 5-FU (450 mg/kg) and 5-FU + ASE (10, 30, and 100 mg/kg) groups. The weight loss of the animals was evaluated daily. Samples from duodenum, jejunum, and ileum were obtained for histopathological, biochemical, and functional analyses. ASE reduced weight loss, inflammatory parameters (interleukin-1β; tumor necrosis factor-α; myeloperoxidase activity) and the gene expression of mediators involved in the TLR-2/MyD88/NF-κB pathway. ASE prevented histopathological changes with beneficial effects on gastrointestinal transit delay, gastric emptying, and intestinal absorption/permeability. In conclusion, ASE protects the integrity of the intestinal epithelial barrier by inhibiting the TLR/MyD88/PI3K/mechanistic target of rapamycin/NF-κBp65 pathway.
Collapse
Affiliation(s)
- Carlos Eduardo da Silva Monteiro
- LEFFAG- Laboratory of Physiopharmacology Study of Gastrointestinal Tract, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Bárbara de Cerqueira Fiorio
- LEFFAG- Laboratory of Physiopharmacology Study of Gastrointestinal Tract, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Francisca Géssica Oliveira Silva
- LEFFAG- Laboratory of Physiopharmacology Study of Gastrointestinal Tract, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Maria de Fathima Felipe de Souza
- LEFFAG- Laboratory of Physiopharmacology Study of Gastrointestinal Tract, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Álvaro Xavier Franco
- LEFFAG- Laboratory of Physiopharmacology Study of Gastrointestinal Tract, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Marcos Aurélio de Sousa Lima
- LEFFAG- Laboratory of Physiopharmacology Study of Gastrointestinal Tract, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Thiago Meneses Araujo Leite Sales
- LEFFAG- Laboratory of Physiopharmacology Study of Gastrointestinal Tract, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Tiago Santos Mendes
- LEFFAG- Laboratory of Physiopharmacology Study of Gastrointestinal Tract, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Alexandre Havt
- Laboratory of Molecular Toxinology, LTM, Federal University of Ceará, Fortaleza, CE, Brazil
| | - André Luiz Reis Barbosa
- LAFFEX- Laboratory of Experimental Physiopharmacology, Parnaiba Delta Federal University (UFDPAR), Parnaíba, PI, Brazil
| | - Ângela Castro Resende
- Department of Pharmacology, Institute of Biology, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Roberto Soares de Moura
- Department of Pharmacology, Institute of Biology, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Pedro Marcos Gomes Soares
- LEFFAG- Laboratory of Physiopharmacology Study of Gastrointestinal Tract, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil.
| |
Collapse
|
4
|
Colombo GM, Marreiro Gomes RM, Muñoz Buitrago SA, Buitrago Ramírez JR, de Sousa Araujo AC, Silva Oliveira FP, Pedrosa VF, Romano LA, Tesser M, Wasielesky W, Monserrat JM. Effects of Lyophilized Açaí ( Euterpe oleracea) Supplementation on Oxidative Damage and Intestinal Histology in Juvenile Shrimp Penaeus vannamei Reared in Biofloc Systems. Animals (Basel) 2023; 13:3282. [PMID: 37894006 PMCID: PMC10603646 DOI: 10.3390/ani13203282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/29/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
The objective of this was to evaluate the ability of bioflocs to assimilate and transfer antioxidant compounds present in açaí Euterpe oleracea to juvenile Penaeus vannamei shrimp grown in a biofloc system. Juvenile shrimp were distributed into four treatment groups (control, 5, 20, and 80 mg açaí L-1), containing 31 shrimps/tank (90 L), and cultivated for 30 days. Every 24 h throughout the experimental period, the respective açaí concentrations were added directly to the cultivation water. The bioflocs and hepatopancreas lost their antioxidant capacity with increasing concentrations of açaí; however, lipid damage was mitigated after treatment with 20 mg of açaí L-1 (p < 0.05). The application of 20 mg açaí L-1 increased the mean height and area of the middle intestinal microvilli (p < 0.05). Mortality and protein and lipid damage in shrimp muscle increased with daily administration of 80 mg açaí L-1 (p < 0.05). It is concluded that the bioflocs were able to assimilate the antioxidants present in açaí and transfer them to the shrimp, and the administration of 20 mg açaí L-1 presented the best performance, demonstrating the possibility of its application in the cultivation of P. vannamei in a biofloc system.
Collapse
Affiliation(s)
- Grecica Mariana Colombo
- Laboratório de Bioquímica Funcional de Organismos Aquáticos (BIFOA), Instituto de Oceanografia (IO), Universidade Federal do Rio Grande—FURG, Rua do Hotel, n° 02, Rio Grande CEP 96210-030, RS, Brazil; (R.M.M.G.); (S.A.M.B.); (J.R.B.R.); (A.C.d.S.A.)
- Programa de Pós-Graduação em Aquicultura, Instituto de Oceanografía (IO), Universidade Federal do Rio Grande—FURG, Rio Grande CEP 96200-970, RS, Brazil; (F.P.S.O.); (V.F.P.); (L.A.R.); (M.T.); (W.W.)
| | - Robson Matheus Marreiro Gomes
- Laboratório de Bioquímica Funcional de Organismos Aquáticos (BIFOA), Instituto de Oceanografia (IO), Universidade Federal do Rio Grande—FURG, Rua do Hotel, n° 02, Rio Grande CEP 96210-030, RS, Brazil; (R.M.M.G.); (S.A.M.B.); (J.R.B.R.); (A.C.d.S.A.)
- Programa de Pós-Graduação em Aquicultura, Instituto de Oceanografía (IO), Universidade Federal do Rio Grande—FURG, Rio Grande CEP 96200-970, RS, Brazil; (F.P.S.O.); (V.F.P.); (L.A.R.); (M.T.); (W.W.)
| | - Sonia Astrid Muñoz Buitrago
- Laboratório de Bioquímica Funcional de Organismos Aquáticos (BIFOA), Instituto de Oceanografia (IO), Universidade Federal do Rio Grande—FURG, Rua do Hotel, n° 02, Rio Grande CEP 96210-030, RS, Brazil; (R.M.M.G.); (S.A.M.B.); (J.R.B.R.); (A.C.d.S.A.)
- Programa de Pós-Graduação em Aquicultura, Instituto de Oceanografía (IO), Universidade Federal do Rio Grande—FURG, Rio Grande CEP 96200-970, RS, Brazil; (F.P.S.O.); (V.F.P.); (L.A.R.); (M.T.); (W.W.)
| | - Juan Rafael Buitrago Ramírez
- Laboratório de Bioquímica Funcional de Organismos Aquáticos (BIFOA), Instituto de Oceanografia (IO), Universidade Federal do Rio Grande—FURG, Rua do Hotel, n° 02, Rio Grande CEP 96210-030, RS, Brazil; (R.M.M.G.); (S.A.M.B.); (J.R.B.R.); (A.C.d.S.A.)
- Programa de Pós-Graduação em Aquicultura, Instituto de Oceanografía (IO), Universidade Federal do Rio Grande—FURG, Rio Grande CEP 96200-970, RS, Brazil; (F.P.S.O.); (V.F.P.); (L.A.R.); (M.T.); (W.W.)
| | - Alan Carvalho de Sousa Araujo
- Laboratório de Bioquímica Funcional de Organismos Aquáticos (BIFOA), Instituto de Oceanografia (IO), Universidade Federal do Rio Grande—FURG, Rua do Hotel, n° 02, Rio Grande CEP 96210-030, RS, Brazil; (R.M.M.G.); (S.A.M.B.); (J.R.B.R.); (A.C.d.S.A.)
- Programa de Pós-Graduação em Aquicultura, Instituto de Oceanografía (IO), Universidade Federal do Rio Grande—FURG, Rio Grande CEP 96200-970, RS, Brazil; (F.P.S.O.); (V.F.P.); (L.A.R.); (M.T.); (W.W.)
| | - Fernando Pablo Silva Oliveira
- Programa de Pós-Graduação em Aquicultura, Instituto de Oceanografía (IO), Universidade Federal do Rio Grande—FURG, Rio Grande CEP 96200-970, RS, Brazil; (F.P.S.O.); (V.F.P.); (L.A.R.); (M.T.); (W.W.)
- Laboratório de Imunologia e Patología de Organismos Aquáticos, Instituto de Oceanografía (IO), Universidade Federal do Rio Grande—FURG, Rio Grande 96200-970, RS, Brazil
| | - Virgínia Fonseca Pedrosa
- Programa de Pós-Graduação em Aquicultura, Instituto de Oceanografía (IO), Universidade Federal do Rio Grande—FURG, Rio Grande CEP 96200-970, RS, Brazil; (F.P.S.O.); (V.F.P.); (L.A.R.); (M.T.); (W.W.)
- Laboratório de Imunologia e Patología de Organismos Aquáticos, Instituto de Oceanografía (IO), Universidade Federal do Rio Grande—FURG, Rio Grande 96200-970, RS, Brazil
| | - Luís Alberto Romano
- Programa de Pós-Graduação em Aquicultura, Instituto de Oceanografía (IO), Universidade Federal do Rio Grande—FURG, Rio Grande CEP 96200-970, RS, Brazil; (F.P.S.O.); (V.F.P.); (L.A.R.); (M.T.); (W.W.)
- Laboratório de Imunologia e Patología de Organismos Aquáticos, Instituto de Oceanografía (IO), Universidade Federal do Rio Grande—FURG, Rio Grande 96200-970, RS, Brazil
| | - Marcelo Tesser
- Programa de Pós-Graduação em Aquicultura, Instituto de Oceanografía (IO), Universidade Federal do Rio Grande—FURG, Rio Grande CEP 96200-970, RS, Brazil; (F.P.S.O.); (V.F.P.); (L.A.R.); (M.T.); (W.W.)
- Laboratório de Nutrição de Organismos Aquáticos (LANOA), Instituto de Oceanografía (IO), Universidade Federal do Rio Grande—FURG, Rio Grande 96200-970, RS, Brazil
| | - Wilson Wasielesky
- Programa de Pós-Graduação em Aquicultura, Instituto de Oceanografía (IO), Universidade Federal do Rio Grande—FURG, Rio Grande CEP 96200-970, RS, Brazil; (F.P.S.O.); (V.F.P.); (L.A.R.); (M.T.); (W.W.)
- Laboratório de Carcinocultura, Instituto de Oceanografia (IO), Universidade Federal do Rio Grande—FURG, Rio Grande 96200-970, RS, Brazil
| | - José María Monserrat
- Laboratório de Bioquímica Funcional de Organismos Aquáticos (BIFOA), Instituto de Oceanografia (IO), Universidade Federal do Rio Grande—FURG, Rua do Hotel, n° 02, Rio Grande CEP 96210-030, RS, Brazil; (R.M.M.G.); (S.A.M.B.); (J.R.B.R.); (A.C.d.S.A.)
- Programa de Pós-Graduação em Aquicultura, Instituto de Oceanografía (IO), Universidade Federal do Rio Grande—FURG, Rio Grande CEP 96200-970, RS, Brazil; (F.P.S.O.); (V.F.P.); (L.A.R.); (M.T.); (W.W.)
- Instituto de Ciências Biológicas (ICB), Universidade Federal do Rio Grande—FURG, Av. Itália km 8 s/n, Cx. P. 474, Rio Grande CEP 96200-970, RS, Brazil
| |
Collapse
|
5
|
Lima MDC, do Nascimento HMA, da Silva JYP, de Brito Alves JL, de Souza EL. Evidence for the Beneficial Effects of Brazilian Native Fruits and Their By-Products on Human Intestinal Microbiota and Repercussions on Non-Communicable Chronic Diseases-A Review. Foods 2023; 12:3491. [PMID: 37761200 PMCID: PMC10527964 DOI: 10.3390/foods12183491] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/14/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
Non-communicable chronic diseases (NCDs) are the most widespread cause of mortality worldwide. Intestinal microbiota balance can be altered by changes in the abundance and/or diversity of intestinal microbiota, indicating a role of intestinal microbiota in NCD development. This review discusses the findings of in vitro studies, pre-clinical studies and clinical trials on the effects of Brazilian native fruits, their by-products, as well as their bioactive compounds on human intestinal microbiota and NCD. The major bioactive compounds in Brazilian native fruits and their by-products, and the impacts of their administration on outcomes linked to intestinal microbiota modulation are discussed. Mechanisms of intestinal microbiota affecting NCD could be linked to the modulation of absorption and energy balance, immune and endocrine systems, and inflammatory response. Brazilian native fruits, such as acerola, açaí, baru, buriti, guava, jabuticaba, juçara, and passion fruit, have several bioactive compounds, soluble and insoluble fibers, and a variety of phenolic compounds, which are capable of changing these key mechanisms. Brazilian native fruits and their by-products can help to promote positive intestinal and systemic health benefits by driving alterations in the composition of the human intestinal microbiota, and increasing the production of distinct short-chain fatty acids and phenolic metabolites, thereby enhancing intestinal integrity and homeostasis. Evidence from available literature shows that the modulatory impacts of Brazilian native fruits and their by-products on the composition and metabolic activity of the intestinal microbiota could improve several clinical repercussions associated with NCD, reinforcing the influence of intestinal microbiota in extra-intestinal outcomes.
Collapse
Affiliation(s)
| | | | | | | | - Evandro Leite de Souza
- Department of Nutrition, Health Science Center, Federal University of Paraíba, João Pessoa 58051-900, PB, Brazil; (M.d.C.L.); (H.M.A.d.N.); (J.Y.P.d.S.); (J.L.d.B.A.)
| |
Collapse
|
6
|
Da Silva IO, Crespo-Lopez ME, Augusto-Oliveira M, Arrifano GDP, Ramos-Nunes NR, Gomes EB, da Silva FRP, de Sousa AA, Leal ALAB, Damasceno HC, de Oliveira ACA, Souza-Monteiro JR. What We Know about Euterpe Genus and Neuroprotection: A Scoping Review. Nutrients 2023; 15:3189. [PMID: 37513607 PMCID: PMC10384735 DOI: 10.3390/nu15143189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/05/2023] [Accepted: 07/08/2023] [Indexed: 07/30/2023] Open
Abstract
The Euterpe genus (mainly Euterpe oleracea Martius, Euterpe precatoria Martius, and Euterpe edulis Martius) has recently gained commercial and scientific notoriety due to the high nutritional value of its fruits, which are rich in polyphenols (phenolic acids and anthocyanins) and have potent antioxidant activity. These characteristics have contributed to the increased number of neuropharmacological evaluations of the three species over the last 10 years, especially açaí of the species Euterpe oleracea Martius. The fruits of the three species exert neuroprotective effects through the modulation of inflammatory and oxidative pathways and other mechanisms, including the inhibition of the mTOR pathway and protection of the blood-brain barrier, all of them intimately involved in several neuropathologies. Thus, a better understanding of the neuropharmacological properties of these three species may open new paths for the development of therapeutic tools aimed at preventing and treating a variety of neurological conditions.
Collapse
Affiliation(s)
- Ilano Oliveira Da Silva
- Medicine College, Altamira Campus, Federal University of Pará (UFPA), Altamira 68372-040, PA, Brazil; (I.O.D.S.); (A.A.d.S.); (A.L.A.B.L.); (H.C.D.); (A.C.A.d.O.)
| | - Maria Elena Crespo-Lopez
- Laboratory of Molecular Pharmacology, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil; (M.E.C.-L.); (M.A.-O.); (G.d.P.A.)
| | - Marcus Augusto-Oliveira
- Laboratory of Molecular Pharmacology, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil; (M.E.C.-L.); (M.A.-O.); (G.d.P.A.)
| | - Gabriela de Paula Arrifano
- Laboratory of Molecular Pharmacology, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil; (M.E.C.-L.); (M.A.-O.); (G.d.P.A.)
| | - Natália Raphaela Ramos-Nunes
- Medicine College, Altamira Campus, Federal University of Pará (UFPA), Altamira 68372-040, PA, Brazil; (I.O.D.S.); (A.A.d.S.); (A.L.A.B.L.); (H.C.D.); (A.C.A.d.O.)
| | - Elielton Barreto Gomes
- Medicine College, Altamira Campus, Federal University of Pará (UFPA), Altamira 68372-040, PA, Brazil; (I.O.D.S.); (A.A.d.S.); (A.L.A.B.L.); (H.C.D.); (A.C.A.d.O.)
| | - Felipe Rodolfo Pereira da Silva
- Medicine College, Altamira Campus, Federal University of Pará (UFPA), Altamira 68372-040, PA, Brazil; (I.O.D.S.); (A.A.d.S.); (A.L.A.B.L.); (H.C.D.); (A.C.A.d.O.)
| | - Aline Andrade de Sousa
- Medicine College, Altamira Campus, Federal University of Pará (UFPA), Altamira 68372-040, PA, Brazil; (I.O.D.S.); (A.A.d.S.); (A.L.A.B.L.); (H.C.D.); (A.C.A.d.O.)
| | - Alessandro Luiz Araújo Bentes Leal
- Medicine College, Altamira Campus, Federal University of Pará (UFPA), Altamira 68372-040, PA, Brazil; (I.O.D.S.); (A.A.d.S.); (A.L.A.B.L.); (H.C.D.); (A.C.A.d.O.)
| | - Helane Conceição Damasceno
- Medicine College, Altamira Campus, Federal University of Pará (UFPA), Altamira 68372-040, PA, Brazil; (I.O.D.S.); (A.A.d.S.); (A.L.A.B.L.); (H.C.D.); (A.C.A.d.O.)
| | - Ana Carolina Alves de Oliveira
- Medicine College, Altamira Campus, Federal University of Pará (UFPA), Altamira 68372-040, PA, Brazil; (I.O.D.S.); (A.A.d.S.); (A.L.A.B.L.); (H.C.D.); (A.C.A.d.O.)
| | - José Rogério Souza-Monteiro
- Medicine College, Altamira Campus, Federal University of Pará (UFPA), Altamira 68372-040, PA, Brazil; (I.O.D.S.); (A.A.d.S.); (A.L.A.B.L.); (H.C.D.); (A.C.A.d.O.)
| |
Collapse
|
7
|
Oral Treatment with the Extract of Euterpe oleracea Mart. Improves Motor Dysfunction and Reduces Brain Injury in Rats Subjected to Ischemic Stroke. Nutrients 2023; 15:nu15051207. [PMID: 36904206 PMCID: PMC10005587 DOI: 10.3390/nu15051207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 03/08/2023] Open
Abstract
Ischemic stroke is one of the principal causes of morbidity and mortality around the world. The pathophysiological mechanisms that lead to the formation of the stroke lesions range from the bioenergetic failure of the cells and the intense production of reactive oxygen species to neuroinflammation. The fruit of the açaí palm, Euterpe oleracea Mart. (EO), is consumed by traditional populations in the Brazilian Amazon region, and it is known to have antioxidant and anti-inflammatory properties. We evaluated whether the clarified extract of EO was capable of reducing the area of lesion and promoting neuronal survival following ischemic stroke in rats. Animals submitted to ischemic stroke and treated with EO extract presented a significant improvement in their neurological deficit from the ninth day onward. We also observed a reduction in the extent of the cerebral injury and the preservation of the neurons of the cortical layers. Taken together, our findings indicate that treatment with EO extract in the acute phase following a stroke can trigger signaling pathways that culminate in neuronal survival and promote the partial recovery of neurological scores. However, further detailed studies of the intracellular signaling pathways are needed to better understand the mechanisms involved.
Collapse
|
8
|
Laurindo LF, Barbalho SM, Araújo AC, Guiguer EL, Mondal A, Bachtel G, Bishayee A. Açaí ( Euterpe oleracea Mart.) in Health and Disease: A Critical Review. Nutrients 2023; 15:989. [PMID: 36839349 PMCID: PMC9965320 DOI: 10.3390/nu15040989] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/11/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
The açaí palm (Euterpe oleracea Mart.), a species belonging to the Arecaceae family, has been cultivated for thousands of years in tropical Central and South America as a multipurpose dietary plant. The recent introduction of açaí fruit and its nutritional and healing qualities to regions outside its origin has rapidly expanded global demand for açaí berry. The health-promoting and disease-preventing properties of this plant are attributed to numerous bioactive phenolic compounds present in the leaf, pulp, fruit, skin, and seeds. The purpose of this review is to present an up-to-date, comprehensive, and critical evaluation of the health benefits of açaí and its phytochemicals with a special focus on cellular and molecular mechanisms of action. In vitro and in vivo studies showed that açaí possesses antioxidant and anti-inflammatory properties and exerts cardioprotective, gastroprotective, hepatoprotective, neuroprotective, renoprotective, antilipidemic, antidiabetic, and antineoplastic activities. Moreover, clinical trials have suggested that açaí can protect against metabolic stress induced by oxidation, inflammation, vascular abnormalities, and physical exertion. Due to its medicinal properties and the absence of undesirable effects, açaí shows a promising future in health promotion and disease prevention, in addition to a vast economic potential in the food and cosmetic industries.
Collapse
Affiliation(s)
- Lucas Fornari Laurindo
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília, Marília 17525-902, SP, Brazil
- Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de Marília, Marília 17519-030, SP, Brazil
| | - Sandra Maria Barbalho
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília, Marília 17525-902, SP, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília, Marília 17525-902, SP, Brazil
- Department of Biochemistry and Nutrition, School of Food and Technology of Marília, Marília 17500-000, SP, Brazil
| | - Adriano Cressoni Araújo
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília, Marília 17525-902, SP, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília, Marília 17525-902, SP, Brazil
| | - Elen Landgraf Guiguer
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília, Marília 17525-902, SP, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília, Marília 17525-902, SP, Brazil
- Department of Biochemistry and Nutrition, School of Food and Technology of Marília, Marília 17500-000, SP, Brazil
| | - Arijit Mondal
- Department of Pharmaceutical Chemistry, M.R. College of Pharmaceutical Sciences and Research, Balisha 743 234, India
| | - Gabrielle Bachtel
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| |
Collapse
|
9
|
Pomilio AB, Szewczuk NA, Duchowicz PR. Dietary anthocyanins balance immune signs in osteoarthritis and obesity - update of human in vitro studies and clinical trials. Crit Rev Food Sci Nutr 2022; 64:2634-2672. [PMID: 36148839 DOI: 10.1080/10408398.2022.2124948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Anthocyanins are known to change ligand-receptor bindings, cell membrane permeability, and intracellular signaling pathways. The beneficial effects of dietary anthocyanins have been chronologically demonstrated in interventional and observational studies, including fourteen human chondrocyte studies and related cell culture assays, nineteen human clinical trials in osteoarthritis patients, seven in vivo obesity assays, nineteen in vitro assays in preadipocytes and related cells, and twenty-two clinical trials in overweight/obese subjects, which are critically discussed in this update. Strawberries, cherries, berries, pomegranate, tropical fruits, rosehip, purple rice, purple corn, red beans, and black soybean, together with cyanidin, delphinidin, malvidin, peonidin, some 3-O-glycosides, metabolites, and acylated anthocyanins from a potato cultivar have shown the best outcomes. The set of these five key tests and clinical trials, taken together, contributes to the understanding of the underlying mechanisms and pathways involved. Furthermore, this set shows the value of anthocyanins in counteracting the progression of osteoarthritis/obesity. The interplay between the inflammation of osteoarthritis and obesity, and the subsequent regulation/immunomodulation was performed through isolated and food anthocyanins. The antioxidant, anti-inflammatory, and immunomodulatory properties of anthocyanins explain the findings of the studies analyzed. However, further interventional studies should be conducted to finally establish the appropriate doses for anthocyanin supplementation, dose-response, and length of consumption, to include dietary recommendations for osteoarthritis/obese patients for preventive and management purposes.
Collapse
Affiliation(s)
- Alicia B Pomilio
- Laboratorio de Química y Bioquímica Estructural, CONICET, Área Hematología, Departamento de Bioquímica Clínica, Hospital de Clínicas "José de San Martín", Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Nicolas A Szewczuk
- Laboratorio de QSAR (Quantitative Structure-Activity Relationships), Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), CONICET, Departamento de Química, Universidad Nacional de La Plata (UNLP), Plata, Argentina
| | - Pablo R Duchowicz
- Laboratorio de QSAR (Quantitative Structure-Activity Relationships), Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), CONICET, Departamento de Química, Universidad Nacional de La Plata (UNLP), Plata, Argentina
| |
Collapse
|
10
|
Lesser-Consumed Tropical Fruits and Their by-Products: Phytochemical Content and Their Antioxidant and Anti-Inflammatory Potential. Nutrients 2022; 14:nu14173663. [PMID: 36079920 PMCID: PMC9460136 DOI: 10.3390/nu14173663] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 08/30/2022] [Accepted: 08/31/2022] [Indexed: 11/20/2022] Open
Abstract
Açaí, lychee, mamey, passion fruit and jackfruit are some lesser-consumed tropical fruits due to their low commercial production. In 2018, approximately 6.8 million tons of these fruits were harvested, representing about 6.35% of the total world production of tropical fruits. The present work reviews the nutritional content, profile of bioactive compounds, antioxidant and anti-inflammatory capacity of these fruits and their by-products, and their ability to modulate oxidative stress due to the content of phenolic compounds, carotenoids and dietary fiber. Açaí pulp is an excellent source of anthocyanins (587 mg cyanidin-3-glucoside equivalents/100 g dry weight, dw), mamey pulp is rich in carotenoids (36.12 mg β-carotene/100 g fresh weight, fw), passion fruit peel is rich in dietary fiber (61.16 g/100 dw). At the same time, jackfruit contains unique compounds such as moracin C, artocarpesin, norartocarpetin and oxyresveratrol. These molecules play an important role in the regulation of inflammation via activation of mitogen-activated protein kinases (including p38, ERK and JNK) and nuclear factor κB pathways. The properties of the bioactive compounds found in these fruits make them a good source for use as food ingredients for nutritional purposes or alternative therapies. Research is needed to confirm their health benefits that can increase their marketability, which can benefit the primary producers, processing industries (particularly smaller ones) and the final consumer, while an integral use of their by-products will allow their incorporation into the circular bioeconomy.
Collapse
|
11
|
Vetrani C, Piscitelli P, Muscogiuri G, Barrea L, Laudisio D, Graziadio C, Marino F, Colao A. "Planeterranea": An attempt to broaden the beneficial effects of the Mediterranean diet worldwide. Front Nutr 2022; 9:973757. [PMID: 36118764 PMCID: PMC9480100 DOI: 10.3389/fnut.2022.973757] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/17/2022] [Indexed: 12/03/2022] Open
Abstract
Non-communicable diseases (NCDs) lead to a dramatic burden on morbidity and mortality worldwide. Diet is a modifiable risk factor for NCDs, with Mediterranean Diet (MD) being one of the most effective dietary strategies to reduce diabetes, cardiovascular diseases, and cancer. Nevertheless, MD transferability to non-Mediterranean is challenging and requires a shared path between the scientific community and stakeholders. Therefore, the UNESCO Chair on Health Education and Sustainable Development is fostering a research project-"Planeterranea"-aiming to identify a healthy dietary pattern based on food products available in the different areas of the world with the nutritional properties of MD. This review aimed to collect information about eating habits and native crops in 5 macro-areas (North America, Latin America, Africa, Asia, and Australia). The information was used to develop specific "nutritional pyramids" based on the foods available in the macro-areas presenting the same nutritional properties and health benefits of MD.
Collapse
Affiliation(s)
- Claudia Vetrani
- Department of Clinical Medicine and Surgery, Endocrinology Unit, University of Naples “Federico II”, Naples, Italy
- Centro Italiano per la Cura e il Benessere del Paziente con Obesità (C.I.B.O), University of Naples “Federico II”, Naples, Italy
| | - Prisco Piscitelli
- UNESCO Chair “Education for Health and Sustainable Development, ” University of Naples “Federico II”, Naples, Italy
| | - Giovanna Muscogiuri
- Department of Clinical Medicine and Surgery, Endocrinology Unit, University of Naples “Federico II”, Naples, Italy
- Centro Italiano per la Cura e il Benessere del Paziente con Obesità (C.I.B.O), University of Naples “Federico II”, Naples, Italy
- UNESCO Chair “Education for Health and Sustainable Development, ” University of Naples “Federico II”, Naples, Italy
| | - Luigi Barrea
- Centro Italiano per la Cura e il Benessere del Paziente con Obesità (C.I.B.O), University of Naples “Federico II”, Naples, Italy
- Dipartimento di Scienze Umanistiche, Università Telematica Pegaso, Napoli, Italy
| | - Daniela Laudisio
- Department of Clinical Medicine and Surgery, Endocrinology Unit, University of Naples “Federico II”, Naples, Italy
- Centro Italiano per la Cura e il Benessere del Paziente con Obesità (C.I.B.O), University of Naples “Federico II”, Naples, Italy
| | - Chiara Graziadio
- Department of Clinical Medicine and Surgery, Endocrinology Unit, University of Naples “Federico II”, Naples, Italy
- Centro Italiano per la Cura e il Benessere del Paziente con Obesità (C.I.B.O), University of Naples “Federico II”, Naples, Italy
| | - Francesca Marino
- Department of Clinical Medicine and Surgery, Endocrinology Unit, University of Naples “Federico II”, Naples, Italy
| | - Annamaria Colao
- Department of Clinical Medicine and Surgery, Endocrinology Unit, University of Naples “Federico II”, Naples, Italy
- Centro Italiano per la Cura e il Benessere del Paziente con Obesità (C.I.B.O), University of Naples “Federico II”, Naples, Italy
- UNESCO Chair “Education for Health and Sustainable Development, ” University of Naples “Federico II”, Naples, Italy
| |
Collapse
|
12
|
Vendrame S, Adekeye TE, Klimis-Zacas D. The Role of Berry Consumption on Blood Pressure Regulation and Hypertension: An Overview of the Clinical Evidence. Nutrients 2022; 14:nu14132701. [PMID: 35807881 PMCID: PMC9268395 DOI: 10.3390/nu14132701] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 02/06/2023] Open
Abstract
The existence of a relationship between the consumption of dietary berries and blood pressure reduction in humans has been repeatedly hypothesized and documented by an increasing body of epidemiological and clinical evidence that has accumulated in recent years. However, results are mixed and complicated by a number of potentially confounding factors. The objective of this article is to review and summarize the available clinical evidence examining the effects of berry consumption on blood pressure regulation as well as the prevention or treatment of hypertension in humans, providing an overview of the potential contribution of distinctive berry polyphenols (anthocyanins, condensed tannins and ellagic acid), and results of dietary interventions with blueberries, bilberries, cranberries, raspberries, strawberries, chokeberries, cherries, blackcurrants and açai berries. We conclude that, while there is insufficient evidence supporting the existence of a direct blood pressure lowering effect, there is stronger evidence for specific types of berries acting indirectly to normalize blood pressure in subjects that are already hypertensive.
Collapse
|
13
|
Sayago-Ayerdi S, García-Martínez DL, Ramírez-Castillo AC, Ramírez-Concepción HR, Viuda-Martos M. Tropical Fruits and Their Co-Products as Bioactive Compounds and Their Health Effects: A Review. Foods 2021; 10:foods10081952. [PMID: 34441729 PMCID: PMC8393595 DOI: 10.3390/foods10081952] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/13/2021] [Accepted: 08/19/2021] [Indexed: 12/11/2022] Open
Abstract
Tropical and subtropical fruits are recognized as a source of a high content of bioactive compounds and health promoting properties due to their nutritional composition. These beneficial health effects are related to the content of several of these bioactive compounds, mainly flavonoids and non-flavonoid phenolics. Many of these compounds are common in different tropical fruits, such as epicatechin in mango, pineapple, and banana, or catechin in pineapple, cocoa or avocado. Many studies of tropical fruits had been carried out, but in this work an examination is made in the current literature of the flavonoids and non-flavonoid phenolics content of some tropical fruits and their coproducts, comparing the content in the same units, as well as examining the role that these compounds play in health benefits.
Collapse
Affiliation(s)
- Sonia Sayago-Ayerdi
- Tecnologico Nacional de Mexico, Instituto Tecnologico de Tepic, Av Tecnológico 2595, Col Lagos del Country, Tepic 63175, Nayarit Mexico, Mexico; (S.S.-A.); (D.L.G.-M.); (A.C.R.-C.); (H.R.R.-C.)
| | - Diana Laura García-Martínez
- Tecnologico Nacional de Mexico, Instituto Tecnologico de Tepic, Av Tecnológico 2595, Col Lagos del Country, Tepic 63175, Nayarit Mexico, Mexico; (S.S.-A.); (D.L.G.-M.); (A.C.R.-C.); (H.R.R.-C.)
| | - Ailin Cecilia Ramírez-Castillo
- Tecnologico Nacional de Mexico, Instituto Tecnologico de Tepic, Av Tecnológico 2595, Col Lagos del Country, Tepic 63175, Nayarit Mexico, Mexico; (S.S.-A.); (D.L.G.-M.); (A.C.R.-C.); (H.R.R.-C.)
| | - Heidi Rubí Ramírez-Concepción
- Tecnologico Nacional de Mexico, Instituto Tecnologico de Tepic, Av Tecnológico 2595, Col Lagos del Country, Tepic 63175, Nayarit Mexico, Mexico; (S.S.-A.); (D.L.G.-M.); (A.C.R.-C.); (H.R.R.-C.)
| | - Manuel Viuda-Martos
- IPOA Research Group, Centro de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO-UMH), Agro-Food Technology Department, Miguel Hernández University, Orihuela, 03312 Alicante, Spain
- Correspondence: ; Tel.: +34-966-749-661
| |
Collapse
|
14
|
Assmann CE, Weis GCC, da Rosa JR, Bonadiman BDSR, Alves ADO, Schetinger MRC, Ribeiro EE, Morsch VMM, da Cruz IBM. Amazon-derived nutraceuticals: Promises to mitigate chronic inflammatory states and neuroinflammation. Neurochem Int 2021; 148:105085. [PMID: 34052297 DOI: 10.1016/j.neuint.2021.105085] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 05/20/2021] [Accepted: 05/24/2021] [Indexed: 12/18/2022]
Abstract
Nutraceuticals have been the focus of numerous research in recent years and accumulating data support their use for promoting some health benefits. Several nutraceuticals have been widely studied as supplements due to their functional properties ameliorating symptoms associated with neurological disorders, such as oxidative stress and chronic inflammatory states. This seems to be the case of some fruits and seeds from the Amazon Biome consumed since the pre-Columbian period that could have potential beneficial impact on the human nervous system. The beneficial activities of these food sources are possibly related to a large number of bioactive molecules including polyphenols, carotenoids, unsaturated fatty acids, vitamins, and trace elements. In this context, this review compiled the research on six Amazonian fruits and seeds species and some of the major nutraceuticals found in their composition, presenting brief mechanisms related to their protagonist action in improving inflammatory responses and neuroinflammation.
Collapse
Affiliation(s)
- Charles Elias Assmann
- Post-Graduate Program in Biological Sciences, Toxicological Biochemistry, Department of Biochemistry and Molecular Biology, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil.
| | - Grazielle Castagna Cezimbra Weis
- Post-Graduate Program in Food Science and Technology, Department of Food Science and Technology, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil.
| | - Jéssica Righi da Rosa
- Post-Graduate Program in Food Science and Technology, Department of Food Science and Technology, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil.
| | - Beatriz da Silva Rosa Bonadiman
- Post-Graduate Program in Biochemistry, Department of Biochemistry, Federal University of Santa Catarina (UFSC), Florianópolis, SC, Brazil.
| | - Audrei de Oliveira Alves
- Post-Graduate Program in Pharmacology, Department of Physiology and Pharmacology, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil.
| | - Maria Rosa Chitolina Schetinger
- Post-Graduate Program in Biological Sciences, Toxicological Biochemistry, Department of Biochemistry and Molecular Biology, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil.
| | | | - Vera Maria Melchiors Morsch
- Post-Graduate Program in Biological Sciences, Toxicological Biochemistry, Department of Biochemistry and Molecular Biology, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil.
| | - Ivana Beatrice Mânica da Cruz
- Post-Graduate Program in Pharmacology, Department of Physiology and Pharmacology, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil; Post-Graduate Program in Gerontology, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil.
| |
Collapse
|
15
|
Baptista SDL, Copetti CLK, Cardoso AL, Di Pietro PF. Biological activities of açaí (Euterpe oleracea Mart.) and juçara (Euterpe edulis Mart.) intake in humans: an integrative review of clinical trials. Nutr Rev 2021; 79:1375-1391. [PMID: 33555024 DOI: 10.1093/nutrit/nuab002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Açaí (E. oleracea) and juçara (E. edulis) are berries considered a source of bioactive compounds, especially anthocyanins and unsaturated fatty acids, with recognized health-promoting activities. An integrative review was conducted to identify available clinical trials that evaluated the effects of açaí and juçara intake on the human organism. Science Direct and Medline databases were searched. Human studies that evaluated any biological activities after açaí and juçara intake were included in this review. Twenty-three clinical trials were identified up to April 12, 2020. Studies evaluated the biological effects of açaí (n = 17), juçara (n = 5), or both berries simultaneously (n = 1). The results of these trials suggest both types of berries may contribute to improved antioxidant defense and to attenuating metabolic stress and inflammation. However, considerable heterogeneity was observed among trials, and few studies explored the bioactive compounds of the food matrix provided in the interventions. More clinical trials are encouraged to strengthen the current evidence on human biological outcomes, including comparative analysis between these berries.
Collapse
Affiliation(s)
- Sheyla de L Baptista
- S. de L. Baptista, C.L.K. Copetti, A.L. Cardoso, and P.F. Di Pietro are with the Nutrition Post-Graduate Program, Federal University of Santa Catarina, Florianopolis, Santa Catarina, Brazil
| | - Cândice L K Copetti
- S. de L. Baptista, C.L.K. Copetti, A.L. Cardoso, and P.F. Di Pietro are with the Nutrition Post-Graduate Program, Federal University of Santa Catarina, Florianopolis, Santa Catarina, Brazil
| | - Alyne L Cardoso
- S. de L. Baptista, C.L.K. Copetti, A.L. Cardoso, and P.F. Di Pietro are with the Nutrition Post-Graduate Program, Federal University of Santa Catarina, Florianopolis, Santa Catarina, Brazil
| | - Patricia F Di Pietro
- S. de L. Baptista, C.L.K. Copetti, A.L. Cardoso, and P.F. Di Pietro are with the Nutrition Post-Graduate Program, Federal University of Santa Catarina, Florianopolis, Santa Catarina, Brazil
| |
Collapse
|
16
|
Micronutrients and bioactive compounds in the immunological pathways related to SARS-CoV-2 (adults and elderly). Eur J Nutr 2020; 60:559-579. [PMID: 33084959 PMCID: PMC7576552 DOI: 10.1007/s00394-020-02410-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 10/06/2020] [Indexed: 01/08/2023]
Abstract
The new coronavirus pandemic is affecting the entire world with more than 25 million confirmed cases in August 2020 according to the World Health Organization. It is known that the virus can affect several tissues and can progress to a respiratory failure in severe cases. To prevent the progression to this stage of the disease and minimize all the damage caused by coronavirus (SARS-CoV-2) the immune system must be in its integrity. A healthy nutritional status are fundamental to efficient immunological protection and consequently a good response to SARS-CoV-2. Micronutrients and bioactive compounds perform functions in immune cells that are extremely essential to stop SARS-CoV-2. Their adequate consumption is part of a non-pharmacological intervention to keep the immune system functioning. This review has as main objective to inform how micronutrients and bioactive compounds could act in the essential immunological pathways could stop SARS-CoV-2, focusing on the functions that have already established in the literature and transposing to this scenario.
Collapse
|