1
|
Sarlak S, Pagès G, Luciano F. Enhancing radiotherapy techniques for Triple-Negative breast cancer treatment. Cancer Treat Rev 2025; 136:102939. [PMID: 40286498 DOI: 10.1016/j.ctrv.2025.102939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/22/2025] [Accepted: 04/07/2025] [Indexed: 04/29/2025]
Abstract
Breast cancer is the most prevalent cancer among women worldwide, with various subtypes that require distinct treatment approaches. Among these, Triple-Negative Breast Bancer (TNBC) is recognized as the most aggressive form, often associated with poor prognosis due to its lack of targeted therapeutic options. This review specifically focuses on Radiotherapy (RT) as a treatment modality for TNBC, evaluating recent advancements and ongoing challenges, particularly the issue of radioresistance. RT remains an essential part in the management of breast cancer, including TNBC. Over the years, multiple improvements have been made to enhance RT effectiveness and minimize resistance. The introduction of advanced techniques such as Stereotactic Body Radiation Therapy (SBRT) and Stereotactic Radiosurgery (SRS) has significantly improved precision and reduced toxicity. More recently, proton radiation therapy, a novel RT modality, has been introduced, offering enhanced dose distribution and reducing damage to surrounding healthy tissues. Despite these technological advancements, a subset of TNBC patients continues to exhibit resistance to RT, leading to recurrence and poor treatment outcomes. To overcome radioresistance, there is an increasing interest in combining RT with targeted therapeutic agents that sensitize cancer cells to radiation. Radiosensitizing drugs have been explored to enhance the efficacy of RT by making cancer cells more susceptible to radiation-induced damage. Potential candidates include DNA damage repair inhibitors, immune checkpoint inhibitors, and small-molecule targeted therapies that interfere with key survival pathways in TNBC cells. In conclusion, while RT remains a crucial modality for TNBC treatment, radioresistance remains a significant challenge. Future research should focus on optimizing RT techniques while integrating radiosensitizing agents to improve treatment efficacy. By combining RT with targeted drug therapy, a more effective and personalized treatment approach can be developed, ultimately improving patient outcomes and reducing recurrence rates in TNBC.
Collapse
Affiliation(s)
- Saharnaz Sarlak
- Cote d'Azur University (UCA), Institute for Research on Cancer and Aging of Nice (IRCAN), CNRS UMR 7284, CNRS UMR 7284; INSERM U1081, Centre Antoine Lacassagne, France.
| | - Gilles Pagès
- Cote d'Azur University (UCA), Institute for Research on Cancer and Aging of Nice (IRCAN), CNRS UMR 7284, CNRS UMR 7284; INSERM U1081, Centre Antoine Lacassagne, France.
| | - Frédéric Luciano
- Cote d'Azur University (UCA), Institute for Research on Cancer and Aging of Nice (IRCAN), CNRS UMR 7284, CNRS UMR 7284; INSERM U1081, Centre Antoine Lacassagne, France.
| |
Collapse
|
2
|
Jiang T, Jia T, Yin Y, Li T, Song X, Feng W, Wang S, Ding L, Chen Y, Zhang Q. Cuproptosis-Inducing Functional Nanocomposites for Enhanced and Synergistic Cancer Radiotherapy. ACS NANO 2025; 19:5429-5446. [PMID: 39895200 DOI: 10.1021/acsnano.4c13753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Radiotherapy is crucial in local cancer management and needs advancements. Tumor cells elevate intracellular copper levels to promote growth and resist radiation; thus, targeted copper delivery to mitochondria could enhance radiotherapy by inducing cuproptosis in tumor cells. In this study, we engineered a multifunctional nanoliposome complex, termed Lipo-Ele@CuO2, which encapsulates both copper peroxide (CuO2) and the copper chelator elesclomol, which can delivery Cu ions to the mitochondria. The Lipo-Ele@CuO2 complex induces mitochondria-mediated cuproptosis in tumor cells and synergistically enhances the efficacy of radiotherapy. CuO2 acts as a copper donor and exhibits inherent sensitivity to acidic environments. Additionally, it depletes intracellular glutathione, thereby sensitizing cells to cuproptosis. Leveraging its pH-responsive properties in the acidic tumor microenvironment, the Lipo-Ele@CuO2 facilitate the controlled release of elesclomol, efficiently delivering copper ions to mitochondria at tumor sites. The combined in vitro and in vivo studies demonstrate that Lipo-Ele@CuO2-based therapy significantly improves antitumor efficacy and exhibits excellent safety profiles, effectively inducing cuproptosis in tumor cells and boosting the effectiveness of radiotherapy. Furthermore, metabolomic and transcriptomic analyses reveal that this combination therapy precipitates significant alterations in tumor energy metabolism, notably repressing genes related to iron-sulfur cluster assembly and glycolysis, thereby confirming the induction of cuproptosis. This therapeutic strategy provides a viable approach for addressing clinical radiotherapy resistance and demonstrates significant translational potential.
Collapse
Affiliation(s)
- Tiaoyan Jiang
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, P. R. China
| | - Tianying Jia
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, P. R. China
| | - Yipengchen Yin
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, P. R. China
| | - Tianyu Li
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, P. R. China
| | - Xinran Song
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Wei Feng
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Sheng Wang
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, P. R. China
| | - Li Ding
- Department of Medical Ultrasound, National Clinical Research Center of Interventional Medicine, Shanghai Tenth People's Hospital, Tongji University Cancer Center, Tongji University School of Medicine, Tongji University, Shanghai 200072, P. R. China
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute of Shanghai University, Wenzhou, Zhejiang 325088, P. R. China
| | - Qin Zhang
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, P. R. China
| |
Collapse
|
3
|
Lach MS, Wróblewska JP, Michalak M, Budny B, Wrotkowska E, Suchorska WM. The Effect of Ionising Radiation on the Properties of Tumour-Derived Exosomes and Their Ability to Modify the Biology of Non-Irradiated Breast Cancer Cells-An In Vitro Study. Int J Mol Sci 2025; 26:376. [PMID: 39796230 PMCID: PMC11719956 DOI: 10.3390/ijms26010376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 12/30/2024] [Accepted: 01/02/2025] [Indexed: 01/13/2025] Open
Abstract
The vast majority of breast cancer patients require radiotherapy but some of them will develop local recurrences and potentially metastases in the future. Recent data show that exosomal cargo is essential in these processes. Thus, we investigated the influence of ionising radiation on exosome properties and their ability to modify the sensitivity and biology of non-irradiated cells. Exosomes were isolated from breast cancer cell lines (MDA-MB-231, MCF7, and SKBR3) irradiated with 2 Gy (Exo 2 Gy) or no irradiation (Exo 0 Gy). Despite some differences in their molecular profiles, they did not affect cell viability, proliferation, cell cycle phase distribution, and radioresistance; however, both populations showed the ability to modify cell migration and invasion potential, as confirmed by the downregulation of β-catenin, which is responsible for maintaining the epithelial phenotype. Interestingly, exosomes from irradiated BCa cells were more actively deposited in the endothelial cells (EA.hy926). Furthermore, exosomes tend to lower the expression of CD31, which is responsible for maintaining intact vascularity. This preliminary study demonstrates the vital role of exosomes and their altered profile due to irradiation in the pathobiology of breast cancer.
Collapse
Affiliation(s)
- Michał Stefan Lach
- Department of Electroradiology, Poznan University of Medical Sciences, Garbary 15, 61-866 Poznan, Poland;
- Radiobiology Lab, The Greater Poland Cancer Centre, Garbary 15 Street, 61-866 Poznan, Poland
| | - Joanna Patrycja Wróblewska
- Department of Life Sciences and Medicine (DLSM), University of Luxembourg, 6, Avenue du Swing, 4367 Belvaux, Luxembourg;
| | - Marcin Michalak
- Surgical, Oncological and Endoscopic Gynaecology Department, The Greater Poland Cancer Centre, Garbary 15 Street, 61-866 Poznan, Poland;
| | - Bartłomiej Budny
- Department of Endocrinology, Metabolism and Internal Diseases, Poznan University of Medical Sciences, Przybyszewskiego 49 Street, 60-355 Poznan, Poland; (B.B.); (E.W.)
| | - Elżbieta Wrotkowska
- Department of Endocrinology, Metabolism and Internal Diseases, Poznan University of Medical Sciences, Przybyszewskiego 49 Street, 60-355 Poznan, Poland; (B.B.); (E.W.)
| | - Wiktoria Maria Suchorska
- Department of Electroradiology, Poznan University of Medical Sciences, Garbary 15, 61-866 Poznan, Poland;
- Radiobiology Lab, The Greater Poland Cancer Centre, Garbary 15 Street, 61-866 Poznan, Poland
| |
Collapse
|
4
|
Dias Gomes da Silva N, Sérgio da Silva Santos P, Carolina Magalhães A, Afonso Rabelo Buzalaf M. Antibacterial, antibiofilm and anticaries effect of BioXtra® mouthrinse for head and neck cancer (HNC) patients under a microcosm biofilm model. Radiother Oncol 2023; 187:109846. [PMID: 37543054 DOI: 10.1016/j.radonc.2023.109846] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 06/30/2023] [Accepted: 07/31/2023] [Indexed: 08/07/2023]
Abstract
BACKGROUND AND PURPOSE Considering the lack of studies investigating salivary substitutes to control post-radiation caries for patients with head and neck cancer (HNC), this study aimed to evaluate the antibacterial, antibiofilm, and anticaries effects of BioXtra® on the microcosm biofilm formed on different enamel types (non-irradiated and irradiated) and from distinct saliva sources (control and HNC patients). MATERIALS AND METHODS Non-irradiated and irradiated enamel specimens were treated with BioXtra®, phosphate-buffered-saline (PBS; negative control), or 0.12% chlorhexidine (CHX; positive control) for 1 min. Biofilm was produced from human saliva (healthy participants with normal salivary flow for the control group or irradiated HNC patients with hyposalivation for the HNC group), mixed with McBain saliva, under 0.2% sucrose exposure, daily submitted to the treatments (1 min), for 5 days. Bacterial metabolic activity, biofilm viability, CFU counting, and enamel demineralization were determined. RESULTS BioXtra® significantly reduced the bacterial metabolic activity for both enamel types and the inoculum sources, being more effective for the irradiated enamel or for the saliva from the control group. Similarly, BioXtra® significantly reduced the biofilm viability, the CFU for total microorganisms, mutans streptococci, and lactobacilli, and was able to significantly reduce the mineral loss and the lesion depth compared to PBS. CHX was an effective treatment to significantly reduce all parameters, performing better than BioXtra® and reinforcing its reliable efficiency as a positive control. CONCLUSION Regardless of the enamel type and the inoculum source, BioXtra® presented antibacterial, antibiofilm, and anticaries effects under this experimental model, which should be confirmed in further clinical studies.
Collapse
Affiliation(s)
- Natara Dias Gomes da Silva
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, São Paulo, Brazil
| | - Paulo Sérgio da Silva Santos
- Department of Surgery, Stomatology, Pathology and Radiology, Bauru School of Dentistry, University of São Paulo, Bauru, São Paulo, Brazil
| | - Ana Carolina Magalhães
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, São Paulo, Brazil
| | | |
Collapse
|
5
|
Frankish J, Mukherjee D, Romano E, Billian-Frey K, Schröder M, Heinonen K, Merz C, Redondo Müller M, Gieffers C, Hill O, Thiemann M, Honeychurch J, Illidge T, Sykora J. The CD40 agonist HERA-CD40L results in enhanced activation of antigen presenting cells, promoting an anti-tumor effect alone and in combination with radiotherapy. Front Immunol 2023; 14:1160116. [PMID: 37304285 PMCID: PMC10251205 DOI: 10.3389/fimmu.2023.1160116] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 05/09/2023] [Indexed: 06/13/2023] Open
Abstract
Introduction The ability to modulate and enhance the anti-tumor immune responses is critical in developing novel therapies in cancer. The Tumor Necrosis Factor (TNF) Receptor Super Family (TNFRSF) are potentially excellent targets for modulation which result in specific anti-tumor immune responses. CD40 is a member of the TNFRSF and several clinical therapies are under development. CD40 signaling plays a pivotal role in regulating the immune system from B cell responses to myeloid cell driven activation of T cells. The CD40 signaling axis is well characterized and here we compare next generation HERA-Ligands to conventional monoclonal antibody based immune modulation for the treatment of cancer. Methods & results HERA-CD40L is a novel molecule that targets CD40 mediated signal transduction and demonstrates a clear mode of action in generating an activated receptor complex via recruitment of TRAFs, cIAP1, and HOIP, leading to TRAF2 phosphorylation and ultimately resulting in the enhanced activation of key inflammatory/survival pathway and transcription factors such asNFkB, AKT, p38, ERK1/2, JNK, and STAT1 in dendritic cells. Furthermore, HERA-CD40L demonstrated a strong modulation of the tumor microenvironment (TME) via the increase in intratumoral CD8+ T cells and the functional switch from pro-tumor macrophages (TAMs) to anti-tumor macrophages that together results in a significant reduction of tumor growth in a CT26 mouse model. Furthermore, radiotherapy which may have an immunosuppressive modulation of the TME, was shown to have an immunostimulatory effect in combination with HERA-CD40L. Radiotherapy in combination with HERA-CD40L treatment resulted in an increase in detected intratumoral CD4+/8+ T cells compared to RT alone and, additionally, the repolarization of TAMs was also observed, resulting in an inhibition of tumor growth in a TRAMP-C1 mouse model. Discussion Taken together, HERA-CD40L resulted in activating signal transduction mechanisms in dendritic cells, resulting in an increase in intratumoral T cells and manipulation of the TME to be pro-inflammatory, repolarizing M2 macrophages to M1, enhancing tumor control.
Collapse
Affiliation(s)
| | - Debayan Mukherjee
- Targeted Therapy Group, Division of Cancer Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Erminia Romano
- Targeted Therapy Group, Division of Cancer Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | | | | | | | | | | | | | | | | | - Jamie Honeychurch
- Targeted Therapy Group, Division of Cancer Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Tim Illidge
- Targeted Therapy Group, Division of Cancer Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | | |
Collapse
|
6
|
The PIK3CA-E545K-SIRT4 signaling axis reduces radiosensitivity by promoting glutamine metabolism in cervical cancer. Cancer Lett 2023; 556:216064. [PMID: 36646410 DOI: 10.1016/j.canlet.2023.216064] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/04/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023]
Abstract
The mutation of glutamic acid 545 to lysine (E545K) in PIK3CA, as the most common missense mutation of this gene in various cancer types, is frequently observed in cervical cancer and has been shown to reduce cervical cancer radiosensitivity. However, the underlying mechanisms remain unclear. Here, we implicate the alterations of glutamine metabolism in PIK3CA-E545K-mediated radioresistance of cervical cancer. Specifically, PIK3CA mutation negatively regulated the expression of SIRT4 via the epigenetic regulator EP300 independently of the canonical mTORC1 pathway. PIK3CA-E545K-induced SIRT4 downregulation promoted cell proliferation, migration, and radiation-induced DNA repair and apoptosis, while SIRT4 overexpression reversed the radioresistance phenotype mediated by PIK3CA mutation. Mechanistically, SIRT4 modulated glutamine metabolism and thus cellular apoptosis by negatively regulating a glutamate pyruvate transaminase GPT1. Moreover, the PI3K inhibitor BYL719, but not mTOR inhibitors, exerted remarkable synergistic effects with radiotherapy by inhibiting glutamine metabolism in vitro and in vivo. Collectively, this study reveals the role of PIK3CA-E545K-SIRT4 axis in regulating glutamine metabolism and the radioresistance in cervical cancer, which provides a necessary preliminary basis for clinical research of PI3K inhibitors as radiosensitizing agents.
Collapse
|
7
|
Zhang Z, Wu B, Shao Y, Chen Y, Wang D. A systematic review verified by bioinformatic analysis based on TCGA reveals week prognosis power of CAIX in renal cancer. PLoS One 2022; 17:e0278556. [PMID: 36542612 PMCID: PMC9770376 DOI: 10.1371/journal.pone.0278556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 11/21/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Carbonic anhydrase IX (CAIX) protein has been correlated with progression and survival in patients with some tumors such as head and neck carcinoma. But renal cell carcinoma is an exception. The prognostic value of CAIX in RCC used to be associated with patients' survival according to published works. This study aimed to rectify the former conclusion. METHODS This study was registered in PROSPERO (CRD42020160181). A literature search of the PubMed, Embase, Cochrane library and Web of Science databases was performed to retrieve original studies until April of 2022. Twenty-seven studies, including a total of 5462 patients with renal cell carcinoma, were reviewed. Standard meta-analysis methods were used to evaluate the prognostic impact of CAIX expression on patient prognosis. The hazard ratio and its 95% confidence interval were recorded for the relationship between CAIX expression and survival, and the data were analyzed using Stata 11.0. Then we verify the meta-analysis resort to bioinformatics (TCGA). RESULTS Our initial search resulted in 908 articles in total. From PubMed, Embase, Web of Science electronic and Cochrane library databases, 493, 318 and 97 potentially relevant articles were discovered, respectively. We took the analysis between CA9 and disease-specific survival (HR = 1.18, 95% CI: 0.82-1.70, I2 = 79.3%, P<0.05), a subgroup then was performed to enhance the result (HR = 1.63, 95%CI: 1.30-2.03, I2 = 26.3%, P = 0.228); overall survival was also parallel with the former (HR = 1.13, 95%CI: 0.82-1.56, I2 = 79.8%, P<0.05), then a subgroup also be performed (HR = 0.90, 95%CI:0.75-1.07, I2 = 23.1%, P = 0.246) to verify the result; the analysis between CAIX and progression-free survival got the similar result (HR = 1.73, 95%CI:0.97-3.09, I2 = 82.4%, P<0.05), we also verify the result by subgroup analysis (HR = 1.04, 95%CI:0.79-1.36, I2 = 0.0%, P = 0.465); at last the relationship between CAIX and recurrence-free survival got the same result, too (HR = 0.99, 95%CI: 0.95-1.02, I2 = 57.8%, P = 0.050), the subgroup's result was also parallel with the former (HR = 1.01, 95%CI: 0.91-1.03, I2 = 0.00%, P = 0.704). To validate our meta-analysis, we took a bioinformatic analysis based on TCGA database, survival curve between low and high CAIX expression in four endpoints (DSS, OS, PFI, DFI) have corresponding P value (DSS:P = 0.23, OS:P = 0.77, PFI:P = 0.25, DFI:P = 0.78). CONCLUSIONS CAIX expression in patients with RCC is an exception to predict tumor survival. Both low CAIX expression and high expression are not associated with survivals in RCC patients.
Collapse
Affiliation(s)
- Zikuan Zhang
- Basic Medicine of Shanxi Medical University, Taiyuan, China
| | - Bo Wu
- Basic Medicine of Shanxi Medical University, Taiyuan, China
| | - Yuan Shao
- Basic Medicine of Shanxi Medical University, Taiyuan, China
| | - Yongquan Chen
- Basic Medicine of Shanxi Medical University, Taiyuan, China
| | - Dongwen Wang
- Basic Medicine of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
8
|
Zhu S, Wang Y, Tang J, Cao M. Radiotherapy induced immunogenic cell death by remodeling tumor immune microenvironment. Front Immunol 2022; 13:1074477. [PMID: 36532071 PMCID: PMC9753984 DOI: 10.3389/fimmu.2022.1074477] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 11/15/2022] [Indexed: 12/04/2022] Open
Abstract
Emerging evidence indicates that the induction of radiotherapy(RT) on the immunogenic cell death (ICD) is not only dependent on its direct cytotoxic effect, changes in the tumor immune microenvironment also play an important role in it. Tumor immune microenvironment (TIME) refers to the immune microenvironment that tumor cells exist, including tumor cells, inflammatory cells, immune cells, various signaling molecules and extracellular matrix. TIME has a barrier effect on the anti-tumor function of immune cells, which can inhibit all stages of anti-tumor immune response. The remodeling of TIME caused by RT may affect the degree of immunogenicity, and make it change from immunosuppressive phenotype to immunostimulatory phenotype. It is of great significance to reveal the causes of immune escape of tumor cells, especially for the treatment of drug-resistant tumor. In this review, we focus on the effect of RT on the TIME, the mechanism of RT in reversing the TIME to suppress intrinsic immunity, and the sensitization effect of the remodeling of TIME caused by RT on the effectiveness of immunotherapy.
Collapse
|
9
|
Kaeppler JR, Chen J, Buono M, Vermeer J, Kannan P, Cheng W, Voukantsis D, Thompson JM, Hill MA, Allen D, Gomes A, Kersemans V, Kinchesh P, Smart S, Buffa F, Nerlov C, Muschel RJ, Markelc B. Endothelial cell death after ionizing radiation does not impair vascular structure in mouse tumor models. EMBO Rep 2022; 23:e53221. [PMID: 35848459 PMCID: PMC9442312 DOI: 10.15252/embr.202153221] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/15/2022] [Accepted: 06/27/2022] [Indexed: 12/24/2022] Open
Abstract
The effect of radiation therapy on tumor vasculature has long been a subject of debate. Increased oxygenation and perfusion have been documented during radiation therapy. Conversely, apoptosis of endothelial cells in irradiated tumors has been proposed as a major contributor to tumor control. To examine these contradictions, we use multiphoton microscopy in two murine tumor models: MC38, a highly vascularized, and B16F10, a moderately vascularized model, grown in transgenic mice with tdTomato-labeled endothelium before and after a single (15 Gy) or fractionated (5 × 3 Gy) dose of radiation. Unexpectedly, even these high doses lead to little structural change of the perfused vasculature. Conversely, non-perfused vessels and blind ends are substantially impaired after radiation accompanied by apoptosis and reduced proliferation of their endothelium. RNAseq analysis of tumor endothelial cells confirms the modification of gene expression in apoptotic and cell cycle regulation pathways after irradiation. Therefore, we conclude that apoptosis of tumor endothelial cells after radiation does not impair vascular structure.
Collapse
Affiliation(s)
- Jakob R Kaeppler
- Cancer Research UK and MRC Oxford Institute for Radiation Oncology, Department of OncologyUniversity of OxfordOxfordUK
| | - Jianzhou Chen
- Cancer Research UK and MRC Oxford Institute for Radiation Oncology, Department of OncologyUniversity of OxfordOxfordUK
| | - Mario Buono
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe HospitalUniversity of OxfordOxfordUK
| | - Jenny Vermeer
- Cancer Research UK and MRC Oxford Institute for Radiation Oncology, Department of OncologyUniversity of OxfordOxfordUK
| | - Pavitra Kannan
- Cancer Research UK and MRC Oxford Institute for Radiation Oncology, Department of OncologyUniversity of OxfordOxfordUK
| | - Wei‐Chen Cheng
- Cancer Research UK and MRC Oxford Institute for Radiation Oncology, Department of OncologyUniversity of OxfordOxfordUK
| | - Dimitrios Voukantsis
- Cancer Research UK and MRC Oxford Institute for Radiation Oncology, Department of OncologyUniversity of OxfordOxfordUK
| | - James M Thompson
- Cancer Research UK and MRC Oxford Institute for Radiation Oncology, Department of OncologyUniversity of OxfordOxfordUK
| | - Mark A Hill
- Cancer Research UK and MRC Oxford Institute for Radiation Oncology, Department of OncologyUniversity of OxfordOxfordUK
| | - Danny Allen
- Cancer Research UK and MRC Oxford Institute for Radiation Oncology, Department of OncologyUniversity of OxfordOxfordUK
| | - Ana Gomes
- In Vivo ImagingThe Francis Crick InstituteLondonUK
| | - Veerle Kersemans
- Cancer Research UK and MRC Oxford Institute for Radiation Oncology, Department of OncologyUniversity of OxfordOxfordUK
| | - Paul Kinchesh
- Cancer Research UK and MRC Oxford Institute for Radiation Oncology, Department of OncologyUniversity of OxfordOxfordUK
| | - Sean Smart
- Cancer Research UK and MRC Oxford Institute for Radiation Oncology, Department of OncologyUniversity of OxfordOxfordUK
| | - Francesca Buffa
- Cancer Research UK and MRC Oxford Institute for Radiation Oncology, Department of OncologyUniversity of OxfordOxfordUK
| | - Claus Nerlov
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe HospitalUniversity of OxfordOxfordUK
| | - Ruth J Muschel
- Cancer Research UK and MRC Oxford Institute for Radiation Oncology, Department of OncologyUniversity of OxfordOxfordUK
| | - Bostjan Markelc
- Cancer Research UK and MRC Oxford Institute for Radiation Oncology, Department of OncologyUniversity of OxfordOxfordUK
- Present address:
Department of Experimental OncologyInstitute of Oncology LjubljanaLjubljanaSlovenia
| |
Collapse
|
10
|
Kumar S, Fathima E, Khanum F, Malini SS. Significance of the Wnt canonical pathway in radiotoxicity via oxidative stress of electron beam radiation and its molecular control in mice. Int J Radiat Biol 2022; 99:459-473. [PMID: 35758974 DOI: 10.1080/09553002.2022.2094018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
PURPOSE Radiation triggers cell death events through signaling proteins, but the combined mechanism of these events is unexplored The Wnt canonical pathway, on the other hand, is essential for cell regeneration and cell fate determination. AIM The relationship between the Wnt pathway's response to radiation and its role in radiotoxicity is overlooked, even though it is a critical molecular control of the cell. The Wnt pathway has been predicted to have radioprotective properties in some reports, but the overall mechanism is unknown. We intend to investigate how this combined cascade works throughout the radiation process and its significance over radiotoxicity. MATERIALS AND METHODS Thirty adult mice were irradiated with electron beam radiation, and 5 served as controls. Mice were sacrificed after 24 h and 30 days of irradiation. We assessed DNA damage studies, oxidative stress parameters, mRNA profiles, protein level (liver, kidney, spleen, and germ cells), sperm viability, and motility. OBSERVATION The mRNA profile helps to understand how the combined cascade of the Wnt pathway and NHEJ work together during radiation to combat oxidative response and cell survival. The quantitative examination of mRNA uncovers unique critical changes in all mRNA levels in all cases, particularly in germ cells. Recuperation was likewise seen in post-30 day's radiation in the liver, spleen, and kidney followed by oxidative stress parameters, however not in germ cells. It proposes that reproductive physiology is exceptionally sensitive to radiation, even at the molecular level. It also suggests the suppression of Lef1/Axin2 could be the main reason for the permanent failure of the sperm function process. Post-irradiation likewise influences the morphology of sperm. The decrease in mRNA levels of Lef1, Axin2, Survivin, Ku70, and XRCC6 levels suggests radiation inhibits the Wnt canonical pathway and failure in DNA repair mechanisms in a coupled manner. An increase in Bax, Bcl2, and caspase3 suggests apoptosis activation followed by the decreased expression of enzymatic antioxidants. CONCLUSION Controlled several interlinked such as the Wnt canonical pathway, NHEJ pathway, and intrinsic apoptotic pathway execute when the whole body is exposed to radiation. These pathways decide the cell fate whether it will survive or will go to apoptosis which may further be used in a study to counterpart and better comprehend medication focus on radiation treatment.
Collapse
Affiliation(s)
- Shashank Kumar
- Molecular Reproductive and Human Genetics Laboratory, Department of Zoology, University of Mysore, Mysuru, India
| | - Eram Fathima
- Defense Food Research Laboratory, Defense Research Development Organisation, Mysuru, India
| | - Farhath Khanum
- Defense Food Research Laboratory, Defense Research Development Organisation, Mysuru, India
| | - Suttur S Malini
- Molecular Reproductive and Human Genetics Laboratory, Department of Zoology, University of Mysore, Mysuru, India
| |
Collapse
|
11
|
Abdollahi H, Chin E, Clark H, Hyde DE, Thomas S, Wu J, Uribe CF, Rahmim A. Radiomics-guided radiation therapy: opportunities and challenges. Phys Med Biol 2022; 67. [DOI: 10.1088/1361-6560/ac6fab] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 05/13/2022] [Indexed: 11/11/2022]
Abstract
Abstract
Radiomics is an advanced image-processing framework, which extracts image features and considers them as biomarkers towards personalized medicine. Applications include disease detection, diagnosis, prognosis, and therapy response assessment/prediction. As radiation therapy aims for further individualized treatments, radiomics could play a critical role in various steps before, during and after treatment. Elucidation of the concept of radiomics-guided radiation therapy (RGRT) is the aim of this review, attempting to highlight opportunities and challenges underlying the use of radiomics to guide clinicians and physicists towards more effective radiation treatments. This work identifies the value of RGRT in various steps of radiotherapy from patient selection to follow-up, and subsequently provides recommendations to improve future radiotherapy using quantitative imaging features.
Collapse
|
12
|
Allam N, Jeffrey Zabel W, Demidov V, Jones B, Flueraru C, Taylor E, Alex Vitkin I. Longitudinal in-vivo quantification of tumour microvascular heterogeneity by optical coherence angiography in pre-clinical radiation therapy. Sci Rep 2022; 12:6140. [PMID: 35414078 PMCID: PMC9005734 DOI: 10.1038/s41598-022-09625-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/16/2022] [Indexed: 11/25/2022] Open
Abstract
Stereotactic body radiotherapy (SBRT) is an emerging cancer treatment due to its logistical and potential therapeutic benefits as compared to conventional radiotherapy. However, its mechanism of action is yet to be fully understood, likely involving the ablation of tumour microvasculature by higher doses per fraction used in SBRT. In this study, we hypothesized that longitudinal imaging and quantification of the vascular architecture may elucidate the relationship between the microvasculature and tumour response kinetics. Pancreatic human tumour xenografts were thus irradiated with single doses of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$10$$\end{document}10, \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$20$$\end{document}20 and \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$30$$\end{document}30 Gy to simulate the first fraction of a SBRT protocol. Tumour microvascular changes were monitored with optical coherence angiography for up to \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$8$$\end{document}8 weeks following irradiation. The temporal kinetics of two microvascular architectural metrics were studied as a function of time and dose: the diffusion-limited fraction, representing poorly vascularized tissue \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$>150$$\end{document}>150 μm from the nearest detected vessel, and the vascular distribution convexity index, a measure of vessel aggregation at short distances. These biological metrics allowed for dose dependent temporal evaluation of tissue (re)vascularization and vessel aggregation after radiotherapy, showing promise for determining the SBRT dose–response relationship.
Collapse
Affiliation(s)
- Nader Allam
- Department of Medical Biophysics, University of Toronto, 101 College Street, Toronto, ON, M5G 1L7, Canada.
| | - W Jeffrey Zabel
- Department of Medical Biophysics, University of Toronto, 101 College Street, Toronto, ON, M5G 1L7, Canada
| | - Valentin Demidov
- Department of Medical Biophysics, University of Toronto, 101 College Street, Toronto, ON, M5G 1L7, Canada.,Geisel School of Medicine at Dartmouth, 1 Rope Ferry Rd, Hanover, NH, 03755, USA
| | - Blake Jones
- Department of Medical Biophysics, University of Toronto, 101 College Street, Toronto, ON, M5G 1L7, Canada
| | - Costel Flueraru
- National Research Council Canada, Information Communication Technology, 1200 Montreal Rd, Ottawa, ON, K1A 0R6, Canada
| | - Edward Taylor
- Radiation Medicine Program, Princess Margaret Cancer Centre, 610 University Avenue, Toronto, ON, M5G 2M9, Canada.,Department of Radiation Oncology, University of Toronto, 149 College Street, Toronto, ON, M5T 1P5, Canada
| | - I Alex Vitkin
- Department of Medical Biophysics, University of Toronto, 101 College Street, Toronto, ON, M5G 1L7, Canada. .,Radiation Medicine Program, Princess Margaret Cancer Centre, 610 University Avenue, Toronto, ON, M5G 2M9, Canada. .,Department of Radiation Oncology, University of Toronto, 149 College Street, Toronto, ON, M5T 1P5, Canada.
| |
Collapse
|
13
|
Celora GL, Bader SB, Hammond EM, Maini PK, Pitt-Francis JM, Byrne HM. DNA-structured mathematical model of cell-cycle progression in cyclic hypoxia. J Theor Biol 2022; 545:111104. [PMID: 35337794 DOI: 10.1016/j.jtbi.2022.111104] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 03/15/2022] [Accepted: 03/18/2022] [Indexed: 01/22/2023]
Abstract
New experimental data have shown how the periodic exposure of cells to low oxygen levels (i.e., cyclic hypoxia) impacts their progress through the cell-cycle. Cyclic hypoxia has been detected in tumours and linked to poor prognosis and treatment failure. While fluctuating oxygen environments can be reproduced in vitro, the range of oxygen cycles that can be tested is limited. By contrast, mathematical models can be used to predict the response to a wide range of cyclic dynamics. Accordingly, in this paper we develop a mechanistic model of the cell-cycle that can be combined with in vitro experiments, to better understand the link between cyclic hypoxia and cell-cycle dysregulation. A distinguishing feature of our model is the inclusion of impaired DNA synthesis and cell-cycle arrest due to periodic exposure to severely low oxygen levels. Our model decomposes the cell population into five compartments and a time-dependent delay accounts for the variability in the duration of the S phase which increases in severe hypoxia due to reduced rates of DNA synthesis. We calibrate our model against experimental data and show that it recapitulates the observed cell-cycle dynamics. We use the calibrated model to investigate the response of cells to oxygen cycles not yet tested experimentally. When the re-oxygenation phase is sufficiently long, our model predicts that cyclic hypoxia simply slows cell proliferation since cells spend more time in the S phase. On the contrary, cycles with short periods of re-oxygenation are predicted to lead to inhibition of proliferation, with cells arresting from the cell-cycle in the G2 phase. While model predictions on short time scales (about a day) are fairly accurate (i.e, confidence intervals are small), the predictions become more uncertain over longer periods. Hence, we use our model to inform experimental design that can lead to improved model parameter estimates and validate model predictions.
Collapse
Affiliation(s)
| | - Samuel B Bader
- Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK
| | - Ester M Hammond
- Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK
| | - Philip K Maini
- Mathematical Institute, University of Oxford, Oxford, UK
| | | | - Helen M Byrne
- Mathematical Institute, University of Oxford, Oxford, UK
| |
Collapse
|
14
|
Yan A, Hanna A, Wilson TG, Deraniyagala R, Krauss DJ, Grzywacz VP, Yan D, Wilson GD. Correlation between tumor voxel dose response matrix and tumor biomarker profile in patients with head and neck squamous cell carcinoma. Radiother Oncol 2021; 164:196-201. [PMID: 34619238 DOI: 10.1016/j.radonc.2021.09.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/13/2021] [Accepted: 09/24/2021] [Indexed: 12/20/2022]
Abstract
BACKGROUND We have developed a novel imaging analysis procedure that is highly predictive of local failure after chemoradiation in head and neck cancer. In this study we investigated whether any pretreatment biomarkers correlated with key imaging parameters. METHODS Pretreatment biopsy material was available for 28 patients entered into an institutional trial of adaptive radiotherapy in which FDG-PET images were collected weekly during treatment. The biopsies were immunohistochemically stained for CD44, EGFR, GLUT1, ALDH1, Ki-67 and p53 and quantified using image analysis. Expression levels were correlated with previously derived imaging parameters, the pretreatment SUVmax and the dose response matrix (DRM). RESULTS The different parameters of the SUVmax and DRM did not correlate with each other. We observed a positive and highly significant (p = 0.0088) correlation between CD44 expression and volume of tumor with a DRM greater than 0.8. We found no correlation between any DRM parameter and GLUT1, p53, Ki-67 and EGFR or ALDH1. GLUT1 expression did correlate with the maximum SUV0 and the volume of tumor with an SUV0 greater than 20. CONCLUSIONS The pretreatment SUVmax and DRM are independent imaging parameters that combine to predict local recurrence. The significant correlation between CD44 expression, a known cancer stem cell (CSC) marker, and volume of tumor with a DRM greater than 0.8 is consistent with concept that specific foci of cells are responsible for tumor recurrence and that CSCs may be randomly distributed in tumors in specific niches. Dose painting these small areas may lead to improved tumor control.
Collapse
Affiliation(s)
- Arthur Yan
- Department of Radiation Oncology, Beaumont Health, USA
| | - Alaa Hanna
- Department of Radiation Oncology, Beaumont Health, USA
| | | | | | | | | | - Di Yan
- Department of Radiation Oncology, Beaumont Health, USA
| | | |
Collapse
|
15
|
Yi X, Shen M, Liu X, Gu J. Emerging strategies based on nanomaterials for ionizing radiation-optimized drug treatment of cancer. NANOSCALE 2021; 13:13943-13961. [PMID: 34477676 DOI: 10.1039/d1nr03034e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Drug-radiotherapy is a common and effective combinational treatment for cancer. This study aimed to explore the ionizing radiation-optimized drug treatment based on nanomaterials so as to improve the synergistic efficacy of drug-radiotherapy against cancer and limit the adverse effect on healthy organs. In this review, these emerging strategies were divided into four parts. First, the delivery of the drug-loaded nanoparticles was optimized owing to the strengthened passive targeting process, active targeting process, and cell targeting process of nanoparticles after ionizing radiation exposure. Second, nanomaterials were designed to respond to the ionizing radiation, thus leading to the release of the loading drugs controllably. Third, radiation-activated pro-drugs were loaded onto nanoparticles for radiation-triggered drug therapy. In particular, nontoxic nanoparticles with radiosensitization capability and innocuous radio-dynamic contrast agents can be considered as radiation-activated drugs, which were discussed in this review. Fourth, according to the various synergetic mechanisms, radiotherapy could improve the drug response of cancer, obtaining optimized drug-radiotherapy. Finally, relative suggestions were provided to further optimize these aforementioned strategies. Therefore, a novel topic was selected and the emerging strategies in this region were discussed, aiming to stimulate the inspiration for the development of ionizing radiation-optimized drug treatment based on nanomaterials.
Collapse
Affiliation(s)
- Xuan Yi
- School of Pharmacy, Jiangsu Key Laboratory of Inflammation and Molecular Drug Targets, Nantong University, Nantong, Jiangsu 226001, China.
| | | | | | | |
Collapse
|
16
|
van Harten AM, Brakenhoff RH. Targeted Treatment of Head and Neck (Pre)Cancer: Preclinical Target Identification and Development of Novel Therapeutic Applications. Cancers (Basel) 2021; 13:2774. [PMID: 34204886 PMCID: PMC8199752 DOI: 10.3390/cancers13112774] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 12/14/2022] Open
Abstract
Head and neck squamous cell carcinomas (HNSCC) develop in the mucosal lining of the upper-aerodigestive tract. In carcinogen-induced HNSCC, tumors emerge from premalignant mucosal changes characterized by tumor-associated genetic alterations, also coined as 'fields' that are occasionally visible as leukoplakia or erythroplakia lesions but are mostly invisible. Consequently, HNSCC is generally diagnosed de novo at more advanced stages in about 70% of new diagnosis. Despite intense multimodality treatment protocols, the overall 5-years survival rate is 50-60% for patients with advanced stage of disease and seems to have reached a plateau. Of notable concern is the lack of further improvement in prognosis despite advances in treatment. This can be attributed to the late clinical presentation, failure of advanced HNSCC to respond to treatment, the deficit of effective targeted therapies to eradicate tumors and precancerous changes, and the lack of suitable markers for screening and personalized therapy. The molecular landscape of head and neck cancer has been elucidated in great detail, but the absence of oncogenic mutations hampers the identification of druggable targets for therapy to improve outcome of HNSCC. Currently, functional genomic approaches are being explored to identify potential therapeutic targets. Identification and validation of essential genes for both HNSCC and oral premalignancies, accompanied with biomarkers for therapy response, are being investigated. Attentive diagnosis and targeted therapy of the preceding oral premalignant (preHNSCC) changes may prevent the development of tumors. As classic oncogene addiction through activating mutations is not a realistic concept for treatment of HNSCC, synthetic lethality and collateral lethality need to be exploited, next to immune therapies. In recent studies it was shown that cell cycle regulation and DNA damage response pathways become significantly altered in HNSCC causing replication stress, which is an avenue that deserves further exploitation as an HNSCC vulnerability for treatment. The focus of this review is to summarize the current literature on the preclinical identification of potential druggable targets for therapy of (pre)HNSCC, emerging from the variety of gene knockdown and knockout strategies, and the testing of targeted inhibitors. We will conclude with a future perspective on targeted therapy of HNSCC and premalignant changes.
Collapse
Affiliation(s)
- Anne M. van Harten
- Cancer Center Amsterdam, Otolaryngology-Head and Neck Surgery, Tumor Biology & Immunology Section, Vrije Universiteit Amsterdam, Amsterdam UMC, 1081 HV Amsterdam, The Netherlands; or
- Sidney Kimmel Cancer Center, Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Ruud H. Brakenhoff
- Cancer Center Amsterdam, Otolaryngology-Head and Neck Surgery, Tumor Biology & Immunology Section, Vrije Universiteit Amsterdam, Amsterdam UMC, 1081 HV Amsterdam, The Netherlands; or
| |
Collapse
|
17
|
Role of neutrophil extracellular traps in radiation resistance of invasive bladder cancer. Nat Commun 2021; 12:2776. [PMID: 33986291 PMCID: PMC8119713 DOI: 10.1038/s41467-021-23086-z] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 04/14/2021] [Indexed: 12/24/2022] Open
Abstract
Radiation therapy (RT) is used in the management of several cancers; however, tumor radioresistance remains a challenge. Polymorphonuclear neutrophils (PMNs) are recruited to the tumor immune microenvironment (TIME) post-RT and can facilitate tumor progression by forming neutrophil extracellular traps (NETs). Here, we demonstrate a role for NETs as players in tumor radioresistance. Using a syngeneic bladder cancer model, increased NET deposition is observed in the TIME of mice treated with RT and inhibition of NETs improves overall radiation response. In vitro, the protein HMGB1 promotes NET formation through a TLR4-dependent manner and in vivo, inhibition of both HMGB1 and NETs significantly delays tumor growth. Finally, NETs are observed in bladder tumors of patients who did not respond to RT and had persistent disease post-RT, wherein a high tumoral PMN-to-CD8 ratio is associated with worse overall survival. Together, these findings identify NETs as a potential therapeutic target to increase radiation efficacy. Radioresistance remains a challenge in the treatment of bladder cancer. In this study, the authors show in mice that radiation increases deposits of neutrophil extracellular traps (NETs) via a TLR4-dependent mechanism and that NETs-targeting strategies can improve the response to radiotherapy.
Collapse
|
18
|
Naz S, Leiker AJ, Choudhuri R, Preston O, Sowers AL, Gohain S, Gamson J, Mathias A, Van Waes C, Cook JA, Mitchell JB. Pharmacological Inhibition of HSP90 Radiosensitizes Head and Neck Squamous Cell Carcinoma Xenograft by Inhibition of DNA Damage Repair, Nucleotide Metabolism, and Radiation-Induced Tumor Vasculogenesis. Int J Radiat Oncol Biol Phys 2021; 110:1295-1305. [PMID: 33838214 DOI: 10.1016/j.ijrobp.2021.03.048] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/24/2021] [Accepted: 03/23/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE Recent preclinical studies suggest combining the HSP90 inhibitor AT13387 (Onalespib) with radiation (IR) against colon cancer and head and neck squamous cell carcinoma (HNSCC). These studies emphasized that AT13387 downregulates HSP90 client proteins involved in oncogenic signaling and DNA repair mechanisms as major drivers of enhanced radiosensitivity. Given the large array of client proteins HSP90 directs, we hypothesized that other key proteins or signaling pathways may be inhibited by AT13387 and contribute to enhanced radiosensitivity. Metabolomic analysis of HSP90 inhibition by AT13387 was conducted to identify metabolic biomarkers of radiosensitization and whether modulations of key proteins were involved in IR-induced tumor vasculogenesis, a process involved in tumor recurrence. METHODS AND MATERIALS HNSCC and non-small cell lung cancer cell lines were used to evaluate the AT13387 radiosensitization effect in vitro and in vivo. Flow cytometry, immunofluorescence, and immunoblot analysis were used to evaluate cell cycle changes and HSP90 client protein's role in DNA damage repair. Metabolic analysis was performed using liquid chromatography-Mass spectrometry. Immunohistochemical examination of resected tumors post-AT13387 and IR treatment were conducted to identify biomarkers of IR-induced tumor vasculogenesis. RESULTS In agreement with recent studies, AT13387 treatment combined with IR resulted in a G2/M cell cycle arrest and inhibited DNA repair. Metabolomic profiling indicated a decrease in key metabolites in glycolysis and tricarboxylic acid cycle by AT13387, a reduction in Adenosine 5'-triphosphate levels, and rate-limiting metabolites in nucleotide metabolism, namely phosphoribosyl diphosphate and aspartate. HNSCC xenografts treated with the combination exhibited increased tumor regrowth delay, decreased tumor infiltration of CD45 and CD11b+ bone marrow-derived cells, and inhibition of HIF-1 and SDF-1 expression, thereby inhibiting IR-induced vasculogenesis. CONCLUSIONS AT13387 treatment resulted in pharmacologic inhibition of cancer cell metabolism that was linked to DNA damage repair. AT13387 combined with IR inhibited IR-induced vasculogenesis, a process involved in tumor recurrence postradiotherapy. Combining AT13387 with IR warrants consideration of clinical trial assessment.
Collapse
Affiliation(s)
- Sarwat Naz
- Radiation Biology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Andrew J Leiker
- Radiation Biology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland; Missouri Cancer Associates, Columbia, Missouri
| | - Rajani Choudhuri
- Radiation Biology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Olivia Preston
- Radiation Biology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Anastasia L Sowers
- Radiation Biology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Sangeeta Gohain
- Radiation Biology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Janet Gamson
- Radiation Biology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Askale Mathias
- Radiation Biology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Carter Van Waes
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland
| | - John A Cook
- Radiation Biology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - James B Mitchell
- Radiation Biology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
19
|
Kalospyros SA, Nikitaki Z, Kyriakou I, Kokkoris M, Emfietzoglou D, Georgakilas AG. A Mathematical Radiobiological Model (MRM) to Predict Complex DNA Damage and Cell Survival for Ionizing Particle Radiations of Varying Quality. Molecules 2021; 26:molecules26040840. [PMID: 33562730 PMCID: PMC7914858 DOI: 10.3390/molecules26040840] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/26/2021] [Accepted: 01/29/2021] [Indexed: 01/10/2023] Open
Abstract
Predicting radiobiological effects is important in different areas of basic or clinical applications using ionizing radiation (IR); for example, towards optimizing radiation protection or radiation therapy protocols. In this case, we utilized as a basis the ‘MultiScale Approach (MSA)’ model and developed an integrated mathematical radiobiological model (MRM) with several modifications and improvements. Based on this new adaptation of the MSA model, we have predicted cell-specific levels of initial complex DNA damage and cell survival for irradiation with 11Β, 12C, 14Ν, 16Ο, 20Νe, 40Αr, 28Si and 56Fe ions by using only three input parameters (particle’s LET and two cell-specific parameters: the cross sectional area of each cell nucleus and its genome size). The model-predicted survival curves are in good agreement with the experimental ones. The particle Relative Biological Effectiveness (RBE) and Oxygen Enhancement Ratio (OER) are also calculated in a very satisfactory way. The proposed integrated MRM model (within current limitations) can be a useful tool for the assessment of radiation biological damage for ions used in hadron-beam radiation therapy or radiation protection purposes.
Collapse
Affiliation(s)
- Spyridon A. Kalospyros
- Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens (NTUA), 15780 Zografou, Greece; (S.A.K.); (Z.N.); (M.K.)
| | - Zacharenia Nikitaki
- Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens (NTUA), 15780 Zografou, Greece; (S.A.K.); (Z.N.); (M.K.)
| | - Ioanna Kyriakou
- Medical Physics Lab, Department of Medicine, University of Ioannina, 45110 Ioannina, Greece; (I.K.); (D.E.)
| | - Michael Kokkoris
- Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens (NTUA), 15780 Zografou, Greece; (S.A.K.); (Z.N.); (M.K.)
| | - Dimitris Emfietzoglou
- Medical Physics Lab, Department of Medicine, University of Ioannina, 45110 Ioannina, Greece; (I.K.); (D.E.)
| | - Alexandros G. Georgakilas
- Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens (NTUA), 15780 Zografou, Greece; (S.A.K.); (Z.N.); (M.K.)
- Correspondence: ; Tel.: +30-210-772-4453
| |
Collapse
|
20
|
D'Andrea MA, Reddy GK. Systemic Effects of Radiation Therapy-Induced Abscopal Responses in Patients with Advanced Lung Cancer. Oncology 2020; 99:1-14. [PMID: 33221794 DOI: 10.1159/000510287] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 07/18/2020] [Indexed: 11/19/2022]
Abstract
BACKGROUND Out-of-field tumor regression effects of radiation therapy (abscopal response) have been sporadically observed in the past, but they have only recently gained significant importance due to the use of innovative high-precision radiation delivery devices for the treatment of various cancers including non-small cell lung cancer (NSCLC). In this study, we provide a detailed overview of the current state of knowledge and clinical experience of radiation therapy-induced abscopal effects in patients with advanced NSCLC. SUMMARY Peer-reviewed published clinical evidence on the abscopal effect of radiation therapy was collected using electronic databases such as MEDLINE via PubMed and Google Scholar. The clinical data on the abscopal effect of radiation therapy were reviewed and the outcomes have been summarized. Most studies describing the abscopal effects of radiation therapy in patients with advanced NSCLC have been in the form of either case reports or small cohort studies. Although the exact molecular mechanisms for the abscopal effect are yet to be established, current evidence indicates that tumor cell destruction induced by local radiation therapy releases tumor antigens, which stimulate the immune system of the host to activate the body's immune effector cells systemically and trigger the regression of distant nonirradiated cancer cells. These off-target antitumor effects of radiation therapy provide an opportunity to explore the use of the radiation therapy in combination with novel immunotherapy agents to maximize treatment outcomes in patients with advanced NSCLC and other cancers. Key Message: The findings suggest that radiation therapy has the ability to induce abscopal effects with an increased potential to boost these effects when it is used in combination with immunotherapy for the treatment of patients with advanced NSCLC and other cancers. Clinical trials investigating radiation therapy-induced abscopal effects may lead to a dramatic change in its use especially when it is combined with immunotherapy for the treatment of patients with advanced NSCLC.
Collapse
Affiliation(s)
- Mark A D'Andrea
- University Cancer and Diagnostic Centers, Houston, Texas, USA
| | - G Kesava Reddy
- University Cancer and Diagnostic Centers, Houston, Texas, USA,
| |
Collapse
|
21
|
Roberts C, Paterson C. An Exploration of the Rs of Radiobiology in Prostate Cancer. Semin Oncol Nurs 2020; 36:151054. [PMID: 32669231 DOI: 10.1016/j.soncn.2020.151054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
OBJECTIVES To explore the four Rs of radiobiology (Repair, Reoxygenation, Reassortment, and Repopulation) as a means to understand the effects of ionising radiation on biological tissue and subsequently as the basis for conventional fractionated treatment schedules. These radiobiological principles will form a rationale for combined regimens in prostate cancer treatment involving androgen deprivation therapy and radiation therapy and the associated toxicities of this approach will be discussed. DATA SOURCES Electronic databases including CINAHL, MEDLINE, Scopus, professional websites, books and grey literature were searched using Google Scholar. CONCLUSION It is important for nurses to understand the four Rs of radiobiology to grasp the effects of ionising radiation on biological tissue as the basis for conventional fractionated treatment schedules in prostate cancer. Men can experience a sequalae of physical and psychological side effects of treatment that can negatively impact quality of life. IMPLICATIONS FOR NURSING PRACTICE Men can experience a range of unmet supportive care needs particularly related to informational, sexual, and psychological needs. For men affected by prostate cancer opting for radiation therapy (+/-) androgen deprivation therapy, nurses should ask targeted questions based on the Common Terminology Criteria for Adverse Events related to urinary and bowel function, potency and fatigue, and sexual health. We also recommend the use of holistic needs assessments to tailor self-management care plans. Evidence-based self-management advice should be provided in response to each man's unique needs.
Collapse
Affiliation(s)
- C Roberts
- Faculty of Health, University of Canberra, Canberra ACT, Australia; Prehabilitation, Activity, Cancer, Exercise and Survivorship (PACES) Research group, University of Canberra, Canberra ACT, Australia; School of Nursing, Midwifery and Public Health, University of Canberra, ACT, Australia.
| | - C Paterson
- Faculty of Health, University of Canberra, Canberra ACT, Australia; Prehabilitation, Activity, Cancer, Exercise and Survivorship (PACES) Research group, University of Canberra, Canberra ACT, Australia; School of Nursing, Midwifery and Public Health, University of Canberra, ACT, Australia; ACT Synergy Nursing and Midwifery Research Centre, Canberra Hospital, ACT, Australia
| |
Collapse
|
22
|
Sulfonamido carboranes as highly selective inhibitors of cancer-specific carbonic anhydrase IX. Eur J Med Chem 2020; 200:112460. [PMID: 32505851 DOI: 10.1016/j.ejmech.2020.112460] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/08/2020] [Accepted: 05/11/2020] [Indexed: 12/13/2022]
Abstract
Carbonic anhydrase IX (CA IX) is a transmembrane enzyme overexpressed in hypoxic tumors, where it plays an important role in tumor progression. Specific CA IX inhibitors potentially could serve as anti-cancer drugs. We designed a series of sulfonamide inhibitors containing carborane clusters based on prior structural knowledge of carborane binding into the enzyme active site. Two types of carborane clusters, 12-vertex dicarba-closo-dodecaborane and 11-vertex 7,8-dicarba-nido-undecaborate (dicarbollide), were connected to a sulfonamide moiety via aliphatic linkers of varying lengths (1-4 carbon atoms; n = 1-4). In vitro testing of CA inhibitory potencies revealed that the optimal linker length for selective inhibition of CA IX was n = 3. A 1-sulfamidopropyl-1,2-dicarba-closo-dodecaborane (3) emerged as the strongest CA IX inhibitor from this series, with a Ki value of 0.5 nM and roughly 1230-fold selectivity towards CA IX over CA II. X-ray studies of 3 yielded structural insights into their binding modes within the CA IX active site. Compound 3 exhibited moderate cytotoxicity against cancer cell lines and primary cell lines in 2D cultures. Cytotoxicity towards multicellular spheroids was also observed. Moreover, 3 significantly lowered the amount of CA IX on the cell surface both in 2D cultures and spheroids and facilitated penetration of doxorubicin. Although 3 had only a moderate effect on tumor size in mice, we observed favorable ADME properties and pharmacokinetics in mice, and preferential presence in brain over serum.
Collapse
|
23
|
Chen MX, Liu YM, Li Y, Yang X, Wei WB. Elevated VEGF-A & PLGF concentration in aqueous humor of patients with uveal melanoma following Iodine-125 plaque radiotherapy. Int J Ophthalmol 2020; 13:599-605. [PMID: 32399411 DOI: 10.18240/ijo.2020.04.11] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Accepted: 03/12/2020] [Indexed: 12/12/2022] Open
Abstract
AIM To measure the concentration of vascular endothelial growth factor-A (VEGF-A), and placental growth factor (PLGF) in aqueous humor of uveal melanoma patients before and after Iodine-125 plaque therapy (IPT), determine the postoperative fluctuation and evaluate associated factors in vivo. METHODS Participants were 18 Chinese patients with uveal melanoma who were elected to IPT. Undiluted aqueous humor samples were collected at Iodine plaque implant and removal time, then stored immediately at -80°C until assayed. The concentration of VEGF-A, PLGF and other 7 cytokines comprising interleukin-2 (IL-2), IL-8, IL-10, interferon (IFN)-γ, programmed death (PD)-1, transforming growth factor (TGF)-β1 and insulin-like growth factor (IGF)-1 in aqueous humor was measured using Raybiotech immunoassay kit, a high throughput strategy. The VEGF-A and PLGF levels were compared across preoperation and postoperation subgroups, as well as those of other 7 interleukins. Correlation and grouped analyses were conducted to determine the independent effects of clinical parameters and other cytokines on VEGF-A and PLGF concentration or fluctuation. This study set a self-control design. RESULTS VEGF-A (P=0.038) and PLGF (P=0.026) were the only two increased cytokines after IPT. Preoperative and postoperative level of VEGF-A and PLGF (r=0.575, P=0.013; r=0.987, P<0.001) correlated with each other significantly. Level of VEGF-A (r=0.626, P=0.005; r=0.588, P=0.01) and PLGF (r=0.616, P=0.007; r=0.588, P=0.01) had positive correlation with tumor thickness consistently. Elevated VEGF-A or PLGF level were strong predictive factors of each other (P=0.007, OR=60.0). The elevated VEGF-A group showed a higher postoperative level of IFN-γ (P=0.005), IL-2 (P<0.001) and IL-10 (P=0.004) in aqueous humor. When the elevated PLGF group got similar results that a higher postoperative level of IFN-γ (P=0.007), IL-2 (P<0.001) and IL-10 (P=0.013) in aqueous humor. CONCLUSION This study reveals that VEGF-A and PLGF in aqueous humor significantly increased with tumor thickness and radiation process in uveal melanoma patients. VEGF-A and PLGF may be crucial in uveal melanoma genesis and radiotherapy reactions. Immune mediators comprised IFN-γ, IL-2 and IL-10 could play roles in the link between inflammation and angiogenesis in uveal melanoma when exposed to radiotherapy.
Collapse
Affiliation(s)
- Meng-Xi Chen
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Beijing Key Laboratory of Intraocular tumor Diagnosis and Treatment, Beijing 100730, China
| | - Yue-Ming Liu
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Beijing Key Laboratory of Intraocular tumor Diagnosis and Treatment, Beijing 100730, China
| | - Yang Li
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Beijing Key Laboratory of Intraocular tumor Diagnosis and Treatment, Beijing 100730, China
| | - Xuan Yang
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Beijing Key Laboratory of Intraocular tumor Diagnosis and Treatment, Beijing 100730, China
| | - Wen-Bin Wei
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Beijing Key Laboratory of Intraocular tumor Diagnosis and Treatment, Beijing 100730, China
| |
Collapse
|
24
|
Meunier A, Marignol L. The radiotherapy cancer patient: female inclusive, but male dominated. Int J Radiat Biol 2020; 96:851-856. [PMID: 32162989 DOI: 10.1080/09553002.2020.1741720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Background: The sex-neutral language used in preclinical and clinical research intends to be inclusive of both the female and the male population, but the practice of data pooling prevents the detection of the impact of sex on cancer biology and response to medications and treatment. This study aimed to examine the consideration of sex as biological variable in the evaluation of radiation therapy in preclinical and clinical studies.Methods: Preclinical and clinical studies published over a 12-month period were reviewed for the reporting of cells, animal or patient sex and the inclusion of sex as a biological variable in both study design and data analysis.Results: A total of 321 articles met the inclusion criteria: 41 (13%) preclinical and 280 (87%) clinical studies. Two articles reported separate outcome data for males and females. Where the sex of participants was stated (230/280 (82%), 81% reported a larger number of male participants, compared to females. Less than half (45%) of studies used sex as a variable in data analysis. Sex disparity was not dependent on study location but may be more prominent in certain cancer sites. In preclinical studies, sex was at best stated in those reporting on animals (48% of studies).Conclusion: Referring to a radiotherapy cancer patient, the literature is female inclusive, but a gap does exist when it comes to consideration of sex in data analysis. The pooled analysis of female and male data could introduce statistical biases and prevent the identification of key sex-specific biological subtilities that do affect radiation responses.
Collapse
Affiliation(s)
- Armelle Meunier
- Translational Radiation Biology and Molecular Oncology, Applied Radiation Therapy Trinity, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
| | - Laure Marignol
- Translational Radiation Biology and Molecular Oncology, Applied Radiation Therapy Trinity, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
25
|
Hahn A, Bode J, Krüwel T, Kampf T, Buschle LR, Sturm VJF, Zhang K, Tews B, Schlemmer HP, Heiland S, Bendszus M, Ziener CH, Breckwoldt MO, Kurz FT. Gibbs point field model quantifies disorder in microvasculature of U87-glioblastoma. J Theor Biol 2020; 494:110230. [PMID: 32142806 DOI: 10.1016/j.jtbi.2020.110230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 10/28/2019] [Accepted: 03/02/2020] [Indexed: 10/24/2022]
Abstract
Microvascular proliferation in glioblastoma multiforme is a biological key mechanism to facilitate tumor growth and infiltration and a main target for treatment interventions. The vascular architecture can be obtained by Single Plane Illumination Microscopy (SPIM) to evaluate vascular heterogeneity in tumorous tissue. We make use of the Gibbs point field model to quantify the order of regularity in capillary distributions found in the U87 glioblastoma model in a murine model and to compare tumorous and healthy brain tissue. A single model parameter Γ was assigned that is linked to tissue-specific vascular topology through Monte-Carlo simulations. Distributions of the model parameter Γ differ significantly between glioblastoma tissue with mean 〈ΓG〉=2.1±0.4, as compared to healthy brain tissue with mean 〈ΓH〉=4.9±0.4, suggesting that the average Γ-value allows for tissue differentiation. These results may be used for diagnostic magnetic resonance imaging, where it has been shown recently that Γ is linked to tissue-inherent relaxation parameters.
Collapse
Affiliation(s)
- Artur Hahn
- Department of Neuroradiology, Heidelberg University Hospital, Im Neuenheimer Feld 400, Heidelberg 69120, Germany; Department of Physics and Astronomy, University of Heidelberg, Im Neuenheimer Feld 226, Heidelberg 69120, Germany
| | - Julia Bode
- Molecular Mechanisms of Tumor Invasion, Schaller Research Group, University of Heidelberg and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, Heidelberg 69120, Germany
| | - Thomas Krüwel
- Molecular Mechanisms of Tumor Invasion, Schaller Research Group, University of Heidelberg and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, Heidelberg 69120, Germany
| | - Thomas Kampf
- Department of Experimental Physics 5, University of Würzburg, Am Hubland, Würzburg 97074, Germany; Department of Neuroradiology, University Hospital Würzburg, Josef-Schneider-Straße 2, Würzburg 97080, Germany
| | - Lukas R Buschle
- Department of Neuroradiology, Heidelberg University Hospital, Im Neuenheimer Feld 400, Heidelberg 69120, Germany; Department of Radiology E010, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120, Germany
| | - Volker J F Sturm
- Department of Neuroradiology, Heidelberg University Hospital, Im Neuenheimer Feld 400, Heidelberg 69120, Germany; Department of Radiology E010, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120, Germany
| | - Ke Zhang
- Department of Radiology E010, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120, Germany
| | - Björn Tews
- Molecular Mechanisms of Tumor Invasion, Schaller Research Group, University of Heidelberg and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, Heidelberg 69120, Germany
| | - Heinz-Peter Schlemmer
- Department of Radiology E010, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120, Germany
| | - Sabine Heiland
- Department of Neuroradiology, Heidelberg University Hospital, Im Neuenheimer Feld 400, Heidelberg 69120, Germany
| | - Martin Bendszus
- Department of Neuroradiology, Heidelberg University Hospital, Im Neuenheimer Feld 400, Heidelberg 69120, Germany
| | - Christian H Ziener
- Department of Neuroradiology, Heidelberg University Hospital, Im Neuenheimer Feld 400, Heidelberg 69120, Germany; Department of Radiology E010, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120, Germany
| | - Michael O Breckwoldt
- Department of Neuroradiology, Heidelberg University Hospital, Im Neuenheimer Feld 400, Heidelberg 69120, Germany; Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120, Germany
| | - Felix T Kurz
- Department of Neuroradiology, Heidelberg University Hospital, Im Neuenheimer Feld 400, Heidelberg 69120, Germany; Department of Radiology E010, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120, Germany.
| |
Collapse
|
26
|
Rodriguez-Ruiz ME, Vitale I, Harrington KJ, Melero I, Galluzzi L. Immunological impact of cell death signaling driven by radiation on the tumor microenvironment. Nat Immunol 2020; 21:120-134. [PMID: 31873291 DOI: 10.1038/s41590-019-0561-4] [Citation(s) in RCA: 243] [Impact Index Per Article: 48.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 11/14/2019] [Indexed: 12/12/2022]
Abstract
Therapeutic irradiation of the tumor microenvironment causes differential activation of pro-survival and pro-death pathways in malignant, stromal, endothelial and immune cells, hence causing a profound cellular and biological reconfiguration via multiple, non-redundant mechanisms. Such mechanisms include the selective elimination of particularly radiosensitive cell types and consequent loss of specific cellular functions, the local release of cytokines and danger signals by dying radiosensitive cells, and altered cytokine secretion by surviving radioresistant cells. Altogether, these processes create chemotactic and immunomodulatory cues for incoming and resident immune cells. Here we discuss how cytoprotective and cytotoxic signaling modules activated by radiation in specific cell populations reshape the immunological tumor microenvironment.
Collapse
Affiliation(s)
- Maria Esperanza Rodriguez-Ruiz
- Department of Radiation Oncology, University of Navarra Clinic, Pamplona, Spain
- Centro de Investigación Médica Aplicada (CIMA), Pamplona, Spain
| | - Ilio Vitale
- IIGM-Italian Institute for Genomic Medicine, c/o IRCCS Candiolo, Turin, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - Kevin J Harrington
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, UK
- The Royal Marsden Hospital/Institute of Cancer Research National Institute for Health Biomedical Research Centre, London, UK
| | - Ignacio Melero
- Department of Radiation Oncology, University of Navarra Clinic, Pamplona, Spain
- Centro de Investigación Médica Aplicada (CIMA), Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA.
- Sandra and Edward Meyer Cancer Center, New York, NY, USA.
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA.
- Department of Dermatology, Yale School of Medicine, New Haven, CT, USA.
- Université de Paris, Paris, France.
| |
Collapse
|
27
|
Systemic Immunostimulatory Effects of Radiation Therapy Improves the Outcomes of Patients With Advanced NSCLC Receiving Immunotherapy. Am J Clin Oncol 2019; 43:218-228. [DOI: 10.1097/coc.0000000000000651] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
28
|
Inder S, Bates M, Ni Labhrai N, McDermott N, Schneider J, Erdmann G, Jamerson T, Belle VA, Prina-Mello A, Thirion P, Manecksha PR, Cormican D, Finn S, Lynch T, Marignol L. Multiplex profiling identifies clinically relevant signalling proteins in an isogenic prostate cancer model of radioresistance. Sci Rep 2019; 9:17325. [PMID: 31758038 PMCID: PMC6874565 DOI: 10.1038/s41598-019-53799-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 11/04/2019] [Indexed: 12/22/2022] Open
Abstract
The exact biological mechanism governing the radioresistant phenotype of prostate tumours at a high risk of recurrence despite the delivery of advanced radiotherapy protocols remains unclear. This study analysed the protein expression profiles of a previously generated isogenic 22Rv1 prostate cancer model of radioresistance using DigiWest multiplex protein profiling for a selection of 90 signalling proteins. Comparative analysis of the profiles identified a substantial change in the expression of 43 proteins. Differential PARP-1, AR, p53, Notch-3 and YB-1 protein levels were independently validated using Western Blotting. Pharmacological targeting of these proteins was associated with a mild but significant radiosensitisation effect at 4Gy. This study supports the clinical relevance of isogenic in vitro models of radioresistance and clarifies the molecular radiation response of prostate cancer cells.
Collapse
Affiliation(s)
- S Inder
- Translational Radiobiology and Molecular oncology, Applied Radiation Therapy Trinity, Trinity Translational Medicine Institute (TTMI), Trinity College Dublin, Dublin, Ireland
- Department of Urology, St James's Hospital, Dublin, Ireland
| | - M Bates
- Translational Radiobiology and Molecular oncology, Applied Radiation Therapy Trinity, Trinity Translational Medicine Institute (TTMI), Trinity College Dublin, Dublin, Ireland
| | - N Ni Labhrai
- Translational Radiobiology and Molecular oncology, Applied Radiation Therapy Trinity, Trinity Translational Medicine Institute (TTMI), Trinity College Dublin, Dublin, Ireland
| | - N McDermott
- Translational Radiobiology and Molecular oncology, Applied Radiation Therapy Trinity, Trinity Translational Medicine Institute (TTMI), Trinity College Dublin, Dublin, Ireland
| | | | - G Erdmann
- NMI TT Pharmaservices, Berlin, Germany
| | - T Jamerson
- Department of International Health, Mount Sinai School of Medicine, New York, USA
| | - V A Belle
- Department of International Health, Mount Sinai School of Medicine, New York, USA
| | - A Prina-Mello
- Laboratory for Biological Characterization of Advanced Materials (LBCAM), Trinity Translational Medicine Institute (TTMI), AMBER centre at CRANN Institute, Trinity College Dublin, Dublin, Ireland
- Department of Clinical Medicine, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - P Thirion
- St Luke's Radiation Oncology Network, St James's Hospital, Dublin, Ireland
| | - P R Manecksha
- Department of Urology, St James's Hospital, Dublin, Ireland
- Department of Surgery, Trinity College Dublin, Dublin, Ireland
| | - D Cormican
- Department of Histopathology, St James's Hospital, Dublin, Ireland
| | - S Finn
- Department of Histopathology, St James's Hospital, Dublin, Ireland
| | - T Lynch
- Department of Urology, St James's Hospital, Dublin, Ireland
| | - L Marignol
- Translational Radiobiology and Molecular oncology, Applied Radiation Therapy Trinity, Trinity Translational Medicine Institute (TTMI), Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
29
|
Extracranial Abscopal Effects Induced by Brain Radiation in Advanced Lung Cancer. Am J Clin Oncol 2019; 42:951-957. [DOI: 10.1097/coc.0000000000000623] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
30
|
Jiang W, Wu Y, He T, Zhu H, Ke G, Xiang L, Yang H. Targeting of β-Catenin Reverses Radioresistance of Cervical Cancer with the PIK3CA-E545K Mutation. Mol Cancer Ther 2019; 19:337-347. [PMID: 31666350 DOI: 10.1158/1535-7163.mct-19-0309] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 09/11/2019] [Accepted: 10/22/2019] [Indexed: 11/16/2022]
Abstract
This study aims to explore whether E545K, the most common hotspot mutation of PIK3CA in cervical cancer, confers radioresistance to cervical cancer cells, to demonstrate the underling mechanism, and to develop the effective targets. SiHa and MS751 cells with PIK3CA-WT and PIK3CA-E545K were established by lentiviral transfection. The radiosensitivity was assessed by colony formation, cell cycle, cell apoptosis, DNA damage, and repair assay. The growth and immunohistochemical assay of xenograft tumor-related toxicity were evaluated in vivo It was indicated that more cells with PIK3CA-E545K arrested in S phase. Irradiation (IR) led to more survival percentage, less apoptosis, fewer pH2A.X foci, and higher expression of Chk1/2 in SiHa and MS751 cells bearing PIK3CA-E545K. Mechanically, AKT/GSK3β/β-catenin pathway was highly activated, and more β-catenin was found accumulated in nucleus in cells with PIK3CA-E545K after IR. Furthermore, targeting β-catenin by shRNA or XAV939 enhanced IR sensitivity in cells with PIK3CA-WT and PIK3CA-E545K, whereas it was more notably in the latter. β-Catenin shRNA and XAV939 increased IR-mediated inhibition of colony formation with highly activated p53/bcl2/bax pathway. XAV939 enhanced IR-caused apoptosis, DNA damage, overcame S-phase arrest, DNA repair and reversed β-catenin nuclear accumulation in MS751 cells with PIK3CA-E545K. In vivo, XAV939 enhanced the radiosensitivity of cervical cancer xenografts with PIK3CA-E545K with invisible viscera toxicity. The findings demonstrate that cervical cancer cells with PIK3CA-E545K are resistant to IR by enhancing the expression and nuclear accumulation of β-catenin. Targeting β-catenin reverses the radioresistance, which suggests possible areas for preclinical research on β-catenin inhibition for strengthening the radiosensitivity of cervical cancer.
Collapse
Affiliation(s)
- Wei Jiang
- Department of Gynecological Oncology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yutuan Wu
- Department of Gynecological Oncology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Tiancong He
- Department of Gynecological Oncology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hanting Zhu
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Guihao Ke
- Department of Gynecological Oncology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Libing Xiang
- Department of Gynecological Oncology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China. .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Huijuan Yang
- Department of Gynecological Oncology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China. .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
31
|
Zhu J, Chen S, Yang B, Mao W, Yang X, Cai J. Molecular mechanisms of lncRNAs in regulating cancer cell radiosensitivity. Biosci Rep 2019; 39:BSR20190590. [PMID: 31391206 PMCID: PMC6712435 DOI: 10.1042/bsr20190590] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 08/05/2019] [Accepted: 08/06/2019] [Indexed: 12/21/2022] Open
Abstract
Radiotherapy is one of the main modalities of cancer treatment. However, tumor recurrence following radiotherapy occurs in many cancer patients. A key to solving this problem is the optimization of radiosensitivity. In recent years, long non-coding RNAs (lncRNAs), which affect the occurrence and development of tumors through a variety of mechanisms, have become a popular research topic. LncRNAs have been found to influence radiosensitivity by regulating various mechanisms, including DNA damage repair, cell cycle arrest, apoptosis, cancer stem cells regulation, epithelial-mesenchymal transition, and autophagy. LncRNAs are expected to become a potential therapeutic target for radiotherapy in the future. This article reviews recent advances in the role and mechanism of lncRNAs in tumor radiosensitivity.
Collapse
Affiliation(s)
- Jiamin Zhu
- Department of Oncology, the Affiliated Jiangyin Hospital of Southeast University Medical College, 163 Shoushan Road, Jiangyin 214400, P.R. China
- Department of Radiation Oncology, Nantong Tumor Hospital, Affiliated Tumor Hospital of Nantong University, Nantong 226321, China
| | - Shusen Chen
- Department of Radiation Oncology, Nantong Tumor Hospital, Affiliated Tumor Hospital of Nantong University, Nantong 226321, China
| | - Baixia Yang
- Department of Radiation Oncology, Nantong Tumor Hospital, Affiliated Tumor Hospital of Nantong University, Nantong 226321, China
| | - Weidong Mao
- Department of Oncology, the Affiliated Jiangyin Hospital of Southeast University Medical College, 163 Shoushan Road, Jiangyin 214400, P.R. China
| | - Xi Yang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Jing Cai
- Department of Radiation Oncology, Nantong Tumor Hospital, Affiliated Tumor Hospital of Nantong University, Nantong 226321, China
| |
Collapse
|
32
|
Tumor Microenvironment as A "Game Changer" in Cancer Radiotherapy. Int J Mol Sci 2019; 20:ijms20133212. [PMID: 31261963 PMCID: PMC6650939 DOI: 10.3390/ijms20133212] [Citation(s) in RCA: 345] [Impact Index Per Article: 57.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 06/19/2019] [Accepted: 06/25/2019] [Indexed: 12/24/2022] Open
Abstract
Radiotherapy (RT), besides cancer cells, also affects the tumor microenvironment (TME): tumor blood vessels and cells of the immune system. It damages endothelial cells and causes radiation-induced inflammation. Damaged vessels inhibit the infiltration of CD8+ T lymphocytes into tumors, and immunosuppressive pathways are activated. They lead to the accumulation of radioresistant suppressor cells, including tumor-associated macrophages (TAMs) with the M2 phenotype, myeloid-derived suppressor cells (MDSCs), and regulatory T cells (Tregs). The area of tumor hypoxia increases. Hypoxia reduces oxygen-dependent DNA damage and weakens the anti-cancer RT effect. It activates the formation of new blood vessels and leads to cancer relapse after irradiation. Irradiation may also activate the immune response through immunogenic cell death induction. This leads to the "in situ" vaccination effect. In this article, we review how changes in the TME affect radiation-induced anticancer efficacy. There is a very delicate balance between the activation of the immune system and the immunosuppression induced by RT. The effects of RT doses on immune system reactions and also on tumor vascularization remain unclear. A better understanding of these interactions will contribute to the optimization of RT treatment, which may prevent the recurrence of cancer.
Collapse
|
33
|
Dou Y, Liu Y, Zhao F, Guo Y, Li X, Wu M, Chang J, Yu C. Radiation-responsive scintillating nanotheranostics for reduced hypoxic radioresistance under ROS/NO-mediated tumor microenvironment regulation. Am J Cancer Res 2018; 8:5870-5889. [PMID: 30613268 PMCID: PMC6299445 DOI: 10.7150/thno.27351] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Accepted: 10/27/2018] [Indexed: 11/22/2022] Open
Abstract
Abstract: Hypoxia-induced radioresistance is the primary reason for failure of tumor radiotherapy (RT). Changes within the irradiated tumor microenvironment (TME) including oxygen, reactive oxygen species (ROS) and nitric oxide (NO) are closely related to radioresistance. Therefore, there is an urgent need to develop new approaches for overcoming hypoxic radioresistance by incorporating TME regulation into current radiotherapeutic strategies. Methods: Herein, we explored a radiation-responsive nanotheranostic system to enhance RT effects on hypoxic tumors by multi-way therapeutic effects. This system was developed by loading S-nitrosothiol groups (SNO, a NO donor) and indocyanine green (ICG, a photosensitizer) onto mesoporous silica shells of Eu3+-doped NaGdF4 scintillating nanocrystals (NSC). Results: Under X-ray radiation, this system can increase the local dosage by high-Z elements, promote ROS generation by X-ray-induced photodynamic therapy, and produce high levels of NO to enhance tumor-killing effects and improve hypoxia via NO-induced vasodilation. In vitro and in vivo studies revealed that this combined strategy can greatly reinforce DNA damage and apoptosis of hypoxic tumor cells, while significantly suppressing tumor growth, improving tumor hypoxia and promoting p53 up-regulation and HIF1α down-regulation. In addition, this system showed pronounced tumor contrast performance in T1-weighted magnetic resonance imaging and computed tomography. Conclusion: This work demonstrates the great potential of scintillating nanotheranostics for multimodal imaging-guided X-ray radiation-triggered tumor combined therapy to overcome radioresistance.
Collapse
|
34
|
Li G, Lin H, Tian R, Zhao P, Huang Y, Pang X, Zhao L, Cao B. VEGFR-2 Inhibitor Apatinib Hinders Endothelial Cells Progression Triggered by Irradiated Gastric Cancer Cells-derived Exosomes. J Cancer 2018; 9:4049-4057. [PMID: 30410610 PMCID: PMC6218785 DOI: 10.7150/jca.25370] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 08/15/2018] [Indexed: 12/31/2022] Open
Abstract
Background: Radiotherapy is a standard treatment for a significant fraction of cancer patients. Nonetheless, to this day radiation resistance is a key impediment in gastric cancer (GC) treatment. Moreover, GC is characterized by its substantial neo-angiogenesis, driven by high levels of vascular endothelial growth factor (VEGF) correlated with the presence of stomach cancer. The aim of our study was to address if VEGFR inhibitors treatments impact the negative effect of radiotherapy regiments of gastric cancer. Materials and methods: Isolation of exosomes released by SGC-7901 and BGC-823 lines after irradiation at 0 Gy or 6 Gy was performed by differential ultra-centrifugation. Incubation of Human Umbilical Vein Endothelial Cells (HUVEC) was carried out with different concentrations of exosomes from non- or irradiated GC cells to address their proliferation and survival fraction (SF) by MTS. 6 Gy irradiated cells exosomes at concentration of 20 µg/ml were compared to EC incubated with the same exosome concentration from non-irradiated human GC cells over 72-hour time course. Wound-healing and Transwell assays were performed in a migration buffer consisting of exosomes released by non- or irradiated SGC-7901 and BGC-823 cells over 24-hour time course. HUVEC cells stained with DAPI that have passed through a gluten gel were counted in order to monitor their invasion capacity. Employing IC50, 60 µg/ml was determined as the optimal Apatinib (YN968D1) concentration for the half-life of HUVEC, and incubated with exosomes from irradiated GC cells. The aforementioned assays were performed in the background of the same conditions in order to analyse the effect of Apatinib on HUVEC progression. Results: We show that proliferation, motility and invasive capacity of HUVEC are enhanced upon incubation with exosomes released by irradiated GC cell lines. Importantly, the latter is counteracted by the VEGFR-2 inhibitor Apatinib which hinders ECs progression. Conclusion / Significance: Combining radiotherapy and VEGFR inhibitors treatment can provide potentially a substantial impact in decreasing cancer death rates by averting the negative effect of radiotherapy regiments and provide better standard for cancer patients.
Collapse
Affiliation(s)
- Guangxin Li
- Cancer Center, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Haishan Lin
- Cancer Center, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Ruyue Tian
- Cancer Center, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Pengfei Zhao
- Radiotherapy Department, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Yongjie Huang
- Radiotherapy Department, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Xinqiao Pang
- Anesthesiology Department, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Lei Zhao
- Cancer Center, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Bangwei Cao
- Cancer Center, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| |
Collapse
|
35
|
Li X, Hong X, Gao X, Gu X, Xiong W, Zhao J, Yu H, Cui M, Xie M, Bai Y, Sun S. Methyl jasmonate enhances the radiation sensitivity of esophageal carcinoma cells by inhibiting the 11-ketoprostaglandin reductase activity of AKR1C3. Cancer Manag Res 2018; 10:3149-3158. [PMID: 30214307 PMCID: PMC6124458 DOI: 10.2147/cmar.s166942] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Purpose In our previous study, we found that AKR1C3 was a radioresistance gene in KY170R cells. Downregulating the expression of AKR1C3 could enhance the radiosensitivity of esophageal carcinoma cells. In this study, we investigated whether methyl jasmonate (MeJ), an inhibitor of Aldo-keto reductase family1 member C3 (AKR1C3), could overcome radiation resistance in AKR1C3 highly expressed cells. Patients and methods We used clone formation assays to detect radiosensitivity effects. Flow cytometry assays were used to detect reactive oxygen species (ROS) accumulation and apoptosis. Enzyme linked immunosorbent assays (ELISAs) were used to detect the concentrations of prostaglandin F2 (PGF2) and prostaglandin D2 (PGD2) in the cells after incubation with MeJ. Western blotting was used to detect AKR1C3 and peroxisome proliferator-activated receptor gamma (PPARγ) expression. Results We found that AKR1C3 was highly expressed in radioresistant esophageal carcinoma cells. MeJ inhibited the expression of AKR1C3 and enhanced the radiation sensitivity of esophageal carcinoma cells expressing high levels of AKR1C3 (P<0.05). MeJ could inhibit the 11-ketoprostaglandin reductase activity of AKR1C3 in a dose-dependent manner in KY170R cells. Incubation of KY170R cells with 200 µmol/L of MeJ for 24 h reduced the expression of PGF2 by roughly 30% (P<0.05). The PPAR pathway inhibitor GW9662 prevented the radiation sensitivity enhancement imparted by MeJ. After adding GW9662, there were no significant differences between the radiation sensitivities of MeJ-treated and -untreated KY170R cells (P>0.05). The radiation sensitivity effect of MeJ also depended upon the generation of ROS in KY170R cells; 48 h after irradiation, ROS levels in the MeJ group was twofold higher than in the untreated KY170R cells (P<0.05). The ROS scavenger, N-acetyl cysteine, could reverse the radiosensitivity effects of MeJ (P>0.05). Conclusion Our results indicate that MeJ can increase the radiation sensitivity of AKR1C3-overexpressing KY170R cells by inhibiting the 11-ketoprostaglandin reductase activity of AKR1C3 and increasing cellular ROS levels.
Collapse
Affiliation(s)
- Xiaoying Li
- Department of Radiation Oncology, Peking University First Hospital, Peking University, Beijing, China,
| | - Xin Hong
- Department of Urology, Peking University International Hospital, Peking University, Beijing, China
| | - Xianshu Gao
- Department of Radiation Oncology, Peking University First Hospital, Peking University, Beijing, China,
| | - Xiaobin Gu
- Department of Radiation Oncology, Peking University First Hospital, Peking University, Beijing, China,
| | - Wei Xiong
- Department of Oncology, Tangshan People's Hospital, Hebei, China
| | - Jing Zhao
- Department of Oncology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Hongliang Yu
- Department of Radiation Oncology, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Ming Cui
- Department of Radiation Oncology, Peking University First Hospital, Peking University, Beijing, China,
| | - Mu Xie
- Department of Radiation Oncology, Peking University First Hospital, Peking University, Beijing, China,
| | - Yun Bai
- Department of Radiation Oncology, Peking University First Hospital, Peking University, Beijing, China,
| | - Shaoqian Sun
- College of Biochemical Engineering, Beijing Union University, Beijing, China
| |
Collapse
|
36
|
Targeted alpha therapy using Radium-223: From physics to biological effects. Cancer Treat Rev 2018; 68:47-54. [PMID: 29859504 DOI: 10.1016/j.ctrv.2018.05.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 05/22/2018] [Accepted: 05/23/2018] [Indexed: 12/13/2022]
Abstract
With the advance of the use of ionizing radiation in therapy, targeted alpha therapy (TAT) has assumed an important role around the world. This kind of therapy can potentially reduce side effects caused by radiation in normal tissues and increased destructive radiobiological effects in tumor cells. However, in many countries, the use of this therapy is still in a pioneering phase. Radium-223 (223Ra), an alpha-emitting radionuclide, has been the first of its kind to be approved for the treatment of bone metastasis in metastatic castration-resistant prostate cancer. Nevertheless, the interaction mechanism and the direct effects of this radiopharmaceutical in tumor cells are not fully understood neither characterized at a molecular level. In fact, the ways how TAT is linked to radiobiological effects in cancer is not yet revised. Therefore, this review introduces some physical properties of TAT that leads to biological effects and links this information to the hallmarks of cancer. The authors also collected the studies developed with 223Ra to correlate with the three categories reviewed - properties of TAT, 5 R's of radiobiology and hallmarks of cancer- and with the promising future to this radiopharmaceutical.
Collapse
|
37
|
De Felice F, Polimeni A, Valentini V, Brugnoletti O, Cassoni A, Greco A, de Vincentiis M, Tombolini V. Radiotherapy Controversies and Prospective in Head and Neck Cancer: A Literature-Based Critical Review. Neoplasia 2018; 20:227-232. [PMID: 29448084 PMCID: PMC5849807 DOI: 10.1016/j.neo.2018.01.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 01/03/2018] [Indexed: 12/25/2022]
Abstract
In treating head and neck cancer (HNC), the objectives are provided for best functional results and minimal risk of serious complications. The choice of appropriate management depends primarily on specific site and stage of primary tumor at diagnosis. Radiation therapy (RT) with or without concomitant chemotherapy represents a classical treatment option. In this review, we provide an update of recent research strategies to counteract the existing damage caused by RT and highlight clinical trials currently in progress. We discuss the challenges in the evaluation of new stage system and RT-related toxicity onset. We mainly address the deficiencies and the advantages noted in the current treatment era.
Collapse
Affiliation(s)
- Francesca De Felice
- Department of Radiotherapy, Policlinico Umberto I, "Sapienza" University of Rome, Rome, Italy.
| | - Antonella Polimeni
- Department of Oral and Maxillo Facial Sciences, Policlinico Umberto I "Sapienza" University of Rome, Italy.
| | - Valentino Valentini
- Department of Oral and Maxillo Facial Sciences, Policlinico Umberto I "Sapienza" University of Rome, Italy.
| | - Orlando Brugnoletti
- Department of Oral and Maxillo Facial Sciences, Policlinico Umberto I "Sapienza" University of Rome, Italy.
| | - Andrea Cassoni
- Department of Oral and Maxillo Facial Sciences, Policlinico Umberto I "Sapienza" University of Rome, Italy.
| | - Antonio Greco
- Department of Sense Organs, Policlinico Umberto I "Sapienza" University of Rome, Italy.
| | - Marco de Vincentiis
- Department of Oral and Maxillo Facial Sciences, Policlinico Umberto I "Sapienza" University of Rome, Italy.
| | - Vincenzo Tombolini
- Department of Radiotherapy, Policlinico Umberto I, "Sapienza" University of Rome, Rome, Italy.
| |
Collapse
|
38
|
Abstract
Carbon ion therapy is a promising evolving modality in radiotherapy to treat tumors that are radioresistant against photon treatments. As carbon ions are more effective in normal and tumor tissue, the relative biological effectiveness (RBE) has to be calculated by bio-mathematical models and has to be considered in the dose prescription. This review (i) introduces the concept of the RBE and its most important determinants, (ii) describes the physical and biological causes of the increased RBE for carbon ions, (iii) summarizes available RBE measurements in vitro and in vivo, and (iv) describes the concepts of the clinically applied RBE models (mixed beam model, local effect model, and microdosimetric-kinetic model), and (v) the way they are introduced into clinical application as well as (vi) their status of experimental and clinical validation, and finally (vii) summarizes the current status of the use of the RBE concept in carbon ion therapy and points out clinically relevant conclusions as well as open questions. The RBE concept has proven to be a valuable concept for dose prescription in carbon ion radiotherapy, however, different centers use different RBE models and therefore care has to be taken when transferring results from one center to another. Experimental studies significantly improve the understanding of the dependencies and limitations of RBE models in clinical application. For the future, further studies investigating quantitatively the differential effects between normal tissues and tumors are needed accompanied by clinical studies on effectiveness and toxicity.
Collapse
Affiliation(s)
- Christian P Karger
- Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany. National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany. Author to whom any correspondence should be addressed
| | | |
Collapse
|
39
|
Kazokaitė J, Aspatwar A, Parkkila S, Matulis D. An update on anticancer drug development and delivery targeting carbonic anhydrase IX. PeerJ 2017; 5:e4068. [PMID: 29181278 PMCID: PMC5702504 DOI: 10.7717/peerj.4068] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 10/30/2017] [Indexed: 12/15/2022] Open
Abstract
The expression of carbonic anhydrase (CA) IX is up-regulated in many types of solid tumors in humans under hypoxic and acidic microenvironment. Inhibition of CA IX enzymatic activity with selective inhibitors, antibodies or labeled probes has been shown to reverse the acidic environment of solid tumors and reduce the tumor growth establishing the significant role of CA IX in tumorigenesis. Thus, the development of potent antitumor drugs targeting CA IX with minimal toxic effects is important for the target-specific tumor therapy. Recently, several promising antitumor agents against CA IX have been developed to treat certain types of cancers in combination with radiation and chemotherapy. Here we review the inhibition of CA IX by small molecule compounds and monoclonal antibodies. The methods of enzymatic assays, biophysical methods, animal models including zebrafish and Xenopus oocytes, and techniques of diagnostic imaging to detect hypoxic tumors using CA IX-targeted conjugates are discussed with the aim to overview the recent progress related to novel therapeutic agents that target CA IX in hypoxic tumors.
Collapse
Affiliation(s)
- Justina Kazokaitė
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Vilnius University, Vilnius, Lithuania
| | - Ashok Aspatwar
- Faculty of Medicine and Life sciences, University of Tampere, Tampere, Finland.,Fimlab Ltd, Tampere, Finland
| | - Seppo Parkkila
- Faculty of Medicine and Life sciences, University of Tampere, Tampere, Finland.,Fimlab Ltd, Tampere, Finland
| | - Daumantas Matulis
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
40
|
Glowa C, Peschke P, Brons S, Neels OC, Kopka K, Debus J, Karger CP. Carbon ion radiotherapy: impact of tumor differentiation on local control in experimental prostate carcinomas. Radiat Oncol 2017; 12:174. [PMID: 29121984 PMCID: PMC5679331 DOI: 10.1186/s13014-017-0914-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 10/27/2017] [Indexed: 11/30/2022] Open
Abstract
Background To summarize the research activities of the “clinical research group heavy ion therapy”, funded by the German Research Foundation (DFG, KFO 214), on the impact of intrinsic tumor characteristics (grading, hypoxia) on local tumor control after carbon (12C-) ion- and photon irradiations. Methods Three sublines of syngeneic rat prostate tumors (R3327) with various differentiation levels (highly (-H), moderately (-HI) or anaplastic (-AT1), (diameter 10 mm) were irradiated with 1, 2 and 6 fractions of either 12C-ions or 6 MV photons using increasing dose levels. Primary endpoint was local tumor control at 300 days. The relative biological effectiveness (RBE) of 12C-ions was calculated from TCD50-values (dose at 50% tumor control probability) of photons and 12C-ions and correlated with intrinsic tumor parameters. For the HI-subline, larger tumors (diameter 18 mm) were irradiated with either carbon ions, oxygen ions or photons under ambient as well as hypoxic conditions to determine the variability of the RBE under different oxygenation levels. In addition, imaging, histology and molecular analyses were performed to decipher the underlying mechanisms. Results Experimental results revealed (i) a smaller variation of the TCD50-values between the three tumor sublines for 12C-ions (23.6 - 32.9 Gy) than for photons (38.2 - 75.7 Gy), (ii) steeper dose-response curves for 12C-ions, and (iii) an RBE that increased with tumor grading (1.62 ± 0.11 (H) vs 2.08 ± 0.13 (HI) vs 2.30 ± 0.08 (AT1)). Large HI-tumors resulted in a marked increase of TCD50, which was increased further by 15% under hypoxic relative to oxic conditions. Noninvasive imaging, histology and molecular analyses identified hypoxia as an important radioresistance factor in photon therapy. Conclusions The dose-response studies revealed a higher efficacy of 12C-ions relative to photon therapy in the investigated syngeneic tumor model. Hypoxia turned out to be at least one important radioresistance factor, which can be partly overridden by high-LET ion beams. This might be used to increase treatment effectiveness also in patients. The results of this project served as a starting point for several ongoing research projects.
Collapse
Affiliation(s)
- Christin Glowa
- Department of Radiation Oncology, University Hospital Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany. .,Department of Medical Physics in Radiation Oncology (E040), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany. .,National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120, Heidelberg, Germany.
| | - Peter Peschke
- Department of Medical Physics in Radiation Oncology (E040), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.,National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Stephan Brons
- National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120, Heidelberg, Germany.,Heidelberg Ion Beam Therapy Center (HIT), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Oliver C Neels
- Division of Radiopharmaceutical Chemistry, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.,German Cancer Consortium (DKTK), Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Klaus Kopka
- Division of Radiopharmaceutical Chemistry, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.,German Cancer Consortium (DKTK), Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Jürgen Debus
- Department of Radiation Oncology, University Hospital Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany.,National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Christian P Karger
- Department of Medical Physics in Radiation Oncology (E040), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.,National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| |
Collapse
|
41
|
Dunne V, Ghita M, Small DM, Coffey CBM, Weldon S, Taggart CC, Osman SO, McGarry CK, Prise KM, Hanna GG, Butterworth KT. Inhibition of ataxia telangiectasia related-3 (ATR) improves therapeutic index in preclinical models of non-small cell lung cancer (NSCLC) radiotherapy. Radiother Oncol 2017; 124:475-481. [PMID: 28697853 DOI: 10.1016/j.radonc.2017.06.025] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 06/13/2017] [Accepted: 06/22/2017] [Indexed: 10/19/2022]
Abstract
BACKGROUND AND PURPOSE To evaluate the impact of ATR inhibition using AZD6738 in combination with radiotherapy on the response of non-small cell lung cancer (NSCLC) tumour models and a murine model of radiation induced fibrosis. MATERIALS AND METHODS AZD6738 was evaluated as a monotherapy and in combination with radiation in vitro and in vivo using A549 and H460 NSCLC models. Radiation induced pulmonary fibrosis was evaluated by cone beam computed tomography (CBCT) and histological staining. RESULTS AZD6738 specifically inhibits ATR kinase and enhanced radiobiological response in NSCLC models but not in human bronchial epithelial cells (HBECs) in vitro. Significant tumour growth delay was observed in cell line derived xenografts (CDXs) of H460 cells (p<0.05) which were less significant in A549 cells. Combination of AZD6738 with radiotherapy showed no significant change in lung tissue density by CBCT (p>0.5) and histological scoring of radiation induced fibrosis (p>0.5). CONCLUSION Inhibition of ATR with AZD6738 in combination with radiotherapy increases tumour growth delay without observable augmentation of late radiation induced toxicity further underpinning translation towards clinical evaluation in NSCLC.
Collapse
Affiliation(s)
- Victoria Dunne
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, UK
| | - Mihaela Ghita
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, UK
| | - Donna M Small
- Centre for Experimental Medicine, Queen's University Belfast, UK
| | | | - Sinead Weldon
- Centre for Experimental Medicine, Queen's University Belfast, UK
| | | | - Sarah O Osman
- Northern Ireland Cancer Centre, Queen's University Belfast, UK
| | - Conor K McGarry
- Northern Ireland Cancer Centre, Queen's University Belfast, UK
| | - Kevin M Prise
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, UK
| | - Gerard G Hanna
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, UK; Northern Ireland Cancer Centre, Queen's University Belfast, UK
| | - Karl T Butterworth
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, UK.
| |
Collapse
|
42
|
van Kuijk SJ, Parvathaneni NK, Niemans R, van Gisbergen MW, Carta F, Vullo D, Pastorekova S, Yaromina A, Supuran CT, Dubois LJ, Winum JY, Lambin P. New approach of delivering cytotoxic drugs towards CAIX expressing cells: A concept of dual-target drugs. Eur J Med Chem 2017; 127:691-702. [DOI: 10.1016/j.ejmech.2016.10.037] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 09/28/2016] [Accepted: 10/16/2016] [Indexed: 12/31/2022]
|
43
|
Lee SY, Jeong EK, Ju MK, Jeon HM, Kim MY, Kim CH, Park HG, Han SI, Kang HS. Induction of metastasis, cancer stem cell phenotype, and oncogenic metabolism in cancer cells by ionizing radiation. Mol Cancer 2017; 16:10. [PMID: 28137309 PMCID: PMC5282724 DOI: 10.1186/s12943-016-0577-4] [Citation(s) in RCA: 385] [Impact Index Per Article: 48.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 12/25/2016] [Indexed: 12/12/2022] Open
Abstract
Radiation therapy is one of the major tools of cancer treatment, and is widely used for a variety of malignant tumours. Radiotherapy causes DNA damage directly by ionization or indirectly via the generation of reactive oxygen species (ROS), thereby destroying cancer cells. However, ionizing radiation (IR) paradoxically promotes metastasis and invasion of cancer cells by inducing the epithelial-mesenchymal transition (EMT). Metastasis is a major obstacle to successful cancer therapy, and is closely linked to the rates of morbidity and mortality of many cancers. ROS have been shown to play important roles in mediating the biological effects of IR. ROS have been implicated in IR-induced EMT, via activation of several EMT transcription factors—including Snail, HIF-1, ZEB1, and STAT3—that are activated by signalling pathways, including those of TGF-β, Wnt, Hedgehog, Notch, G-CSF, EGFR/PI3K/Akt, and MAPK. Cancer cells that undergo EMT have been shown to acquire stemness and undergo metabolic changes, although these points are debated. IR is known to induce cancer stem cell (CSC) properties, including dedifferentiation and self-renewal, and to promote oncogenic metabolism by activating these EMT-inducing pathways. Much accumulated evidence has shown that metabolic alterations in cancer cells are closely associated with the EMT and CSC phenotypes; specifically, the IR-induced oncogenic metabolism seems to be required for acquisition of the EMT and CSC phenotypes. IR can also elicit various changes in the tumour microenvironment (TME) that may affect invasion and metastasis. EMT, CSC, and oncogenic metabolism are involved in radioresistance; targeting them may improve the efficacy of radiotherapy, preventing tumour recurrence and metastasis. This study focuses on the molecular mechanisms of IR-induced EMT, CSCs, oncogenic metabolism, and alterations in the TME. We discuss how IR-induced EMT/CSC/oncogenic metabolism may promote resistance to radiotherapy; we also review efforts to develop therapeutic approaches to eliminate these IR-induced adverse effects.
Collapse
Affiliation(s)
- Su Yeon Lee
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Pusan, 609-735, Korea
| | - Eui Kyong Jeong
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Pusan, 609-735, Korea
| | - Min Kyung Ju
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Pusan, 609-735, Korea
| | - Hyun Min Jeon
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Pusan, 609-735, Korea
| | - Min Young Kim
- Research Center, Dongnam Institute of Radiological and Medical Science (DIRAMS), Pusan, 619-953, Korea
| | - Cho Hee Kim
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Pusan, 609-735, Korea.,DNA Identification Center, National Forensic Service, Seoul, 158-707, Korea
| | - Hye Gyeong Park
- Nanobiotechnology Center, Pusan National University, Pusan, 609-735, Korea
| | - Song Iy Han
- The Division of Natural Medical Sciences, College of Health Science, Chosun University, Gwangju, 501-759, Korea
| | - Ho Sung Kang
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Pusan, 609-735, Korea.
| |
Collapse
|
44
|
Fractionated radiation exposure amplifies the radioresistant nature of prostate cancer cells. Sci Rep 2016; 6:34796. [PMID: 27703211 PMCID: PMC5050515 DOI: 10.1038/srep34796] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 09/19/2016] [Indexed: 12/20/2022] Open
Abstract
The risk of recurrence following radiation therapy remains high for a significant number of prostate cancer patients. The development of in vitro isogenic models of radioresistance through exposure to fractionated radiation is an increasingly used approach to investigate the mechanisms of radioresistance in cancer cells and help guide improvements in radiotherapy standards. We treated 22Rv1 prostate cancer cells with fractionated 2 Gy radiation to a cumulative total dose of 60 Gy. This process selected for 22Rv1-cells with increased clonogenic survival following subsequent radiation exposure but increased sensitivity to Docetaxel. This RR-22Rv1 cell line was enriched in S-phase cells, less susceptible to DNA damage, radiation-induced apoptosis and acquired enhanced migration potential, when compared to wild type and aged matched control 22Rv1 cells. The selection of radioresistant cancer cells during fractionated radiation therapy may have implications in the development and administration of future targeted therapy in conjunction with radiation therapy.
Collapse
|
45
|
Sharma RA, Plummer R, Stock JK, Greenhalgh TA, Ataman O, Kelly S, Clay R, Adams RA, Baird RD, Billingham L, Brown SR, Buckland S, Bulbeck H, Chalmers AJ, Clack G, Cranston AN, Damstrup L, Ferraldeschi R, Forster MD, Golec J, Hagan RM, Hall E, Hanauske AR, Harrington KJ, Haswell T, Hawkins MA, Illidge T, Jones H, Kennedy AS, McDonald F, Melcher T, O'Connor JPB, Pollard JR, Saunders MP, Sebag-Montefiore D, Smitt M, Staffurth J, Stratford IJ, Wedge SR. Clinical development of new drug-radiotherapy combinations. Nat Rev Clin Oncol 2016; 13:627-42. [PMID: 27245279 DOI: 10.1038/nrclinonc.2016.79] [Citation(s) in RCA: 242] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In countries with the best cancer outcomes, approximately 60% of patients receive radiotherapy as part of their treatment, which is one of the most cost-effective cancer treatments. Notably, around 40% of cancer cures include the use of radiotherapy, either as a single modality or combined with other treatments. Radiotherapy can provide enormous benefit to patients with cancer. In the past decade, significant technical advances, such as image-guided radiotherapy, intensity-modulated radiotherapy, stereotactic radiotherapy, and proton therapy enable higher doses of radiotherapy to be delivered to the tumour with significantly lower doses to normal surrounding tissues. However, apart from the combination of traditional cytotoxic chemotherapy with radiotherapy, little progress has been made in identifying and defining optimal targeted therapy and radiotherapy combinations to improve the efficacy of cancer treatment. The National Cancer Research Institute Clinical and Translational Radiotherapy Research Working Group (CTRad) formed a Joint Working Group with representatives from academia, industry, patient groups and regulatory bodies to address this lack of progress and to publish recommendations for future clinical research. Herein, we highlight the Working Group's consensus recommendations to increase the number of novel drugs being successfully registered in combination with radiotherapy to improve clinical outcomes for patients with cancer.
Collapse
Affiliation(s)
- Ricky A Sharma
- UCL Cancer Institute, University College London, 72 Huntley Street, London WC1E 6DD, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Martin D Forster
- UCL Cancer Institute, University College London, 72 Huntley Street, London WC1E 6DD, UK
| | - Julian Golec
- Vertex Pharmaceuticals (Europe) Ltd, Abingdon, UK
| | | | - Emma Hall
- The Institute of Cancer Research/The Royal Marsden NIHR Biomedical Research Centre, London, UK
| | | | - Kevin J Harrington
- The Institute of Cancer Research/The Royal Marsden NIHR Biomedical Research Centre, London, UK
| | | | | | | | | | | | - Fiona McDonald
- The Institute of Cancer Research/The Royal Marsden NIHR Biomedical Research Centre, London, UK
| | | | | | | | | | | | | | - John Staffurth
- Cardiff University and Velindre Cancer Centre, Cardiff, UK
| | | | | |
Collapse
|
46
|
De Felice F, Musio D, Tombolini V. Osteoradionecrosis and intensity modulated radiation therapy: An overview. Crit Rev Oncol Hematol 2016; 107:39-43. [PMID: 27823650 DOI: 10.1016/j.critrevonc.2016.08.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Revised: 07/12/2016] [Accepted: 08/31/2016] [Indexed: 10/21/2022] Open
Abstract
Osteoradionecrosis (ORN) is an ongoing topic, especially about its definition, pathogenesis, staging system and management algorithm. But what about its real incidence in intensity modulated radiotherapy (IMRT) era? This paper discusses the mandible in radiation therapy planning as organ at risk and reviews the literature for evidence of radiation damage, discussing likely dose constraints and the use of IMRT to reduce radiation dose to this structure. PubMed search was performed.
Collapse
Affiliation(s)
- Francesca De Felice
- Department of Radiotherapy, Policlinico Umberto I "Sapienza" University of Rome, Viale Regina Elena 326, 00161 Rome, Italy.
| | - Daniela Musio
- Department of Radiotherapy, Policlinico Umberto I "Sapienza" University of Rome, Viale Regina Elena 326, 00161 Rome, Italy
| | - Vincenzo Tombolini
- Department of Radiotherapy, Policlinico Umberto I "Sapienza" University of Rome, Viale Regina Elena 326, 00161 Rome, Italy; Spencer-Lorillard Foundation, Viale Regina Elena 262, Rome, Italy
| |
Collapse
|
47
|
Glowa C, Karger CP, Brons S, Zhao D, Mason RP, Huber PE, Debus J, Peschke P. Carbon ion radiotherapy decreases the impact of tumor heterogeneity on radiation response in experimental prostate tumors. Cancer Lett 2016; 378:97-103. [PMID: 27224892 DOI: 10.1016/j.canlet.2016.05.013] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Revised: 05/08/2016] [Accepted: 05/12/2016] [Indexed: 10/21/2022]
Abstract
OBJECTIVE To quantitatively study the impact of intrinsic tumor characteristics and microenvironmental factors on local tumor control after irradiation with carbon ((12)C-) ions and photons in an experimental prostate tumor model. MATERIAL AND METHODS Three sublines of a syngeneic rat prostate tumor (R3327) differing in grading (highly (-H) moderately (-HI) or anaplastic (-AT1)) were irradiated with increasing single doses of either (12)C-ions or 6 MV photons in Copenhagen rats. Primary endpoint was local tumor control within 300 days. The relative biological effectiveness (RBE) of (12)C-ions was calculated from the dose at 50% tumor control probability (TCD50) of photons and (12)C-ions and was correlated with histological, physiological and genetic tumor parameters. RESULTS Experimental findings demonstrated that (i) TCD50-values between the three tumor sublines differed less for (12)C-ions (23.6-32.9 Gy) than for photons (38.2-75.7 Gy), (ii) the slope of the dose-response curve for each tumor line was steeper for (12)C-ions than for photons, and (iii) the RBE increased with tumor grading from 1.62 ± 0.11 (H) to 2.08 ± 0.13 (HI) to 2.30 ± 0.08 (AT1). CONCLUSION The response to (12)C-ions is less dependent on resistance factors as well as on heterogeneity between and within tumor sublines as compared to photons. A clear correlation between decreasing differentiation status and increasing RBE was found. (12)C-ions may therefore be a therapeutic option especially in patients with undifferentiated prostate tumors, expressing high resistance against photons.
Collapse
Affiliation(s)
- Christin Glowa
- Department of Radiation Oncology, University Hospital Heidelberg, Heidelberg, Germany; Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany; National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany.
| | - Christian P Karger
- Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany; National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany
| | - Stephan Brons
- National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany; Heidelberg Ion Beam Therapy Center (HIT), Heidelberg, Germany
| | - Dawen Zhao
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Ralph P Mason
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Peter E Huber
- Department of Radiation Oncology, University Hospital Heidelberg, Heidelberg, Germany; National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany; Department of Molecular Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jürgen Debus
- Department of Radiation Oncology, University Hospital Heidelberg, Heidelberg, Germany; National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany
| | - Peter Peschke
- National Center for Radiation Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany; Department of Molecular Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
48
|
van Kuijk SJA, Yaromina A, Houben R, Niemans R, Lambin P, Dubois LJ. Prognostic Significance of Carbonic Anhydrase IX Expression in Cancer Patients: A Meta-Analysis. Front Oncol 2016; 6:69. [PMID: 27066453 PMCID: PMC4810028 DOI: 10.3389/fonc.2016.00069] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 03/08/2016] [Indexed: 01/08/2023] Open
Abstract
Hypoxia is a characteristic of many solid tumors and an adverse prognostic factor for treatment outcome. Hypoxia increases the expression of carbonic anhydrase IX (CAIX), an enzyme that is predominantly found on tumor cells and is involved in maintaining the cellular pH balance. Many clinical studies investigated the prognostic value of CAIX expression, but most have been inconclusive, partly due to small numbers of patients included. The present meta-analysis was therefore performed utilizing the results of all clinical studies to determine the prognostic value of CAIX expression in solid tumors. Renal cell carcinoma was excluded from this meta-analysis due to an alternative mechanism of upregulation. 958 papers were identified from a literature search performed in PubMed and Embase. These papers were independently evaluated by two reviewers and 147 studies were included in the analysis. The meta-analysis revealed strong significant associations between CAIX expression and all endpoints: overall survival [hazard ratio (HR) = 1.76, 95% confidence interval (95%CI) 1.58–1.98], disease-free survival (HR = 1.87, 95%CI 1.62–2.16), locoregional control (HR = 1.54, 95%CI 1.22–1.93), disease-specific survival (HR = 1.78, 95%CI 1.41–2.25), metastasis-free survival (HR = 1.82, 95%CI 1.33–2.50), and progression-free survival (HR = 1.58, 95%CI 1.27–1.96). Subgroup analyses revealed similar associations in the majority of tumor sites and types. In conclusion, these results show that patients having tumors with high CAIX expression have higher risk of locoregional failure, disease progression, and higher risk to develop metastases, independent of tumor type or site. The results of this meta-analysis further support the development of a clinical test to determine patient prognosis based on CAIX expression and may have important implications for the development of new treatment strategies.
Collapse
Affiliation(s)
- Simon J A van Kuijk
- Department of Radiation Oncology (MAASTRO Lab), GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre , Maastricht , Netherlands
| | - Ala Yaromina
- Department of Radiation Oncology (MAASTRO Lab), GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre , Maastricht , Netherlands
| | - Ruud Houben
- Department of Radiation Oncology, MAASTRO Clinic , Maastricht , Netherlands
| | - Raymon Niemans
- Department of Radiation Oncology (MAASTRO Lab), GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre , Maastricht , Netherlands
| | - Philippe Lambin
- Department of Radiation Oncology (MAASTRO Lab), GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre , Maastricht , Netherlands
| | - Ludwig J Dubois
- Department of Radiation Oncology (MAASTRO Lab), GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre , Maastricht , Netherlands
| |
Collapse
|
49
|
Sminia P, Westerman BA. Blood-brain barrier crossing and breakthroughs in glioblastoma therapy. Br J Clin Pharmacol 2016; 81:1018-20. [PMID: 26744058 DOI: 10.1111/bcp.12881] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 12/23/2015] [Accepted: 01/01/2016] [Indexed: 10/22/2022] Open
Affiliation(s)
- P Sminia
- Department of Radiation Oncology, VU University Medical Center, Amsterdam
| | - B A Westerman
- Department of Neurosurgery, VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
50
|
Equating salivary lactate dehydrogenase (LDH) with LDH-5 expression in patients with oral squamous cell carcinoma: An insight into metabolic reprogramming of cancer cell as a predictor of aggressive phenotype. Tumour Biol 2015; 37:5609-20. [PMID: 26577856 DOI: 10.1007/s13277-015-4415-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 11/09/2015] [Indexed: 12/27/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) is the sixth most common human malignancy. According to World Health Organization, oral cancer has been reported to have the highest morbidity and mortality and a survival rate of approximately 50 % at 5 years from diagnosis. This is attributed to the subjectivity in TNM staging and histological grading which may result in less than optimum treatment outcomes including tumour recurrence. One of the hallmarks of cancer is aerobic glycolysis also known as the Warburg effect. This glycolytic phenotype (hypoxic state) not only confers immortality to cancer cells, but also correlates with the belligerent behaviour of various malignancies and is reflected as an increase in the expression of lactate dehydrogenase 5 (LDH-5), the main isoform of LDH catalysing the conversion of pyruvate to lactate during glycolysis. The diagnostic role of salivary LDH in assessing the metabolic phenotype of oral cancer has not been studied. Since salivary LDH is mainly sourced from oral epithelial cells, any pathological changes in the epithelium should reflect diagnostically in saliva. Thus in our current research, we made an attempt to ascertain the biological behaviour and aggressiveness of OSCC by appraising its metabolic phenotype as indirectly reflected in salivary LDH activity. We found that salivary LDH can be used to assess the aggressiveness of different histological grades of OSCC. For the first time, an evidence of differing metabolic behaviour in similar histologic tumour grade is presented. Taken together, our study examines the inclusion of salivary LDH as potential diagnostic parameter and therapeutic index in OSCC.
Collapse
|