1
|
Marsh KR, Peeples ES. Impact of dexmedetomidine during hypothermia on initiation of enteral feeding in newborns with hypoxic-ischemic encephalopathy. J Neonatal Perinatal Med 2025; 18:101-109. [PMID: 39973519 DOI: 10.1177/19345798251318601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
BackgroundAfter early studies suggested safety and potential for benefit of dexmedetomidine use in neonatal hypoxic-ischemic encephalopathy (HIE), our neonatal intensive care unit (NICU) decided to transition from morphine to dexmedetomidine as our standard sedative during therapeutic hypothermia (TH). The primary aim was to monitor the possible side effects of transitioning from morphine to dexmedetomidine with a primary goal of reducing the days to initiation of enteral feeds to less than 3 days, with the hypothesis that the gastrointestinal motility effects of morphine may have been hindering feeding progress during TH. The secondary aim was to determine rates of hemodynamically significant bradycardia.MethodsThis was a prospective quality improvement study using a retrospective comparison group to determine the comfort, hemodynamic, and early feeding effects of a clinical change in sedation management from morphine to dexmedetomidine. We included infants born at ≥35 weeks of gestation receiving hypothermia for hypoxic-ischemic encephalopathy (HIE) from 2017 to 2023.ResultsData were collected from 107 infants: 48 morphine, 35 dexmedetomidine, and 24 neither. Heart rate was lower in the morphine and dexmedetomidine groups compared to no sedation. Blood pressures, pain scores, and blanket temperatures were not different between groups. Infants receiving dexmedetomidine initiated enteral feeds earlier than either of the other groups and reached full enteral feeds earlier than the no treatment group but not the morphine group.ConclusionsThis study supports a growing body of literature suggesting dexmedetomidine is a well-tolerated alternative to opioids during hypothermia for HIE.
Collapse
Affiliation(s)
- Kimberly R Marsh
- Division of Neonatology, Children's Nebraska, Omaha, NE, USA
- Child Health Research Institute, Omaha, NE, USA
| | - Eric S Peeples
- Division of Neonatology, Children's Nebraska, Omaha, NE, USA
- Child Health Research Institute, Omaha, NE, USA
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
2
|
Rumajogee P, Altamentova S, Li J, Puvanenthirarajah N, Wang J, Asgarihafshejani A, Van Der Kooy D, Fehlings MG. Constraint-Induced Movement Therapy (CIMT) and Neural Precursor Cell (NPC) Transplantation Synergistically Promote Anatomical and Functional Recovery in a Hypoxic-Ischemic Mouse Model. Int J Mol Sci 2024; 25:9403. [PMID: 39273353 PMCID: PMC11395467 DOI: 10.3390/ijms25179403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/20/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
Cerebral palsy (CP) is a common neurodevelopmental disorder characterized by pronounced motor dysfunction and resulting in physical disability. Neural precursor cells (NPCs) have shown therapeutic promise in mouse models of hypoxic-ischemic (HI) perinatal brain injury, which mirror hemiplegic CP. Constraint-induced movement therapy (CIMT) enhances the functional use of the impaired limb and has emerged as a beneficial intervention for hemiplegic CP. However, the precise mechanisms and optimal application of CIMT remain poorly understood. The potential synergy between a regenerative approach using NPCs and a rehabilitation strategy using CIMT has not been explored. We employed the Rice-Vannucci HI model on C57Bl/6 mice at postnatal day (PND) 7, effectively replicating the clinical and neuroanatomical characteristics of hemiplegic CP. NPCs were transplanted in the corpus callosum (CC) at PND21, which is the age corresponding to a 2-year-old child from a developmental perspective and until which CP is often not formally diagnosed, followed or not by Botulinum toxin injections in the unaffected forelimb muscles at PND23, 26, 29 and 32 to apply CIMT. Both interventions led to enhanced CC myelination and significant functional recovery (as shown by rearing and gait analysis testing), through the recruitment of endogenous oligodendrocytes. The combinatorial treatment indicated a synergistic effect, as shown by newly recruited oligodendrocytes and functional recovery. This work demonstrates the mechanistic effects of CIMT and NPC transplantation and advocates for their combined therapeutic potential in addressing hemiplegic CP.
Collapse
Affiliation(s)
- Prakasham Rumajogee
- Division of Genetics and Development, Krembil Brain Institute, University Health Network, Toronto, ON M5T 2S8, Canada
| | - Svetlana Altamentova
- Division of Genetics and Development, Krembil Brain Institute, University Health Network, Toronto, ON M5T 2S8, Canada
| | - Junyi Li
- Division of Genetics and Development, Krembil Brain Institute, University Health Network, Toronto, ON M5T 2S8, Canada
| | - Nirushan Puvanenthirarajah
- Division of Genetics and Development, Krembil Brain Institute, University Health Network, Toronto, ON M5T 2S8, Canada
| | - Jian Wang
- Division of Genetics and Development, Krembil Brain Institute, University Health Network, Toronto, ON M5T 2S8, Canada
| | - Azam Asgarihafshejani
- Division of Genetics and Development, Krembil Brain Institute, University Health Network, Toronto, ON M5T 2S8, Canada
| | - Derek Van Der Kooy
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Michael G Fehlings
- Division of Genetics and Development, Krembil Brain Institute, University Health Network, Toronto, ON M5T 2S8, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 3E1, Canada
- Division of Neurosurgery and Spine Program, Department of Surgery, University of Toronto, Toronto, ON M5T 1P5, Canada
| |
Collapse
|
3
|
Acun C, Ali M, Liu W, Karnati S, Fink K, Aly H. Effectiveness and Safety of Dexmedetomidine in Neonates With Hypoxic Ischemic Encephalopathy Undergoing Therapeutic Hypothermia. J Pediatr Pharmacol Ther 2024; 29:232-240. [PMID: 38863848 PMCID: PMC11163906 DOI: 10.5863/1551-6776-29.3.232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 10/15/2023] [Indexed: 06/13/2024]
Abstract
OBJECTIVE The objective of this study was to evaluate and compare the effectiveness and safety of dexmedetomidine as monotherapy between neonates with mild hypoxic ischemic encephalopathy (HIE) and moderate to severe HIE treated with therapeutic hypothermia (TH). METHODS This retrospective study included neonates of gestational age ≥36 weeks with a diagnosis of HIE and undergoing TH between January 2014 and December 2021. Patients were included if they received at least 6 hours of continuous sedation with dexmedetomidine. Baseline characteristics, dose and duration of medication, adverse events, liver and kidney function tests, and hospital course were reviewed. RESULTS Of the 97 neonates included, 46 had mild, 42 had moderate, and 9 had severe HIE. Dexmedetomidine was initiated at a median 5 hours of life, and the median infusion duration was 77 (46-87) hours. Fifty-two (53.6%) required at least 1 breakthrough opioid or sedative during the first 24 hours of dexmedetomidine infusion. Overall, 40 patients (41.2%) had at least 1 bradycardia episode with heart rate <80 beats/min and 14 patients (14.4%) had heart rate <70 beats/min. Hypotension was experienced by 7 patients (7.2%). Fifty-two patients (53.6%) were intubated in the delivery room and 33/52 (63.5%) were extubated on day of life 1 during dexmedetomidine infusion. CONCLUSIONS Dexmedetomidine as monotherapy was effective and safe sedation for infants with HIE undergoing hypothermia. The most common side effect of dexmedetomidine was bradycardia. -Dexmedetomidine may be considered as first and single agent for neonates with HIE undergoing TH.
Collapse
Affiliation(s)
- Ceyda Acun
- Department of Neonatology, Cleveland Clinic Children’s Hospital, Department of Pediatrics, (CA, SK, KF, HA), Metro Health-Cleveland (MA), Departments of Quantitative Health Sciences and Radiology, Cleveland Clinic, (WL) Cleveland, OH
| | - Mahmoud Ali
- Department of Neonatology, Cleveland Clinic Children’s Hospital, Department of Pediatrics, (CA, SK, KF, HA), Metro Health-Cleveland (MA), Departments of Quantitative Health Sciences and Radiology, Cleveland Clinic, (WL) Cleveland, OH
| | - Wei Liu
- Department of Neonatology, Cleveland Clinic Children’s Hospital, Department of Pediatrics, (CA, SK, KF, HA), Metro Health-Cleveland (MA), Departments of Quantitative Health Sciences and Radiology, Cleveland Clinic, (WL) Cleveland, OH
| | - Sreenivas Karnati
- Department of Neonatology, Cleveland Clinic Children’s Hospital, Department of Pediatrics, (CA, SK, KF, HA), Metro Health-Cleveland (MA), Departments of Quantitative Health Sciences and Radiology, Cleveland Clinic, (WL) Cleveland, OH
| | - Kelsey Fink
- Department of Neonatology, Cleveland Clinic Children’s Hospital, Department of Pediatrics, (CA, SK, KF, HA), Metro Health-Cleveland (MA), Departments of Quantitative Health Sciences and Radiology, Cleveland Clinic, (WL) Cleveland, OH
| | - Hany Aly
- Department of Neonatology, Cleveland Clinic Children’s Hospital, Department of Pediatrics, (CA, SK, KF, HA), Metro Health-Cleveland (MA), Departments of Quantitative Health Sciences and Radiology, Cleveland Clinic, (WL) Cleveland, OH
| |
Collapse
|
4
|
Yang Y, Li Y, Yang W, Yang X, Luo M, Qin L, Zhu J. Protecting effects of 4-octyl itaconate on neonatal hypoxic-ischemic encephalopathy via Nrf2 pathway in astrocytes. J Neuroinflammation 2024; 21:132. [PMID: 38760862 PMCID: PMC11102208 DOI: 10.1186/s12974-024-03121-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 05/01/2024] [Indexed: 05/19/2024] Open
Abstract
BACKGROUND Neonatal hypoxic-ischemic encephalopathy (HIE) is one of the most common neurological problems occurring in the perinatal period. However, there still is not a promising approach to reduce long-term neurodevelopmental outcomes of HIE. Recently, itaconate has been found to exhibit anti-oxidative and anti-inflammatory effects. However, the therapeutic efficacy of itaconate in HIE remains inconclusive. Therefore, this study attempts to explore the pathophysiological mechanisms of oxidative stress and inflammatory responses in HIE as well as the potential therapeutic role of a derivative of itaconate, 4-octyl itaconate (4OI). METHODS We used 7-day-old mice to induce hypoxic-ischemic (HI) model by right common carotid artery ligation followed by 1 h of hypoxia. Behavioral experiments including the Y-maze and novel object recognition test were performed on HI mice at P60 to evaluate long-term neurodevelopmental outcomes. We employed an approach combining non-targeted metabolomics with transcriptomics to screen alterations in metabolic profiles and gene expression in the hippocampal tissue of the mice at 8 h after hypoxia. Immunofluorescence staining and RT-PCR were used to evaluate the pathological changes in brain tissue cells and the expression of mRNA and proteins. 4OI was intraperitoneally injected into HI model mice to assess its anti-inflammatory and antioxidant effects. BV2 and C8D1A cells were cultured in vitro to study the effect of 4OI on the expression and nuclear translocation of Nrf2. We also used Nrf2-siRNA to further validate 4OI-induced Nrf2 pathway in astrocytes. RESULTS We found that in the acute phase of HI, there was an accumulation of pyruvate and lactate in the hippocampal tissue, accompanied by oxidative stress and pro-inflammatory, as well as increased expression of antioxidative stress and anti-inflammatory genes. Treatment of 4OI could inhibit activation and proliferation of microglial cells and astrocytes, reduce neuronal death and relieve cognitive dysfunction in HI mice. Furthermore, 4OI enhanced nuclear factor erythroid-2-related factor (Nfe2l2; Nrf2) expression and nuclear translocation in astrocytes, reduced pro-inflammatory cytokine production, and increased antioxidant enzyme expression. CONCLUSION Our study demonstrates that 4OI has a potential therapeutic effect on neuronal damage and cognitive deficits in HIE, potentially through the modulation of inflammation and oxidative stress pathways by Nrf2 in astrocytes.
Collapse
Affiliation(s)
- Yanping Yang
- Department of Anesthesiology, The Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yang Li
- Department of Anesthesiology, The Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Wenyi Yang
- Department of Anesthesiology, The Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xueying Yang
- Department of Physiology, China Medical University, Shenyang, Liaoning, China
| | - Man Luo
- Department of Anesthesiology, Shenzhen Cancer Hospital, Shenzhen, China
| | - Ling Qin
- Department of Physiology, China Medical University, Shenyang, Liaoning, China.
| | - Junchao Zhu
- Department of Anesthesiology, The Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
5
|
Kazanasmaz H, Akan A, Yalçın Ö, Ölçücü MT, Onar S, Kazanasmaz Ö. Cerebral Tissue Oxygen Saturation Measurements in Perinatal Asphyxia Cases Treated with Therapeutic Hypothermia. Ther Hypothermia Temp Manag 2023; 13:184-190. [PMID: 36920248 DOI: 10.1089/ther.2022.0060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Cerebral tissue oxygen saturation (CrSO2) measured with near-infrared spectroscopy (NIRS) technology has recently become the subject of several research studies. The aim of this study was to investigate the diagnostic value of CrSO2 measurements in perinatal asphyxia (PA) cases. The study included a patient group of 42 PA cases, who were to be applied with therapeutic hypothermia (TH), and a control group of 42 healthy term newborns. PA cases were determined as moderate or severe encephalopathy (Sarnat score stage II or III) in clinical evaluation. In both groups, left (CrSO2L) and right (CrSO2R) NIRS measurements were taken for 10 minutes on the scalp. The arithmetic mean value of measurements was calculated and compared. The mean measurements were CrSO2R 67.38 ± 9.39 and CrSO2L 66.73 ± 7.76 in the patient group, and CrSO2R 80.28 ± 8.04 and CrSO2L 79.14 ± 8.49 in the control group. The mean CrSO2R and CrSO2L measurements of the patient group were statistically significantly lower than those of the control group (p < 0.001). In the Pearson correlation analysis, a significant correlation was determined in the patient group between cord blood gas pH and CrSO2R (r: 0.539, p < 0.001) and CrSO2L (r: 0.54, p < 0.001). For a cutoff value of CrSO2L ≤ 72%, the positive predictive value was 80 and the negative predictive value was 84.6. For a cutoff value of CrSO2R ≤ 74%, the positive predictive value was 79.5 and the negative predictive value was 82.5. Low CrSO2 measurements obtained with the NIRS method in PA cases to be applied with TH together with cord blood gas parameters can be considered a helpful parameter in diagnosis.
Collapse
Affiliation(s)
- Halil Kazanasmaz
- Department of Pediatrics, Harran University Faculty of Medicine, Sanliurfa, Turkey
| | - Abdulsamed Akan
- Department of Pediatrics, Harran University Faculty of Medicine, Sanliurfa, Turkey
| | - Ömer Yalçın
- Department of Pediatrics, Harran University Faculty of Medicine, Sanliurfa, Turkey
| | | | - Selehattin Onar
- Department of Pediatrics, Harran University Faculty of Medicine, Sanliurfa, Turkey
| | - Özlem Kazanasmaz
- Department of Pediatrics Sanliurfa, Sanliurfa Training and Research Hospital, Sanliurfa, Turkey
| |
Collapse
|
6
|
Shu X, Denora N, Laquintana V. Editorial: What does it take to cure the brain? Studies toward genes, proteins, processes, and rehabilitation. Front Neurosci 2023; 17:1252955. [PMID: 37534038 PMCID: PMC10392848 DOI: 10.3389/fnins.2023.1252955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 07/10/2023] [Indexed: 08/04/2023] Open
Affiliation(s)
- Xinhua Shu
- Pu Ai Medical School, Shaoyang University, Shaoyang, Hunan, China
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow, United Kingdom
- Department of Vision Science, Glasgow Caledonian University, Glasgow, United Kingdom
| | - Nunzio Denora
- Department of Pharmacy—Pharmaceutical Sciences, University of Bari “Aldo Moro”, Bari, Italy
| | - Valentino Laquintana
- Department of Pharmacy—Pharmaceutical Sciences, University of Bari “Aldo Moro”, Bari, Italy
| |
Collapse
|
7
|
Dai Y, Hu L. HSPB1 overexpression improves hypoxic-ischemic brain damage by attenuating ferroptosis in rats through promoting G6PD expression. J Neurophysiol 2022; 128:1507-1517. [PMID: 36321738 DOI: 10.1152/jn.00306.2022] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Heat-shock protein B (HSPB1) has a neuroprotective effect on brain injury and is a negative regulator of ferroptosis. Therefore, we infer that HSPB1 plays a protective role in hypoxic-ischemic (HI) brain damage by inhibiting ferroptosis. A neonatal rat model of hypoxic-ischemic (HI) brain damage was established. HSPB1 overexpression plasmid and the negative control were injected into the lateral ventricle of rats 48 h before HI brain damage surgery. HSPB1 and glucose-6-phosphate dehydrogenase (G6PD) levels, infarction rate, iron accumulation, apoptosis, and ferroptosis-related markers were estimated with the assistance of qRT-PCR, 2,3,5-triphenyl tetrazolium chloride (TTC) staining, Prussian blue staining, iron assay kit, TUNEL staining, and Western blot. In vitro, after transfection, HSPB1 and G6PD levels, oxygen-glucose deprivation (OGD)-mediated hippocampal neuron cell viability, apoptosis, iron content, and ferroptosis-related markers were assessed using qRT-PCR, MTT, flow cytometry, iron assay kit, and Western blot. HSPB1 and G6PD were overexpressed in the hippocampus tissues of HI rats. High expression of HSPB1 in HI rats lessened infarction rate and ferritin level, hindered iron accumulation and apoptosis, and promoted GPX4, SLC7A11, and TFR1 levels. In OGD-mediated hippocampal neuron cells, HSPB1 upregulation intensified the viability and repressed apoptosis and ferroptosis, whereas G6PD silencing reversed the effects of HSPB1 upregulation. We documented that HSPB1 overexpression unleashes neuroprotective effects via modulating G6PD expression, which offers a novel target for the prevention and treatment of HI brain damage.NEW & NOTEWORTHY HSPB1 and G6PD were overexpressed in the hippocampus tissues of HI rats. High expression of HSPB1 in HI rats mitigated infarction rate and iron accumulation. HSPB1 overexpression reduced ferritin level, attenuated apoptosis, yet augmented GPX4, SLC7A11, and TFR1 levels in the hippocampus tissues of HI rats. G6PD deletion impaired the protective role of HSPB1 overexpression against HI brain damage-induced ferroptosis.
Collapse
Affiliation(s)
- Yi Dai
- Department of Neonatology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, People's Republic of China
| | - Lan Hu
- Department of Neonatology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, People's Republic of China
| |
Collapse
|
8
|
Dietz RM, Dingman AL, Herson PS. Cerebral ischemia in the developing brain. J Cereb Blood Flow Metab 2022; 42:1777-1796. [PMID: 35765984 PMCID: PMC9536116 DOI: 10.1177/0271678x221111600] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/29/2022] [Accepted: 05/27/2022] [Indexed: 11/16/2022]
Abstract
Brain ischemia affects all ages, from neonates to the elderly population, and is a leading cause of mortality and morbidity. Multiple preclinical rodent models involving different ages have been developed to investigate the effect of ischemia during different times of key brain maturation events. Traditional models of developmental brain ischemia have focused on rodents at postnatal day 7-10, though emerging models in juvenile rodents (postnatal days 17-25) indicate that there may be fundamental differences in neuronal injury and functional outcomes following focal or global cerebral ischemia at different developmental ages, as well as in adults. Here, we consider the timing of injury in terms of excitation/inhibition balance, oxidative stress, inflammatory responses, blood brain barrier integrity, and white matter injury. Finally, we review translational strategies to improve function after ischemic brain injury, including new ideas regarding neurorestoration, or neural repair strategies that restore plasticity, at delayed time points after ischemia.
Collapse
Affiliation(s)
- Robert M Dietz
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
- Department of Anesthesiology, University of Colorado School of Medicine, Aurora, CO, USA
- Neuronal Injury Program, University of Colorado School of Medicine, Aurora, CO, USA
| | - Andra L Dingman
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
- Neuronal Injury Program, University of Colorado School of Medicine, Aurora, CO, USA
| | - Paco S Herson
- Department of Neurological Surgery, The Ohio State University College of Medicine, Columbus, OH, USA
| |
Collapse
|
9
|
Luo H, Huang F, Huang Z, Huang H, Liu C, Feng Y, Qi Z. microRNA-93 packaged in extracellular vesicles from mesenchymal stem cells reduce neonatal hypoxic-ischemic brain injury. Brain Res 2022; 1794:148042. [PMID: 35952773 DOI: 10.1016/j.brainres.2022.148042] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 07/31/2022] [Accepted: 08/05/2022] [Indexed: 01/08/2023]
Abstract
OBJECTIVE Mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) have been proposed as a promising strategy for treating ischemia-related diseases. Herein, we probed into the role of miR-93 delivered by BMSC-EVs in hypoxic-ischemic brain injury (HIBD). METHODS Neonatal HIBD mouse models and hippocampal neuron models of oxygen glucose deprivation (OGD) were constructed. EVs were isolated from the culture medium of bone marrow MSCs (BMSCs). After co-culture of BMSC-EVs with OGD-exposed hippocampal neurons, the effect of microRNA-93 (miR-93) delivered by BMSC-EVs on OGD-induced hippocampal neurons as well as on HIBD in vivo under transfection of miR-93 mimic or inhibitor was explored. The interaction among miR-93, JMJD3, and p53/KLF2 axis was assessed. RESULTS BMSC-EVs prevented OGD-induced hippocampal neuron apoptosis and inflammation, which was associated with their transfer of miR-93 into the hippocampal neurons. miR-93 targeted JMJD3 and downregulated its expression, thus inhibiting the OGD-induced hippocampal neuron apoptosis. By regulating the JMJD3/p53/KLF2 axis, miR-93 in BMSC-EVs reduced the OGD-induced hippocampal neuron apoptosis in vitro as well as alleviating HIBD in vivo. CONCLUSIONS The current study highlighted that miR-93 delivered by BMSC-EVs alleviated HIBD in neonatal mice through the JMJD3-dependent p53/KLF2 axis.
Collapse
Affiliation(s)
- Hongcheng Luo
- Department of Medical Laboratory, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi, China; Medical College of Guangxi University, Nanning 530004, Guangxi, China
| | - Fugao Huang
- Department of Ultrasound, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China
| | - Zhijing Huang
- Department of Pediatrics, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China
| | - Huatuo Huang
- Department of Medical Laboratory, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi, China
| | - Chunhong Liu
- Department of Medical Laboratory, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi, China
| | - Yanni Feng
- Department of Pediatrics, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China.
| | - Zhongquan Qi
- Medical College of Guangxi University, Nanning 530004, Guangxi, China.
| |
Collapse
|
10
|
Islas-Fabila P, Orozco-Gregorio H, Roldan-Santiago P, Waytula M, Gonzalez-Hernandez M, Vega-Manriquez X, Jimenez-Collado CA, Bonilla-Jaime H. Treatments and therapeutic protocols for the recovery of an asphyxiated new-born: A review of pre-clinical and clinical studies in human neonates and in different animal models. VET MED-CZECH 2022; 67:271-297. [PMID: 39100642 PMCID: PMC11296226 DOI: 10.17221/43/2021-vetmed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 01/10/2022] [Indexed: 08/06/2024] Open
Abstract
The objective of this review is to ascertain the advantages and disadvantages of several treatments and therapeutic protocols that have been used for the prevention and treatment of perinatal asphyxia in human neonates and in different animal models. Perinatal asphyxia is one of the main causes of mortality worldwide and is an important factor in triggering physio-metabolic disorders that result in serious neurological consequences and learning disorders not only in human foetuses and neonates, but also in animals. In recent years, the search for new pharmacological protocols to prevent and reverse physio-metabolic disorders and brain damage derived from perinatal asphyxia has been and continues to be the subject of intense research. Currently, within these pharmacological protocols, therapeutic strategies have been evaluated that use respiratory and hormonal stimulants, as well as hypothermic therapies in combination with other putative neuroprotective agents. Similarly, energy supplements have been evaluated with the objective of preventing perinatal asphyxia and treating new-borns with this condition, and to decrease the incidence of neonatal and foetal deaths associated with it. However, despite these promising advances, this pathology has persisted, since the administration of these therapies in low doses may not exert a neuroprotective effect or, in high doses, can trigger adverse effects (such as reduced cardiac contractility, reduced cerebral blood flow, poor perfusion, sympathetic and neuroendocrine stimulation, and increased blood viscosity) in human foetuses and neonates as well as in different animal models (rats, piglets, sheep and rabbits). Therefore, it is important to determine the minimum effective dose with which these therapies exert a neuroprotective effect, as well as the mode of administration, the duration of therapy, etc. Therefore, until a powerful strategy is found to improve the consequences of suffocation, this topic will continue to be the subject of intensive research in the future.
Collapse
Affiliation(s)
- Paloma Islas-Fabila
- Doctoral Program in Biological Sciences and Health, Universidad Autónoma Metropolitana, México City, México
| | | | - Patricia Roldan-Santiago
- Reproduction Department, Faculty of Veterinary Medicine and Zootechnics, Universidad Nacional Autónoma de México, México City, México
| | - Marilyn Waytula
- School of Veterinary Medicine and Zootechnics, Universidad del Valle de México, Coyoacán, Ciudad de México, México
| | | | - Xochil Vega-Manriquez
- Faculty of Agronomy and Veterinary, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | | | - Herlinda Bonilla-Jaime
- Department of Reproductive Biology, Universidad Autónoma Metropolitana, México City, México
| |
Collapse
|
11
|
Elliott M, Burnsed J, Heinan K, Letzkus L, Andris R, Fairchild K, Zanelli S. Effect of dexmedetomidine on heart rate in neonates with hypoxic ischemic encephalopathy undergoing therapeutic hypothermia. J Neonatal Perinatal Med 2022; 15:47-54. [PMID: 34334427 DOI: 10.3233/npm-210737] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
BACKGROUND Sedation is recommended to optimize neuroprotection in neonates with hypoxic ischemic encephalopathy (HIE) undergoing therapeutic hypothermia (TH). Dexmedetomidine is an alternative agent to opioids, which are commonly used but have adverse effects. Both TH and dexmedetomidine can cause bradycardia. In this study, we describe our experience with dexmedetomidine and fentanyl in neonates undergoing TH for HIE, with a focus on heart rate (HR). METHODS We performed a retrospective chart review from 2011-2019 at a level IV NICU comparing sedation with dexmedetomidine (n = 14), fentanyl (n = 120), or both (n = 32) during TH for HIE. HR trends were compared based on sedation and gestational age. Neonates were included if they underwent TH and received sedation and were excluded if cooling was initiated past 24hours (h) from birth or if they required ECMO. RESULTS Of the 166 neonates included, 46 received dexmedetomidine, 14 as monotherapy and 32 in combination with fentanyl. Mean hourly HR from 12-36 h after birth was significantly lower for infants on dexmedetomidine versus fentanyl monotherapy (91±9 vs. 103±11 bpm, p < 0.002). Dexmedetomidine was decreased or discontinued in 22 (47.8%) neonates, most commonly due to inadequate sedation with a low HR. Lower gestational age was associated with higher HR but no significant difference in dexmedetomidine-related HR trends. CONCLUSIONS Despite an association with lower HR, dexmedetomidine may be successfully used in neonates with HIE undergoing TH. Implementation of a standardized protocol may facilitate dexmedetomidine titration in this population.
Collapse
Affiliation(s)
- M Elliott
- Division of Neonatology, Department of Pediatrics, University of Virginia, Charlottesville, VA, USA
| | - J Burnsed
- Division of Neonatology, Department of Pediatrics, University of Virginia, Charlottesville, VA, USA
| | - K Heinan
- Division of Neurology, Department of Pediatrics, University of Virginia, Charlottesville, VA, USA
| | - L Letzkus
- Division of Developmental Pediatrics, Department of Pediatrics, University of Virginia, Charlottesville, VA, USA
| | - R Andris
- UVA School of Medicine, University of Virginia, Charlottesville, VA, USA
| | - K Fairchild
- Division of Neonatology, Department of Pediatrics, University of Virginia, Charlottesville, VA, USA
| | - S Zanelli
- Division of Neonatology, Department of Pediatrics, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
12
|
Nakstad B, Filippi V, Lusambili A, Roos N, Scorgie F, Chersich MF, Luchters S, Kovats S. How Climate Change May Threaten Progress in Neonatal Health in the African Region. Neonatology 2022; 119:644-651. [PMID: 35850106 DOI: 10.1159/000525573] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/31/2022] [Indexed: 11/19/2022]
Abstract
Climate change is likely to have wide-ranging impacts on maternal and neonatal health in Africa. Populations in low-resource settings already experience adverse impacts from weather extremes, a high burden of disease from environmental exposures, and limited access to high-quality clinical care. Climate change is already increasing local temperatures. Neonates are at high risk of heat stress and dehydration due to their unique metabolism, physiology, growth, and developmental characteristics. Infants in low-income settings may have little protection against extreme heat due to housing design and limited access to affordable space cooling. Climate change may increase risks to neonatal health from weather disasters, decreasing food security, and facilitating infectious disease transmission. Effective interventions to reduce risks from the heat include health education on heat risks for mothers, caregivers, and clinicians; nature-based solutions to reduce urban heat islands; space cooling in health facilities; and equitable improvements in housing quality and food systems. Reductions in greenhouse gas emissions are essential to reduce the long-term impacts of climate change that will further undermine global health strategies to reduce neonatal mortality.
Collapse
Affiliation(s)
- Britt Nakstad
- Department of Pediatric and Adolescent Health, University of Botswana, Gaborone, Botswana.,Division of Pediatric and Adolescent Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | | | - Adelaide Lusambili
- Institute for Human Development, The Aga Khan University, Nairobi, Kenya
| | - Nathalie Roos
- Department of Medicine, Clinical Epidemiology Division, Karolinska Institutet, Stockholm, Sweden
| | - Fiona Scorgie
- University of Witswatersand, Johannesburg, South Africa
| | | | - Stanley Luchters
- Institute for Human Development, The Aga Khan University, Nairobi, Kenya
| | - Sari Kovats
- Centre on Climate Change and Planetary Health, London School of Hygiene & Tropical Medicine, London, UK
| |
Collapse
|
13
|
Martini S, Castellini L, Parladori R, Paoletti V, Aceti A, Corvaglia L. Free Radicals and Neonatal Brain Injury: From Underlying Pathophysiology to Antioxidant Treatment Perspectives. Antioxidants (Basel) 2021; 10:2012. [PMID: 34943115 PMCID: PMC8698308 DOI: 10.3390/antiox10122012] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/09/2021] [Accepted: 12/16/2021] [Indexed: 01/23/2023] Open
Abstract
Free radicals play a role of paramount importance in the development of neonatal brain injury. Depending on the pathophysiological mechanisms underlying free radical overproduction and upon specific neonatal characteristics, such as the GA-dependent maturation of antioxidant defenses and of cerebrovascular autoregulation, different profiles of injury have been identified. The growing evidence on the detrimental effects of free radicals on the brain tissue has led to discover not only potential biomarkers for oxidative damage, but also possible neuroprotective therapeutic approaches targeting oxidative stress. While a more extensive validation of free radical biomarkers is required before considering their use in routine neonatal practice, two important treatments endowed with antioxidant properties, such as therapeutic hypothermia and magnesium sulfate, have become part of the standard of care to reduce the risk of neonatal brain injury, and other promising therapeutic strategies are being tested in clinical trials. The implementation of currently available evidence is crucial to optimize neonatal neuroprotection and to develop individualized diagnostic and therapeutic approaches addressing oxidative brain injury, with the final aim of improving the neurological outcome of this population.
Collapse
Affiliation(s)
- Silvia Martini
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy; (A.A.); (L.C.)
- Neonatal Intensive Care Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| | - Laura Castellini
- School of Medicine and Surgery, Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy;
| | - Roberta Parladori
- Specialty School of Pediatrics, Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy;
| | - Vittoria Paoletti
- Neonatal Intensive Care Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| | - Arianna Aceti
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy; (A.A.); (L.C.)
- Neonatal Intensive Care Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| | - Luigi Corvaglia
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy; (A.A.); (L.C.)
- Neonatal Intensive Care Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| |
Collapse
|
14
|
Lee BL, Glass HC. Cognitive outcomes in late childhood and adolescence of neonatal hypoxic-ischemic encephalopathy. Clin Exp Pediatr 2021; 64:608-618. [PMID: 34044480 PMCID: PMC8650814 DOI: 10.3345/cep.2021.00164] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 05/18/2021] [Indexed: 12/04/2022] Open
Abstract
Hypoxic-ischemic encephalopathy (HIE) is the most common cause of neonatal encephalopathy with a global incidence of approximately 1 to 8 per 1,000 live births. Neonatal encephalopathy can cause neurodevelopmental and cognitive impairments in survivors of hypoxic-ischemic insults with and without functional motor deficits. Normal neurodevelopmental outcomes in early childhood do not preclude cognitive and behavioral difficulties in late childhood and adolescence because cognitive functions are not yet fully developed at this early age. Therapeutic hypothermia has been shown to significantly reduced death and severe disabilities in term newborns with HIE. However, children treated with hypothermia therapy remain at risk for cognitive impairments and follow-up is necessary throughout late childhood and adolescence. Novel adjunctive neuroprotective therapies combined with therapeutic hypothermia may enhance the survival and neurodevelopmental outcomes of infants with HIE. The extent and severity of brain injury on magnetic resonance imaging might predict neurodevelopmental outcomes and lead to targeted interven tions in children with a history of neonatal encephalopathy. We provide a summary of the long-term cognitive outcomes in late childhood and adolescence in children with a history of HIE and the association between pattern of brain injury and neurodevelopmental outcomes.
Collapse
Affiliation(s)
- Bo Lyun Lee
- Department of Pediatrics, Inje University Busan Paik Hospital, Inje University College of Medicine, Busan, Korea
| | - Hannah C Glass
- Department of Neurology and Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA.,Department of Pediatrics, Benioff Children's Hospital, University of California San Francisco, San Francisco, CA, USA.,Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
15
|
Cosnahan AS, Angert RM, Jano E, Wachtel EV. Dexmedetomidine versus intermittent morphine for sedation of neonates with encephalopathy undergoing therapeutic hypothermia. J Perinatol 2021; 41:2284-2291. [PMID: 33649447 DOI: 10.1038/s41372-021-00998-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 01/20/2021] [Accepted: 02/04/2021] [Indexed: 02/05/2023]
Abstract
OBJECTIVE In March 2019, the sedative in the therapeutic hypothermia protocol at Bellevue Hospital Center and NYU Langone Health changed from morphine to dexmedetomidine. This study evaluated the impact of this change on efficacy and safety parameters. STUDY DESIGN This was a retrospective, observational cohort study including neonates with HIE undergoing therapeutic hypothermia (N = 70) at two regional perinatal medical centers. RESULTS Baseline demographics, pain scores, hemodynamics, and time to enteral feeds were similar between dexmedetomidine (N = 34) and morphine (N = 36) patients. Dexmedetomidine patients received more breakthrough morphine (0.13 ± 0.13 vs 0.04 ± 0.09 mg/kg, p = 0.001), but less cumulative morphine (0.13 ± 0.13 vs 1.79 ± 0.23 mg/kg, p < 0.0001). Morphine patients on invasive ventilation required increased support (0 vs 31.58%, p = 0.02). CONCLUSION Dexmedetomidine is effective and safe for sedation and analgesia during therapeutic hypothermia. It reduced total opioid usage, with no increased incidence of adverse events.
Collapse
Affiliation(s)
- Anna S Cosnahan
- Department of Pharmacy, Bellevue Hospital Center, New York, NY, USA.
| | - Robert M Angert
- Department of Pediatrics, NYU Grossman School of Medicine, New York, NY, USA
| | - Eni Jano
- Department of Pediatrics, NYU Grossman School of Medicine, New York, NY, USA
| | - Elena V Wachtel
- Department of Pediatrics, NYU Grossman School of Medicine, New York, NY, USA.,Department of Pediatrics, Bellevue Hospital Center, New York, NY, USA
| |
Collapse
|
16
|
Cardozo V, Vaamonde L, Parodi-Talice A, Zuluaga MJ, Agrati D, Portela M, Lima A, Blasina F, Dajas F, Bedó G. Multitarget neuroprotection by quercetin: Changes in gene expression in two perinatal asphyxia models. Neurochem Int 2021; 147:105064. [PMID: 33951501 DOI: 10.1016/j.neuint.2021.105064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 12/27/2022]
Abstract
Hypoxic-ischemic encephalopathy (HIE) causes mortality and long-term neurologic morbidities in newborns, affecting pathways related to energy failure, excitotoxicity and oxidative stress that often lead to cell death. The whole process of HIE injury is coupled to changes in the expression of a great array of proteins. A nanoliposomal preparation of the flavonoid quercetin has been shown to exert neuroprotective effects in perinatal asphyxia models. This study aimed to identify neonatal HIE markers and explore the effect of quercetin administration in two perinatal asphyxia models: newborn rats and piglets. In the rat model, nanoliposomal quercetin administration reduced mortality after asphyxia. In the piglet model, quercetin partially overrode the reduction of HIF-1α mRNA levels in the cortex induced by asphyxia. Quercetin administration also reduced increased level of HO-1 mRNA in asphyctic piglets. These results suggest that quercetin neuroprotection might be involved in the regulation of HIF-1α, HO-1 and their targets. A proteomic approach revealed that the glycolytic pathway is strongly regulated by quercetin in both species. We also identified a set of proteins differentially expressed that could be further considered as markers. In piglets, this set includes Acidic Leucine-rich nuclear phosphoprotein 32 (ANP32A), associated with nervous system differentiation, proteins related with death pathways and alpha-enolase which can be converted to neuron-specific enolase, a glycolytic enzyme that may promote neuroprotection. In newborn rats, other promising proteins associated with neurogenesis and neuroprotection emerged, such as dihydropyrimidinase-related proteins, catalytic and regulatory subunits of phosphatases and heterogeneous nuclear ribonucleoprotein K (hnRNPK). Our results show that a nanoliposomal preparation of quercetin, with protective effect in two HIE mammal models, modulates the expression of proteins involved in energy metabolism and other putative neuroprotective signals in the cortex. Identification of these signals could reveal potential molecular pathways involved in disease onset and the novel quercetin neuroprotective strategy.
Collapse
Affiliation(s)
- V Cardozo
- Sección Genética Evolutiva, Facultad de Ciencias, Universidad de la República (Udelar), Montevideo, Uruguay
| | - L Vaamonde
- Dept. Neonatología, Facultad de Medicina, Universidad de la República (Udelar), Montevideo, Uruguay
| | - A Parodi-Talice
- Sección Genética Evolutiva, Facultad de Ciencias, Universidad de la República (Udelar), Montevideo, Uruguay; Unidad de Biología Molecular, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - M J Zuluaga
- Sección Fisiología y Nutrición, Facultad de Ciencias, Universidad de la República (Udelar), Montevideo, Uruguay
| | - D Agrati
- Sección Fisiología y Nutrición, Facultad de Ciencias, Universidad de la República (Udelar), Montevideo, Uruguay
| | - M Portela
- Unidad de Bioquímica y Proteómica Analíticas, Institut Pasteur de Montevideo; Facultad de Ciencias, Universidad de la República (Udelar), Montevideo, Uruguay
| | - A Lima
- Unidad de Bioquímica y Proteómica Analíticas, Institut Pasteur de Montevideo; Instituto de Investigaciones Biológicas Clemente Estable, Ministerio de Educación y Cultura, Montevideo, Uruguay
| | - F Blasina
- Dept. Neonatología, Facultad de Medicina, Universidad de la República (Udelar), Montevideo, Uruguay.
| | - F Dajas
- Dept. Neuroquímica, Instituto de Investigaciones Biológicas Clemente Estable, Ministerio de Educación y Cultura, Montevideo, Uruguay
| | - G Bedó
- Sección Genética Evolutiva, Facultad de Ciencias, Universidad de la República (Udelar), Montevideo, Uruguay.
| |
Collapse
|
17
|
Carlton K, Cabacungan E, Adams SJ, Cohen SS. Quality improvement for reducing utilization drift in hypoxic-ischemic encephalopathy management. J Perinat Med 2021; 49:389-395. [PMID: 33141108 DOI: 10.1515/jpm-2020-0095] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 10/15/2020] [Indexed: 01/20/2023]
Abstract
OBJECTIVES Therapeutic hypothermia is an effective neuroprotective intervention for infants with moderate or severe hypoxic-ischemic encephalopathy (HIE). With the introduction of new medical therapy comes a learning curve with regards to its proper implementation and understanding of eligibility guidelines. We hypothesized that variation in patient selection and lack of adherence to established protocols contributed to the utilization drift away from the original eligibility guidelines. METHODS A retrospective cohort study was conducted including infants who received therapeutic hypothermia in the neonatal intensive care unit (NICU) for HIE to determine utilization drift. We then used QI methodology to address gaps in medical documentation that may lead to the conclusion that therapeutic hypothermia was inappropriately applied. RESULTS We identified 54% of infants who received therapeutic hypothermia who did not meet the clinical, physiologic, and neurologic examination criteria for this intervention based on provider admission and discharge documentation within the electronic medical record (EMR). Review of the charts identified incomplete documentation in 71% of cases and led to the following interventions: 1) implementation of EMR smartphrases; 2) engagement of key stakeholders and education of faculty, residents, and neonatal nurse practitioners; and 3) performance measurement and sharing of data. We were able to improve both adherence to the therapeutic hypothermia guidelines and achieve 100% documentation of the modified Sarnat score. CONCLUSIONS Incomplete documentation can lead to the assumption that therapeutic hypothermia was inappropriately applied when reviewing a patient's EMR. However, in actual clinical practice physicians follow the clinical guidelines but are not documenting their medical decision making completely. QI methodology addresses this gap in documentation, which will help determine the true utilization drift of therapeutic hypothermia in future studies.
Collapse
MESH Headings
- Clinical Reasoning
- Documentation/methods
- Documentation/standards
- Eligibility Determination/methods
- Eligibility Determination/standards
- Female
- Humans
- Hypothermia, Induced/methods
- Hypothermia, Induced/statistics & numerical data
- Hypoxia-Ischemia, Brain/epidemiology
- Hypoxia-Ischemia, Brain/therapy
- Infant, Newborn
- Infant, Newborn, Diseases/epidemiology
- Infant, Newborn, Diseases/therapy
- Intensive Care Units, Neonatal/standards
- Intensive Care Units, Neonatal/statistics & numerical data
- Male
- Practice Guidelines as Topic
- Procedures and Techniques Utilization/statistics & numerical data
- Quality Improvement/organization & administration
- Retrospective Studies
- United States/epidemiology
Collapse
Affiliation(s)
| | - Erwin Cabacungan
- Medical College of Wisconsin, Pediatrics, Milwaukee, Wisconsin, USA
| | - Samuel J Adams
- Medical College of Wisconsin, Neurology, Milwaukee, Wisconsin, USA
| | - Susan S Cohen
- Medical College of Wisconsin, Pediatrics, 999 N. 92nd Street, CCC 410, Milwaukee, 53226-0509, Milwaukee, Wisconsin, USA
| |
Collapse
|
18
|
Kao YCJ, Chen SH, Lu CF, Hsieh BY, Chen CY, Chang YC, Huang CC. Early neuroimaging and ultrastructural correlates of injury outcome after neonatal hypoxic-ischaemia. Brain Commun 2021; 3:fcab048. [PMID: 33981995 PMCID: PMC8103732 DOI: 10.1093/braincomms/fcab048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 01/12/2021] [Accepted: 02/11/2021] [Indexed: 11/16/2022] Open
Abstract
Hypoxic ischaemia encephalopathy is the major cause of brain injury in new-borns. However, to date, useful biomarkers which may be used to early predict neurodevelopmental impairment for proper commencement of hypothermia therapy is still lacking. This study aimed to determine whether the early neuroimaging characteristics and ultrastructural correlates were associated with different injury progressions and brain damage severity outcomes after neonatal hypoxic ischaemia. Longitudinal 7 T MRI was performed within 6 h, 24 h and 7 days after hypoxic ischaemia in rat pups. The brain damage outcome at 7 days post-hypoxic ischaemia assessed using histopathology and MRI were classified as mild, moderate and severe. We found there was a spectrum of different brain damage severity outcomes after the same duration of hypoxic ischaemia. The severity of brain damage determined using MRI correlated well with that assessed by histopathology. Quantitative MRI characteristics denoting water diffusivity in the tissue showed significant differences in the apparent diffusion coefficient deficit volume and deficit ratios within 6 h, at 24 h and 7 days after hypoxic ischaemia among the 3 different outcome groups. The susceptible brain areas to hypoxic ischaemia were revealed by the temporal changes in regional apparent diffusion coefficient values among three outcome groups. Within 6 h post-hypoxic ischaemia, a larger apparent diffusion coefficient deficit volume and deficit ratios and lower apparent diffusion coefficient values were highly associated with adverse brain damage outcome. In the apparent diffusion coefficient deficit areas detected early after hypoxic ischaemia which were highly associated with severe damage outcome, transmission electron microscopy revealed fragmented nuclei; swollen rough endoplasmic reticulum and degenerating mitochondria in the cortex and prominent myelin loss and axon detraction in the white matter. Taken together, different apparent diffusion coefficient patterns obtained early after hypoxic ischaemia are highly associated with different injury progression leading to different brain damage severity outcomes, suggesting the apparent diffusion coefficient characteristics may be applicable to early identify the high-risk neonates for hypothermia therapy.
Collapse
Affiliation(s)
- Yu-Chieh Jill Kao
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Seu-Hwa Chen
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Chia-Feng Lu
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Bao-Yu Hsieh
- Department of Medical Imaging and Radiological Sciences, College of Medicine, Chang-Gung University, Taoyuan 33302, Taiwan.,Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital, Linkou, Taoyuan 33305, Taiwan
| | - Cheng-Yu Chen
- Department of Radiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.,Department of Medical Imaging, Taipei Medical University Hospital, Taipei 11031, Taiwan
| | - Ying-Chao Chang
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Chao-Ching Huang
- Department of Pediatrics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70428, Taiwan.,Department of Pediatrics, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
19
|
Chen X, Song D, Nakada S, Qiu J, Iwamoto K, Chen RH, Lim YP, Jusko WJ, Stonestreet BS. Pharmacokinetics of Inter-Alpha Inhibitor Proteins and Effects on Hemostasis After Hypoxic-Ischemic Brain Injury in Neonatal Rats. Curr Pharm Des 2021; 26:3997-4006. [PMID: 32316887 DOI: 10.2174/1381612826666200421123242] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 04/08/2020] [Indexed: 12/31/2022]
Abstract
BACKGROUND Hypoxic-ischemic (HI) brain injury is a leading cause of long-term neurodevelopmental morbidities in neonates. Human plasma-derived Inter-Alpha Inhibitor Proteins (hIAIPs) are neuroprotective after HI brain injury in neonatal rats. The light chain (bikunin) of hIAIPs inhibits proteases involved in the coagulation of blood. Newborns exposed to HI can be at risk for significant bleeding in the brain and other organs. OBJECTIVE The objectives of the present study were to assess the pharmacokinetics (PK) and the duration of bleeding after intraperitoneal (IP) administration of hIAIPs in HI-exposed male and female neonatal rats. METHODS HI was induced with the Rice-Vannucci method in postnatal (P) day-7 rats. After the right common carotid artery ligation, rats were exposed to 90 min of 8% oxygen. hIAIPs (30 mg/kg, IP) were given immediately after Sham or HI exposure in the PK study and serum was collected 1, 6, 12, 24, or 36 h after the injections. Serum hIAIP concentrations were measured with a competitive ELISA. ADAPT5 software was used to fit the pooled PK data considering first-order absorption and disposition. hIAIPs (60 mg/kg, IP) were given in the bleeding time studies at 0, 24 and 48 h after HI with tail bleeding times measured 72 h after HI. RESULTS IP administration yielded significant systemic exposure to hIAIPs with PK being affected markedly including primarily faster absorption and reduced elimination as a result of HI and modestly of sex-related differences. hIAIP administration did not affect bleeding times after HI. CONCLUSION These results will help to inform hIAIP dosing regimen schedules in studies of neuroprotection in neonates exposed to HI.
Collapse
Affiliation(s)
- Xiaodi Chen
- Department of Pediatrics, Women & Infants Hospital of Rhode Island, The Alpert Medical School of Brown University, Providence, RI, United States
| | - Dawei Song
- School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, Buffalo, NY, United States
| | - Sakura Nakada
- Department of Pediatrics, Women & Infants Hospital of Rhode Island, The Alpert Medical School of Brown University, Providence, RI, United States
| | - Joseph Qiu
- ProThera Biologics, Inc., Providence, RI, United States
| | - Karin Iwamoto
- Department of Pediatrics, Women & Infants Hospital of Rhode Island, The Alpert Medical School of Brown University, Providence, RI, United States
| | - Ray H Chen
- Department of Pediatrics, Women & Infants Hospital of Rhode Island, The Alpert Medical School of Brown University, Providence, RI, United States
| | - Yow-Pin Lim
- ProThera Biologics, Inc., Providence, RI, United States
| | - William J Jusko
- School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, Buffalo, NY, United States
| | - Barbara S Stonestreet
- Department of Pediatrics, Women & Infants Hospital of Rhode Island, The Alpert Medical School of Brown University, Providence, RI, United States
| |
Collapse
|
20
|
Wang M, Rong Y, Luo L. Neuroprotective effects of icariin in neonatal hypoxia-ischemic brain damage via its anti-apoptotic property. Childs Nerv Syst 2021; 37:39-46. [PMID: 32671530 DOI: 10.1007/s00381-020-04690-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 05/18/2020] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Neonatal hypoxic-ischemic brain damage (HIBD) is a brain disease that is caused by perinatal asphyxia. Icariin (ICA), which is an active component of Epimedii (a Chinese medicinal herb), has been verified to demonstrate a wide range of therapeutic effects, such as alleviating various kinds of brain injury. OBJECTIVE The current study aims to examine the neuroprotective effects of ICA on neonatal HIBD in mice. MATERIALS AND METHODS A modified version of the Rice-Vannucci method was performed to establish neonatal HIBD in 7-day-old mouse pups that were pretreated with ICA or vehicle. The infarct volume was measured, and behavioral tests were conducted to assess the protective effects of ICA on the neonatal brain and to evaluate functional recovery after injury. TUNEL staining was used to detect cell apoptosis, and the levels of cleaved caspase-3 and phosphorylated protein kinase B (Akt) were determined by using Western blot. RESULTS We showed that pretreatment with ICA could significantly reduce brain damage, improve neurobehavioral outcomes, and suppress apoptotic cell death following HI injury. ICA reversed the HI-induced reduction in phosphorylated Akt and activation of cleaved caspase-3. CONCLUSION The results demonstrate that ICA exerts potential neuroprotective effects on neonatal HIBD, which may be mediated by its anti-apoptotic activity.
Collapse
Affiliation(s)
- Mengxia Wang
- Intensive Care Unit, Guangdong No. 2 Provincial People's Hospital, Guangzhou, 510317, People's Republic of China
| | - Ying Rong
- Intensive Care Unit, Guangdong No. 2 Provincial People's Hospital, Guangzhou, 510317, People's Republic of China
| | - Li Luo
- School of Biosciences & Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, People's Republic of China. .,Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangzhou, 510006, Guangdong, People's Republic of China.
| |
Collapse
|
21
|
Schuffels S, Nakada S, Wu Y, Lim YP, Chen X, Stonestreet BS. Effects of inter-alpha inhibitor proteins on brain injury after exposure of neonatal rats to severe hypoxia-ischemia. Exp Neurol 2020; 334:113442. [PMID: 32896573 DOI: 10.1016/j.expneurol.2020.113442] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/31/2020] [Accepted: 08/24/2020] [Indexed: 12/25/2022]
Abstract
Hypoxic-ischemic (HI) brain injury is one of the most common neurological problems occurring in premature and full-term infants after perinatal complications. Hypothermia is the only treatment approved for HI encephalopathy in newborns. However, this treatment is only partially protective, cannot be used to treat premature infants, and has limited efficacy to treat severe HI encephalopathy. Inflammation contributes to the evolution of HI brain injury in neonates. Inter-alpha Inhibitor Proteins (IAIPs) are immunomodulatory proteins that have neuroprotective properties after exposure to moderate HI in neonatal rats. The objective of the current study was to determine the neuroprotective efficacy of treatment with IAIPs starting immediately after or with a delay of one hour after exposure to severe HI of 120 min duration. One hundred and forty-six 7-day-old rat pups were randomized to sham control, HI and immediate treatment with IAIPs (60 mg/kg) or placebo (PL), and sham, HI and delayed treatment with IAIPs or PL. IAIPs or PL were given at zero, 24, and 48 h after HI or 1, 24 and 48 h after HI. Total brain infarct volume was determined 72 h after exposure to HI. Treatment with IAIPs immediately after HI decreased (P < 0.05) infarct volumes by 58.0% and 44.5% in male and female neonatal rats, respectively. Delayed treatment with IAIPs after HI decreased (P < 0.05) infarct volumes by 23.7% in male, but not in female rats. We conclude that IAIPs exert neuroprotective effects even after exposure to severe HI in neonatal rats and appear to exhibit some sex-related differential effects.
Collapse
Affiliation(s)
- Stephanie Schuffels
- Department of Pediatrics, Women & Infants Hospital of Rhode Island, The Alpert Medical School of Brown University, United States of America
| | - Sakura Nakada
- Department of Pediatrics, Women & Infants Hospital of Rhode Island, The Alpert Medical School of Brown University, United States of America
| | - Yuqi Wu
- Department of Pediatrics, Women & Infants Hospital of Rhode Island, The Alpert Medical School of Brown University, United States of America
| | - Yow-Pin Lim
- ProThera Biologics, Inc., Providence, RI, The Alpert Medical School of Brown University, Providence, RI, United States of America; Department of Pathology and Laboratory Medicine, The Alpert Medical School of Brown University, Providence, RI, United States of America
| | - Xiaodi Chen
- Department of Pediatrics, Women & Infants Hospital of Rhode Island, The Alpert Medical School of Brown University, United States of America.
| | - Barbara S Stonestreet
- Department of Pediatrics, Women & Infants Hospital of Rhode Island, The Alpert Medical School of Brown University, United States of America.
| |
Collapse
|
22
|
Montaldo P, Cunnington A, Oliveira V, Swamy R, Bandya P, Pant S, Lally PJ, Ivain P, Mendoza J, Atreja G, Padmesh V, Baburaj M, Sebastian M, Yasashwi I, Kamalarathnam C, Chandramohan R, Mangalabharathi S, Kumaraswami K, Kumar S, Benakappa N, Manerkar S, Mondhkar J, Prakash V, Sajjid M, Seeralar A, Jahan I, Moni SC, Shahidullah M, Sujatha R, Chandrasekaran M, Ramji S, Shankaran S, Kaforou M, Herberg J, Thayyil S. Transcriptomic profile of adverse neurodevelopmental outcomes after neonatal encephalopathy. Sci Rep 2020; 10:13100. [PMID: 32753750 PMCID: PMC7403382 DOI: 10.1038/s41598-020-70131-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 06/16/2020] [Indexed: 12/20/2022] Open
Abstract
A rapid and early diagnostic test to identify the encephalopathic babies at risk of adverse outcome may accelerate the development of neuroprotectants. We examined if a whole blood transcriptomic signature measured soon after birth, predicts adverse neurodevelopmental outcome eighteen months after neonatal encephalopathy. We performed next generation sequencing on whole blood ribonucleic acid obtained within six hours of birth from the first 47 encephalopathic babies recruited to the Hypothermia for Encephalopathy in Low and middle-income countries (HELIX) trial. Two infants with blood culture positive sepsis were excluded, and the data from remaining 45 were analysed. A total of 855 genes were significantly differentially expressed between the good and adverse outcome groups, of which RGS1 and SMC4 were the most significant. Biological pathway analysis adjusted for gender, trial randomisation allocation (cooling therapy versus usual care) and estimated blood leukocyte proportions revealed over-representation of genes from pathways related to melatonin and polo-like kinase in babies with adverse outcome. These preliminary data suggest that transcriptomic profiling may be a promising tool for rapid risk stratification in neonatal encephalopathy. It may provide insights into biological mechanisms and identify novel therapeutic targets for neuroprotection.
Collapse
Affiliation(s)
- Paolo Montaldo
- Department of Brain Sciences, Centre for Perinatal Neuroscience, Imperial College London, London, UK. .,Neonatal Unit, Università Degli Studi Della Campania "Luigi Vanvitelli", Naples, Italy.
| | - Aubrey Cunnington
- Paediatric Infectious Diseases, Department of Infectious Diseases, Imperial College London, London, UK
| | - Vania Oliveira
- Department of Brain Sciences, Centre for Perinatal Neuroscience, Imperial College London, London, UK
| | - Ravi Swamy
- Department of Brain Sciences, Centre for Perinatal Neuroscience, Imperial College London, London, UK
| | - Prathik Bandya
- Neonatal Medicine, Indira Gandhi Institute of Child Health, Bangalore, Karnataka, India
| | - Stuti Pant
- Department of Brain Sciences, Centre for Perinatal Neuroscience, Imperial College London, London, UK
| | - Peter J Lally
- Department of Brain Sciences, Centre for Perinatal Neuroscience, Imperial College London, London, UK
| | - Phoebe Ivain
- Department of Brain Sciences, Centre for Perinatal Neuroscience, Imperial College London, London, UK
| | - Josephine Mendoza
- Department of Brain Sciences, Centre for Perinatal Neuroscience, Imperial College London, London, UK
| | - Gaurav Atreja
- Department of Brain Sciences, Centre for Perinatal Neuroscience, Imperial College London, London, UK
| | - Vadakepat Padmesh
- Neonatal Medicine, Institute of Obstetrics and Gynaecology, Madras Medical College, Chennai, Tamil Nadu, India
| | - Mythili Baburaj
- Neonatal Medicine, Institute of Obstetrics and Gynaecology, Madras Medical College, Chennai, Tamil Nadu, India
| | - Monica Sebastian
- Neonatal Medicine, Institute of Child Health, Madras Medical College, Tamil Nadu, Chennai, India
| | - Indiramma Yasashwi
- Neonatal Medicine, Indira Gandhi Institute of Child Health, Bangalore, Karnataka, India
| | - Chinnathambi Kamalarathnam
- Neonatal Medicine, Institute of Obstetrics and Gynaecology, Madras Medical College, Chennai, Tamil Nadu, India
| | - Rema Chandramohan
- Neonatal Medicine, Institute of Obstetrics and Gynaecology, Madras Medical College, Chennai, Tamil Nadu, India
| | - Sundaram Mangalabharathi
- Neonatal Medicine, Institute of Obstetrics and Gynaecology, Madras Medical College, Chennai, Tamil Nadu, India
| | - Kumutha Kumaraswami
- Neonatal Medicine, Institute of Obstetrics and Gynaecology, Madras Medical College, Chennai, Tamil Nadu, India
| | - Shobha Kumar
- Neonatal Medicine, Institute of Obstetrics and Gynaecology, Madras Medical College, Chennai, Tamil Nadu, India
| | - Naveen Benakappa
- Neonatal Medicine, Indira Gandhi Institute of Child Health, Bangalore, Karnataka, India
| | | | | | - Vinayagam Prakash
- Neonatal Medicine, Institute of Obstetrics and Gynaecology, Madras Medical College, Chennai, Tamil Nadu, India
| | - Mohammed Sajjid
- Neonatal Medicine, Institute of Obstetrics and Gynaecology, Madras Medical College, Chennai, Tamil Nadu, India
| | - Arasar Seeralar
- Neonatal Medicine, Institute of Child Health, Madras Medical College, Tamil Nadu, Chennai, India
| | - Ismat Jahan
- Neonatal Medicine, Bangabandhu Sheikh Mujib Medical University, Dhaka, Bangladesh
| | | | - Mohammod Shahidullah
- Neonatal Medicine, Bangabandhu Sheikh Mujib Medical University, Dhaka, Bangladesh
| | - Radhika Sujatha
- Neonatal Medicine, Government Medical College, Thiruvananthapuram, Kerala, India
| | - Manigandan Chandrasekaran
- Department of Brain Sciences, Centre for Perinatal Neuroscience, Imperial College London, London, UK
| | - Siddarth Ramji
- Neonatal Medicine, Maulana Azad Medical College, New Delhi, Delhi, India
| | - Seetha Shankaran
- Neonatal-Perinatal Medicine, Wayne State University, Detroit, MI, USA
| | - Myrsini Kaforou
- Paediatric Infectious Diseases, Department of Infectious Diseases, Imperial College London, London, UK
| | - Jethro Herberg
- Paediatric Infectious Diseases, Department of Infectious Diseases, Imperial College London, London, UK
| | - Sudhin Thayyil
- Department of Brain Sciences, Centre for Perinatal Neuroscience, Imperial College London, London, UK
| |
Collapse
|
23
|
Abstract
Fetal Inflammatory Response Syndrome (FIRS) is the fetal counterpart of systemic inflammatory response syndrome (SIRS) described in adults. When the fetus is directly exposed to inflammation of the fetal membranes or the placental-fetal circulation, and organs are adversely affected, the disorder is known as FIRS. This syndrome can significantly affect multiple organs with significant short and long term implications for the newborn. In cases of neonatal encephalopathy when no obvious etiology is identified, FIRS needs to be considered. Based on the significant incidence of chorioamnionitis and its potential effects on the newborn, any evidence of maternal, fetal, or neonatal infection should mandate further evaluation of the placenta and membrane histopathology.
Collapse
Affiliation(s)
- Jonathan Muraskas
- Loyola University Medical Center, 2160 South 1st Avenue, Division of Neonatal and Perinatal Medicine, Maywood, IL, 60153, USA.
| | - Lauren Astrug
- Loyola University Medical Center, 2160 South 1st Avenue, Division of Neonatal and Perinatal Medicine, Maywood, IL, 60153, USA
| | - Sachin Amin
- Loyola University Medical Center, 2160 South 1st Avenue, Division of Neonatal and Perinatal Medicine, Maywood, IL, 60153, USA
| |
Collapse
|
24
|
Abstract
OBJECTIVES To investigate the effect of adding melatonin to hypothermia treatment on neurodevelopmental outcomes in asphyctic newborns. DESIGN Pilot multicenter, randomized, controlled, double-blind clinical trial. Statistical comparison of results obtained in two intervention arms: hypothermia plus placebo and hypothermia plus melatonin. SETTING Level 3 neonatal ICU. PATIENTS Twenty-five newborns were recruited. INTERVENTIONS The hypothermia plus melatonin patients received a daily dose of IV melatonin, 5 mg per kg body weight, for 3 days. General laboratory variables were measured both at neonatal ICU admission and after intervention. All infants were studied with amplitude-integrated electroencephalography and brain MRI within the first week of life. The neurodevelopmental Bayley III test, the Gross Motor Function Classification System, and the Tardieu scale were applied at the ages of 6 and 18 months. MEASUREMENTS AND MAIN RESULTS Clinical characteristics, laboratory evaluations, MRI findings, and amplitude-integrated electroencephalography background did not differ between the treatment groups. The newborns in the hypothermia plus melatonin group achieved a significantly higher composite score for the cognitive section of the Bayley III test at 18 months old, with respect to the hypothermia plus placebo group (p = 0.05). There were no differences between the groups according to the Gross Motor Function Classification System and Tardieu motor assessment scales. CONCLUSIONS The early addition of IV melatonin to asphyctic neonates is feasible and may improve long-term neurodevelopment. To our knowledge, this is the first clinical trial to analyze the administration of IV melatonin as an adjuvant therapy to therapeutic hypothermia.
Collapse
|
25
|
Smits A, Annaert P, Van Cruchten S, Allegaert K. A Physiology-Based Pharmacokinetic Framework to Support Drug Development and Dose Precision During Therapeutic Hypothermia in Neonates. Front Pharmacol 2020; 11:587. [PMID: 32477113 PMCID: PMC7237643 DOI: 10.3389/fphar.2020.00587] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 04/16/2020] [Indexed: 12/21/2022] Open
Abstract
Therapeutic hypothermia (TH) is standard treatment for neonates (≥36 weeks) with perinatal asphyxia (PA) and hypoxic-ischemic encephalopathy. TH reduces mortality and neurodevelopmental disability due to reduced metabolic rate and decreased neuronal apoptosis. Since both hypothermia and PA influence physiology, they are expected to alter pharmacokinetics (PK). Tools for personalized dosing in this setting are lacking. A neonatal hypothermia physiology-based PK (PBPK) framework would enable precision dosing in the clinic. In this literature review, the stepwise approach, benefits and challenges to develop such a PBPK framework are covered. It hereby contributes to explore the impact of non-maturational PK covariates. First, the current evidence as well as knowledge gaps on the impact of PA and TH on drug absorption, distribution, metabolism and excretion in neonates is summarized. While reduced renal drug elimination is well-documented in neonates with PA undergoing hypothermia, knowledge of the impact on drug metabolism is limited. Second, a multidisciplinary approach to develop a neonatal hypothermia PBPK framework is presented. Insights on the effect of hypothermia on hepatic drug elimination can partly be generated from in vitro (human/animal) profiling of hepatic drug metabolizing enzymes and transporters. Also, endogenous biomarkers may be evaluated as surrogate for metabolic activity. To distinguish the impact of PA versus hypothermia on drug metabolism, in vivo neonatal animal data are needed. The conventional pig is a well-established model for PA and the neonatal Göttingen minipig should be further explored for PA under hypothermia conditions, as it is the most commonly used pig strain in nonclinical drug development. Finally, a strategy is proposed for establishing and fine-tuning compound-specific PBPK models for this application. Besides improvement of clinical exposure predictions of drugs used during hypothermia, the developed PBPK models can be applied in drug development. Add-on pharmacotherapies to further improve outcome in neonates undergoing hypothermia are under investigation, all in need for dosing guidance. Furthermore, the hypothermia PBPK framework can be used to develop temperature-driven PBPK models for other populations or indications. The applicability of the proposed workflow and the challenges in the development of the PBPK framework are illustrated for midazolam as model drug.
Collapse
Affiliation(s)
- Anne Smits
- Neonatal Intensive Care Unit, University Hospitals Leuven, Leuven, Belgium
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Pieter Annaert
- Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Steven Van Cruchten
- Applied Veterinary Morphology, Department of Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - Karel Allegaert
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium
- Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
- Department of Clinical Pharmacy, Erasmus MC-Sophia Children's Hospital, Rotterdam, Netherlands
| |
Collapse
|
26
|
Martini S, Austin T, Aceti A, Faldella G, Corvaglia L. Free radicals and neonatal encephalopathy: mechanisms of injury, biomarkers, and antioxidant treatment perspectives. Pediatr Res 2020; 87:823-833. [PMID: 31655487 DOI: 10.1038/s41390-019-0639-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 09/19/2019] [Accepted: 09/22/2019] [Indexed: 12/11/2022]
Abstract
Neonatal encephalopathy (NE), most commonly a result of the disruption of cerebral oxygen delivery, is the leading cause of neurologic disability in term neonates. Given the key role of free radicals in brain injury development following hypoxia-ischemia-reperfusion, several oxidative biomarkers have been explored in preclinical and clinical models of NE. Among these, antioxidant enzyme activity, uric acid excretion, nitric oxide, malondialdehyde, and non-protein-bound iron have shown promising results as possible predictors of NE severity and outcome. Owing to high costs and technical complexity, however, their routine use in clinical practice is still limited. Several strategies aimed at reducing free radical production or upregulating physiological scavengers have been proposed for NE. Room-air resuscitation has proved to reduce oxidative stress following perinatal asphyxia and is now universally adopted. A number of medications endowed with antioxidant properties, such as melatonin, erythropoietin, allopurinol, or N-acetylcysteine, have also shown potential neuroprotective effects in perinatal asphyxia; nevertheless, further evidence is needed before these antioxidant approaches could be implemented as standard care.
Collapse
Affiliation(s)
- Silvia Martini
- Neonatology and Neonatal Intensive Care Unit, St. Orsola-Malpighi Hospital, Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy.
| | - Topun Austin
- Neonatal Intensive Care Unit, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Arianna Aceti
- Neonatology and Neonatal Intensive Care Unit, St. Orsola-Malpighi Hospital, Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Giacomo Faldella
- Neonatology and Neonatal Intensive Care Unit, St. Orsola-Malpighi Hospital, Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Luigi Corvaglia
- Neonatology and Neonatal Intensive Care Unit, St. Orsola-Malpighi Hospital, Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
27
|
Tharmapoopathy P, Chisholm P, Barlas A, Varsami M, Gupta N, Ekitzidou G, Ponnusamy V, Kappelou O, Evanson J, Rosser G, Shah DK. In clinical practice, cerebral MRI in newborns is highly predictive of neurodevelopmental outcome after therapeutic hypothermia. Eur J Paediatr Neurol 2020; 25:127-133. [PMID: 31882277 DOI: 10.1016/j.ejpn.2019.12.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 12/10/2019] [Accepted: 12/13/2019] [Indexed: 01/05/2023]
Abstract
OBJECTIVE In the trials, a substantial proportion of newborns who underwent therapeutic hypothermia (TH) had an adverse outcome after hypoxic-ischaemic encephalopathy (HIE). Cooled babies were noted to have fewer cerebral lesions on MRI but when present lesions were predictive of adverse outcome. We investigate the predictive value of cerebral MRI in babies who undergo cooling in the clinical setting outside of the clinical trials in a prospective UK cohort. RESULTS Of 75 babies recruited from four centres, neurodevelopment was available for 69 (92%) with 29% (20/69) being abnormal. The unfavourable MRI group (n = 22) had significantly lower motor (p < 0.001), language (p < 0.001) and cognition (p < 0.001) scores on Bayley-III assessment, compared to the favourable MRI group (n = 47). On multiple regression there was a significant relationship between basal ganglia and thalami abnormality and motor (p = 0.002), cognition (p = 0.011) and language (p = 0.013) outcomes. Half of the babies who had an MRI predictive of adverse outcome (11/22) had highest grade cerebral palsy. Cerebral MRI had 95% sensitivity, 94% specificity, 91% PPV and 98% NPV in predicting neurodevelopment. CONCLUSIONS In this clinical cohort, fewer children had adverse neurodevelopment after TH compared to the TH trials. However, half the children who had an MRI predictive of adverse ND outcome had the most severe form of cerebral palsy. In this cohort, cerebral MRI was found to be highly predictive of neurodevelopmental outcome.
Collapse
Affiliation(s)
- Pavithira Tharmapoopathy
- The Royal London Hospital, Barts Health NHS Trust, London, E1 1BB, UK; Centre for Neuroscience & Trauma, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, E1 2AT, UK
| | - Philippa Chisholm
- Homerton University Hospitals NHS Foundation Trust, London, E9 6SR, UK
| | - Akif Barlas
- The Royal London Hospital, Barts Health NHS Trust, London, E1 1BB, UK
| | - Marianna Varsami
- The Royal London Hospital, Barts Health NHS Trust, London, E1 1BB, UK
| | - Neelam Gupta
- University Hospital Southampton, Southampton, UK
| | - Georgia Ekitzidou
- Homerton University Hospitals NHS Foundation Trust, London, E9 6SR, UK
| | - Vennila Ponnusamy
- Ashford and St. Peter's Hospitals NHS Foundation Trust, Chertsey, UK; Centre for Genomics & Child Health, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, E1 2AT, UK
| | - Olga Kappelou
- Homerton University Hospitals NHS Foundation Trust, London, E9 6SR, UK
| | - Jane Evanson
- The Royal London Hospital, Barts Health NHS Trust, London, E1 1BB, UK
| | - Gabriel Rosser
- Centre for Genomics & Child Health, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, E1 2AT, UK
| | - Divyen K Shah
- The Royal London Hospital, Barts Health NHS Trust, London, E1 1BB, UK; Centre for Neuroscience & Trauma, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, E1 2AT, UK.
| |
Collapse
|
28
|
Dexmedetomidine Pharmacokinetics in Neonates with Hypoxic-Ischemic Encephalopathy Receiving Hypothermia. Anesthesiol Res Pract 2020; 2020:2582965. [PMID: 32158472 PMCID: PMC7060842 DOI: 10.1155/2020/2582965] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 12/26/2019] [Accepted: 01/16/2020] [Indexed: 01/05/2023] Open
Abstract
Dexmedetomidine is a promising sedative and analgesic for newborns with hypoxic-ischemic encephalopathy (HIE) undergoing therapeutic hypothermia (TH). Pharmacokinetics and safety of dexmedetomidine were evaluated in a phase I, single-center, open-label study to inform future trial strategies. We recruited 7 neonates ≥36 weeks' gestational age diagnosed with moderate-to-severe HIE, who received a continuous dexmedetomidine infusion during TH and the 6 h rewarming period. Time course of plasma dexmedetomidine concentration was characterized by serial blood sampling during and after the 64.8 ± 6.9 hours of infusion. Noncompartmental analysis yielded descriptive pharmacokinetic estimates: plasma clearance of 0.760 ± 0.155 L/h/kg, steady-state distribution volume of 5.22 ± 2.62 L/kg, and mean residence time of 6.84 ± 3.20 h. Naive pooled and population analyses according to a one-compartment model provided similar estimates of clearance and distribution volume. Overall, clearance was either comparable or lower, distribution volume was larger, and mean residence time or elimination half-life was longer in cooled newborns with HIE compared to corresponding estimates previously reported for uncooled (normothermic) newborns without HIE at comparable gestational and postmenstrual ages. As a result, plasma concentrations in cooled newborns with HIE rose more slowly in the initial hours of infusion compared to predicted concentration-time profiles based on reported pharmacokinetic parameters in normothermic newborns without HIE, while similar steady-state levels were achieved. No acute adverse events were associated with dexmedetomidine treatment. While dexmedetomidine appeared safe for neonates with HIE during TH at infusion doses up to 0.4 μg/kg/h, a loading dose strategy may be needed to overcome the initial lag in rise of plasma dexmedetomidine concentration.
Collapse
|
29
|
Üner IL, Johansen T, Dahle J, Persson M, Stiris T, Andresen JH. Therapeutic hypothermia and N-PASS; results from implementation in a level 3 NICU. Early Hum Dev 2019; 137:104828. [PMID: 31357084 DOI: 10.1016/j.earlhumdev.2019.104828] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/22/2019] [Accepted: 07/23/2019] [Indexed: 11/29/2022]
Abstract
BACKGROUND Neonates that have been subjected to perinatal asphyxia and fulfill criteria for therapeutic hypothermia are cooled to 33.5 °C for 72 h. There is no consensus regarding sedation and analgesic use during hypothermia, but there is evidence supporting the importance of pain relief and adequate sedation. There is a need for assessment of the neonates need for pain relief and sedation, and for adjustments of medication to ensure adequate treatment. There are many different scoring tools available. We found the N-PASS (Neonatal Pain, Agitation and Sedation Scale) scoring tool to be the most suitable for this patient group as it assesses both pain and sedation. METHODS We translated the scoring tool according to guidelines published by Wilder et al., and scored neonates treated with therapeutic hypothermia. Sedation and analgesia were adjusted according to scoring results. At the end of the study a questionnaire was filled out by the nurses in charge of this group of patients. RESULTS Both pain and sedation scores did not reach the desired levels until day 3. The nurses reported a high level of satisfaction (79.7% were extremely of very satisfied), and 96.7% of the nurses found the neonates to be better pain relieved after the initiation of the study. CONCLUSION The implementation of the N-PASS scoring tool in our unit has been successful, and has led to better pain relief and sedation than before the implementation.
Collapse
Affiliation(s)
| | - Tove Johansen
- Department of Neonatology, Oslo University Hospital, Norway.
| | - Julie Dahle
- Department of Neonatology, Oslo University Hospital, Norway.
| | - Mette Persson
- Department of Neonatology, Oslo University Hospital, Norway.
| | - Tom Stiris
- Department of Neonatology, Oslo University Hospital, Norway; Faculty of Medicine, University of Oslo, Norway.
| | | |
Collapse
|
30
|
Tharmapoopathy P, Chisholm P, Barlas A, Varsami M, Gupta N, Ekitzidou G, Ponnusamy V, Kappelou O, Evanson J, Rosser G, Shah DK. WITHDRAWN: In clinical practice, cerebral MRI in newborns is highly predictive of neurodevelopmental outcome after therapeutic hypothermia. Eur J Paediatr Neurol 2019:S1090-3798(19)30135-7. [PMID: 31563495 DOI: 10.1016/j.ejpn.2019.09.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 08/11/2019] [Accepted: 09/08/2019] [Indexed: 11/22/2022]
Abstract
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal.
Collapse
Affiliation(s)
- Pavithira Tharmapoopathy
- The Royal London Hospital, Barts Health NHS Trust, London, E1 1BB, UK; Centre for Neuroscience & Trauma, Blizard Institute, Barts, The London School of Medicine and Dentistry, Queen Mary University of London, London, E1 2AT, UK
| | - Philippa Chisholm
- Homerton University Hospitals NHS Foundation Trust, London, E9 6SR, UK
| | - Akif Barlas
- The Royal London Hospital, Barts Health NHS Trust, London, E1 1BB, UK
| | - Marianna Varsami
- The Royal London Hospital, Barts Health NHS Trust, London, E1 1BB, UK
| | - Neelam Gupta
- University Hospital Southampton, Southampton, UK
| | - Georgia Ekitzidou
- Homerton University Hospitals NHS Foundation Trust, London, E9 6SR, UK
| | - Vennila Ponnusamy
- Ashford and St. Peter's Hospitals NHS Foundation Trust, Chertsey, UK; Centre for Genomics & Child Health, Blizard Institute, Barts, The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK
| | - Olga Kappelou
- Homerton University Hospitals NHS Foundation Trust, London, E9 6SR, UK
| | - Jane Evanson
- The Royal London Hospital, Barts Health NHS Trust, London, E1 1BB, UK
| | - Gabriel Rosser
- Centre for Genomics & Child Health, Blizard Institute, Barts, The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK
| | - Divyen K Shah
- The Royal London Hospital, Barts Health NHS Trust, London, E1 1BB, UK; Centre for Neuroscience & Trauma, Blizard Institute, Barts, The London School of Medicine and Dentistry, Queen Mary University of London, London, E1 2AT, UK.
| |
Collapse
|
31
|
Kubrova E, Qu W, Galvan ML, Paradise CR, Yang J, Dietz AB, Dudakovic A, Smith J, van Wijnen AJ. Hypothermia and nutrient deprivation alter viability of human adipose-derived mesenchymal stem cells. Gene 2019; 722:144058. [PMID: 31494240 DOI: 10.1016/j.gene.2019.144058] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 08/17/2019] [Indexed: 12/11/2022]
Abstract
PURPOSE Adipose-derived mesenchymal stem cells (MSCs) are attractive biological agents in regenerative medicine. To optimize cell therapies, it is necessary to determine the most effective delivery method for MSCs. Therefore, we evaluated the biological properties of MSCs after exposure to various temperatures to define optimal storage conditions prior to therapeutic delivery of MSCs. DESIGN Prospective observational study. METHODS AND MATERIALS Adherent and non-adherent MSCs were incubated at multiple temperatures (i.e., 4, 23 and 37 °C) in Lactated Ringers (LR) solution lacking essential cell growth ingredients, or in culture media which is optimized for cell growth. Cells were assessed either after the temperature changes (4 h) or after recovery (24 h). Metabolic activity of MSCs, cell number and expression of representative mRNA biomarkers were evaluated to assess the biological effects of temperature. We monitored changes in mRNAs expression related to cytoprotective- or stress-related responses (e.g., FOS, JUN, ATF1, ATF4, EGR1, EGR2, MYC), proliferation (e.g., HIST2H4, CCNB2), and extracellular matrix production (ECM; e.g., COL3A1, COL1A1) by quantitative real time reverse-transcriptase polymerase chain reaction (RT-qPCR) analysis. RESULTS Our study demonstrates that storing MSCs in Lactated Ringers (LR) solution for 4 h decreases cell number and metabolic activity. The number of viable MSCs decreased significantly when cultured at physiological temperature (37 °C) and severe hypothermia (4 °C), while cells grown at ambient temperature (23 °C) exhibited the least detrimental effects. There were no appreciable biological differences in mRNA markers for proliferation or ECM deposition at any of the temperatures. However, biomarkers related to cytoprotective- or stress-responses were selectively elevated depending on temperature or media type (i.e., LR versus standard media). CONCLUSION The biological impact of nutrient-free media and temperature changes after 4 h exposure persists after a 24 h recovery period. Hence, storage temperature and media conditions should be optimized to improve effective dosing of MSCs.
Collapse
Affiliation(s)
- Eva Kubrova
- Department of Physical Medicine &Rehabilitation, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, United States of America; Department of Orthopedic Surgery, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, United States of America; Department of Biochemistry & Molecular Biology, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, United States of America
| | - Wenchun Qu
- Department of Physical Medicine &Rehabilitation, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, United States of America.
| | - M Lizeth Galvan
- Department of Orthopedic Surgery, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, United States of America; Department of Biochemistry & Molecular Biology, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, United States of America
| | - Christopher R Paradise
- Department of Orthopedic Surgery, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, United States of America; Center for Regenerative Medicine, Mayo Clinic, Rochester, MN, United States of America; Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, United States of America
| | - Juan Yang
- Department of Physical Medicine &Rehabilitation, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, United States of America
| | - Allan B Dietz
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States of America
| | - Amel Dudakovic
- Department of Orthopedic Surgery, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, United States of America; Department of Biochemistry & Molecular Biology, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, United States of America
| | - Jay Smith
- Department of Physical Medicine &Rehabilitation, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, United States of America
| | - Andre J van Wijnen
- Department of Orthopedic Surgery, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, United States of America; Department of Biochemistry & Molecular Biology, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, United States of America.
| |
Collapse
|
32
|
Liu W, Huang J, Doycheva D, Gamdzyk M, Tang J, Zhang JH. RvD1binding with FPR2 attenuates inflammation via Rac1/NOX2 pathway after neonatal hypoxic-ischemic injury in rats. Exp Neurol 2019; 320:112982. [PMID: 31247196 DOI: 10.1016/j.expneurol.2019.112982] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 04/29/2019] [Accepted: 06/22/2019] [Indexed: 12/19/2022]
Abstract
Neuroinflammation plays a crucial role in the pathological development after neonatal hypoxia-ischemia (HI). Resolvin D1 (RvD1), an agonist of formyl peptide receptor 2 (FPR2), has been shown to exert anti-inflammatory effects in many diseases. The objective of this study was to explore the protective role of RvD1 through reducing inflammation after HI and to study the contribution of Ras-related C3 botulinum toxin substrate 1 (Rac1)/nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 2 (NOX2) pathways in RvD1-mediated protection. Rat pups (10-day old) were subjected to HI or sham surgery. RvD1 was administrated by intraperitoneal injection 1 h after HI. FPR2 small interfering ribonucleic acid (siRNA) and Rac1 activation CRISPR were administered prior to RvD1 treatment to elucidate the possible mechanisms. Time course expression of FPR2 by Western blot and RvD1 by ELISA were conducted at 6 h, 12 h, 24 h, 48 h and 72 h post HI. Infarction area, short-term neurological deficits, immunofluorescent staining and Western blot were conducted at 24 h post HI. Long-term neurological behaviors were evaluated at 4 weeks post HI. Endogenous expression levels of RvD1 decreased in time dependent manner while the expression of FPR2 increased after HI, peaking at 24 h post HI. Activation of FPR2, with RvD1, reduced percent infarction area, and alleviated short- and long-term neurological deficits. Administration of RvD1 attenuated inflammation after HI, while, either inhibition of FPR2 with siRNA or activation of Rac1 with CRISPR reversed those effects. Our results showed that RvD1 attenuated neuroinflammation through FPR2, which then interacted with Rac1/NOX2 signaling pathway, thereby reducing infarction area and alleviating neurological deficits after HI in neonatal rat pups. RvD1 may be a potential therapeutic approach to reduce inflammation after HI.
Collapse
Affiliation(s)
- Wei Liu
- Department of Physiology, School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda, CA 92354, USA
| | - Juan Huang
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda, CA 92354, USA; Institute of Neuroscience, Chongqing Medical University, Chongqing 40016, China
| | - Desislava Doycheva
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda, CA 92354, USA
| | - Marcin Gamdzyk
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda, CA 92354, USA
| | - Jiping Tang
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda, CA 92354, USA
| | - John H Zhang
- Department of Physiology and Pharmacology, Basic Sciences, School of Medicine, Loma Linda, CA 92354, USA.
| |
Collapse
|
33
|
Wu M, Liu F, Guo Q. Quercetin attenuates hypoxia-ischemia induced brain injury in neonatal rats by inhibiting TLR4/NF-κB signaling pathway. Int Immunopharmacol 2019; 74:105704. [PMID: 31228815 DOI: 10.1016/j.intimp.2019.105704] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 05/22/2019] [Accepted: 06/13/2019] [Indexed: 01/05/2023]
Abstract
Neonatal hypoxic ischemia (HI) is a kind of brain damage that occurs when an infant's brain does not receive enough oxygen and blood. The unrepairable damage leads to newborn death and short/long term brain dysfunctions. Due to the complicated causes and the variety of brain damages, there is no definitive treatment of neonatal HI. In this study, we set up a HI injury model of newborn rat and administrated Quercetin (Que) to treat rat pups before and after HI injury. We performed immunohistochemistry, quantitative PCR and immunoblot experiments to examine whether Que. has a role in attenuating brain injury after HI. We found that Que. treatment could clearly attenuate cortical cell apoptosis, as well as suppress apoptosis marker Bax, and activate anti-apoptosis marker Bcl-2. Moreover, Que. treatment decreased the number of cortical cells microgliosis and astrogliosis induced by HI injury. Furthermore, Que. treatment decreased cortical inflammation. Finally, it is suggested that Que. played a neuroprotective function on HI brain injury via inhibiting the TLR4/NF-κB signaling pathway. From these results, we conclude that Que. treatment may be a used as a therapeutic drug to prevent and decrease the newborn brain damage caused by HI.
Collapse
Affiliation(s)
- Meiyan Wu
- The Second Hospital of Shandong University, No. 247, Beiyuan Street, Jinan 250033, Shandong, China
| | - Fengting Liu
- Yidu Central Hospital of Weifang, No. 4138 Linglongshan Road, Qingzhou 262500, Shandong, China
| | - Qinghui Guo
- The Second Hospital of Shandong University, No. 247, Beiyuan Street, Jinan 250033, Shandong, China.
| |
Collapse
|
34
|
Melatonin as a master regulator of cell death and inflammation: molecular mechanisms and clinical implications for newborn care. Cell Death Dis 2019; 10:317. [PMID: 30962427 PMCID: PMC6453953 DOI: 10.1038/s41419-019-1556-7] [Citation(s) in RCA: 173] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 03/19/2019] [Indexed: 12/11/2022]
Abstract
Melatonin, more commonly known as the sleep hormone, is mainly secreted by the pineal gland in dark conditions and regulates the circadian rhythm of the organism. Its intrinsic properties, including high cell permeability, the ability to easily cross both the blood–brain and placenta barriers, and its role as an endogenous reservoir of free radical scavengers (with indirect extra activities), confer it beneficial uses as an adjuvant in the biomedical field. Melatonin can exert its effects by acting through specific cellular receptors on the plasma membrane, similar to other hormones, or through receptor-independent mechanisms that involve complex molecular cross talk with other players. There is increasing evidence regarding the extraordinary beneficial effects of melatonin, also via exogenous administration. Here, we summarize molecular pathways in which melatonin is considered a master regulator, with attention to cell death and inflammation mechanisms from basic, translational and clinical points of view in the context of newborn care.
Collapse
|
35
|
Franco R, Villa M, Morales P, Reyes-Resina I, Gutiérrez-Rodríguez A, Jiménez J, Jagerovic N, Martínez-Orgado J, Navarro G. Increased expression of cannabinoid CB 2 and serotonin 5-HT 1A heteroreceptor complexes in a model of newborn hypoxic-ischemic brain damage. Neuropharmacology 2019; 152:58-66. [PMID: 30738036 DOI: 10.1016/j.neuropharm.2019.02.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 12/07/2018] [Accepted: 02/04/2019] [Indexed: 12/21/2022]
Abstract
Preclinical work shows cannabidiol as a promising drug to manage neonatal hypoxic-ischemic brain damage (NHIBD). The molecular mechanism is not well defined but the beneficial effects of this phytocannabinoid are blocked by antagonists of both cannabinoid CB2 (CB2R) and serotonin 5-HT1A (5-HT1AR) receptors that, in addition, may form heteromers in a heterologous expression system. Using bioluminescence energy transfer, we have shown a direct interaction of the two receptors that leads to a particular signaling in a heterologous system. A property attributed to the heteromer, namely cross-antagonism, was found in primary cultures of neurons thus indicating the occurrence of the receptor heteromer in the CNS. Oxygen-glucose deprivation to neurons led to an increase of CB2R-mediated signaling and an upregulation of CB2-5-HT1A heteroreceptor complex expression. In situ proximity ligation assays in brain cortical sections were performed to compare the expression of CB2-5-HT1A complexes in rat E20 fetuses and at different postnatal days. The expression, which is elevated in fetus and shortly after birth, was sharply reduced at later ages (even at P7). The expression of heteromer receptors was more marked in a model of NHIBD and, remarkably, the drop in expression was significantly delayed with respect to controls. These results indicate that CB2-5-HT1A heteroreceptor complex may be considered as a target in the therapy of the NHIBD. This article is part of the Special Issue entitled 'Receptor heteromers and their allosteric receptor-receptor interactions'.
Collapse
Affiliation(s)
- Rafael Franco
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED). Instituto de Salud Carlos III, Madrid, Spain; Molecular Neurobiology Laboratory, Department of Biochemistry and Molecular Biomedicine, Universitat de Barcelona, Barcelona, Spain.
| | - María Villa
- Fundación para la Investigación Biomédica del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Paula Morales
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Irene Reyes-Resina
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED). Instituto de Salud Carlos III, Madrid, Spain; Molecular Neurobiology Laboratory, Department of Biochemistry and Molecular Biomedicine, Universitat de Barcelona, Barcelona, Spain
| | - Ana Gutiérrez-Rodríguez
- Fundación para la Investigación Biomédica del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Jasmina Jiménez
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED). Instituto de Salud Carlos III, Madrid, Spain; Molecular Neurobiology Laboratory, Department of Biochemistry and Molecular Biomedicine, Universitat de Barcelona, Barcelona, Spain
| | - Nadine Jagerovic
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | | | - Gemma Navarro
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED). Instituto de Salud Carlos III, Madrid, Spain; Department of Biochemistry and Physiology. Facultat de Farmàcia. Universitat de Barcelona, Barcelona, Spain.
| |
Collapse
|
36
|
Li H, Tan X, Xue Q, Zhu JH, Chen G. Combined application of hypothermia and medical gases in cerebrovascular diseases. Med Gas Res 2019; 8:172-175. [PMID: 30713671 PMCID: PMC6352567 DOI: 10.4103/2045-9912.248269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 11/06/2018] [Indexed: 01/11/2023] Open
Abstract
Cerebrovascular diseases have a heavy burden on society and the family. At present, in the treatment of cerebrovascular diseases, the recognized effective treatment method is a thrombolytic therapy after cerebral infarction, but limited to the time window problem, many patients cannot benefit. Other treatments for cerebrovascular disease are still in the exploration stage. The study found that medical gas and hypothermia have brain protection effects. Further research found that when the two are used in combination, the therapeutic effect has a superimposed effect. This article reviews the current research progress of hypothermia therapy combined with medical gas therapy for cerebrovascular disease.
Collapse
Affiliation(s)
- Hao Li
- Department of Neurology, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Xin Tan
- Department of Neurology, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Qun Xue
- Department of Neurology, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Jue-Hua Zhu
- Department of Neurology, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Gang Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| |
Collapse
|
37
|
Nonomura M, Harada S, Asada Y, Matsumura H, Iwami H, Tanaka Y, Ichiba H. Combination therapy with erythropoietin, magnesium sulfate and hypothermia for hypoxic-ischemic encephalopathy: an open-label pilot study to assess the safety and feasibility. BMC Pediatr 2019; 19:13. [PMID: 30621649 PMCID: PMC6325796 DOI: 10.1186/s12887-018-1389-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 12/28/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Although therapeutic hypothermia improves the outcome of neonatal hypoxic-ischemic encephalopathy (HIE), its efficacy is still limited. This preliminary study evaluates the safety and feasibility of the combination therapy with erythropoietin (Epo), magnesium sulfate and hypothermia in neonates with HIE. METHODS A combination therapy with Epo (300 U/kg every other day for 2 weeks), magnesium sulfate (250 mg/kg for 3 days) and hypothermia was started within 6 h of birth in neonates who met the institutional criteria for hypothermia therapy. All patients received continuous infusion of dopamine. Vital signs and adverse events were recorded during the therapy. Short-term and long-term developmental outcomes were also evaluated. RESULTS Nine patients were included in the study. The mean age at first intervention was 3.9 h (SD, 0.5). Death, serious adverse events or changes in vital signs likely due to intervention were not observed during hospital care. All nine patients completed the therapy. At the time of hospital discharge, eight patients had established oral feeding and did not require ventilation support. Two patients had abnormal MRI findings. At 18 months of age, eight patients received a follow-up evaluation, and three of them showed signs of severe neurodevelopmental disability. CONCLUSION The combination therapy with 300 U/kg Epo every other day for 2 weeks, 250 mg/kg magnesium sulphate for 3 days and therapeutic hypothermia is feasible in newborn patients with HIE. TRIAL REGISTRATION ISRCTN33604417 retrospectively registered on 14 September 2018.
Collapse
Affiliation(s)
- Miho Nonomura
- Department of Neonatology, Osaka City General Hospital, 2-13-22 Miyakojima-hondori, Miyakojima-ku, Osaka, 534-0021, Japan
| | - Sayaka Harada
- Department of Neonatology, Osaka City General Hospital, 2-13-22 Miyakojima-hondori, Miyakojima-ku, Osaka, 534-0021, Japan
| | - Yuki Asada
- Department of Neonatology, Osaka City General Hospital, 2-13-22 Miyakojima-hondori, Miyakojima-ku, Osaka, 534-0021, Japan
| | - Hisako Matsumura
- Department of Neonatology, Osaka City General Hospital, 2-13-22 Miyakojima-hondori, Miyakojima-ku, Osaka, 534-0021, Japan
| | - Hiroko Iwami
- Department of Neonatology, Osaka City General Hospital, 2-13-22 Miyakojima-hondori, Miyakojima-ku, Osaka, 534-0021, Japan
| | - Yuko Tanaka
- Department of Neonatology, Osaka City General Hospital, 2-13-22 Miyakojima-hondori, Miyakojima-ku, Osaka, 534-0021, Japan
| | - Hiroyuki Ichiba
- Department of Neonatology, Osaka City General Hospital, 2-13-22 Miyakojima-hondori, Miyakojima-ku, Osaka, 534-0021, Japan.
| |
Collapse
|
38
|
Exogenous Neural Precursor Cell Transplantation Results in Structural and Functional Recovery in a Hypoxic-Ischemic Hemiplegic Mouse Model. eNeuro 2018; 5:eN-NWR-0369-18. [PMID: 30713997 PMCID: PMC6354788 DOI: 10.1523/eneuro.0369-18.2018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 09/24/2018] [Indexed: 12/13/2022] Open
Abstract
Cerebral palsy (CP) is a common pediatric neurodevelopmental disorder, frequently resulting in motor and developmental deficits and often accompanied by cognitive impairments. A regular pathobiological hallmark of CP is oligodendrocyte maturation impairment resulting in white matter (WM) injury and reduced axonal myelination. Regeneration therapies based on cell replacement are currently limited, but neural precursor cells (NPCs), as cellular support for myelination, represent a promising regeneration strategy to treat CP, although the transplantation parameters (e.g., timing, dosage, mechanism) remain to be determined. We optimized a hemiplegic mouse model of neonatal hypoxia-ischemia that mirrors the pathobiological hallmarks of CP and transplanted NPCs into the corpus callosum (CC), a major white matter structure impacted in CP patients. The NPCs survived, engrafted, and differentiated morphologically in male and female mice. Histology and MRI showed repair of lesioned structures. Furthermore, electrophysiology revealed functional myelination of the CC (e.g., restoration of conduction velocity), while cylinder and CatWalk tests demonstrated motor recovery of the affected forelimb. Endogenous oligodendrocytes, recruited in the CC following transplantation of exogenous NPCs, are the principal actors in this recovery process. The lack of differentiation of the transplanted NPCs is consistent with enhanced recovery due to an indirect mechanism, such as a trophic and/or “bio-bridge” support mediated by endogenous oligodendrocytes. Our work establishes that transplantation of NPCs represents a viable therapeutic strategy for CP treatment, and that the enhanced recovery is mediated by endogenous oligodendrocytes. This will further our understanding and contribute to the improvement of cellular therapeutic strategies.
Collapse
|
39
|
Koehler RC, Yang ZJ, Lee JK, Martin LJ. Perinatal hypoxic-ischemic brain injury in large animal models: Relevance to human neonatal encephalopathy. J Cereb Blood Flow Metab 2018; 38:2092-2111. [PMID: 30149778 PMCID: PMC6282216 DOI: 10.1177/0271678x18797328] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Perinatal hypoxia-ischemia resulting in death or lifelong disabilities remains a major clinical disorder. Neonatal models of hypoxia-ischemia in rodents have enhanced our understanding of cellular mechanisms of neural injury in developing brain, but have limitations in simulating the range, accuracy, and physiology of clinical hypoxia-ischemia and the relevant systems neuropathology that contribute to the human brain injury pattern. Large animal models of perinatal hypoxia-ischemia, such as partial or complete asphyxia at the time of delivery of fetal monkeys, umbilical cord occlusion and cerebral hypoperfusion at different stages of gestation in fetal sheep, and severe hypoxia and hypoperfusion in newborn piglets, have largely overcome these limitations. In monkey, complete asphyxia produces preferential injury to cerebellum and primary sensory nuclei in brainstem and thalamus, whereas partial asphyxia produces preferential injury to somatosensory and motor cortex, basal ganglia, and thalamus. Mid-gestational fetal sheep provide a valuable model for studying vulnerability of progenitor oligodendrocytes. Hypoxia followed by asphyxia in newborn piglets replicates the systems injury seen in term newborns. Efficacy of post-insult hypothermia in animal models led to the success of clinical trials in term human neonates. Large animal models are now being used to explore adjunct therapy to augment hypothermic neuroprotection.
Collapse
Affiliation(s)
- Raymond C Koehler
- 1 Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Zeng-Jin Yang
- 1 Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Jennifer K Lee
- 1 Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, MD, USA.,2 The Pathobiology Graduate Training Program, Johns Hopkins University, Baltimore, MD, USA
| | - Lee J Martin
- 2 The Pathobiology Graduate Training Program, Johns Hopkins University, Baltimore, MD, USA.,3 Department of Pathology, Division of Neuropathology, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
40
|
Cipolla-Neto J, Amaral FGD. Melatonin as a Hormone: New Physiological and Clinical Insights. Endocr Rev 2018; 39:990-1028. [PMID: 30215696 DOI: 10.1210/er.2018-00084] [Citation(s) in RCA: 358] [Impact Index Per Article: 51.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 06/21/2018] [Indexed: 02/07/2023]
Abstract
Melatonin is a ubiquitous molecule present in almost every live being from bacteria to humans. In vertebrates, besides being produced in peripheral tissues and acting as an autocrine and paracrine signal, melatonin is centrally synthetized by a neuroendocrine organ, the pineal gland. Independently of the considered species, pineal hormone melatonin is always produced during the night and its production and secretory episode duration are directly dependent on the length of the night. As its production is tightly linked to the light/dark cycle, melatonin main hormonal systemic integrative action is to coordinate behavioral and physiological adaptations to the environmental geophysical day and season. The circadian signal is dependent on its daily production regularity, on the contrast between day and night concentrations, and on specially developed ways of action. During its daily secretory episode, melatonin coordinates the night adaptive physiology through immediate effects and primes the day adaptive responses through prospective effects that will only appear at daytime, when melatonin is absent. Similarly, the annual history of the daily melatonin secretory episode duration primes the central nervous/endocrine system to the seasons to come. Remarkably, maternal melatonin programs the fetuses' behavior and physiology to cope with the environmental light/dark cycle and season after birth. These unique ways of action turn melatonin into a biological time-domain-acting molecule. The present review focuses on the above considerations, proposes a putative classification of clinical melatonin dysfunctions, and discusses general guidelines to the therapeutic use of melatonin.
Collapse
Affiliation(s)
- José Cipolla-Neto
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | |
Collapse
|
41
|
Barata L, Arruza L, Rodríguez MJ, Aleo E, Vierge E, Criado E, Sobrino E, Vargas C, Ceprián M, Gutiérrez-Rodríguez A, Hind W, Martínez-Orgado J. Neuroprotection by cannabidiol and hypothermia in a piglet model of newborn hypoxic-ischemic brain damage. Neuropharmacology 2018; 146:1-11. [PMID: 30468796 DOI: 10.1016/j.neuropharm.2018.11.020] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 10/31/2018] [Accepted: 11/13/2018] [Indexed: 01/22/2023]
Abstract
OBJECTIVE Hypothermia, the gold standard after a hypoxic-ischemic insult, is not beneficial in all treated newborns. Cannabidiol is neuroprotective in animal models of newborn hypoxic-ischemic encephalopathy. This study compared the relative efficacies of cannabidiol and hypothermia in newborn hypoxic-ischemic piglets and assessed whether addition of cannabidiol augments hypothermic neuroprotection. METHODS One day-old HI (carotid clamp and FiO2 10% for 20 min) piglets were randomized to vehicle or cannabidiol 1 mg/kg i.v. u.i.d. for three doses after being submitted to normothermia or 48 h-long hypothermia with a subsequent rewarming period of 6 h. Non-manipulated piglets (naïve) served as controls. Hemodynamic or respiratory parameters as well as brain activity (aEEG amplitude) were monitored throughout the experiment. Following termination, brains were obtained for histological (TUNEL staining, apoptosis; immunohistochemistry for Iba-1, microglia), biochemical (protein carbonylation, oxidative stress; and TNFα concentration, neuroinflammation) or proton magnetic resonance spectroscopy (Lac/NAA: metabolic derangement; Glu/NAA: excitotoxicity). RESULTS HI led to sustained depressed brain activity and increased microglial activation, which was significantly improved by cannabidiol alone or with hypothermia but not by hypothermia alone. Hypoxic-ischemic-induced increases in Lac/NAA, Glu/NAA, TNFα or apoptosis were not reversed by either hypothermia or cannabidiol alone, but combination of the therapies did. No treatment modified the effects of HI on oxidative stress or astroglial activation. Cannabidiol treatment was well tolerated. CONCLUSIONS cannabidiol administration after hypoxia-ischemia in piglets offers some neuroprotective effects but the combination of cannabidiol and hypothermia shows some additive effect leading to more complete neuroprotection than cannabidiol or hypothermia alone.
Collapse
Affiliation(s)
- Lorena Barata
- Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain; Instituto de Investigación Puerta de Hierro Majadahonda, Spain
| | - Luis Arruza
- Servicio de Neonatología, Hospital Clínico San Carlos - IdISSC, Madrid, Spain
| | | | - Esther Aleo
- Servicio de Neonatología, Hospital Clínico San Carlos - IdISSC, Madrid, Spain
| | - Eva Vierge
- Servicio de Neonatología, Hospital Clínico San Carlos - IdISSC, Madrid, Spain
| | - Enrique Criado
- Servicio de Neonatología, Hospital Clínico San Carlos - IdISSC, Madrid, Spain
| | - Elena Sobrino
- Instituto de Investigación Puerta de Hierro Majadahonda, Spain
| | - Carlos Vargas
- Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain
| | - María Ceprián
- Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain; Departamento de Bioquímica y Biología Molecular, CIBERNED, IRICYS. Facultad de Medicina, Universidad Complutense de Madrid, Spain
| | | | | | - José Martínez-Orgado
- Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain; Servicio de Neonatología, Hospital Clínico San Carlos - IdISSC, Madrid, Spain.
| |
Collapse
|
42
|
Korzeniewski SJ, Slaughter J, Lenski M, Haak P, Paneth N. The complex aetiology of cerebral palsy. Nat Rev Neurol 2018; 14:528-543. [PMID: 30104744 DOI: 10.1038/s41582-018-0043-6] [Citation(s) in RCA: 144] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Cerebral palsy (CP) is the most prevalent, severe and costly motor disability of childhood. Consequently, CP is a public health priority for prevention, but its aetiology has proved complex. In this Review, we summarize the evidence for a decline in the birth prevalence of CP in some high-income nations, describe the epidemiological evidence for risk factors, such as preterm delivery and fetal growth restriction, genetics, pregnancy infection and other exposures, and discuss the success achieved so far in prevention through the use of magnesium sulfate in preterm labour and therapeutic hypothermia for birth-asphyxiated infants. We also consider the complexities of disentangling prenatal and perinatal influences, and of establishing subtypes of the disorder, with a view to accelerating the translation of evidence into the development of strategies for the prevention of CP.
Collapse
Affiliation(s)
- Steven J Korzeniewski
- Department of Obstetrics & Gynecology, Wayne State University School of Medicine, Detroit, MI, USA.
| | - Jaime Slaughter
- Department of Health Systems and Sciences Research and Department of Epidemiology and Biostatistics, Drexel University, Philadelphia, PA, USA
| | - Madeleine Lenski
- Department of Epidemiology and Biostatistics, College of Human Medicine, Michigan State University, East Lansing, MI, USA
| | - Peterson Haak
- Michigan Department of Health and Human Services, Lansing, MI, USA
| | - Nigel Paneth
- Department of Epidemiology and Biostatistics, College of Human Medicine, Michigan State University, East Lansing, MI, USA
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
43
|
O'Mara K, Weiss MD. Dexmedetomidine for Sedation of Neonates with HIE Undergoing Therapeutic Hypothermia: A Single-Center Experience. AJP Rep 2018; 8:e168-e173. [PMID: 30186671 PMCID: PMC6123058 DOI: 10.1055/s-0038-1669938] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 04/24/2018] [Indexed: 01/06/2023] Open
Abstract
Hypoxic-ischemic encephalopathy (HIE) is a significant cause of morbidity and mortality in neonates. Therapeutic hypothermia reduces the risk of death or disability. Providing optimal sedation while neonates are undergoing therapeutic hypothermia is likely beneficial but may present therapeutic challenges. There are limited data describing the use of dexmedetomidine for sedation in patients undergoing therapeutic hypothermia. The objective of this study is to evaluate the efficacy and short-term safety of dexmedetomidine infusion for sedation in term neonates undergoing therapeutic hypothermia for HIE.
Collapse
Affiliation(s)
- Keliana O'Mara
- Department of Pharmacy, University of Florida Health Shands Hospital, University of Florida, Gainesville, Florida
| | - Michael D Weiss
- Department of Pediatrics, University of Florida, Gainesville, Florida
| |
Collapse
|
44
|
Affiliation(s)
- Stephanie L Bourque
- Department of Pediatrics, Section of Neonatology, University of Colorado, Aurora, CO, USA
| | - Robert M Dietz
- Department of Pediatrics, Section of Neonatology, University of Colorado, Aurora, CO, USA
| |
Collapse
|
45
|
Descripción de una cohorte de pacientes neonatos con diagnóstico de asfixia perinatal, tratados con hipotermia terapéutica. 2017. PERINATOLOGÍA Y REPRODUCCIÓN HUMANA 2018. [DOI: 10.1016/j.rprh.2018.07.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
46
|
Nuñez A, Benavente I, Blanco D, Boix H, Cabañas F, Chaffanel M, Fernández-Colomer B, Fernández-Lorenzo JR, Loureiro B, Moral MT, Pavón A, Tofé I, Valverde E, Vento M. Oxidative stress in perinatal asphyxia and hypoxic-ischaemic encephalopathy. An Pediatr (Barc) 2018. [DOI: 10.1016/j.anpede.2017.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
|
47
|
Procianoy RS, Corso AL, Longo MG, Vedolin L, Silveira RC. Therapeutic hypothermia for neonatal hypoxic-ischemic encephalopathy: magnetic resonance imaging findings and neurological outcomes in a Brazilian cohort. J Matern Fetal Neonatal Med 2018; 32:2727-2734. [DOI: 10.1080/14767058.2018.1448773] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Renato S. Procianoy
- Newborn Section, Department of Pediatrics, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Andrea Lucia Corso
- Newborn Section, Department of Pediatrics, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Maria Gabriela Longo
- Radiology Section, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Hospital Moinhos de Vento, Porto Alegre, Brazil
| | | | - Rita C. Silveira
- Newborn Section, Department of Pediatrics, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
48
|
Peripartum events associated with severe neurologic morbidity and mortality among acidemic neonates. Arch Gynecol Obstet 2018; 297:877-883. [PMID: 29335781 DOI: 10.1007/s00404-018-4657-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 01/09/2018] [Indexed: 10/18/2022]
Abstract
PURPOSE To identify peripartum events that may predict the development of short-term neurologic morbidity and mortality among acidemic neonates. METHODS Retrospective case-control study conducted at a single-teaching hospital on data from January 2010 to December 2015. The study cohort group included all acidemic neonates (cord artery pH ≤ 7.1) born at ≥ 34 weeks. Primary outcome was a composite including any of the following: neonatal encephalopathy, convulsions, intra-ventricular hemorrhage, or neonatal death. The study cohort was divided to the cases group, i.e., acidemic neonates who had any component of the primary outcome, and a control group, i.e., acidemic neonates who did not experience any component of the primary outcome. RESULTS Of all 24,311 neonates born ≥ 34 weeks during the study period, 568 (2.3%) had a cord artery pH ≤ 7.1 and composed the cohort study group. Twenty-one (3.7%) neonates composed the cases group. Multivariate logistic regression analysis revealed that cases were significantly more likely to have experienced placental abruption (OR 18.78; 95% CI 5.57-63.26), born ≤ 2500 g (OR 13.58; 95% CI 3.70-49.90), have meconium (OR 3.80; 95% CI 1.20-11.98) and cord entanglement (OR 5.99; 95% CI 1.79-20.06). The probability for developing the composite outcome rose from 3.7% with isolated acidemia to 97% among neonates who had all these peripartum events combined with intrapartum fetal heart rate tracing category 2 or 3. CONCLUSION Neonatal acidemia carries a favorable outcome in the vast majority of cases. In association with particular antenatal and intrapartum events, the short-term outcome may be unfavorable.
Collapse
|
49
|
Grandvuillemin I, Garrigue P, Ramdani A, Boubred F, Simeoni U, Dignat-George F, Sabatier F, Guillet B. Long-Term Recovery After Endothelial Colony-Forming Cells or Human Umbilical Cord Blood Cells Administration in a Rat Model of Neonatal Hypoxic-Ischemic Encephalopathy. Stem Cells Transl Med 2017; 6:1987-1996. [PMID: 28980775 PMCID: PMC6430056 DOI: 10.1002/sctm.17-0074] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 07/26/2017] [Indexed: 02/06/2023] Open
Abstract
Neonatal hypoxic‐ischemic encephalopathy (NHIE) is a dramatic perinatal complication, associated with poor neurological prognosis despite neuroprotection by therapeutic hypothermia, in the absence of an available curative therapy. We evaluated and compared ready‐to‐use human umbilical cord blood cells (HUCBC) and bankable but allogeneic endothelial progenitors (ECFC) as cell therapy candidate for NHIE. We compared benefits of HUCBC and ECFC transplantation 48 hours after injury in male rat NHIE model, based on the Rice‐Vannucci approach. Based on behavioral tests, immune‐histological assessment and metabolic imaging of brain perfusion using single photon emission computed tomography (SPECT), HUCBC, or ECFC administration provided equally early and sustained functional benefits, up to 8 weeks after injury. These results were associated with total normalization of injured hemisphere cerebral blood flow assessed by SPECT/CT imaging. In conclusion, even if ECFC represent an efficient candidate, HUCBC autologous criteria and easier availability make them the ideal candidate for hypoxic‐ischemic cell therapy. Stem Cells Translational Medicine2017;6:1987–1996
Collapse
Affiliation(s)
- Isabelle Grandvuillemin
- Aix Marseille Univ, INSERM, VRCM, UMR_1076, UFR de Pharmacie, Marseille, France.,APHM, CHU La Conception, Department of Neonatology, Marseille, France
| | - Philippe Garrigue
- Aix Marseille Univ, INSERM, VRCM, UMR_1076, UFR de Pharmacie, Marseille, France.,APHM, Radiopharmacy, Marseille, France.,CERIMED, Aix Marseille Univ, Marseille, France
| | - Alaa Ramdani
- Aix Marseille Univ, INSERM, VRCM, UMR_1076, UFR de Pharmacie, Marseille, France
| | - Farid Boubred
- Aix Marseille Univ, INSERM, VRCM, UMR_1076, UFR de Pharmacie, Marseille, France.,APHM, CHU La Conception, Department of Neonatology, Marseille, France
| | - Umberto Simeoni
- Division of Pediatrics, CHUV & University of Lausanne, Switzerland
| | | | - Florence Sabatier
- Aix Marseille Univ, INSERM, VRCM, UMR_1076, UFR de Pharmacie, Marseille, France.,APHM, CHU La Conception, Cell Culture and Therapy Laboratory, INSERM CBT-1409, Marseille, France
| | - Benjamin Guillet
- Aix Marseille Univ, INSERM, VRCM, UMR_1076, UFR de Pharmacie, Marseille, France.,APHM, Radiopharmacy, Marseille, France.,CERIMED, Aix Marseille Univ, Marseille, France
| |
Collapse
|
50
|
Newville J, Jantzie LL, Cunningham LA. Embracing oligodendrocyte diversity in the context of perinatal injury. Neural Regen Res 2017; 12:1575-1585. [PMID: 29171412 PMCID: PMC5696828 DOI: 10.4103/1673-5374.217320] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/12/2017] [Indexed: 12/18/2022] Open
Abstract
Emerging evidence is fueling a new appreciation of oligodendrocyte diversity that is overturning the traditional view that oligodendrocytes are a homogenous cell population. Oligodendrocytes of distinct origins, maturational stages, and regional locations may differ in their functional capacity or susceptibility to injury. One of the most unique qualities of the oligodendrocyte is its ability to produce myelin. Myelin abnormalities have been ascribed to a remarkable array of perinatal brain injuries, with concomitant oligodendrocyte dysregulation. Within this review, we discuss new insights into the diversity of the oligodendrocyte lineage and highlight their relevance in paradigms of perinatal brain injury. Future therapeutic development will be informed by comprehensive knowledge of oligodendrocyte pathophysiology that considers the particular facets of heterogeneity that this lineage exhibits.
Collapse
Affiliation(s)
- Jessie Newville
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Lauren L. Jantzie
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
- Department of Pediatrics, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Lee Anna Cunningham
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| |
Collapse
|