1
|
Villagrán-Silva F, Loren P, Sandoval C, Lanas F, Salazar LA. Circulating microRNAs as Potential Biomarkers of Overweight and Obesity in Adults: A Narrative Review. Genes (Basel) 2025; 16:349. [PMID: 40149500 PMCID: PMC11942292 DOI: 10.3390/genes16030349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 03/12/2025] [Accepted: 03/13/2025] [Indexed: 03/29/2025] Open
Abstract
In an obesogenic environment, such as the one we have been experiencing in recent decades, epigenetics provides answers to the relationship between hereditary and environmentally acquired patterns that have significantly contributed to the global rise in obesity prevalence. MicroRNA (miRNA) constitutes a diminutive non-coding small RNA molecule, 20 to 24 nucleotides in length, that functions as a regulator of gene regulation at the post-translational level. Circulating miRNAs (c-miRNAs) have been detected in multiple body fluids, including blood, plasma, serum, saliva, milk from breastfeeding mothers, and urine. These molecules hold significant therapeutic value and serve as extracellular biomarkers in metabolic diseases. They aid in the diagnosis and tracking of therapy responses, as well as dietary and physical habit modifications. Researchers have studied c-miRNAs as potential biomarkers for diagnosing and characterizing systemic diseases in people of all ages and backgrounds since then. These conditions encompass dyslipidemia, type 2 diabetes mellitus (T2DM), cardiovascular risk, metabolic syndrome, cardiovascular diseases, and obesity. This review therefore analyzes the usefulness of c-miRNAs as therapeutic markers over the past decades. It also provides an update on c-miRNAs associated with general obesity and overweight, as well as with the most prevalent pathologies in the adult population. It also examines the effect of different nutritional approaches and physical activity regarding the activity of miRNAs in circulation in adults with overweight or general obesity. All of this is done with the aim of evaluating their potential use as biomarkers in various research contexts related to overweight and obesity in adults.
Collapse
Affiliation(s)
- Francisca Villagrán-Silva
- Doctoral Program in Morphological Sciences, Faculty of Medicine, Universidad de la Frontera, Temuco 4811230, Chile;
- Center of Molecular Biology and Pharmacogenetics, Department of Basic Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco 4811230, Chile; (P.L.); (F.L.)
| | - Pía Loren
- Center of Molecular Biology and Pharmacogenetics, Department of Basic Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco 4811230, Chile; (P.L.); (F.L.)
| | - Cristian Sandoval
- Escuela de Tecnología Médica, Facultad de Salud, Universidad Santo Tomás, Los Carreras 753, Osorno 5310431, Chile;
- Department of Internal Medicine, Faculty of Medicine, Universidad de La Frontera, Temuco 4811230, Chile
| | - Fernando Lanas
- Center of Molecular Biology and Pharmacogenetics, Department of Basic Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco 4811230, Chile; (P.L.); (F.L.)
- Department of Internal Medicine, Faculty of Medicine, Universidad de La Frontera, Temuco 4811230, Chile
| | - Luis A. Salazar
- Center of Molecular Biology and Pharmacogenetics, Department of Basic Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco 4811230, Chile; (P.L.); (F.L.)
| |
Collapse
|
2
|
Yang Y, Huang B, Qin Y, Wang D, Jin Y, Su L, Wang Q, Pan Y, Zhang Y, Shen Y, Hu W, Cao Z, Jin L, Zhang F. Adipocyte microRNA-802 promotes adipose tissue inflammation and insulin resistance by modulating macrophages in obesity. eLife 2024; 13:e99162. [PMID: 39589393 DOI: 10.7554/elife.99162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 11/22/2024] [Indexed: 11/27/2024] Open
Abstract
Adipose tissue inflammation is now considered to be a key process underlying metabolic diseases in obese individuals. However, it remains unclear how adipose inflammation is initiated and maintained or the mechanism by which inflammation develops. We found that microRNA-802 (Mir802) expression in adipose tissue is progressively increased with the development of dietary obesity in obese mice and humans. The increasing trend of Mir802 preceded the accumulation of macrophages. Adipose tissue-specific knockout of Mir802 lowered macrophage infiltration and ameliorated systemic insulin resistance. Conversely, the specific overexpression of Mir802 in adipose tissue aggravated adipose inflammation in mice fed a high-fat diet. Mechanistically, Mir802 activates noncanonical and canonical NF-κB pathways by targeting its negative regulator, TRAF3. Next, NF-κB orchestrated the expression of chemokines and SREBP1, leading to strong recruitment and M1-like polarization of macrophages. Our findings indicate that Mir802 endows adipose tissue with the ability to recruit and polarize macrophages, which underscores Mir802 as an innovative and attractive candidate for miRNA-based immune therapy for adipose inflammation.
Collapse
Affiliation(s)
- Yue Yang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Bin Huang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Yimeng Qin
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Danwei Wang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Yinuo Jin
- NanJing HanKai Academy, Nanjing, China
| | - Linmin Su
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Qingxin Wang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Yi Pan
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Yanfeng Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Yumeng Shen
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Wenjun Hu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Zhengyu Cao
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Liang Jin
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Fangfang Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of life Science and Technology, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
3
|
Carrà G, Petiti J, Tolino F, Vacca R, Orso F. MicroRNAs in metabolism for precision treatment of lung cancer. Cell Mol Biol Lett 2024; 29:121. [PMID: 39256662 PMCID: PMC11384722 DOI: 10.1186/s11658-024-00632-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 08/12/2024] [Indexed: 09/12/2024] Open
Abstract
The dysregulation of miRNAs in lung cancer has been extensively documented, with specific miRNAs acting as both tumor suppressors and oncogenes, depending on their target genes. Recent research has unveiled the regulatory roles of miRNAs in key metabolic pathways, such as glycolysis, the tricarboxylic acid cycle, fatty acid metabolism, and autophagy, which collectively contribute to the aberrant energy metabolism characteristic of cancer cells. Furthermore, miRNAs are increasingly recognized as critical modulators of the tumor microenvironment, impacting immune response and angiogenesis. This review embarks on a comprehensive journey into the world of miRNAs, unraveling their multifaceted roles, and more notably, their emerging significance in the context of cancer, with a particular focus on lung cancer. As we navigate this extensive terrain, we will explore the fascinating realm of miRNA-mediated metabolic rewiring, a phenomenon that plays a pivotal role in the progression of lung cancer and holds promise in the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Giovanna Carrà
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy.
- San Luigi Gonzaga Hospital, Orbassano, Italy.
| | - Jessica Petiti
- Division of Advanced Materials Metrology and Life Sciences, Istituto Nazionale di Ricerca Metrologica (INRiM), 10135, Turin, Italy
| | - Federico Tolino
- Department of Translational Medicine (DIMET), University of Eastern Piedmont, Novara, Italy
| | - Rita Vacca
- Molecular Biotechnology Center "Guido Tarone", University of Torino, Turin, Italy
| | - Francesca Orso
- Department of Translational Medicine (DIMET), University of Eastern Piedmont, Novara, Italy.
| |
Collapse
|
4
|
Kim J, Seo M, Lim Y, Kim J. START: A Versatile Platform for Bacterial Ligand Sensing with Programmable Performances. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402029. [PMID: 39075726 PMCID: PMC11423158 DOI: 10.1002/advs.202402029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/31/2024] [Indexed: 07/31/2024]
Abstract
Recognition of signaling molecules for coordinated regulation of target genes is a fundamental process for biological systems. Cells often rely on transcription factors to accomplish these intricate tasks, yet the subtle conformational changes of protein structures, coupled with the complexity of intertwined protein interaction networks, pose challenges for repurposing these for bioengineering applications. This study introduces a novel platform for ligand-responsive gene regulation, termed START (Synthetic Trans-Acting Riboswitch with Triggering RNA). Inspired by the bacterial ligand sensing system, riboswitch, and the synthetic gene regulator, toehold switch, the START platform enables the implementation of synthetic biosensors for various ligands. Rational sequence design with targeted domain optimization yields high-performance STARTs with a dynamic range up to 67.29-fold and a tunable ligand sensitivity, providing a simple and intuitive strategy for sensor engineering. The START platform also exhibits modularity and composability to allow flexible genetic circuit construction, enabling seamless implementation of OR, AND, and NOT Boolean logic gates for multiple ligand inputs. The START design principle is capable of broadening the suite of synthetic biosensors for diverse chemical and protein ligands, providing a novel riboregulator chassis for synthetic biology and bioengineering applications.
Collapse
Affiliation(s)
- Jeongwon Kim
- Department of Life SciencesPohang University of Science and TechnologyPohang37673South Korea
| | - Minchae Seo
- Department of Life SciencesPohang University of Science and TechnologyPohang37673South Korea
| | - Yelin Lim
- Department of Life SciencesPohang University of Science and TechnologyPohang37673South Korea
| | - Jongmin Kim
- Department of Life SciencesPohang University of Science and TechnologyPohang37673South Korea
| |
Collapse
|
5
|
Qin C, Zhang J, Ma L. EMCMDA: predicting miRNA-disease associations via efficient matrix completion. Sci Rep 2024; 14:12761. [PMID: 38834687 DOI: 10.1038/s41598-024-63582-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 05/30/2024] [Indexed: 06/06/2024] Open
Abstract
Abundant researches have consistently illustrated the crucial role of microRNAs (miRNAs) in a wide array of essential biological processes. Furthermore, miRNAs have been validated as promising therapeutic targets for addressing complex diseases. Given the costly and time-consuming nature of traditional biological experimental validation methods, it is imperative to develop computational methods. In the work, we developed a novel approach named efficient matrix completion (EMCMDA) for predicting miRNA-disease associations. First, we calculated the similarities across multiple sources for miRNA/disease pairs and combined this information to create a holistic miRNA/disease similarity measure. Second, we utilized this biological information to create a heterogeneous network and established a target matrix derived from this network. Lastly, we framed the miRNA-disease association prediction issue as a low-rank matrix-complete issue that was addressed via minimizing matrix truncated schatten p-norm. Notably, we improved the conventional singular value contraction algorithm through using a weighted singular value contraction technique. This technique dynamically adjusts the degree of contraction based on the significance of each singular value, ensuring that the physical meaning of these singular values is fully considered. We evaluated the performance of EMCMDA by applying two distinct cross-validation experiments on two diverse databases, and the outcomes were statistically significant. In addition, we executed comprehensive case studies on two prevalent human diseases, namely lung cancer and breast cancer. Following prediction and multiple validations, it was evident that EMCMDA proficiently forecasts previously undisclosed disease-related miRNAs. These results underscore the robustness and efficacy of EMCMDA in miRNA-disease association prediction.
Collapse
Affiliation(s)
- Chao Qin
- School of Information Science and Engineering, Qilu Normal University, Jinan, 250200, China.
| | - Jiancheng Zhang
- School of Information Science and Engineering, Qilu Normal University, Jinan, 250200, China
| | - Lingyu Ma
- School of Control Science and Engineering, Harbin Institute of Technology, Weihai, 250200, China
| |
Collapse
|
6
|
Ding Y, Huang X, Ji T, Qi C, Gao X, Wei R. The emerging roles of miRNA-mediated autophagy in ovarian cancer. Cell Death Dis 2024; 15:314. [PMID: 38702325 PMCID: PMC11068799 DOI: 10.1038/s41419-024-06677-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/08/2024] [Accepted: 04/11/2024] [Indexed: 05/06/2024]
Abstract
Ovarian cancer is one of the common tumors of the female reproductive organs. It has a high mortality rate, is highly heterogeneous, and early detection and primary prevention are very complex. Autophagy is a cellular process in which cytoplasmic substrates are targeted for degradation in lysosomes through membrane structures called autophagosomes. The periodic elimination of damaged, aged, and redundant cellular molecules or organelles through the sequential translation between amino acids and proteins by two biological processes, protein synthesis, and autophagic protein degradation, helps maintain cellular homeostasis. A growing number of studies have found that autophagy plays a key regulatory role in ovarian cancer. Interestingly, microRNAs regulate gene expression at the posttranscriptional level and thus can regulate the development and progression of ovarian cancer through the regulation of autophagy in ovarian cancer. Certain miRNAs have recently emerged as important regulators of autophagy-related gene expression in cancer cells. Moreover, miRNA analysis studies have now identified a sea of aberrantly expressed miRNAs in ovarian cancer tissues that can affect autophagy in ovarian cancer cells. In addition, miRNAs in plasma and stromal cells in tumor patients can affect the expression of autophagy-related genes and can be used as biomarkers of ovarian cancer progression. This review focuses on the potential significance of miRNA-regulated autophagy in the diagnosis and treatment of ovarian cancer.
Collapse
Affiliation(s)
- Yamin Ding
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, China
| | - Xuan Huang
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, China
| | - Tuo Ji
- Institute of Clinical Oncology, The Second People's Hospital of Lianyungang City (Cancer Hospital of Lianyungang), Lianyungang, China
| | - Cong Qi
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, China
| | - Xuzhu Gao
- Institute of Clinical Oncology, The Second People's Hospital of Lianyungang City (Cancer Hospital of Lianyungang), Lianyungang, China.
| | - Rongbin Wei
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, China.
| |
Collapse
|
7
|
Agnihotri R, Gaur S, Bhat SG. Role of microRNAs in Diabetes-Associated Periodontitis: A Scoping Review. J Int Soc Prev Community Dent 2024; 14:180-191. [PMID: 39055291 PMCID: PMC11268527 DOI: 10.4103/jispcd.jispcd_3_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/19/2024] [Accepted: 04/24/2024] [Indexed: 07/27/2024] Open
Abstract
Aim Diabetes mellitus (DM), a metabolic disorder, exhibits a bidirectional relationship with periodontitis (PD), and recently, microRNAs (miRNAs) were associated with their progression. This review aims to assess the role of miRNAs in the pathogenesis of DM-associated PD and their plausible application as a biomarker for PD in individuals with DM. Materials and Methods The search conducted until September 2023 on Medline (Pubmed), Scopus, Embase, and Web of Science using the keywords "microRNA," "miRNA," or "miR," combined with "Diabetes" and "PD" yielded 100 articles. Only research focusing on the role of miRNAs in the pathogenesis of DM-associated PD and their potential application as biomarkers for both conditions were included. Finally, 14 studies were assessed for any bias, and the collected data included study design, sample size, participant groups, age, sample obtained, PD severity, miRNAs examined, clinical and biochemical parameters related to DM and PD, and primary outcomes. Results In vivo studies indicated altered expression of miRNAs-146a, -146b, -155, -200b, -203, and -223, specifically in the comorbid subjects with both conditions. Animal, ex vivo, and in vitro studies demonstrated altered expression of miRNAs-126, -147, -31, -25-3p, -508-3p, -214, 124-3p, -221, -222, and the SIRT6-miR-216/217 axis. These miRNAs impact innate and adaptive immune mechanisms, oxidative stress, hyperglycemia, and insulin sensitivity, thereby promoting periodontal destruction in DM. miRNA-146a emerges as a reliable biomarker of PD in DM, whereas miRNA-155 is a consistent predictor of PD in subjects without DM. Conclusions miRNAs exert influence on immuno-inflammation in DM-associated PD. Although they can be biomarkers of PD and DM, their clinical utility is hindered by the absence of standardized tests to evaluate their sensitivity and specificity. Moreover, there has been limited exploration of the role of miRNAs in DM-associated PD through human studies. Future clinical trials are warranted to address this gap, focusing on standardizing sample collection, miRNA sources, and detection methods. This approach will enable the identification of specific miRNAs for DM-associated PD.
Collapse
Affiliation(s)
- Rupali Agnihotri
- Department of Periodontology, Manipal College of Dental Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India
| | - Sumit Gaur
- Department of Pedodontics and Preventive Dentistry, Manipal College of Dental Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India
| | - Subraya Giliyar Bhat
- Department of Preventive Dental Science, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| |
Collapse
|
8
|
Zhou Z, Zhuo L, Fu X, Lv J, Zou Q, Qi R. Joint masking and self-supervised strategies for inferring small molecule-miRNA associations. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102103. [PMID: 38261851 PMCID: PMC10794920 DOI: 10.1016/j.omtn.2023.102103] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 12/13/2023] [Indexed: 01/25/2024]
Abstract
Inferring small molecule-miRNA associations (MMAs) is crucial for revealing the intricacies of biological processes and disease mechanisms. Deep learning, renowned for its exceptional speed and accuracy, is extensively used for predicting MMAs. However, given their heavy reliance on data, inaccuracies during data collection can make these methods susceptible to noise interference. To address this challenge, we introduce the joint masking and self-supervised (JMSS)-MMA model. This model synergizes graph autoencoders with a probability distribution-based masking strategy, effectively countering the impact of noisy data and enabling precise predictions of unknown MMAs. Operating in a self-supervised manner, it deeply encodes the relationship data of small molecules and miRNA through the graph autoencoder, delving into its latent information. Our masking strategy has successfully reduced data noise, enhancing prediction accuracy. To our knowledge, this is the pioneering integration of a masking strategy with graph autoencoders for MMA prediction. Furthermore, the JMSS-MMA model incorporates a node-degree-based decoder, deepening the understanding of the network's structure. Experiments on two mainstream datasets confirm the model's efficiency and precision, and ablation studies further attest to its robustness. We firmly believe that this model will revolutionize drug development, personalized medicine, and biomedical research.
Collapse
Affiliation(s)
- Zhecheng Zhou
- School of Data Science and Artificial Intelligence, Wenzhou University of Technology, Wenzhou 325027, China
| | - Linlin Zhuo
- School of Data Science and Artificial Intelligence, Wenzhou University of Technology, Wenzhou 325027, China
| | - Xiangzheng Fu
- College of Computer Science and Electronic Engineering, Hunan University, Changsha 410012, China
| | - Juan Lv
- College of Traditional Chinese Medicine, Changsha Medical University, Changsha 410000, China
| | - Quan Zou
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611730, China
| | - Ren Qi
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, Zhejiang, China
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
9
|
Neshan M, Tsilimigras DI, Han X, Zhu H, Pawlik TM. Molecular Mechanisms of Cachexia: A Review. Cells 2024; 13:252. [PMID: 38334644 PMCID: PMC10854699 DOI: 10.3390/cells13030252] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/18/2024] [Accepted: 01/28/2024] [Indexed: 02/10/2024] Open
Abstract
Cachexia is a condition characterized by substantial loss of body weight resulting from the depletion of skeletal muscle and adipose tissue. A considerable fraction of patients with advanced cancer, particularly those who have been diagnosed with pancreatic or gastric cancer, lung cancer, prostate cancer, colon cancer, breast cancer, or leukemias, are impacted by this condition. This syndrome manifests at all stages of cancer and is associated with an unfavorable prognosis. It heightens the susceptibility to surgical complications, chemotherapy toxicity, functional impairments, breathing difficulties, and fatigue. The early detection of patients with cancer cachexia has the potential to enhance both their quality of life and overall survival rates. Regarding this matter, blood biomarkers, although helpful, possess certain limitations and do not exhibit universal application. Additionally, the available treatment options for cachexia are currently limited, and there is a lack of comprehensive understanding of the underlying molecular pathways associated with this condition. Thus, this review aims to provide an overview of molecular mechanisms associated with cachexia and potential therapeutic targets for the development of effective treatments for this devastating condition.
Collapse
Affiliation(s)
- Mahdi Neshan
- Department of General Surgery, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd 8915887857, Iran;
| | - Diamantis I. Tsilimigras
- Department of Surgery, The Ohio State University Wexner Medical Center and James Comprehensive Cancer Center, Columbus, OH 43210, USA; (D.I.T.); (X.H.); (H.Z.)
| | - Xu Han
- Department of Surgery, The Ohio State University Wexner Medical Center and James Comprehensive Cancer Center, Columbus, OH 43210, USA; (D.I.T.); (X.H.); (H.Z.)
| | - Hua Zhu
- Department of Surgery, The Ohio State University Wexner Medical Center and James Comprehensive Cancer Center, Columbus, OH 43210, USA; (D.I.T.); (X.H.); (H.Z.)
| | - Timothy M. Pawlik
- Department of Surgery, The Ohio State University Wexner Medical Center and James Comprehensive Cancer Center, Columbus, OH 43210, USA; (D.I.T.); (X.H.); (H.Z.)
| |
Collapse
|
10
|
Fernandes JCR, Muxel SM, López-Gonzálvez MA, Barbas C, Floeter-Winter LM. Early Leishmania infectivity depends on miR-372/373/520d family-mediated reprogramming of polyamines metabolism in THP-1-derived macrophages. Sci Rep 2024; 14:996. [PMID: 38200138 PMCID: PMC10781704 DOI: 10.1038/s41598-024-51511-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 01/06/2024] [Indexed: 01/12/2024] Open
Abstract
Leishmania amazonensis is a protozoan that primarily causes cutaneous leishmaniasis in humans. The parasite relies on the amino acid arginine to survive within macrophages and establish infection, since it is a precursor for producing polyamines. On the other hand, arginine can be metabolized via nitric oxide synthase 2 (NOS2) to produce the microbicidal molecule nitric oxide (NO), although this mechanism does not apply to human macrophages since they lack NOS2 activity. MicroRNAs (miRNAs) are small noncoding RNAs that regulate gene expression at posttranscriptional levels. Our previous work showed that mmu-miR-294 targets Nos2 favoring Leishmania survival in murine macrophages. Here, we demonstrate that human macrophages upregulate the hsa-miR-372, hsa-miR-373, and hsa-miR-520d, which present the same seed sequence as the murine mmu-miR-294. Inhibition of the miR-372 impaired Leishmania survival in THP-1 macrophages and the effect was further enhanced with combinatorial inhibition of the miR-372/373/520d family, pointing to a cooperative mechanism. However, this reduction in survival is not caused by miRNA-targeting of NOS2, since the seed-binding motif found in mice is not conserved in the human 3'UTR. Instead, we showed the miR-372/373/520d family targeting the macrophage's main arginine transporter SLC7A2/CAT2 during infection. Arginine-related metabolism was markedly altered in response to infection and miRNA inhibition, as measured by Mass Spectrometry-based metabolomics. We found that Leishmania infection upregulates polyamines production in macrophages, as opposed to simultaneous inhibition of miR-372/373/520d, which decreased putrescine and spermine levels compared to the negative control. Overall, our study demonstrates miRNA-dependent modulation of polyamines production, establishing permissive conditions for intracellular parasite survival. Although the effector mechanisms causing host cell immunometabolic adaptations involve various parasite and host-derived signals, our findings suggest that the miR-372/373/520d family may represent a potential target for the development of new therapeutic strategies against cutaneous leishmaniasis.
Collapse
Affiliation(s)
- J C R Fernandes
- Instituto de Medicina Tropical da Faculdade de Medicina, Universidade de São Paulo (IMT-FMUSP), São Paulo, Brazil
- Instituto de Biociências, Universidade de São Paulo (IB-USP), São Paulo, Brazil
| | - S M Muxel
- Instituto de Ciências Biomédicas, Universidade de São Paulo (ICB-USP), São Paulo, Brazil
| | - M A López-Gonzálvez
- Centre for Metabolomics and Bioanalysis (CEMBIO), Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660, Boadilla del Monte, Madrid, Spain
| | - C Barbas
- Centre for Metabolomics and Bioanalysis (CEMBIO), Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660, Boadilla del Monte, Madrid, Spain
| | - L M Floeter-Winter
- Instituto de Biociências, Universidade de São Paulo (IB-USP), São Paulo, Brazil.
| |
Collapse
|
11
|
Al-Rawaf HA, Gabr SA, Iqbal A, Alghadir AH. Circulating microRNAs and hepcidin as predictors of iron homeostasis and anemia among school children: a biochemical and cross-sectional survey analysis. Eur J Med Res 2023; 28:595. [PMID: 38102707 PMCID: PMC10724951 DOI: 10.1186/s40001-023-01579-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 12/07/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) can control several biological processes. Thus, the existence of these molecules plays a significant role in regulating human iron metabolism or homeostasis. PURPOSE The study aimed to determine the role of circulating microRNAs and hepcidin in controlling iron homeostasis and evaluating possible anemia among school children. METHODS The study was based on a biochemical and cross-sectional survey study that included three hundred fifty school children aged 12-18 years old. RT-PCR and immunoassay analysis were accomplished to estimate iron concentration, Hgb, serum ferritin (SF), soluble transferrin receptor (sTfR), total body iron stores (TIBs), total oxidative stress (TOS), total antioxidant capacity (TAC), α-1-acid glycoprotein (AGP), high sensitive C-reactive protein (hs-CRP), and miRNAs; miR-146a, miR-129b, and miR-122 in 350 school adolescents. RESULTS Iron disorders were cross-sectionally predicted in 28.54% of the study population; they were classified into 14.26% with ID, 5.7% with IDA, and 8.6% with iron overload. The overall proportion of iron depletion was significantly higher in girls (20.0%) than in boys (8.6%). MicroRNAs; miR-146a, miR-125b, and miR-122 were significantly upregulated with lower hepcidin expression in adolescence with ID and IDA compared to iron-overloaded subjects, whereas downregulation of these miRNAs was linked with higher hepcidin. Also, a significant correlation was recorded between miRNAs, hepcidin levels, AGP, hs-CRP, TAC, and other iron-related indicators. CONCLUSION Molecular microRNAs such as miR-146a, miR-125b, and miR-122 were shown to provide an additional means of controlling or regulating cellular iron uptake or metabolism either via the oxidative stress pathway or regulation of hepcidin expression via activating genes encoding Hfe and Hjv activators, which promote iron regulation. Thus, circulating miRNAs as molecular markers and serum hepcidin could provide an additional means of controlling or regulating cellular iron and be associated as valuable markers in diagnosing and treating cases with different iron deficiencies.
Collapse
Affiliation(s)
- Hadeel A Al-Rawaf
- Departments of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
- Rehabilitation Research Chair, Department of Rehabilitation Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Sami A Gabr
- Rehabilitation Research Chair, Department of Rehabilitation Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Amir Iqbal
- Rehabilitation Research Chair, Department of Rehabilitation Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia.
| | - Ahmad H Alghadir
- Rehabilitation Research Chair, Department of Rehabilitation Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
12
|
Letelier P, Saldías R, Loren P, Riquelme I, Guzmán N. MicroRNAs as Potential Biomarkers of Environmental Exposure to Polycyclic Aromatic Hydrocarbons and Their Link with Inflammation and Lung Cancer. Int J Mol Sci 2023; 24:16984. [PMID: 38069307 PMCID: PMC10707120 DOI: 10.3390/ijms242316984] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/26/2023] [Accepted: 10/28/2023] [Indexed: 12/18/2023] Open
Abstract
Exposure to atmospheric air pollution containing volatile organic compounds such as polycyclic aromatic hydrocarbons (PAHs) has been shown to be a risk factor in the induction of lung inflammation and the initiation and progression of lung cancer. MicroRNAs (miRNAs) are small single-stranded non-coding RNA molecules of ~20-22 nucleotides that regulate different physiological processes, and their altered expression is implicated in various pathophysiological conditions. Recent studies have shown that the regulation of gene expression of miRNAs can be affected in diseases associated with outdoor air pollution, meaning they could also be useful as biomarkers of exposure to environmental pollution. In this article, we review the published evidence on miRNAs in relation to exposure to PAH pollution and discuss the possible mechanisms that may link these compounds with the expression of miRNAs.
Collapse
Affiliation(s)
- Pablo Letelier
- Laboratorio de Investigación en Salud de Precisión, Departamento de Procesos Diagnósticos y Evaluación, Facultad de Ciencias de la Salud, Universidad Católica de Temuco, Temuco 4813302, Chile; (R.S.); (N.G.)
| | - Rolando Saldías
- Laboratorio de Investigación en Salud de Precisión, Departamento de Procesos Diagnósticos y Evaluación, Facultad de Ciencias de la Salud, Universidad Católica de Temuco, Temuco 4813302, Chile; (R.S.); (N.G.)
| | - Pía Loren
- Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco 4811230, Chile;
| | - Ismael Riquelme
- Institute of Biomedical Sciences, Faculty of Health Sciences, Universidad Autónoma de Chile, Temuco 4810101, Chile;
| | - Neftalí Guzmán
- Laboratorio de Investigación en Salud de Precisión, Departamento de Procesos Diagnósticos y Evaluación, Facultad de Ciencias de la Salud, Universidad Católica de Temuco, Temuco 4813302, Chile; (R.S.); (N.G.)
| |
Collapse
|
13
|
Zhang JY, Ren CQ, Cao YN, Ren Y, Zou L, Zhou C, Peng LX. Role of MicroRNAs in Dietary Interventions for Obesity and Obesity-Related Diseases. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:14396-14412. [PMID: 37782460 DOI: 10.1021/acs.jafc.3c03042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Obesity and related metabolic syndromes pose a serious threat to human health and quality of life. A proper diet is a safe and effective strategy to prevent and control obesity, thus maintaining overall health. However, no consensus exists on the connotations of proper diet, and it is attributed to various factors, including "nutritional dark matter" and the "matrix effect" of food. Accumulating evidence confirms that obesity is associated with the in vivo levels of miRNAs, which serve as potential markers and regulatory targets for obesity onset and progression; food-derived miRNAs can regulate host obesity by targeting the related genes or gut microbiota across the animal kingdom. Host miRNAs mediate food nutrient-gut microbiota-obesity interactions. Thus, miRNAs are important correlates of diet and obesity onset. This review outlines the recent findings on miRNA-mediated food interventions for obesity, thereby elucidating their potential applications. Overall, we provide new perspectives and views on the evaluation of dietary nutrition, which may bear important implications for dietary control and obesity prevention.
Collapse
Affiliation(s)
- Ji-Yue Zhang
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, Sichuan Province Engineering Technology Research Center of Coarse Cereal Industrialization, Chengdu University, Chengdu 610106, People's Republic of China
| | - Chao-Qin Ren
- Aba Teachers University, Wenchuan, Sichuan 623002, People's Republic of China
| | - Ya-Nan Cao
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, Sichuan Province Engineering Technology Research Center of Coarse Cereal Industrialization, Chengdu University, Chengdu 610106, People's Republic of China
| | - Yuanhang Ren
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, Sichuan Province Engineering Technology Research Center of Coarse Cereal Industrialization, Chengdu University, Chengdu 610106, People's Republic of China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, Sichuan Province Engineering Technology Research Center of Coarse Cereal Industrialization, Chengdu University, Chengdu 610106, People's Republic of China
| | - Chuang Zhou
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, Sichuan Province Engineering Technology Research Center of Coarse Cereal Industrialization, Chengdu University, Chengdu 610106, People's Republic of China
| | - Lian-Xin Peng
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, Sichuan Province Engineering Technology Research Center of Coarse Cereal Industrialization, Chengdu University, Chengdu 610106, People's Republic of China
| |
Collapse
|
14
|
Tucak-Smajić A, Ruseska I, Letofsky-Papst I, Vranić E, Zimmer A. Development and Characterization of Cationic Nanostructured Lipid Carriers as Drug Delivery Systems for miRNA-27a. Pharmaceuticals (Basel) 2023; 16:1007. [PMID: 37513917 PMCID: PMC10384247 DOI: 10.3390/ph16071007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Although miRNA-27a has been identified as a promising candidate for miRNA mimic therapy of obesity, its application is limited due to enzymatic degradation and low membrane permeation. To overcome these problems, we developed cationic nanostructured lipid carriers (cNLCs) using high-pressure homogenization and used them as non-viral carriers for the anti-adipogenic miRNA-27a. Cargo-free octadecylamine-containing NLCs and miRNA/cNLC complexes were characterized regarding particle size, size distributions, zeta potential, pH values, particle topography and morphology, and entrapment efficacy. Furthermore, the cytotoxicity and cellular uptake of the miRNA/cNLC complex in the 3T3-L1 cell line were investigated. The investigation of the biological effect of miRNA-27a on adipocyte development and an estimation of the accumulated Oil-Red-O (ORO) dye in lipid droplets in mature adipocytes were assessed with light microscopy and absorbance measurements. The obtained data show that cNLCs represent a suitable DDS for miRNAs, as miRNA/cNLC particles are rapidly formed through non-covalent complexation due to electrostatic interactions between both components. The miRNA-27a/cNLC complex induced an anti-adipogenic effect on miRNA-27a by reducing lipid droplet accumulation in mature adipocytes, indicating that this approach might be used as a new therapeutic strategy for miRNA mimic replacement therapies in the prevention or treatment of obesity and obesity-related disorders.
Collapse
Affiliation(s)
- Amina Tucak-Smajić
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Sarajevo, Zmaja od Bosne 8, 71000 Sarajevo, Bosnia and Herzegovina
| | - Ivana Ruseska
- Department of Pharmaceutical Technology and Biopharmacy, Institute of Pharmaceutical Sciences, University of Graz, Universitätsplatz 1, 8010 Graz, Austria
| | - Ilse Letofsky-Papst
- Institute of Electron Microscopy and Nanoanalysis, Center for Electron Microscopy, Graz University of Technology, NAWI Graz, Steyrergasse 17, 8010 Graz, Austria
| | - Edina Vranić
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Sarajevo, Zmaja od Bosne 8, 71000 Sarajevo, Bosnia and Herzegovina
| | - Andreas Zimmer
- Department of Pharmaceutical Technology and Biopharmacy, Institute of Pharmaceutical Sciences, University of Graz, Universitätsplatz 1, 8010 Graz, Austria
| |
Collapse
|
15
|
Sun W, Ma S, Jin X, Ma Y. Combined analysis of mRNA-miRNA from testis tissue in Tibetan sheep with different FecB genotypes. Open Life Sci 2023; 18:20220605. [PMID: 37250847 PMCID: PMC10224625 DOI: 10.1515/biol-2022-0605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/24/2023] [Accepted: 03/26/2023] [Indexed: 05/31/2023] Open
Abstract
Testis size is important for identifying breeding animals with adequate sperm production. The aim of this study was to survey the expression profile of mRNA and miRNA in testis tissue from rams carrying different FecB genotypes, including the wild-type and heterozygous genotypes in Tibetan sheep. Comparative transcriptome profiles for ovine testes were established for wild-type and heterozygote Tibetan sheep by next-generation sequencing. RNA-seq results identified 3,910 (2,034 up- and 1,876 downregulated) differentially expressed (DE) genes and 243 (158 up- and 85 downregulated) DE microRNAs (miRNAs) in wild-type vs heterozygote sheep, respectively. Combined analysis of mRNA-seq and miRNA-seq revealed that 20 miRNAs interacted with 48 true DE target genes in wild-type testes compared to heterozygous genotype testes. These results provide evidence for a functional series of genes operating in Tibetan sheep testis. In addition, quantitative real-time PCR analysis showed that the expression trends of randomly selected DE genes in testis tissues from different genotypes were consistent with high-throughput sequencing results.
Collapse
Affiliation(s)
- Wu Sun
- Department of Animal Science and Veterinary Medicine, Qinghai University, Xining, Qinghai, 810016, China
- Key Laboratory of Livestock and Poultry Genetics and Breeding on the Qinghai-Tibet Plateau, Ministry of Agriculture and Rural Affairs, Xining, 810016, China
- Plateau Livestock Genetic Resources Protection and Innovative Utilization Key Laboratory of Qinghai Province, Xining, 810016, China
| | - Shike Ma
- Department of Animal Science and Veterinary Medicine, Qinghai University, Xining, Qinghai, 810016, China
- Key Laboratory of Livestock and Poultry Genetics and Breeding on the Qinghai-Tibet Plateau, Ministry of Agriculture and Rural Affairs, Xining, 810016, China
- Plateau Livestock Genetic Resources Protection and Innovative Utilization Key Laboratory of Qinghai Province, Xining, 810016, China
| | - Xiayang Jin
- Department of Animal Science and Veterinary Medicine, Qinghai University, Xining, Qinghai, 810016, China
- Key Laboratory of Livestock and Poultry Genetics and Breeding on the Qinghai-Tibet Plateau, Ministry of Agriculture and Rural Affairs, Xining, 810016, China
- Plateau Livestock Genetic Resources Protection and Innovative Utilization Key Laboratory of Qinghai Province, Xining, 810016, China
| | - Yuhong Ma
- Department of Animal Science and Veterinary Medicine, Qinghai University, Xining, Qinghai, 810016, China
- Key Laboratory of Livestock and Poultry Genetics and Breeding on the Qinghai-Tibet Plateau, Ministry of Agriculture and Rural Affairs, Xining, 810016, China
- Plateau Livestock Genetic Resources Protection and Innovative Utilization Key Laboratory of Qinghai Province, Xining, 810016, China
| |
Collapse
|
16
|
Qu Q, Chen X, Ning B, Zhang X, Nie H, Zeng L, Chen H, Fu X. Prediction of miRNA-disease associations by neural network-based deep matrix factorization. Methods 2023; 212:1-9. [PMID: 36813017 DOI: 10.1016/j.ymeth.2023.02.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/17/2023] [Accepted: 02/10/2023] [Indexed: 02/23/2023] Open
Abstract
MicroRNA(miRNA) is a class of short non-coding RNAs with a length of about 22 nucleotides, which participates in various biological processes of cells. A number of studies have shown that miRNAs are closely related to the occurrence of cancer and various human diseases. Therefore, studying miRNA-disease associations is helpful to understand the pathogenesis of diseases as well as the prevention, diagnosis, treatment and prognosis of diseases. Traditional biological experimental methods for studying miRNA-disease associations have disadvantages such as expensive equipment, time-consuming and labor-intensive. With the rapid development of bioinformatics, more and more researchers are committed to developing effective computational methods to predict miRNA-disease associations in roder to reduce the time and money cost of experiments. In this study, we proposed a neural network-based deep matrix factorization method named NNDMF to predict miRNA-disease associations. To address the problem that traditional matrix factorization methods can only extract linear features, NNDMF used neural network to perform deep matrix factorization to extract nonlinear features, which makes up for the shortcomings of traditional matrix factorization methods. We compared NNDMF with four previous classical prediction models (IMCMDA, GRMDA, SACMDA and ICFMDA) in global LOOCV and local LOOCV, respectively. The AUCs achieved by NNDMF in two cross-validation methods were 0.9340 and 0.8763, respectively. Furthermore, we conducted case studies on three important human diseases (lymphoma, colorectal cancer and lung cancer) to validate the effectiveness of NNDMF. In conclusion, NNDMF could effectively predict the potential miRNA-disease associations.
Collapse
Affiliation(s)
- Qiang Qu
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, China
| | - Xia Chen
- School of Basic Education, Changsha Aeronautical Vocational and Technical College, Changsha, China
| | - Bin Ning
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, China
| | - Xiang Zhang
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, China
| | - Hao Nie
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, China
| | - Li Zeng
- College of Life and Environmental Science, Hunan University of Art and Science, Changde, China
| | - Haowen Chen
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, China.
| | - Xiangzheng Fu
- Research Institute of Hunan University in Chongqing, Chongqing, China.
| |
Collapse
|
17
|
Skeletal Muscle-Derived Exosomal miR-146a-5p Inhibits Adipogenesis by Mediating Muscle-Fat Axis and Targeting GDF5-PPARγ Signaling. Int J Mol Sci 2023; 24:ijms24054561. [PMID: 36901991 PMCID: PMC10003660 DOI: 10.3390/ijms24054561] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/13/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
Skeletal muscle-fat interaction is essential for maintaining organismal energy homeostasis and managing obesity by secreting cytokines and exosomes, but the role of the latter as a new mediator in inter-tissue communication remains unclear. Recently, we discovered that miR-146a-5p was mainly enriched in skeletal muscle-derived exosomes (SKM-Exos), 50-fold higher than in fat exosomes. Here, we investigated the role of skeletal muscle-derived exosomes regulating lipid metabolism in adipose tissue by delivering miR-146a-5p. The results showed that skeletal muscle cell-derived exosomes significantly inhibited the differentiation of preadipocytes and their adipogenesis. When the skeletal muscle-derived exosomes co-treated adipocytes with miR-146a-5p inhibitor, this inhibition was reversed. Additionally, skeletal muscle-specific knockout miR-146a-5p (mKO) mice significantly increased body weight gain and decreased oxidative metabolism. On the other hand, the internalization of this miRNA into the mKO mice by injecting skeletal muscle-derived exosomes from the Flox mice (Flox-Exos) resulted in significant phenotypic reversion, including down-regulation of genes and proteins involved in adipogenesis. Mechanistically, miR-146a-5p has also been demonstrated to function as a negative regulator of peroxisome proliferator-activated receptor γ (PPARγ) signaling by directly targeting growth and differentiation factor 5 (GDF5) gene to mediate adipogenesis and fatty acid absorption. Taken together, these data provide new insights into the role of miR-146a-5p as a novel myokine involved in the regulation of adipogenesis and obesity via mediating the skeletal muscle-fat signaling axis, which may serve as a target for the development of therapies against metabolic diseases, such as obesity.
Collapse
|
18
|
Alshahrani SH, Ibrahim YS, Jalil AT, Altoum AA, Achmad H, Zabibah RS, Gabr GA, Ramírez-Coronel AA, Alameri AA, Qasim QA, Karampoor S, Mirzaei R. Metabolic reprogramming by miRNAs in the tumor microenvironment: Focused on immunometabolism. Front Oncol 2022; 12:1042196. [PMID: 36483029 PMCID: PMC9723351 DOI: 10.3389/fonc.2022.1042196] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/24/2022] [Indexed: 01/15/2023] Open
Abstract
MicroRNAs (miRNAs) are emerging as a significant modulator of immunity, and their abnormal expression/activity has been linked to numerous human disorders, such as cancer. It is now known that miRNAs potentially modulate the production of several metabolic processes in tumor-associated immune cells and indirectly via different metabolic enzymes that affect tumor-associated signaling cascades. For instance, Let-7 has been identified as a crucial modulator for the long-lasting survival of CD8+ T cells (naive phenotypes) in cancer by altering their metabolism. Furthermore, in T cells, it has been found that enhancer of zeste homolog 2 (EZH2) expression is controlled via glycolytic metabolism through miRNAs in patients with ovarian cancer. On the other hand, immunometabolism has shown us that cellular metabolic reactions and processes not only generate ATP and biosynthetic intermediates but also modulate the immune system and inflammatory processes. Based on recent studies, new and encouraging approaches to cancer involving the modification of miRNAs in immune cell metabolism are currently being investigated, providing insight into promising targets for therapeutic strategies based on the pivotal role of immunometabolism in cancer. Throughout this overview, we explore and describe the significance of miRNAs in cancer and immune cell metabolism.
Collapse
Affiliation(s)
- Shadia Hamoud Alshahrani
- Medical Surgical Nursing Department, King Khalid University, Almahala, Khamis Mushate, Saudi Arabia
| | - Yousif Saleh Ibrahim
- Department of Medical Laboratory Techniques, Al-maarif University College, Ramadi, Al-Anbar, Iraq
| | - Abduladheem Turki Jalil
- Medical Laboratories Techniques Department, Al-Mustaqbal University College, Babylon, Hilla, Iraq
| | - Abdelgadir Alamin Altoum
- Department of Medical Laboratory Sciences, College of Health Sciences, Gulf Medical University, Ajman, United Arab Emirates
| | - Harun Achmad
- Department of Pediatric Dentistry, Faculty of Dentistry, Hasanuddin University, Makassar, Indonesia
| | - Rahman S. Zabibah
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Gamal A. Gabr
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
- Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center, Giza, Egypt
| | - Andrés Alexis Ramírez-Coronel
- Health and Behavior Research Group (HBR), Catholic University of Cuenca, Cuenca, Ecuador
- Laboratory of Psychometry and Ethology, Catholic University of Cuenca, Cuenca, Ecuador
- Epidemiology and Biostatistics Research Group, Universidad CES, Medellin, Colombia
| | | | | | - Sajad Karampoor
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Rasoul Mirzaei
- Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
19
|
Kim S, Lee I, Piao S, Nagar H, Choi SJ, Kim YR, Irani K, Jeon BH, Kim CS. miR204 potentially promotes non-alcoholic fatty liver disease by inhibition of cpt1a in mouse hepatocytes. Commun Biol 2022; 5:1002. [PMID: 36130994 PMCID: PMC9492679 DOI: 10.1038/s42003-022-03945-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 09/05/2022] [Indexed: 12/06/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is associated with hepatic metabolism dysfunction. However, the mechanistic role of miR204 in the development of NAFLD is unknown. We investigate the functional significance of miR204 in the evolution of NAFLD. IDH2 KO mice feed a normal diet (ND) or HFD increased body weight, epididymal fat-pad weight, lipid droplet in liver, blood parameter and inflammation compared to WT mice fed a ND or HFD. Moreover, the expression of miR204 is increased in mice with IDH2 deficiency. Increased miR204 by IDH2 deficiency regulates carnitine palmitoyltransferase 1a (cpt1a) synthesis, which inhibits fatty acid β-oxidation. Inhibition of miR204 prevents the disassembly of two fatty acid-related genes by activating CPT1a expression, which decreases lipid droplet in liver, inflammatory cytokines, epididymal fat pad weight, blood parameters. Increased miR204 by IDH2 deficiency promotes the pathogenesis of HFD-induced NAFLD by regulating hepatic fatty acid metabolism and inflammation.
Collapse
Affiliation(s)
- Seonhee Kim
- Department of Physiology & Medical Science, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
| | - Ikjun Lee
- Department of Physiology & Medical Science, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
| | - Shuyu Piao
- Department of Physiology & Medical Science, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
| | - Harsha Nagar
- Department of Physiology & Medical Science, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
| | - Su-Jeong Choi
- Department of Physiology & Medical Science, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
| | - Young-Rae Kim
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA
| | - Kaikobad Irani
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA
| | - Byeong Hwa Jeon
- Department of Physiology & Medical Science, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
| | - Cuk-Seong Kim
- Department of Physiology & Medical Science, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea.
| |
Collapse
|
20
|
Yamamura J, Ma S, Jia H, Kato H. Activating transcription factor 4-dependent hsa-miR-663a transcription mediates mTORC1/p70S6K1 signaling underleucine deprivation. Front Nutr 2022; 9:965771. [PMID: 35990342 PMCID: PMC9389164 DOI: 10.3389/fnut.2022.965771] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 07/15/2022] [Indexed: 11/15/2022] Open
Abstract
The mechanistic target of rapamycin complex 1 (mTORC1) is involved in nutrient-induced signaling and is a master regulator of cell growth and metabolism. Amino acid-deficient conditions affect mTORC1 activity; however, its upstream regulators warrant further investigation. MicroRNAs are key regulators of nutrient-related responses; therefore, the present study aimed to assess the leucine starvation-induced microRNA profile and its impact on mTORC1 activity. Transcriptome analysis of human hepatocellular carcinoma cells (HepG2) under leucine deprivation revealed that hsa-miR-663a and hsa-miR-1469 were altered in a transcription factor 4-dependent manner. Overexpression of these microRNAs induced phosphorylation of the ribosomal protein S6 kinase beta-1, a mTORC1 downstream target. Furthermore, hsa-miR-663a downregulated proline-rich Akt1 substrate of 40 kDa (PRAS40), one of the mTORC1 components. In summary, this study provides new insights into the regulatory role of microRNAs in amino acid metabolism and demonstrates alterations in microRNA profile under leucine deprivation in human hepatocytes.
Collapse
Affiliation(s)
- Junki Yamamura
- Health Nutrition, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Sihui Ma
- Health Nutrition, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Huijuan Jia
- Health Nutrition, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Hisanori Kato
- Health Nutrition, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
21
|
Zhao Y, Qin F, Han S, Li S, Zhao Y, Wang H, Tian J, Cen X. MicroRNAs in drug addiction: Current status and future perspectives. Pharmacol Ther 2022; 236:108215. [DOI: 10.1016/j.pharmthera.2022.108215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/11/2022] [Accepted: 05/16/2022] [Indexed: 12/21/2022]
|
22
|
Shi H, Sun L, Zheng D, Xu G, Shao G. Long Noncoding RNA HLA Complex Group 18 Improves the Cell Proliferation of Myocardial Fibroblasts by Regulating the Hsa-microRNA-133a/Epidermal Growth Factor Receptor Axis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:2668239. [PMID: 35958914 PMCID: PMC9357715 DOI: 10.1155/2022/2668239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 06/11/2022] [Indexed: 11/17/2022]
Abstract
Hsa-microRNA (has-miR)-133a inactivates the extracellular signal-regulated kinase 1/2 (ERK1/2) pathway and suppresses the cell proliferation of myocardial fibroblasts by downregulation of the epidermal growth factor receptor (EGFR) expression. Bioinformatics analysis exhibits extended noncoding RNA HLA complex group 18 (lncRNA-HCG18) binds to hsa-miR-133a. The purpose of the current experiment is to explore whether lncRNA-HCG18 adsorbed hsa-miR-133a through sponging, resulting in decreased inhibition of hsa-miR-133a on EGFR and ultimately promoting the proliferation of myocardial fibroblasts. To verify and study the correlation and mechanism between lncRNA-HCG18, hsa-miR-133a, and their target genes. Firstly, after overexpression/silencing of lncRNA-HCG18 in myocardial fibroblasts, the level of hsa-miR-133a expression was evaluated by quantitative reverse transcription-polymerase chain reaction (RT-qPCR), and the EGFR, ERK1/2, and p-ERK1/2 expression levels were assessed by Western blotting to confirm that upregulation of EGFR and p-ERK1/2 protein levels by overexpression of lncRNA-HCG18, siRNA lncRNA-HCG18 (siHCG18) reduced the EGFR and p-ERK1/2 protein levels. Then, the luciferase reporter gene system was used to verify that lncRNA-HCG18 regulated EGFR expression by inhibiting the function of the hsa-miR-133a regulatory target gene. Then, a RAP assay was used to confirm that lncRNA-HCG18 interacted with hsa-miR-133a. Finally, the analysis of CCK-8 results indicated that the cell proliferation of myocardial fibroblasts was significantly reduced by siHCG18 while reversed by overexpression of lncRNA-HCG18. Thus, lncRNA-HCG18 inhibited cell viability of cardiac fibroblasts via the hsa-miR-133a/EGFR axis, which was regarded as a regulator of cell proliferation of cardiac fibroblasts in cardiovascular diseases.
Collapse
Affiliation(s)
- Huoshun Shi
- Department of Cardiothoracic Surgery, Lihuili Hospital, Ningbo 315048, Zhejiang Province, China
| | - Lebo Sun
- Department of Cardiothoracic Surgery, Lihuili Hospital, Ningbo 315048, Zhejiang Province, China
| | - Dawei Zheng
- Department of Cardiothoracic Surgery, Lihuili Hospital, Ningbo 315048, Zhejiang Province, China
| | - Guodong Xu
- Department of Cardiothoracic Surgery, Lihuili Hospital, Ningbo 315048, Zhejiang Province, China
| | - Guofeng Shao
- Department of Cardiothoracic Surgery, Lihuili Hospital, Ningbo 315048, Zhejiang Province, China
| |
Collapse
|
23
|
Xu L, Li X, Yang Q, Tan L, Liu Q, Liu Y. Application of Bidirectional Generative Adversarial Networks to Predict Potential miRNAs Associated With Diseases. Front Genet 2022; 13:936823. [PMID: 35903359 PMCID: PMC9314862 DOI: 10.3389/fgene.2022.936823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 06/08/2022] [Indexed: 11/18/2022] Open
Abstract
Substantial evidence has shown that microRNAs are crucial for biological processes within complex human diseases. Identifying the association of miRNA–disease pairs will contribute to accelerating the discovery of potential biomarkers and pathogenesis. Researchers began to focus on constructing computational models to facilitate the progress of disease pathology and clinical medicine by identifying the potential disease-related miRNAs. However, most existing computational methods are expensive, and their use is limited to unobserved relationships for unknown miRNAs (diseases) without association information. In this manuscript, we proposed a creatively semi-supervised model named bidirectional generative adversarial network for miRNA-disease association prediction (BGANMDA). First, we constructed a microRNA similarity network, a disease similarity network, and Gaussian interaction profile kernel similarity based on the known miRNA–disease association and comprehensive similarity of miRNAs (diseases). Next, an integrated similarity feature network with the full underlying relationships of miRNA–disease pairwise was obtained. Then, the similarity feature network was fed into the BGANMDA model to learn advanced traits in latent space. Finally, we ranked an association score list and predicted the associations between miRNA and disease. In our experiment, a five-fold cross validation was applied to estimate BGANMDA’s performance, and an area under the curve (AUC) of 0.9319 and a standard deviation of 0.00021 were obtained. At the same time, in the global and local leave-one-out cross validation (LOOCV), the AUC value and standard deviation of BGANMDA were 0.9116 ± 0.0025 and 0.8928 ± 0.0022, respectively. Furthermore, BGANMDA was employed in three different case studies to validate its prediction capability and accuracy. The experimental results of the case studies showed that 46, 46, and 48 of the top 50 prediction lists had been identified in previous studies.
Collapse
Affiliation(s)
- Long Xu
- School of Computer Science and Technology, Heilongjiang University, Harbin, China
| | - Xiaokun Li
- School of Computer Science and Technology, Heilongjiang University, Harbin, China
- Postdoctoral Program of Heilongjiang Hengxun Technology Co., Ltd., Heilongjiang University, Harbin, China
- *Correspondence: Xiaokun Li, ; Yong Liu,
| | - Qiang Yang
- School of Electronic Engineering, Heilongjiang University, Harbin, China
| | - Long Tan
- School of Computer Science and Technology, Heilongjiang University, Harbin, China
| | - Qingyuan Liu
- Postdoctoral Program of Heilongjiang Hengxun Technology Co., Ltd., Heilongjiang University, Harbin, China
| | - Yong Liu
- School of Computer Science and Technology, Heilongjiang University, Harbin, China
- *Correspondence: Xiaokun Li, ; Yong Liu,
| |
Collapse
|
24
|
Gao X, Tian X, Huang Y, Fang R, Wang G, Li D, Zhang J, Li T, Yuan R. Role of circular RNA in myocardial ischemia and ageing-related diseases. Cytokine Growth Factor Rev 2022; 65:1-11. [PMID: 35561533 DOI: 10.1016/j.cytogfr.2022.04.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 01/10/2023]
Abstract
Circular RNA (circRNA) is a new endogenous transcription product, which has attracted significant attention in RNA biology research.CircRNA comprise exons or introns involved in regulation of various mechanisms.These molecules are stable and species-specific, as well as cell and tissue-specific.Cardiovascular diseases particularly myocardial ischemia and ageing-related diseases, pose a major health care burden and novel treatments and biomarkers should be explored.Recent findings indicate that circRNAs are implicated in biological processes, such as glucose metabolism, fatty acid oxidation, mitochondrial biosynthesis, implying that they are potential targets for myocardial ischemia treatment.In the present review, the functions of circRNAs in the heart are described, with emphasis given on in the relationship with myocardial ischemia and cardiac aging-related diseases.Directions for future research are also summarized.
Collapse
Affiliation(s)
- Xiaolong Gao
- School of Graduate, Shaanxi University of Chinese Medicine, No. 1 Middle section of Shiji Avenue, Xianyang 712046, China; Department of Cardiology, Shaanxi Provincial Hospital of Chinese Medicine, No.4 Xihuamen Street, Xi'an 710003, China
| | - Xin Tian
- Department of Cardiology, Shaanxi Provincial Hospital of Chinese Medicine, No.4 Xihuamen Street, Xi'an 710003, China
| | - Ye Huang
- Department of Emergency, Xiyuan Hospital, China Academy of Chinese Medical Sciences, No.1 Xiyuan Playground Street, Beijing 100091, China
| | - Rong Fang
- School of Graduate, Shaanxi University of Chinese Medicine, No. 1 Middle section of Shiji Avenue, Xianyang 712046, China
| | - Gendi Wang
- School of Graduate, Shaanxi University of Chinese Medicine, No. 1 Middle section of Shiji Avenue, Xianyang 712046, China; Department of Cardiology, Shaanxi Provincial Hospital of Chinese Medicine, No.4 Xihuamen Street, Xi'an 710003, China
| | - Dan Li
- School of Graduate, Shaanxi University of Chinese Medicine, No. 1 Middle section of Shiji Avenue, Xianyang 712046, China; Department of Cardiology, Shaanxi Provincial Hospital of Chinese Medicine, No.4 Xihuamen Street, Xi'an 710003, China
| | - Junru Zhang
- Department of Cardiology, Shaanxi Provincial Hospital of Chinese Medicine, No.4 Xihuamen Street, Xi'an 710003, China.
| | - Tian Li
- School of Basic Medicine, Fourth Military Medical University, No. 169 Changle West Rd, Xi'an 710032, China.
| | - Ruihua Yuan
- School of Graduate, Shaanxi University of Chinese Medicine, No. 1 Middle section of Shiji Avenue, Xianyang 712046, China; Real World Clinical Research Institute, Shaanxi University of Chinese Medicine, No. 1 Middle section of Shiji Avenue, Xianyang 712046, China.
| |
Collapse
|
25
|
Zhou L, Tang Y, Yan G. A New Estimation Method for the Biological Interaction Predicting Problems. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2022; 19:1415-1423. [PMID: 33406043 DOI: 10.1109/tcbb.2021.3049642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
For the past decades, computational methods have been developed to predict various interactions in biological problems. Usually these methods treated the predicting problems as semi-supervised problem or positive-unlabeled(PU) learning problem. Researchers focused on the prediction of unlabeled samples and hoped to find novel interactions in the datasets they collected. However, most of the computational methods could only predict a small proportion of undiscovered interactions and the total number was unknown. In this paper, we developed an estimation method with deep learning to calculate the number of undiscovered interactions in the unlabeled samples, derived its asymptotic interval estimation, and applied it to the compound synergism dataset, drug-target interaction(DTI) dataset and MicroRNA-disease interaction dataset successfully. Moreover, this method could reveal which dataset contained more undiscovered interactions and would be a guidance for the experimental validation. Furthermore, we compared our method with some mixture proportion estimators and demonstarted the efficacy of our method. Finally, we proved that AUC and AUPR were related with the number of undiscovered interactions, which was regarded as another evaluation indicator for the computational methods.
Collapse
|
26
|
Zhu M, Wang X, Zhou Y, Tan J, Zhou Y, Gao F. Small RNA Sequencing Revealed that miR4415, a Legume-Specific miRNA, was Involved in the Cold Acclimation of Ammopiptanthus nanus by Targeting an L-Ascorbate Oxidase Gene and Regulating the Redox State of Apoplast. Front Genet 2022; 13:870446. [PMID: 35444684 PMCID: PMC9013972 DOI: 10.3389/fgene.2022.870446] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 03/07/2022] [Indexed: 11/13/2022] Open
Abstract
MicroRNAs (miRNAs) are small endogenous single-stranded RNAs that regulate plant growth, development, and environmental stress response posttranscriptionally. Ammopiptanthus nanus, a rare evergreen broad-leaved shrub in the temperate area of Central Asia, can tolerate freezing stress as low as -30 degrees centigrade in winter, and miRNA might be involved in the cold acclimation which enables A. nanus to obtain tolerance to freezing stress. Systematic identification and functional analysis of the miRNAs involved in the cold acclimation in A. nanus may promote understanding of the miRNA-mediated gene regulation network underlying cold acclimation. Here, based on small RNA and degradome sequencing, 256 miRNAs and 1,808 miRNA-target pairs were identified in A. nanus. A total of 39 cold-responsive miRNAs were identified, of which 29 were upregulated and ten were downregulated. These cold-responsive miRNAs may participate in the cold acclimation by regulating redox homeostasis (miR398, miR4415, and miR408), calcium signaling (miR5225 and miR5211), growth and development (miR159 and miR390), and small RNA-mediated gene silencing (miR168 and miR1515). We found that miR4415, a legume-specific miRNA, is involved in the cold acclimation of A. nanus by targeting an L-ascorbate oxidase gene and then regulating the redox state of the apoplast. Our study provides important data for understanding the regulatory role of miRNA in the cold acclimation of A. nanus.
Collapse
Affiliation(s)
- Ming Zhu
- Key Laboratory of Ecology and Environment in Minority Areas, National Ethnic Affairs Commission, Minzu University of China, Beijing, China.,Key Laboratory of Mass Spectrometry Imaging and Metabolomics, National Ethnic Affairs Commission, Minzu University of China, Beijing, China.,College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Xue Wang
- Beijing Center for Disease Prevention and Control, Beijing, China
| | - Yanqiu Zhou
- Key Laboratory of Ecology and Environment in Minority Areas, National Ethnic Affairs Commission, Minzu University of China, Beijing, China.,Key Laboratory of Mass Spectrometry Imaging and Metabolomics, National Ethnic Affairs Commission, Minzu University of China, Beijing, China.,College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Jinhua Tan
- Key Laboratory of Ecology and Environment in Minority Areas, National Ethnic Affairs Commission, Minzu University of China, Beijing, China.,Key Laboratory of Mass Spectrometry Imaging and Metabolomics, National Ethnic Affairs Commission, Minzu University of China, Beijing, China.,College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Yijun Zhou
- Key Laboratory of Ecology and Environment in Minority Areas, National Ethnic Affairs Commission, Minzu University of China, Beijing, China.,Key Laboratory of Mass Spectrometry Imaging and Metabolomics, National Ethnic Affairs Commission, Minzu University of China, Beijing, China.,College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Fei Gao
- Key Laboratory of Ecology and Environment in Minority Areas, National Ethnic Affairs Commission, Minzu University of China, Beijing, China.,Key Laboratory of Mass Spectrometry Imaging and Metabolomics, National Ethnic Affairs Commission, Minzu University of China, Beijing, China.,College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| |
Collapse
|
27
|
Wang T, Simmel FC. Riboswitch-inspired toehold riboregulators for gene regulation in Escherichia coli. Nucleic Acids Res 2022; 50:4784-4798. [PMID: 35446427 PMCID: PMC9071393 DOI: 10.1093/nar/gkac275] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 04/08/2022] [Indexed: 12/24/2022] Open
Abstract
Regulatory RNA molecules have been widely investigated as components for synthetic gene circuits, complementing the use of protein-based transcription factors. Among the potential advantages of RNA-based gene regulators are their comparatively simple design, sequence-programmability, orthogonality, and their relatively low metabolic burden. In this work, we developed a set of riboswitch-inspired riboregulators in Escherichia coli that combine the concept of toehold-mediated strand displacement (TMSD) with the switching principles of naturally occurring transcriptional and translational riboswitches. Specifically, for translational activation and repression, we sequestered anti-anti-RBS or anti-RBS sequences, respectively, inside the loop of a stable hairpin domain, which is equipped with a single-stranded toehold region at its 5' end and is followed by regulated sequences on its 3' side. A trigger RNA binding to the toehold region can invade the hairpin, inducing a structural rearrangement that results in translational activation or deactivation. We also demonstrate that TMSD can be applied in the context of transcriptional regulation by switching RNA secondary structure involved in Rho-dependent termination. Our designs expand the repertoire of available synthetic riboregulators by a set of RNA switches with no sequence limitation, which should prove useful for the development of robust genetic sensors and circuits.
Collapse
Affiliation(s)
- Tianhe Wang
- Physics of Synthetic Biological Systems – E14, Physics Department and ZNN, Technische Universität München, Am Coulombwall 4a, 85748 Garching, Germany
| | | |
Collapse
|
28
|
Wang CC, Li TH, Huang L, Chen X. Prediction of potential miRNA-disease associations based on stacked autoencoder. Brief Bioinform 2022; 23:6529883. [PMID: 35176761 DOI: 10.1093/bib/bbac021] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/05/2022] [Accepted: 01/14/2022] [Indexed: 12/11/2022] Open
Abstract
In recent years, increasing biological experiments and scientific studies have demonstrated that microRNA (miRNA) plays an important role in the development of human complex diseases. Therefore, discovering miRNA-disease associations can contribute to accurate diagnosis and effective treatment of diseases. Identifying miRNA-disease associations through computational methods based on biological data has been proven to be low-cost and high-efficiency. In this study, we proposed a computational model named Stacked Autoencoder for potential MiRNA-Disease Association prediction (SAEMDA). In SAEMDA, all the miRNA-disease samples were used to pretrain a Stacked Autoencoder (SAE) in an unsupervised manner. Then, the positive samples and the same number of selected negative samples were utilized to fine-tune SAE in a supervised manner after adding an output layer with softmax classifier to the SAE. SAEMDA can make full use of the feature information of all unlabeled miRNA-disease pairs. Therefore, SAEMDA is suitable for our dataset containing small labeled samples and large unlabeled samples. As a result, SAEMDA achieved AUCs of 0.9210 and 0.8343 in global and local leave-one-out cross validation. Besides, SAEMDA obtained an average AUC and standard deviation of 0.9102 ± /-0.0029 in 100 times of 5-fold cross validation. These results were better than those of previous models. Moreover, we carried out three case studies to further demonstrate the predictive accuracy of SAEMDA. As a result, 82% (breast neoplasms), 100% (lung neoplasms) and 90% (esophageal neoplasms) of the top 50 predicted miRNAs were verified by databases. Thus, SAEMDA could be a useful and reliable model to predict potential miRNA-disease associations.
Collapse
Affiliation(s)
- Chun-Chun Wang
- School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, 221116, China.,Artificial Intelligence Research Institute, China University of Mining and Technology, Xuzhou, 221116, China
| | - Tian-Hao Li
- School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, 221116, China
| | - Li Huang
- Academy of Arts and Design, Tsinghua University, Beijing, 10084, China.,The Future Laboratory, Tsinghua University, Beijing, 10084, China
| | - Xing Chen
- Artificial Intelligence Research Institute, China University of Mining and Technology, Xuzhou, 221116, China
| |
Collapse
|
29
|
Carney MC, Zhan X, Rangnekar A, Chroneos MZ, Craig SJC, Makova KD, Paul IM, Hicks SD. Associations between stool micro-transcriptome, gut microbiota, and infant growth. J Dev Orig Health Dis 2021; 12:876-882. [PMID: 33407969 PMCID: PMC8675179 DOI: 10.1017/s2040174420001324] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Rapid infant growth increases the risk for adult obesity. The gut microbiome is associated with early weight status; however, no study has examined how interactions between microbial and host ribonucleic acid (RNA) expression influence infant growth. We hypothesized that dynamics in infant stool micro-ribonucleic acids (miRNAs) would be associated with both microbial activity and infant growth via putative metabolic targets. Stool was collected twice from 30 full-term infants, at 1 month and again between 6 and 12 months. Stool RNA were measured with high-throughput sequencing and aligned to human and microbial databases. Infant growth was measured by weight-for-length z-score at birth and 12 months. Increased RNA transcriptional activity of Clostridia (R = 0.55; Adj p = 3.7E-2) and Burkholderia (R = -0.820, Adj p = 2.62E-3) were associated with infant growth. Of the 25 human RNAs associated with growth, 16 were miRNAs. The miRNAs demonstrated significant target enrichment (Adj p < 0.05) for four metabolic pathways. There were four associations between growth-related miRNAs and growth-related phyla. We have shown that longitudinal trends in gut microbiota activity and human miRNA levels are associated with infant growth and the metabolic targets of miRNAs suggest these molecules may regulate the biosynthetic landscape of the gut and influence microbial activity.
Collapse
Affiliation(s)
- Molly C Carney
- Department of Pediatrics, Penn State College of Medicine, Hershey, PA, USA
| | - Xiang Zhan
- Department of Public Health Sciences, Penn State College of Medicine, Hershey, PA, USA
| | | | - Maria Z Chroneos
- Department of Pediatrics, Penn State College of Medicine, Hershey, PA, USA
| | - Sarah J C Craig
- Department of Biology, Eberly College of Science, Penn State University, University Park, PA, USA
| | - Kateryna D Makova
- Department of Biology, Eberly College of Science, Penn State University, University Park, PA, USA
| | - Ian M Paul
- Department of Pediatrics, Penn State College of Medicine, Hershey, PA, USA
- Department of Public Health Sciences, Penn State College of Medicine, Hershey, PA, USA
| | - Steven D Hicks
- Department of Pediatrics, Penn State College of Medicine, Hershey, PA, USA
| |
Collapse
|
30
|
Nunes ADC, Weigl M, Schneider A, Noureddine S, Yu L, Lahde C, Saccon TD, Mitra K, Beltran E, Grillari J, Kirkland JL, Tchkonia T, Robbins PD, Masternak MM. miR-146a-5p modulates cellular senescence and apoptosis in visceral adipose tissue of long-lived Ames dwarf mice and in cultured pre-adipocytes. GeroScience 2021; 44:503-518. [PMID: 34825304 PMCID: PMC8811002 DOI: 10.1007/s11357-021-00490-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 11/09/2021] [Indexed: 12/31/2022] Open
Abstract
MicroRNAs (miRNAs) are potent regulators of multiple biological processes. Previous studies have demonstrated that miR-146a-5p increases in normal mice during aging, while long-living Ames dwarf (df/df) mice maintain youthful levels of this miRNA. The aim of this study was to elucidate the involvement of miR-146a-5p in modulating cellular senescence and apoptosis in visceral adipose tissue of df/df mice and cultured pre-adipocytes. To test the effects of miR-146a-5p overexpression on visceral adipose tissue, wild-type, and df/df mice, were treated with miRNA-negative control-base and df/df were transfected with 4 or 8 µg/g of a miR-146a-5p mimetic, respectively. Effects of miR-146a-5p overexpression were also evaluated in 3T3-L1 cells cultured under high and normal glucose conditions. Treatment with miR-146a-5p mimetic increased cellular senescence and inflammation and decreased pro-apoptotic factors in visceral adipose tissue of df/df mice. The miR-146a-5p mimetic induced similar effects in 3T3-L1 cells cultivated at normal but not high glucose levels. Importantly, 3T3-L1 HG cells in high glucose conditions showed significantly higher expression of miR-146a-5p than 3T3-L1 grown in normal glucose conditions. These results indicate that miR-146a-5p can be a marker for cellular senescence. This miRNA represents one of the significant SASP factors that if not precisely regulated, can accentuate inflammatory responses and stimulate senescence in surrounding non-senescent cells. The role of miR-146a-5p is different in healthy versus stressed cells, suggesting potential effects of this miRNA depend on overall organismal health, aging, and metabolic state.
Collapse
Affiliation(s)
- Allancer D C Nunes
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, 32827, USA
- Institute On the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Moritz Weigl
- Ludwig Boltzmann Institute of Traumatology in Cooperation With AUVA, Vienna, Austria
| | - Augusto Schneider
- Faculdade de Nutrição, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Sarah Noureddine
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, 32827, USA
| | - Lin Yu
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, 32827, USA
| | - Collin Lahde
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, 32827, USA
| | | | - Kunal Mitra
- Biomedical Engineering, Florida Tech, Melbourne, FL, 32901, USA
| | - Esther Beltran
- Florida Space Institute, University of Central Florida, Orlando, FL, 32826, USA
| | - Johannes Grillari
- Ludwig Boltzmann Institute of Traumatology in Cooperation With AUVA, Vienna, Austria
- Institute of Molecular Biotechnology, BOKU-University of Natural Resources and Life Sciences, Vienna, Austria
| | - James L Kirkland
- Robert and Arlene Kogod Center On Aging, Mayo Clinic, Rochester, MN, 55905, USA
| | - Tamara Tchkonia
- Robert and Arlene Kogod Center On Aging, Mayo Clinic, Rochester, MN, 55905, USA
| | - Paul D Robbins
- Institute On the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Michal M Masternak
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, 32827, USA.
- Department of Head and Neck Surgery, Poznan University of Medical Sciences, Poznan, Poland.
| |
Collapse
|
31
|
Wu H, Pula T, Tews D, Amri EZ, Debatin KM, Wabitsch M, Fischer-Posovszky P, Roos J. microRNA-27a-3p but Not -5p Is a Crucial Mediator of Human Adipogenesis. Cells 2021; 10:cells10113205. [PMID: 34831427 PMCID: PMC8625276 DOI: 10.3390/cells10113205] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs), a class of small, non-coding RNA molecules, play an important role in the posttranscriptional regulation of gene expression, thereby influencing important cellular functions. In adipocytes, miRNAs show import regulatory features and are described to influence differentiation as well as metabolic, endocrine, and inflammatory functions. We previously identified miR-27a being upregulated under inflammatory conditions in human adipocytes and aimed to elucidate its function in adipocyte biology. Both strands of miR-27a, miR-27a-3p and -5p, were downregulated during the adipogenic differentiation of Simpson–Golabi–Behmel syndrome (SGBS) cells, human multipotent adipose-derived stem cells (hMADS), and human primary adipose-derived stromal cells (hASCs). Using miRNA-mimic transfection, we observed that miR-27a-3p is a crucial regulator of adipogenesis, while miR-27a-5p did not alter the differentiation capacity in SGBS cells. In silico screening predicted lipoprotein lipase (LPL) and peroxisome proliferator activated receptor γ (PPARγ) as potential targets of miR-27a-3p. The downregulation of both genes was verified in vitro, and the interaction of miR-27-3p with target sites in the 3′ UTRs of both genes was confirmed via a miRNA-reporter-gene assay. Here, the knockdown of LPL did not interfere with adipogenic differentiation, while PPARγ knockdown decreased adipogenesis significantly, suggesting that miR-27-3p exerts its inhibitory effect on adipogenesis by repressing PPARγ. Taken together, we identified and validated a crucial role for miR-27a-3p in human adipogenesis played by targeting the essential adipogenic transcription factor PPARγ. Though we confirmed LPL as an additional target of miR-27a-3p, it does not appear to be involved in regulating human adipogenesis. Thereby, our findings call the conclusions drawn from previous studies, which identified LPL as a crucial regulator for murine and human adipogenesis, into question.
Collapse
Affiliation(s)
- Hang Wu
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, 89075 Ulm, Germany; (H.W.); (T.P.); (K.-M.D.); (P.F.-P.)
| | - Taner Pula
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, 89075 Ulm, Germany; (H.W.); (T.P.); (K.-M.D.); (P.F.-P.)
| | - Daniel Tews
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, 89075 Ulm, Germany; (D.T.); (M.W.)
| | - Ez-Zoubir Amri
- Inserm, CNRS, iBV, Université Côte d’Azur, 06103 Nice, France;
| | - Klaus-Michael Debatin
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, 89075 Ulm, Germany; (H.W.); (T.P.); (K.-M.D.); (P.F.-P.)
| | - Martin Wabitsch
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, 89075 Ulm, Germany; (D.T.); (M.W.)
| | - Pamela Fischer-Posovszky
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, 89075 Ulm, Germany; (H.W.); (T.P.); (K.-M.D.); (P.F.-P.)
| | - Julian Roos
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, 89075 Ulm, Germany; (H.W.); (T.P.); (K.-M.D.); (P.F.-P.)
- Correspondence: ; Tel.: +49-731-500-57255
| |
Collapse
|
32
|
Charton C, Youm DJ, Ko BJ, Seol D, Kim B, Chai HH, Lim D, Kim H. The transcriptomic blueprint of molt in rooster using various tissues from Ginkkoridak (Korean long-tailed chicken). BMC Genomics 2021; 22:594. [PMID: 34348642 PMCID: PMC8340483 DOI: 10.1186/s12864-021-07903-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 07/13/2021] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Annual molt is a critical stage in the life cycle of birds. Although the most extensively documented aspects of molt are the renewing of plumage and the remodeling of the reproductive tract in laying hens, in chicken, molt deeply affects various tissues and physiological functions. However, with exception of the reproductive tract, the effect of molt on gene expression across the tissues known to be affected by molt has to date never been investigated. The present study aimed to decipher the transcriptomic effects of molt in Ginkkoridak, a Korean long-tailed chicken. Messenger RNA data available across 24 types of tissue samples (9 males) and a combination of mRNA and miRNA data on 10 males and 10 females blood were used. RESULTS The impact of molt on gene expression and gene transcript usage appeared to vary substantially across tissues types in terms of histological entities or physiological functions particularly related to nervous system. Blood was the tissue most affected by molt in terms of differentially expressed genes in both sexes, closely followed by meninges, bone marrow and heart. The effect of molt in blood appeared to differ between males and females, with a more than fivefold difference in the number of down-regulated genes between both sexes. The blueprint of molt in roosters appeared to be specific to tissues or group of tissues, with relatively few genes replicating extensively across tissues, excepted for the spliceosome genes (U1, U4) and the ribosomal proteins (RPL21, RPL23). By integrating miRNA and mRNA data, when chickens molt, potential roles of miRNA were discovered such as regulation of neurogenesis, regulation of immunity and development of various organs. Furthermore, reliable candidate biomarkers of molt were found, which are related to cell dynamics, nervous system or immunity, processes or functions that have been shown to be extensively modulated in response to molt. CONCLUSIONS Our results provide a comprehensive description at the scale of the whole organism deciphering the effects of molt on the transcriptome in chicken. Also, the conclusion of this study can be used as a valuable resource in transcriptome analyses of chicken in the future and provide new insights related to molt.
Collapse
Affiliation(s)
- Clémentine Charton
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Dong-Jae Youm
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Byung June Ko
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Donghyeok Seol
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- eGnome, Inc, Seoul, Republic of Korea
| | - Bongsang Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- eGnome, Inc, Seoul, Republic of Korea
| | - Han-Ha Chai
- Animal Genomics & Bioinformatics Division, National Institute of Animal Science, RDA, 1500, Wanju, Republic of Korea
| | - Dajeong Lim
- Animal Genomics & Bioinformatics Division, National Institute of Animal Science, RDA, 1500, Wanju, Republic of Korea
| | - Heebal Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea.
- eGnome, Inc, Seoul, Republic of Korea.
| |
Collapse
|
33
|
Wang F, Li Z, Zhao M, Ye W, Wu H, Liao Q, Bu S, Zhang Y. Circulating miRNAs miR-574-5p and miR-3135b are potential metabolic regulators for serum lipids and blood glucose in gestational diabetes mellitus. Gynecol Endocrinol 2021; 37:665-671. [PMID: 34126831 DOI: 10.1080/09513590.2021.1908990] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVES MicroRNAs (miRNAs) are potentially involved in the regulation of glucose and lipid metabolism. The aim of this study was to investigate potential miRNA regulators for serum lipids and blood glucose in gestational diabetes mellitus. METHODS Plasma samples were obtained from 53 women with GDM and 46 normal pregnant women. Fasting blood glucose and a blood lipid profile were measured. Plasma miRNA expression profiles were analyzed using microarray. To verify the microarray data, the expression of miRNAs was evaluated by real-time PCR. Gene ontology (GO) and genes and genomics (KEGG) pathway enrichment of the predicted target genes of miRNAs were analyzed. RESULTS The miRNA expression profiles of plasma samples from healthy and GDM women are distinct. We identified 93 differently expressed miRNAs. Compared with healthy pregnant women, 48 miRNAs including miR-574-5p and miR-3135b exhibited significantly lower expression in plasma samples from GDM patients. The expression of miR-574-5p was significantly correlated with levels of blood glucose and LDL-C; miR-3135b was significantly correlated with HDL-C. Some predicted common target genes of these two miRNAs are associated with the metabolism of glucose and lipids as well as the insulin signaling pathway. CONCLUSIONS miR-574-5p and miR-3135b may serve as metabolic regulators of glucose and lipids for GDM.
Collapse
Affiliation(s)
- Fuyan Wang
- Zhejiang Provincial Key Laboratory of Pathophysiology, Diabetes Research Center, Medical School of Ningbo University, Ningbo, Zhejiang, China
| | - Zhulin Li
- Zhejiang Provincial Key Laboratory of Pathophysiology, Diabetes Research Center, Medical School of Ningbo University, Ningbo, Zhejiang, China
| | - Ming Zhao
- Department of Medical Services, The Affiliated Hospital of Medical School of Ningbo University, Ningbo, Zhejiang, China
| | - Wen Ye
- Zhejiang Provincial Key Laboratory of Pathophysiology, Diabetes Research Center, Medical School of Ningbo University, Ningbo, Zhejiang, China
| | - Hangyu Wu
- Zhejiang Provincial Key Laboratory of Pathophysiology, Diabetes Research Center, Medical School of Ningbo University, Ningbo, Zhejiang, China
| | - Qi Liao
- Zhejiang Provincial Key Laboratory of Pathophysiology, Diabetes Research Center, Medical School of Ningbo University, Ningbo, Zhejiang, China
| | - Shizhong Bu
- Zhejiang Provincial Key Laboratory of Pathophysiology, Diabetes Research Center, Medical School of Ningbo University, Ningbo, Zhejiang, China
| | - Yisheng Zhang
- Department of Gynaecology and Obstetrics, Ningbo Medical Center Lihuili Hospital, Medical School of Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
34
|
Subramanian M, Hyeon SJ, Das T, Suh YS, Kim YK, Lee JS, Song EJ, Ryu H, Yu K. UBE4B, a microRNA-9 target gene, promotes autophagy-mediated Tau degradation. Nat Commun 2021; 12:3291. [PMID: 34078905 PMCID: PMC8172564 DOI: 10.1038/s41467-021-23597-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 04/29/2021] [Indexed: 02/07/2023] Open
Abstract
The formation of hyperphosphorylated intracellular Tau tangles in the brain is a hallmark of Alzheimer's disease (AD). Tau hyperphosphorylation destabilizes microtubules, promoting neurodegeneration in AD patients. To identify suppressors of tau-mediated AD, we perform a screen using a microRNA (miR) library in Drosophila and identify the miR-9 family as suppressors of human tau overexpression phenotypes. CG11070, a miR-9a target gene, and its mammalian orthologue UBE4B, an E3/E4 ubiquitin ligase, alleviate eye neurodegeneration, synaptic bouton defects, and crawling phenotypes in Drosophila human tau overexpression models. Total and phosphorylated Tau levels also decrease upon CG11070 or UBE4B overexpression. In mammalian neuroblastoma cells, overexpression of UBE4B and STUB1, which encodes the E3 ligase CHIP, increases the ubiquitination and degradation of Tau. In the Tau-BiFC mouse model, UBE4B and STUB1 overexpression also increase oligomeric Tau degradation. Inhibitor assays of the autophagy and proteasome systems reveal that the autophagy-lysosome system is the major pathway for Tau degradation in this context. These results demonstrate that UBE4B, a miR-9 target gene, promotes autophagy-mediated Tau degradation together with STUB1, and is thus an innovative therapeutic approach for AD.
Collapse
Affiliation(s)
- Manivannan Subramanian
- grid.249967.70000 0004 0636 3099Metabolism and Neurophysiology Research Group, KRIBB, Daejeon, Korea ,grid.511114.1Convergence Research Center of Dementia, KIST, Seoul, Korea
| | - Seung Jae Hyeon
- grid.35541.360000000121053345Center for Neuroscience, Brain Science Institute, KIST, Seoul, Korea
| | - Tanuza Das
- grid.35541.360000000121053345Biomedical Research Institute, KIST, Seoul, Korea
| | - Yoon Seok Suh
- grid.249967.70000 0004 0636 3099Metabolism and Neurophysiology Research Group, KRIBB, Daejeon, Korea
| | - Yun Kyung Kim
- grid.511114.1Convergence Research Center of Dementia, KIST, Seoul, Korea
| | - Jeong-Soo Lee
- grid.249967.70000 0004 0636 3099Metabolism and Neurophysiology Research Group, KRIBB, Daejeon, Korea ,grid.511114.1Convergence Research Center of Dementia, KIST, Seoul, Korea
| | - Eun Joo Song
- grid.255649.90000 0001 2171 7754Graduate School of Pharmaceutical Sciences and College of Pharmacy, Ewha Womans University, Seoul, Korea
| | - Hoon Ryu
- grid.35541.360000000121053345Center for Neuroscience, Brain Science Institute, KIST, Seoul, Korea
| | - Kweon Yu
- grid.249967.70000 0004 0636 3099Metabolism and Neurophysiology Research Group, KRIBB, Daejeon, Korea ,grid.511114.1Convergence Research Center of Dementia, KIST, Seoul, Korea ,grid.412786.e0000 0004 1791 8264Department of Functional Genomics, UST, Daejeon, Korea
| |
Collapse
|
35
|
Integrative analysis of miRNAs and mRNAs revealed regulation of lipid metabolism in dairy cattle. Funct Integr Genomics 2021; 21:393-404. [PMID: 33963462 DOI: 10.1007/s10142-021-00786-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 04/15/2021] [Accepted: 04/20/2021] [Indexed: 10/21/2022]
Abstract
Lipid metabolism in bovine mammary epithelial cells has been the primary focus of the research of milk fat percentage of dairy cattle. Functional microRNAs can affect lipid metabolism by regulating the expression of candidate genes. The purpose of the study was to screen and identify differentially expressed miRNAs, candidate genes, and co-regulatory pathways related to the metabolism of milk fat. To achieve this aim, we used miRNA and transcriptome data from the mammary epithelial cells of dairy cattle with high (H, 4.85%) and low milk fat percentages (L, 3.41%) during mid-lactation. One hundred ninety differentially expressed genes and 33 differentially expressed miRNAs were significantly enriched in related regulatory networks, of which 27 candidate genes regulated by 18 differentially expressed miRNAs significantly enriched in pathways related to lipid metabolism (p < 0.05). Target relationships between PDE4D and bta-miR-148a, PEG10 and bta-miR-877, SOD3 and bta-miR-2382-5p, and ADAMTS1 and bta-miR-2425-5p were verified using luciferase reporter assays and quantitative RT-PCR. The detection of triglyceride production in BMECs showed that bta-miR-21-3p and bta-miR-148a promote triglyceride synthesis, whereas bta-miR-124a, bta-miR-877, bta-miR-2382-5p, and bta-miR-2425-5p inhibit triglyceride synthesis. The conjoint analysis could identify functional miRNAs and regulatory candidate genes involved in lipid metabolism within the co-expression networks of the dairy cattle mammary system, which contributes to the understanding of potential regulatory mechanisms of genetic element and gene signaling networks involved in milk fat metabolism.
Collapse
|
36
|
Yuan Y, Mills MJL, Zhang Z, Ma Y, Zhao C, Su W. A general RNA force field: comprehensive analysis of energy minima of molecular fragments of RNA. J Mol Model 2021; 27:137. [PMID: 33903935 DOI: 10.1007/s00894-021-04746-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 04/14/2021] [Indexed: 11/29/2022]
Abstract
Force fields are actively used to study RNA. Development of accurate force fields relies on a knowledge of how the variation of properties of molecules depends on their structure. Detailed scrutiny of RNA's conformational preferences is needed to guide such development. Towards this end, minimum energy structures for each of a set of 16 small RNA-derived molecules were obtained by geometry optimization at the HF/6-31G(d,p), B3LYP/apc-1, and MP2/cc-pVDZ levels of theory. The number of minima computed for a given fragment was found to be related to both its size and flexibility. Atomic electrostatic multipole moments of atoms occurring in the [HO-P(O3)-CH2-] fragment of 30 sugar-phosphate-sugar geometries were calculated at the HF/6-31G(d,p) and B3LYP/apc-1 levels of theory, and the transferability of these properties between different conformations was investigated. The atomic multipole moments were found to be highly transferable between different conformations with small standard deviations. These results indicate necessary elements of the development of accurate RNA force fields.
Collapse
Affiliation(s)
- Yongna Yuan
- School of Information Science & Engineering, Lanzhou University, No. 222 South Tianshui Road, Lanzhou, 730000, China.
| | - Matthew J L Mills
- 3M Corporate Research Analytical Laboratory, Saint Paul, MN, 55114, USA
| | - Zhuangzhuang Zhang
- School of Information Science & Engineering, Lanzhou University, No. 222 South Tianshui Road, Lanzhou, 730000, China.,Xi'an Microelectronic Technology Institute, No.198 Taibai South Road, Xi'an, 710000, China
| | - Yan Ma
- School of Information Science & Engineering, Lanzhou University, No. 222 South Tianshui Road, Lanzhou, 730000, China
| | - Chunyan Zhao
- School of Pharmacy, Lanzhou University, No. 222 South Tianshui Road, Lanzhou, 730000, China.
| | - Wei Su
- School of Information Science & Engineering, Lanzhou University, No. 222 South Tianshui Road, Lanzhou, 730000, China
| |
Collapse
|
37
|
Cirillo F, Catellani C, Lazzeroni P, Sartori C, Street ME. The Role of MicroRNAs in Influencing Body Growth and Development. Horm Res Paediatr 2021; 93:7-15. [PMID: 31914447 DOI: 10.1159/000504669] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 11/08/2019] [Indexed: 11/19/2022] Open
Abstract
Body growth and development are regulated among others by genetic and epigenetic factors. MicroRNAs (miRNAs) are epigenetic regulators of gene expression that act at the post-transcriptional level, thereby exerting a strong influence on regulatory gene networks. Increasing studies suggest the importance of miRNAs in the regulation of the growth plate and growth hormone (GH)-insulin-like growth factor (IGF) axis during the life course in a broad spectrum of animal species, contributing to longitudinal growth. This review summarizes the role of miRNAs in regulating growth in different in vitro and in vivo models acting on GH, GH receptor (GHR), IGFs, and IGF1R genes besides current knowledge in humans, and highlights that this regulatory system is of importance for growth.
Collapse
Affiliation(s)
- Francesca Cirillo
- Department of Mother and Child, Azienda USL - IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Cecilia Catellani
- Department of Mother and Child, Azienda USL - IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Pietro Lazzeroni
- Department of Mother and Child, Azienda USL - IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Chiara Sartori
- Department of Mother and Child, Azienda USL - IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Maria Elisabeth Street
- Department of Mother and Child, Azienda USL - IRCCS di Reggio Emilia, Reggio Emilia, Italy,
| |
Collapse
|
38
|
Ojima K, Muroya S, Wada H, Ogawa K, Oe M, Takimoto K, Nishimura T. Immature adipocyte-derived exosomes inhibit expression of muscle differentiation markers. FEBS Open Bio 2021; 11:768-781. [PMID: 33527775 PMCID: PMC7931241 DOI: 10.1002/2211-5463.13100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/24/2020] [Accepted: 01/27/2021] [Indexed: 11/16/2022] Open
Abstract
Exosomes are released from a variety of cells to communicate with recipient cells. Exosomes contain microRNAs (miRNAs), which are noncoding RNAs that suppress target genes. Our previous proteomic study (FEBS Open Bio 2016, 6, 816–826) demonstrated that 3T3‐L1 adipocytes secrete exosome components as well as growth factors, inspiring us to investigate what type of miRNA is involved in adipocyte‐secreted exosomes and what functions they carry out in recipient cells. Here, we profiled miRNAs in 3T3‐L1 adipocyte‐secreted exosomes and revealed suppression of muscle differentiation by adipocyte‐derived exosomes. Through our microarray analysis, we detected over 300 exosomal miRNAs during adipocyte differentiation. Exosomal miRNAs present during adipocyte differentiation included not only pro‐adipogenic miRNAs but also miRNAs associated with muscular dystrophy. Gene ontology analysis predicted that the target genes of miRNAs are associated primarily with transcriptional regulation. To further investigate whether adipocyte‐secreted exosomes regulate the expression levels of genes involved in muscle differentiation, we treated cultured myoblasts with adipocyte‐derived exosome fractions. Intriguingly, the expression levels of myogenic regulatory factors, Myog and Myf6, and other muscle differentiation markers, myosin heavy‐chain 3 and insulin‐like growth factor 2, were significantly downregulated in myoblasts treated with adipocyte‐derived exosomes. Immature adipocyte‐derived exosomes exhibited a stronger suppressive effect than mature adipocyte‐derived exosomes. Our results suggest that adipocytes suppress the expression levels of muscle differentiation‐associated genes in myoblasts via adipocyte‐secreted exosomes containing miRNAs.
Collapse
Affiliation(s)
- Koichi Ojima
- Muscle Biology Research Unit, Division of Animal Products Research, National Institute of Livestock and Grassland Science, NARO, Tsukuba, Japan
| | - Susumu Muroya
- Muscle Biology Research Unit, Division of Animal Products Research, National Institute of Livestock and Grassland Science, NARO, Tsukuba, Japan
| | - Hiromu Wada
- Ion Channel Laboratory, Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Japan
| | - Kotaro Ogawa
- Ion Channel Laboratory, Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Japan
| | - Mika Oe
- Muscle Biology Research Unit, Division of Animal Products Research, National Institute of Livestock and Grassland Science, NARO, Tsukuba, Japan
| | - Koichi Takimoto
- Ion Channel Laboratory, Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Japan
| | - Takanori Nishimura
- Laboratory of Cell and Tissue Biology, Research Faculty of Agriculture, Graduate School of Agriculture, Hokkaido University, Sapporo, Japan
| |
Collapse
|
39
|
D-Mannose Inhibits Adipogenic Differentiation of Adipose Tissue-Derived Stem Cells via the miR669b/MAPK Pathway. Stem Cells Int 2020; 2020:8866048. [PMID: 33376493 PMCID: PMC7746460 DOI: 10.1155/2020/8866048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 11/13/2020] [Accepted: 11/27/2020] [Indexed: 01/11/2023] Open
Abstract
The adipogenic differentiation of adipose tissue-derived stem cells (ADSCs) plays an important role in the process of obesity and host metabolism. D-Mannose shows a potential regulating function for fat tissue expansion and glucose metabolism. To explore the mechanisms through which D-mannose affects the adipogenic differentiation of adipose-derived stem cells in vitro, we cultured the ADSCs with adipogenic medium inducement containing D-mannose or glucose as the control. The adipogenic differentiation specific markers Pparg and Fabp4 were determined by real-time PCR. The Oil Red O staining was applied to measure the lipid accumulation. To further explore the mechanisms, microarray analysis was performed to detect the differences between glucose-treated ADSCs (G-ADSCs) and D-mannose-treated ADSCs (M-ADSCs) in the gene expression level. The microarray data were further analyzed by a Venn diagram and Gene Set Enrichment Analysis (GSEA). MicroRNA inhibitor transfection was used to confirm the role of key microRNA. Results. D-Mannose intervention significantly inhibited the adipogenic differentiation of ADSCs, compared with the glucose intervention. Microarray showed that D-mannose increased the expression of miR669b, which was an inhibitor of adipogenesis. In addition, GSEA and western blot suggested that D-mannose suppressed the adipogenic differentiation via inhibiting the MAPK pathway and further inhibited the expression of proteins related to glucose metabolism and tumorigenesis. Conclusion. D-Mannose inhibits adipogenic differentiation of ADSCs via the miR669b/MAPK signaling pathway and may be further involved in the regulation of glucose metabolism and the inhibition of tumorigenesis.
Collapse
|
40
|
MiR-125b-2 knockout increases high-fat diet-induced fat accumulation and insulin resistance. Sci Rep 2020; 10:21969. [PMID: 33319811 PMCID: PMC7738482 DOI: 10.1038/s41598-020-77714-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 11/09/2020] [Indexed: 12/26/2022] Open
Abstract
Obese individuals are more susceptible to comorbidities than individuals of healthy weight, including cardiovascular disease and metabolic disorders. MicroRNAs are a class of small and noncoding RNAs that are implicated in the regulation of chronic human diseases. We previously reported that miR-125b plays a critical role in adipogenesis in vitro. However, the involvement of miR-125b-2 in fat metabolism in vivo remains unknown. In the present study, miR-125b-2 knockout mice were generated using CRISPR/CAS9 technology, resulting in mice with a 7 bp deletion in the seed sequence of miR-125b-2. MiR-125b-2 knockout increased the weight of liver tissue, epididymal white fat and inguinal white fat. MiR-125b-2 knockout also increased adipocyte volume in HFD-induced obese mice, while there were no significant differences in body weight and feed intake versus mice fed a normal diet. Additionally, qRT-PCR and western blot analysis revealed that the expression of the miR-125b-2 target gene SCD-1 and fat synthesis-associated genes, such as PPARγ and C/EBPα, were significantly up-regulated in miR-125b-2KO mice (P < 0.05). Moreover, miR-125b-2KO altered HFD-induced changes in glucose tolerance and insulin resistance. In conclusion, we show that miR-125b-2 is a novel potential target for regulating fat accumulation, and also a candidate target to develop novel treatment strategies for obesity and diabetes.
Collapse
|
41
|
Włodarski A, Strycharz J, Wróblewski A, Kasznicki J, Drzewoski J, Śliwińska A. The Role of microRNAs in Metabolic Syndrome-Related Oxidative Stress. Int J Mol Sci 2020; 21:ijms21186902. [PMID: 32962281 PMCID: PMC7555602 DOI: 10.3390/ijms21186902] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 09/15/2020] [Accepted: 09/17/2020] [Indexed: 02/06/2023] Open
Abstract
Oxidative stress (OxS) is the cause and the consequence of metabolic syndrome (MetS), the incidence and economic burden of which is increasing each year. OxS triggers the dysregulation of signaling pathways associated with metabolism and epigenetics, including microRNAs, which are biomarkers of metabolic disorders. In this review, we aimed to summarize the current knowledge regarding the interplay between microRNAs and OxS in MetS and its components. We searched PubMed and Google Scholar to summarize the most relevant studies. Collected data suggested that different sources of OxS (e.g., hyperglycemia, insulin resistance (IR), hyperlipidemia, obesity, proinflammatory cytokines) change the expression of numerous microRNAs in organs involved in the regulation of glucose and lipid metabolism and endothelium. Dysregulated microRNAs either directly or indirectly affect the expression and/or activity of molecules of antioxidative signaling pathways (SIRT1, FOXOs, Keap1/Nrf2) along with effector enzymes (e.g., GPx-1, SOD1/2, HO-1), ROS producers (e.g., NOX4/5), as well as genes of numerous signaling pathways connected with inflammation, insulin sensitivity, and lipid metabolism, thus promoting the progression of metabolic imbalance. MicroRNAs appear to be important epigenetic modifiers in managing the delicate redox balance, mediating either pro- or antioxidant biological impacts. Summarizing, microRNAs may be promising therapeutic targets in ameliorating the repercussions of OxS in MetS.
Collapse
Affiliation(s)
- Adam Włodarski
- Department of Internal Diseases, Diabetology and Clinical Pharmacology, Medical University of Lodz, 92-213 Lodz, Poland;
- Correspondence: (A.W.); (J.S.); (A.Ś.)
| | - Justyna Strycharz
- Department of Medical Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland;
- Correspondence: (A.W.); (J.S.); (A.Ś.)
| | - Adam Wróblewski
- Department of Medical Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland;
| | - Jacek Kasznicki
- Department of Internal Diseases, Diabetology and Clinical Pharmacology, Medical University of Lodz, 92-213 Lodz, Poland;
| | - Józef Drzewoski
- Central Teaching Hospital of the Medical University of Lodz, 92-213 Lodz, Poland;
| | - Agnieszka Śliwińska
- Department of Nucleic Acid Biochemistry, Medical University of Lodz, 92-213 Lodz, Poland
- Correspondence: (A.W.); (J.S.); (A.Ś.)
| |
Collapse
|
42
|
Chen X, Li TH, Zhao Y, Wang CC, Zhu CC. Deep-belief network for predicting potential miRNA-disease associations. Brief Bioinform 2020; 22:5898648. [PMID: 34020550 DOI: 10.1093/bib/bbaa186] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/09/2020] [Accepted: 07/21/2020] [Indexed: 12/14/2022] Open
Abstract
MicroRNA (miRNA) plays an important role in the occurrence, development, diagnosis and treatment of diseases. More and more researchers begin to pay attention to the relationship between miRNA and disease. Compared with traditional biological experiments, computational method of integrating heterogeneous biological data to predict potential associations can effectively save time and cost. Considering the limitations of the previous computational models, we developed the model of deep-belief network for miRNA-disease association prediction (DBNMDA). We constructed feature vectors to pre-train restricted Boltzmann machines for all miRNA-disease pairs and applied positive samples and the same number of selected negative samples to fine-tune DBN to obtain the final predicted scores. Compared with the previous supervised models that only use pairs with known label for training, DBNMDA innovatively utilizes the information of all miRNA-disease pairs during the pre-training process. This step could reduce the impact of too few known associations on prediction accuracy to some extent. DBNMDA achieves the AUC of 0.9104 based on global leave-one-out cross validation (LOOCV), the AUC of 0.8232 based on local LOOCV and the average AUC of 0.9048 ± 0.0026 based on 5-fold cross validation. These AUCs are better than other previous models. In addition, three different types of case studies for three diseases were implemented to demonstrate the accuracy of DBNMDA. As a result, 84% (breast neoplasms), 100% (lung neoplasms) and 88% (esophageal neoplasms) of the top 50 predicted miRNAs were verified by recent literature. Therefore, we could conclude that DBNMDA is an effective method to predict potential miRNA-disease associations.
Collapse
Affiliation(s)
- Xing Chen
- Artificial Intelligence Research Institute, China University of Mining and Technology
| | - Tian-Hao Li
- School of Information and Control Engineering, China University of Mining and Technology
| | - Yan Zhao
- School of Information and Control Engineering, China University of Mining and Technology
| | - Chun-Chun Wang
- School of Information and Control Engineering, China University of Mining and Technology
| | - Chi-Chi Zhu
- School of Information and Control Engineering, China University of Mining and Technology
| |
Collapse
|
43
|
Nelson MC, O'Connell RM. MicroRNAs: At the Interface of Metabolic Pathways and Inflammatory Responses by Macrophages. Front Immunol 2020; 11:1797. [PMID: 32922393 PMCID: PMC7456828 DOI: 10.3389/fimmu.2020.01797] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 07/06/2020] [Indexed: 12/12/2022] Open
Abstract
Macrophages are key cells of the innate immune system with functional roles in both homeostatic maintenance of self-tissues and inflammatory responses to external stimuli, including infectious agents. Recent advances in metabolic research have revealed that macrophage functions rely upon coordinated metabolic programs to regulate gene expression, inflammation, and other important cellular processes. Polarized macrophages adjust their use of nutrients such as glucose and amino acids to meet their changing metabolic needs, and this in turn supports the functions of the activated macrophage. Metabolic and inflammatory processes have been widely studied, and a crucial role for their regulation at the post-transcriptional level by microRNAs (miRNAs) has been identified. miRNAs govern many facets of macrophage biology, including direct targeting of metabolic regulators and inflammatory pathways. This review will integrate emerging data that support an interplay between miRNAs and metabolism during macrophage inflammatory responses, highlighting critical miRNAs and miRNA families. Additionally, we will address the implications of these networks for human disease and discuss emerging areas of research in this field.
Collapse
Affiliation(s)
- Morgan C Nelson
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City, UT, United States.,Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, United States
| | - Ryan M O'Connell
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City, UT, United States.,Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
44
|
Al-Rawi NH, Al-Marzooq F, Al-Nuaimi AS, Hachim MY, Hamoudi R. Salivary microRNA 155, 146a/b and 203: A pilot study for potentially non-invasive diagnostic biomarkers of periodontitis and diabetes mellitus. PLoS One 2020; 15:e0237004. [PMID: 32756589 PMCID: PMC7406085 DOI: 10.1371/journal.pone.0237004] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 07/17/2020] [Indexed: 12/11/2022] Open
Abstract
Dysregulated expression of MicroRNAs (miRNAs) plays substantial role in the initiation and progression of both diabetes and periodontitis. The aim of the present study was to validate four miRNAs in saliva as potential predictive biomarkers of periodontal disease among patients with and without diabetes mellitus (DM). MiRNAs were extracted from the saliva of 24 adult subjects with DM and 29 healthy controls. Each group was subdivided into periodontally healthy or having periodontitis. In silico analysis identified 4 miRNAs (miRNA 155, 146 a/b and 203) as immune modulators. The expression of miRNAs-146a/b, 155, and 203 was tested using quantitative PCR. The expression levels in the study groups were compared to explore the effect of diabetes on periodontal status and vice versa. In our cohort, the four miRNAs expression were higher in patients with periodontitis and/or diabetes. miRNA-155 was the most reliable predictors of periodontitis among non-diabetics with an optimum cut-off value of < 8.97 with accuracy = 82.6%. MiRNA 146a, on the other hand, was the only reliable predictor of periodontitis among subjects with diabetes with optimum cut-off value of ≥11.04 with accuracy = 86.1%. The results of the present study concluded that MiRNA-146a and miRNA155 in saliva provide reliable, non-invasive, diagnostic and prognostic biomarkers that can be used to monitor periodontal health status among diabetic and non-diabetic patients.
Collapse
Affiliation(s)
- Natheer H. Al-Rawi
- Department of Oral & Craniofacial Health Sciences, College of Dental Medicine, University of Sharjah, Sharjah, UAE
| | - Farah Al-Marzooq
- Department of Medical Microbiology & Immunology, College of Medicine and Health Sciences, UAE University, Al Ain, UAE
| | | | - Mahmood Y. Hachim
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, UAE
| | - Rifat Hamoudi
- Sharjah Institute for Medical Research, College of Medicine, University of Sharjah, Sharjah, UAE
- Division of Surgery and Interventional Science, University College London, London, United Kingdom
| |
Collapse
|
45
|
Assmann TS, Cuevas-Sierra A, Salas-Pérez F, Riezu-Boj JI, Milagro FI, Martínez JA. Crosstalk between circulating microRNAs and chronotypical features in subjects with metabolic syndrome. Chronobiol Int 2020; 37:1048-1058. [PMID: 32633152 DOI: 10.1080/07420528.2020.1782419] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Circulating microRNAs (miRNAs) are valuable biomarkers that may provide important insight into the pathogenesis of metabolic syndrome (MetS). Moreover, there is an association between chronotypical characteristics and MetS predisposition. Considering that expression of some miRNAs is circadian-rhythm-dependent, the aim of this study was to investigate the circulating miRNA profile in subjects with and without MetS in association with chronotype. The expression of 86 metabolic syndrome-related miRNAs was investigated in the plasma of 21 subjects with MetS and in 82 subjects without MetS using miRCURY LNA miRNA PCR System technology. Chronotype was assessed using the Horne and Östberg Morningness-Eveningness Questionnaire. Bioinformatic analyses were performed to explore the target genes and biological pathways regulated by the selected miRNAs. Subjects with MetS were more often evening chronotype compared to non-MetS controls. Additionally, four miRNAs (miR-140-3p, miR-150-5p, miR-375, and miR-29 c-3p) demonstrated interaction with MetS and chronotype. Interestingly, the target genes of these four miRNAs participate in pathways related to the circadian clock. In conclusion, we identified four circulating miRNAs whose circulating levels could interact with MetS and chronotype.
Collapse
Affiliation(s)
- Taís Silveira Assmann
- Department of Nutrition, Food Science and Physiology; Center for Nutrition Research, University of Navarra , Pamplona, Spain
| | - Amanda Cuevas-Sierra
- Department of Nutrition, Food Science and Physiology; Center for Nutrition Research, University of Navarra , Pamplona, Spain
| | - Francisca Salas-Pérez
- Department of Nutrition, Food Science and Physiology; Center for Nutrition Research, University of Navarra , Pamplona, Spain
| | - José I Riezu-Boj
- Department of Nutrition, Food Science and Physiology; Center for Nutrition Research, University of Navarra , Pamplona, Spain.,Centro De Investigación Biomédica En Red Fisiopatología De La Obesidad Y Nutrición (Ciberobn), Instituto De Salud Carlos III , Madrid, Spain.,IdiSNA, Navarra Institute for Health Research , Pamplona, Spain
| | - Fermín I Milagro
- Department of Nutrition, Food Science and Physiology; Center for Nutrition Research, University of Navarra , Pamplona, Spain.,Centro De Investigación Biomédica En Red Fisiopatología De La Obesidad Y Nutrición (Ciberobn), Instituto De Salud Carlos III , Madrid, Spain.,IdiSNA, Navarra Institute for Health Research , Pamplona, Spain
| | - J Alfredo Martínez
- Department of Nutrition, Food Science and Physiology; Center for Nutrition Research, University of Navarra , Pamplona, Spain.,Centro De Investigación Biomédica En Red Fisiopatología De La Obesidad Y Nutrición (Ciberobn), Instituto De Salud Carlos III , Madrid, Spain.,IdiSNA, Navarra Institute for Health Research , Pamplona, Spain.,Madrid Institute of Advanced Studies (IMDEA Food), Food Institute , Madrid, Spain
| |
Collapse
|
46
|
Mori MA. Aging: a New Perspective on an Old Issue. AN ACAD BRAS CIENC 2020; 92:e20200437. [PMID: 32638871 DOI: 10.1590/0001-3765202020200437] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 05/21/2020] [Indexed: 12/23/2022] Open
Abstract
The world is undergoing a profound demographic change with a rapid increase in the prevalence of aged individuals. The finitude of life, the burden of senescence and the search for strategies to prolong human life span have troubled humanity since ancient times. However, only in the past few decades we started to understand how organisms age and how life span can be manipulated. Here I give an historical perspective of the aging field and conclude with the notion that aging is controlled by signals from the adipose tissue which are tightly controlled by small non-coding RNAs such as miRNAs.
Collapse
Affiliation(s)
- Marcelo A Mori
- Laboratory of Aging Biology (LaBE), Universidade Estadual de Campinas/UNICAMP, Campinas, SP, Brazil
| |
Collapse
|
47
|
Corrêa TAF, Quintanilha BJ, Norde MM, Pinhel MADS, Nonino CB, Rogero MM. Nutritional genomics, inflammation and obesity. ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2020; 64:205-222. [PMID: 32555987 PMCID: PMC10522224 DOI: 10.20945/2359-3997000000255] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 04/13/2020] [Indexed: 11/23/2022]
Abstract
The Human Genome Project has significantly broadened our understanding of the molecular aspects regulating the homeostasis and the pathophysiology of different clinical conditions. Consequently, the field of nutrition has been strongly influenced by such improvements in knowledge - especially for determining how nutrients act at the molecular level in different conditions, such as obesity, type 2 diabetes, cardiovascular disease, and cancer. In this manner, characterizing how the genome influences the diet and vice-versa provides insights about the molecular mechanisms involved in chronic inflammation-related diseases. Therefore, the present review aims to discuss the potential application of Nutritional Genomics to modulate obesity-related inflammatory responses. Arch Endocrinol Metab. 2020;64(3):205-22.
Collapse
Affiliation(s)
- Telma Angelina Faraldo Corrêa
- Departamento de Alimentos e Nutrição ExperimentalFaculdade de Ciências FarmacêuticasUniversidade de São PauloSão PauloSPBrasil Departamento de Alimentos e Nutrição Experimental , Faculdade de Ciências Farmacêuticas , Universidade de São Paulo (USP), São Paulo , SP , Brasil
- Centro de Pesquisa em AlimentosCentros de Pesquisa, Inovação e DifusãoFundação de Amparo à Pesquisa do Estado de São PauloSão PauloSPBrasil Centro de Pesquisa em Alimentos (FoRC), Centros de Pesquisa, Inovação e Difusão (Cepid), Fundação de Amparo à Pesquisa do Estado de São Paulo (Fapesp), São Paulo , SP , Brasil
| | - Bruna Jardim Quintanilha
- Centro de Pesquisa em AlimentosCentros de Pesquisa, Inovação e DifusãoFundação de Amparo à Pesquisa do Estado de São PauloSão PauloSPBrasil Centro de Pesquisa em Alimentos (FoRC), Centros de Pesquisa, Inovação e Difusão (Cepid), Fundação de Amparo à Pesquisa do Estado de São Paulo (Fapesp), São Paulo , SP , Brasil
- Departamento de NutriçãoFaculdade de Saúde PúblicaUniversidade de São PauloSão PauloSPBrasil Laboratório de Genômica Nutricional e Inflamação, Departamento de Nutrição , Faculdade de Saúde Pública , Universidade de São Paulo (USP), São Paulo , SP , Brasil
| | - Marina Maintinguer Norde
- Departamento de NutriçãoFaculdade de Saúde PúblicaUniversidade de São PauloSão PauloSPBrasil Laboratório de Genômica Nutricional e Inflamação, Departamento de Nutrição , Faculdade de Saúde Pública , Universidade de São Paulo (USP), São Paulo , SP , Brasil
| | - Marcela Augusta de Souza Pinhel
- Departamento de Medicina InternaFaculdade de Medicina de Ribeirão PretoUniversidade de São PauloRibeirão PretoSPBrasil Departamento de Medicina Interna , Faculdade de Medicina de Ribeirão Preto , Universidade de São Paulo (USP), Ribeirão Preto , SP , Brasil
- Departamento de Ciências da SaúdeFaculdade de Medicina de Ribeirão PretoUniversidade de São PauloRibeirão PretoSPBrasil Departamento de Ciências da Saúde , Faculdade de Medicina de Ribeirão Preto , Universidade de São Paulo (USP), Ribeirão Preto , SP , Brasil
| | - Carla Barbosa Nonino
- Departamento de Medicina InternaFaculdade de Medicina de Ribeirão PretoUniversidade de São PauloRibeirão PretoSPBrasil Departamento de Medicina Interna , Faculdade de Medicina de Ribeirão Preto , Universidade de São Paulo (USP), Ribeirão Preto , SP , Brasil
- Departamento de Ciências da SaúdeFaculdade de Medicina de Ribeirão PretoUniversidade de São PauloRibeirão PretoSPBrasil Departamento de Ciências da Saúde , Faculdade de Medicina de Ribeirão Preto , Universidade de São Paulo (USP), Ribeirão Preto , SP , Brasil
| | - Marcelo Macedo Rogero
- Centro de Pesquisa em AlimentosCentros de Pesquisa, Inovação e DifusãoFundação de Amparo à Pesquisa do Estado de São PauloSão PauloSPBrasil Centro de Pesquisa em Alimentos (FoRC), Centros de Pesquisa, Inovação e Difusão (Cepid), Fundação de Amparo à Pesquisa do Estado de São Paulo (Fapesp), São Paulo , SP , Brasil
- Departamento de NutriçãoFaculdade de Saúde PúblicaUniversidade de São PauloSão PauloSPBrasil Laboratório de Genômica Nutricional e Inflamação, Departamento de Nutrição , Faculdade de Saúde Pública , Universidade de São Paulo (USP), São Paulo , SP , Brasil
| |
Collapse
|
48
|
Endometrial microRNAs and their aberrant expression patterns. Med Mol Morphol 2020; 53:131-140. [PMID: 32350620 DOI: 10.1007/s00795-020-00252-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 04/12/2020] [Indexed: 12/15/2022]
Abstract
MicroRNAs (miRNAs) are a class of small noncoding RNAs that regulate gene expression. They play fundamental roles in several biological processes, including cell differentiation and proliferation, embryo development, organ development, and organ metabolism. Besides regulating the physiological processes, miRNAs regulate various pathological conditions such as tumors, metastases, metabolic diseases, and osteoporosis. Although several studies have been performed on miRNAs, only few studies have described the miRNA expression and functions in human reproductive tract tissues. During menstruation, the human endometrium undergoes extensive cyclic morphological and biochemical modifications before embryo implantation. In addition to the ovarian steroid hormones (estrogen and progesterone), endometrial autocrine or paracrine factors and embryo-derived signals play a significant role in endometrial functions. miRNAs are considered key regulators of gene expression in the human endometrium and implantation process, and their aberrant expression levels are associated with the development of various disorders, including tumorigenesis. In this review, we summarize the studies that show the role of miRNAs in regulating the physiological conditions of the endometrium and the implantation process and discuss the aberrant expression of miRNAs in ectopic pregnancy, endometriosis, and endometrial cancer.
Collapse
|
49
|
Lin D, Chen T, Xie M, Li M, Zeng B, Sun R, Zhu Y, Ye D, Wu J, Sun J, Xi Q, Jiang Q, Zhang Y. Oral Administration of Bovine and Porcine Milk Exosome Alter miRNAs Profiles in Piglet Serum. Sci Rep 2020; 10:6983. [PMID: 32332796 PMCID: PMC7181743 DOI: 10.1038/s41598-020-63485-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 03/20/2020] [Indexed: 12/14/2022] Open
Abstract
Breast milk is the most important nutrient source for newborn mammals. Studies have reported that milk contains microRNAs (miRNAs), which are potential regulatory components. Currently, existing functional and nutritional two competing hypotheses in milk field though little date have been provided for nutritional hypothesis. In this study, we used the qRT-PCR method to evaluated whether milk miRNAs can be absorbed by newborn piglets by feeding them porcine or bovine milk. The result showed that miRNA levels (miR-2284×, 2291, 7134, 1343, 500, 223) were significantly different between bovine and porcine milk. Four miRNAs (miR-2284×, 2291, 7134, 1343) were significantly different in piglet serum after feeding porcine or bovine milk. After separated milk exosomes by ultracentrifugation, the results showed the selected milk miRNAs (miR-2284×, 2291, 7134, 1343) were present in both exosomes and supernatants, and the miRNAs showed the coincidental expression in IPEC-J2 cells. All our founding suggested that the milk miRNAs can be absorbed both in vivo and in vitro, which will building the foundation for understanding whether these sort of miRNAs exert physiological functions after being absorbed and provided additional evidence for the nutritional hypotheses.
Collapse
Affiliation(s)
- Delin Lin
- National Engineering Research Center For Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, Guangdong Province Research Center of Woody Forage Engineering and Technology, Guangdong Provincial Key Laboratory of Animal Nutrition Control, South China Agricultural University, 483 Wushan Road, Guangzhou, 510642, China
| | - Ting Chen
- National Engineering Research Center For Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, Guangdong Province Research Center of Woody Forage Engineering and Technology, Guangdong Provincial Key Laboratory of Animal Nutrition Control, South China Agricultural University, 483 Wushan Road, Guangzhou, 510642, China
| | - Meiying Xie
- National Engineering Research Center For Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, Guangdong Province Research Center of Woody Forage Engineering and Technology, Guangdong Provincial Key Laboratory of Animal Nutrition Control, South China Agricultural University, 483 Wushan Road, Guangzhou, 510642, China
| | - Meng Li
- National Engineering Research Center For Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, Guangdong Province Research Center of Woody Forage Engineering and Technology, Guangdong Provincial Key Laboratory of Animal Nutrition Control, South China Agricultural University, 483 Wushan Road, Guangzhou, 510642, China
| | - Bin Zeng
- National Engineering Research Center For Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, Guangdong Province Research Center of Woody Forage Engineering and Technology, Guangdong Provincial Key Laboratory of Animal Nutrition Control, South China Agricultural University, 483 Wushan Road, Guangzhou, 510642, China
| | - Ruiping Sun
- Institute of Animal Science and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou, 571100, China
| | - Yanling Zhu
- National Engineering Research Center For Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, Guangdong Province Research Center of Woody Forage Engineering and Technology, Guangdong Provincial Key Laboratory of Animal Nutrition Control, South China Agricultural University, 483 Wushan Road, Guangzhou, 510642, China
| | - Dingze Ye
- National Engineering Research Center For Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, Guangdong Province Research Center of Woody Forage Engineering and Technology, Guangdong Provincial Key Laboratory of Animal Nutrition Control, South China Agricultural University, 483 Wushan Road, Guangzhou, 510642, China
| | - Jiahan Wu
- National Engineering Research Center For Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, Guangdong Province Research Center of Woody Forage Engineering and Technology, Guangdong Provincial Key Laboratory of Animal Nutrition Control, South China Agricultural University, 483 Wushan Road, Guangzhou, 510642, China
| | - Jiajie Sun
- National Engineering Research Center For Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, Guangdong Province Research Center of Woody Forage Engineering and Technology, Guangdong Provincial Key Laboratory of Animal Nutrition Control, South China Agricultural University, 483 Wushan Road, Guangzhou, 510642, China
| | - Qianyun Xi
- National Engineering Research Center For Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, Guangdong Province Research Center of Woody Forage Engineering and Technology, Guangdong Provincial Key Laboratory of Animal Nutrition Control, South China Agricultural University, 483 Wushan Road, Guangzhou, 510642, China
| | - Qingyan Jiang
- National Engineering Research Center For Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, Guangdong Province Research Center of Woody Forage Engineering and Technology, Guangdong Provincial Key Laboratory of Animal Nutrition Control, South China Agricultural University, 483 Wushan Road, Guangzhou, 510642, China
| | - Yongliang Zhang
- National Engineering Research Center For Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, Guangdong Province Research Center of Woody Forage Engineering and Technology, Guangdong Provincial Key Laboratory of Animal Nutrition Control, South China Agricultural University, 483 Wushan Road, Guangzhou, 510642, China.
| |
Collapse
|
50
|
Zhang F, Ma D, Zhao W, Wang D, Liu T, Liu Y, Yang Y, Liu Y, Mu J, Li B, Zhang Y, Pan Y, Guo C, Du H, Li L, Fu X, Cao Z, Jin L. Obesity-induced overexpression of miR-802 impairs insulin transcription and secretion. Nat Commun 2020; 11:1822. [PMID: 32286278 PMCID: PMC7156651 DOI: 10.1038/s41467-020-15529-w] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Accepted: 03/17/2020] [Indexed: 02/05/2023] Open
Abstract
B cell dysfunction due to obesity can be associated with alterations in the levels of micro-RNAs (miRNAs). However, the role of miRNAs in these processes remains elusive. Here, we show that miR-802 is increased in the pancreatic islets of obese mouse models and demonstrate that inducible transgenic overexpression of miR-802 in mice causes impaired insulin transcription and secretion. We identify Foxo1 as a transcription factor of miR-802 promoting its transcription, and NeuroD1 and Fzd5 as targets of miR-802-dependent silencing. Repression of NeuroD1 in β cell and primary islets impairs insulin transcription and reduction of Fzd5 in β cell, which, in turn, impairs Ca2+ signaling, thereby repressing calcium influx and decreasing insulin secretion. We functionally create a novel network between obesity and β cell dysfunction via miR-802 regulation. Elucidation of the impact of obesity on microRNA expression can broaden our understanding of pathophysiological development of diabetes. Obesity predisposes to type 2 diabetes, but the mechanisms of obesity-associated β cell dysfunction are incompletely understood. Here the authors report that obesity increases the levels of miR-802, which impairs insulin transcription and secretion by targeting NeuroD1 and Fzd5.
Collapse
Affiliation(s)
- Fangfang Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of life Science and Technology, China Pharmaceutical University. 24 Tongjiaxiang, Jiangsu province, Nanjing, PR China
| | - Dongshen Ma
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of life Science and Technology, China Pharmaceutical University. 24 Tongjiaxiang, Jiangsu province, Nanjing, PR China.,Department of Pathology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Wanli Zhao
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Danwei Wang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of life Science and Technology, China Pharmaceutical University. 24 Tongjiaxiang, Jiangsu province, Nanjing, PR China
| | - Tingsheng Liu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of life Science and Technology, China Pharmaceutical University. 24 Tongjiaxiang, Jiangsu province, Nanjing, PR China
| | - Yuhong Liu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of life Science and Technology, China Pharmaceutical University. 24 Tongjiaxiang, Jiangsu province, Nanjing, PR China
| | - Yue Yang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of life Science and Technology, China Pharmaceutical University. 24 Tongjiaxiang, Jiangsu province, Nanjing, PR China
| | - Yue Liu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of life Science and Technology, China Pharmaceutical University. 24 Tongjiaxiang, Jiangsu province, Nanjing, PR China
| | - Jinming Mu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of life Science and Technology, China Pharmaceutical University. 24 Tongjiaxiang, Jiangsu province, Nanjing, PR China
| | - Bingbing Li
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of life Science and Technology, China Pharmaceutical University. 24 Tongjiaxiang, Jiangsu province, Nanjing, PR China
| | - Yanfeng Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of life Science and Technology, China Pharmaceutical University. 24 Tongjiaxiang, Jiangsu province, Nanjing, PR China
| | - Yi Pan
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of life Science and Technology, China Pharmaceutical University. 24 Tongjiaxiang, Jiangsu province, Nanjing, PR China
| | - Changying Guo
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of life Science and Technology, China Pharmaceutical University. 24 Tongjiaxiang, Jiangsu province, Nanjing, PR China
| | - Hong Du
- Department of Endocrinology, Nanjing Jinling Hospital. 305 Zhongshan East Road, Nanjing, jiangsu, PR China
| | - Ling Li
- Department of Endocrinology, School of Medicine, Zhongda Hospital, Southeast University, 87 DingJiaQiao Rd, Nanjing, Nanjing, Jiangsu, PR China
| | - Xianghui Fu
- Division of Endocrinology and Metabolism, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, Sichuan, China.
| | - Zhengyu Cao
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China.
| | - Liang Jin
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of life Science and Technology, China Pharmaceutical University. 24 Tongjiaxiang, Jiangsu province, Nanjing, PR China.
| |
Collapse
|