1
|
Han C, Zhu X, Sokol CL. Neuroimmune Circuits in Allergic Diseases. Annu Rev Immunol 2025; 43:367-394. [PMID: 39977604 DOI: 10.1146/annurev-immunol-082423-032154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
Communication between the nervous and immune systems is evolutionarily conserved. From primitive eukaryotes to higher mammals, neuroimmune communication utilizes multiple complex and complementary mechanisms to trigger effective but balanced responses to environmental dangers such as allergens and tissue damage. These responses result from a tight integration of the nervous and immune systems, and accumulating evidence suggests that this bidirectional communication is crucial in modulating the initiation and development of allergic inflammation. In this review, we discuss the basic mechanisms of neuroimmune communication, with a focus on the recent advances underlying the importance of such communication in the allergic immune response. We examine neuronal sensing of allergens, how neuropeptides and neurotransmitters regulate allergic immune cell functions, and how inflammatory factors derived from immune cells coordinate complex peripheral and central nervous system responses. Furthermore, we highlight how fundamental aspects of host biology, from aging to circadian rhythm, might affect these pathways. Appreciating neuroimmune communications as an evolutionarily conserved and functionally integrated system that is fundamentally involved in type 2 immunity will provide new insights into allergic inflammation and reveal exciting opportunities for the management of acute and chronic allergic diseases.
Collapse
Affiliation(s)
- Cai Han
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA;
| | - Xueping Zhu
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA;
| | - Caroline L Sokol
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA;
| |
Collapse
|
2
|
Liu D, Pei H, Yao K, Gao J, Chen H, Tong P. Ovalbumin alters DAF-16 Class-II/I gene expressions via insulin/insulin-like growth factor-1 signaling to initiate the innate immune response of Caenorhabditis elegans. Mol Immunol 2025; 179:116-127. [PMID: 39954628 DOI: 10.1016/j.molimm.2025.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/03/2025] [Accepted: 02/09/2025] [Indexed: 02/17/2025]
Abstract
Innate immunity, as a significant defense system of the body, plays a key role in allergic reactions, but the mechanism of how food allergens trigger innate immune signaling is still unclear. Ovalbumin (OVA) is a model allergen in food allergy studies. Previous studies by our group have demonstrated that the innate immunity of Caenorhabditis elegans (C. elegans) elicited by OVA treatment was related to the insulin/insulin-like growth factor-1 signaling (IIS) pathway, but the details remain unknown. Therefore, in this study, the molecular mechanism of innate immune signaling transduction of C. elegans stimulated by OVA was determined using genetic mutations as well as RT-PCR, GFP fluorescence visualization monitoring, and slow-killing experiments. Results showed that the expression levels of DAF-16-class-I/II genes in the IIS pathway were significantly changed in C. elegans after OVA treatment, and the upstream gene daf-2 played an important role, which up-regulated the levels of DAF-16-class-II genes dod-22 and F55G11.8 by the daf-2-pqm-1 pathway, and down-regulated the level of DAF-16-class-I gene thn-2 by the daf-2-daf-16 pathway. Moreover, the upstream genes daf-2 and nhr-14, and the transcription factors DAF-16, PQM-1, and SKN-1 in the IIS pathway all participated in the up-regulations of DAF-16-class-II genes dod-17, dod-24, and F55G11.2. In conclusion, details of OVA activating innate immunity in C. elegans through the IIS pathway are reported here, and the results can be further extrapolated to mammals, which will contribute to a better understanding of the mechanism of the occurrence of food allergic reactions from the perspective of innate immunity.
Collapse
Affiliation(s)
- Dong Liu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, PR China; College of Food Science & Technology, Nanchang University, Nanchang 330047, PR China; Jiangxi Province Key Laboratory of Food Allergy, Nanchang 330047, PR China
| | - Haibing Pei
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, PR China; College of Food Science & Technology, Nanchang University, Nanchang 330047, PR China; Jiangxi Province Key Laboratory of Food Allergy, Nanchang 330047, PR China
| | - Kexin Yao
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, PR China; College of Food Science & Technology, Nanchang University, Nanchang 330047, PR China; Jiangxi Province Key Laboratory of Food Allergy, Nanchang 330047, PR China
| | - Jinyan Gao
- College of Food Science & Technology, Nanchang University, Nanchang 330047, PR China; Jiangxi Province Key Laboratory of Food Allergy, Nanchang 330047, PR China.
| | - Hongbing Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, PR China; Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, PR China; Jiangxi Province Key Laboratory of Food Allergy, Nanchang 330047, PR China
| | - Ping Tong
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, PR China; Jiangxi Province Key Laboratory of Food Allergy, Nanchang 330047, PR China.
| |
Collapse
|
3
|
Huang Z, Jing H, Pan Y, Cai H, Zhang W, Zhu J, Zhang N, Wu D, Xu W, Qiu H, Bao H, Li G, Ning J, Xian B, Gao S. L-Theanine Extends the Lifespan of Caenorhabditis elegans by Reducing the End Products of Advanced Glycosylation. Foods 2025; 14:221. [PMID: 39856887 PMCID: PMC11764849 DOI: 10.3390/foods14020221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/09/2025] [Accepted: 01/10/2025] [Indexed: 01/27/2025] Open
Abstract
L-theanine, a non-protein amino acid naturally occurring in tea leaves, is recognized for its antioxidant, anti-inflammatory, and neuroprotective properties. Despite its known benefits, the mechanisms by which L-theanine influences lifespan extension remain poorly understood. This study investigated the effects of L-theanine on the lifespan of Caenorhabditis elegans and explored the underlying mechanisms. Our findings indicate that L-theanine significantly diminishes the accumulation of advanced glycation end products (AGEs), which are biomarkers closely linked to aging and age-related diseases. Through an AGE-level analysis, we observed that L-theanine, when administered during early adulthood, notably extended the lifespan of Caenorhabditis elegans under both normal and high-glucose-induced stress conditions. L-theanine enhanced the lifespan under typical conditions and provided protective effects against high-glucose-induced stress. A further analysis demonstrated that L-theanine extends the lifespan of Caenorhabditis elegans by modulating the DAF-2/DAF-16 insulin-like signaling pathway and reducing the accumulation of advanced glycation end products (AGEs). In summary, this study identified L-theanine as a potential anti-aging intervention that extends the lifespan by reducing AGE accumulation and regulating insulin-like signaling pathways. These findings provide new insights for developing anti-aging strategies and lay the groundwork for further research on the potential benefits of L-theanine in mammals. Future studies could explore the molecular mechanisms, test L-theanine in mammalian models, and assess the long-term side effects.
Collapse
Affiliation(s)
- Zhihang Huang
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China; (Z.H.); (H.J.); (W.Z.); (N.Z.); (G.L.); (J.N.)
- Laboratory of Aging Research, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610056, China; (Y.P.); (H.C.); (J.Z.); (D.W.); (W.X.); (H.Q.)
| | - Haiming Jing
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China; (Z.H.); (H.J.); (W.Z.); (N.Z.); (G.L.); (J.N.)
| | - Yan Pan
- Laboratory of Aging Research, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610056, China; (Y.P.); (H.C.); (J.Z.); (D.W.); (W.X.); (H.Q.)
| | - Hongxia Cai
- Laboratory of Aging Research, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610056, China; (Y.P.); (H.C.); (J.Z.); (D.W.); (W.X.); (H.Q.)
| | - Wenjing Zhang
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China; (Z.H.); (H.J.); (W.Z.); (N.Z.); (G.L.); (J.N.)
| | - Jingyuan Zhu
- Laboratory of Aging Research, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610056, China; (Y.P.); (H.C.); (J.Z.); (D.W.); (W.X.); (H.Q.)
| | - Nan Zhang
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China; (Z.H.); (H.J.); (W.Z.); (N.Z.); (G.L.); (J.N.)
| | - Dan Wu
- Laboratory of Aging Research, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610056, China; (Y.P.); (H.C.); (J.Z.); (D.W.); (W.X.); (H.Q.)
| | - Wentao Xu
- Laboratory of Aging Research, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610056, China; (Y.P.); (H.C.); (J.Z.); (D.W.); (W.X.); (H.Q.)
| | - Hexiang Qiu
- Laboratory of Aging Research, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610056, China; (Y.P.); (H.C.); (J.Z.); (D.W.); (W.X.); (H.Q.)
| | - Huihui Bao
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Science Research Unit, China National Center for Food Safety Risk Assessment, Beijing 100022, China;
| | - Guojun Li
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China; (Z.H.); (H.J.); (W.Z.); (N.Z.); (G.L.); (J.N.)
- School of Public Health, Capital Medical University, Beijing 100069, China
| | - Junyu Ning
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China; (Z.H.); (H.J.); (W.Z.); (N.Z.); (G.L.); (J.N.)
| | - Bo Xian
- Laboratory of Aging Research, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610056, China; (Y.P.); (H.C.); (J.Z.); (D.W.); (W.X.); (H.Q.)
| | - Shan Gao
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China; (Z.H.); (H.J.); (W.Z.); (N.Z.); (G.L.); (J.N.)
| |
Collapse
|
4
|
Mora I, Teixidó A, Vázquez-Manrique RP, Puiggròs F, Arola L. Docosahexaenoic Acid (DHA) Supplementation in a Triglyceride Form Prevents from Polyglutamine-Induced Dysfunctions in Caenorhabditis elegans. Int J Mol Sci 2024; 25:12594. [PMID: 39684306 DOI: 10.3390/ijms252312594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
A common hallmark of neurodegenerative diseases is the accumulation of polypeptide aggregates in neurons. Despite the primary cause of these diseases being inherently genetic, their development can be delayed with proper preventive treatments. Long-chain polyunsaturated fatty acids (ω-3 LCPUFA) are promising bioactive nutrients that are beneficial for brain health. In this study, the impact of an oil rich in a structured form of docosahexaenoic acid (DHA) triglyceride (TG) was assessed in a Caenorhabditis elegans model expressing long poly-glutamine (polyQ) chains, which mimics the symptomatology of polyQ-related neurodegenerative diseases such as Huntington's disease (HD), among others. The lifespan, the motility, the number of polyQ aggregates, the oxidative stress resistance, and the cognitive performance associated with sensitive stimuli was measured in mutant nematodes with polyQ aggregates. Overall, DHA-TG at 0.5 µM improved the lifespan, the motility, the oxidative stress resistance, and the cognitive performance of the nematodes, emphasizing the protection against serotonergic synapse dysfunction. Furthermore, the treatment reduced the polyQ aggregates in the nematodes. The data described herein shed light on the connection between DHA and the cognitive performance in neurodegenerative diseases and demonstrated the potential of DHA-TG as nutritional co-adjuvant to prevent the development of polyQ-associated dysfunctions.
Collapse
Affiliation(s)
- Ignasi Mora
- Brudy Technology S.L., 08006 Barcelona, Spain
- Universitat Rovira i Virgili, 43003 Tarragona, Spain
| | - Alex Teixidó
- Eurecat, Centre Tecnològic de Catalunya, Nutrition and Health Unit, 43204 Reus, Spain
| | - Rafael P Vázquez-Manrique
- Laboratory of Molecular, Cellular and Genomic Biomedicine, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain
- Joint Unit for Rare Diseases, Insituto de Investigación Sanitaria La Fe-Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain
| | - Francesc Puiggròs
- Eurecat, Centre Tecnològic de Catalunya, Biotechnology Area, 43204 Tarragona, Spain
| | - Lluís Arola
- Nutrigenomics Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, 43007 Tarragona, Spain
| |
Collapse
|
5
|
Yue Z, Liu H, Liu M, Wang N, Ye L, Guo C, Zheng B. Cornus officinalis Extract Enriched with Ursolic Acid Ameliorates UVB-Induced Photoaging in Caenorhabditis elegans. Molecules 2024; 29:2718. [PMID: 38930783 PMCID: PMC11206114 DOI: 10.3390/molecules29122718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/04/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
Ultraviolet B (UVB) exposure can contribute to photoaging of skin. Cornus officinalis is rich in ursolic acid (UA), which is beneficial to the prevention of photoaging. Because UA is hardly soluble in water, the Cornus officinalis extract (COE) was obtained using water as the antisolvent to separate the components containing UA from the crude extract of Cornus officinalis. The effect of COE on UVB damage was assessed using Caenorhabditis elegans. The results showed that COE could increase the lifespan and enhance the antioxidant enzyme activity of C. elegans exposed to UVB while decreasing the reactive oxygen species (ROS) level. At the same time, COE upregulated the expression of antioxidant-related genes and promoted the migration of SKN-1 to the nucleus. Moreover, COE inhibited the expression of the skn-1 downstream gene and the extension of the lifespan in skn-1 mutants exposed to UVB, indicating that SKN-1 was required for COE to function. Our findings indicate that COE mainly ameliorates the oxidative stress caused by UVB in C. elegans via the SKN-1/Nrf2 pathway.
Collapse
Affiliation(s)
- Zengwang Yue
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; (Z.Y.); (M.L.); (L.Y.)
- Research and Development Center, Guangdong Marubi Biotechnology Co., Ltd., Guangzhou 510700, China; (H.L.); (N.W.)
| | - Han Liu
- Research and Development Center, Guangdong Marubi Biotechnology Co., Ltd., Guangzhou 510700, China; (H.L.); (N.W.)
| | - Manqiu Liu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; (Z.Y.); (M.L.); (L.Y.)
| | - Ning Wang
- Research and Development Center, Guangdong Marubi Biotechnology Co., Ltd., Guangzhou 510700, China; (H.L.); (N.W.)
| | - Lin Ye
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; (Z.Y.); (M.L.); (L.Y.)
| | - Chaowan Guo
- Research and Development Center, Guangdong Marubi Biotechnology Co., Ltd., Guangzhou 510700, China; (H.L.); (N.W.)
| | - Bisheng Zheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; (Z.Y.); (M.L.); (L.Y.)
| |
Collapse
|
6
|
Liang Y, Zhou Y, Zhou C, Cai X, Liu L, Wei F, Li G. Sertraline Promotes Health and Longevity in Caenorhabditis elegans. Gerontology 2024; 70:408-417. [PMID: 38228128 DOI: 10.1159/000536227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 01/08/2024] [Indexed: 01/18/2024] Open
Abstract
INTRODUCTION While several antidepressants have been identified as potential geroprotectors, the effect and mechanism of sertraline on healthspan remain to be elucidated. Here, we explored the role of sertraline in the lifespan and healthspan of Caenorhabditis elegans. METHODS The optimal effect concentration of sertraline was first screened in wild-type N2 worms under heat stress conditions. Then, we examined the effects of sertraline on lifespan, reproduction, lipofuscin accumulation, mobility, and stress resistance. Finally, the expression of serotonin signaling and aging-related genes was investigated to explore the underlying mechanism, and the lifespan assays were performed in ser-7 RNAi strain, daf-2, daf-16, and aak-2 mutants. RESULTS Sertraline extended the lifespan in C. elegans with concomitant extension of healthspan as indicated by increasing mobility and reducing fertility and lipofuscin accumulation, as well as enhanced resistance to different abiotic stresses. Mechanistically, ser-7 orchestrated sertraline-induced longevity via the regulation of insulin and AMPK pathways, and sertraline-induced lifespan extension in nematodes was abolished in ser-7 RNAi strain, daf-2, daf-16, and aak-2 mutants. CONCLUSION Sertraline promotes health and longevity in C. elegans through ser-7-insulin/AMPK pathways.
Collapse
Affiliation(s)
- Yu Liang
- Center for Aging Biomedicine, National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Yiming Zhou
- Center for Aging Biomedicine, National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Can Zhou
- Center for Aging Biomedicine, National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Xinqi Cai
- Center for Aging Biomedicine, National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Li Liu
- Center for Aging Biomedicine, National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Fang Wei
- Center for Aging Biomedicine, National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Guolin Li
- Center for Aging Biomedicine, National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
- Key Laboratory of Hunan Province for Model Animal and Stem Cell Biology, School of Medicine, Hunan Normal University, Changsha, China
| |
Collapse
|
7
|
Venkatesh SR, Gupta A, Singh V. Amphid sensory neurons of Caenorhabditis elegans orchestrate its survival from infection with broad classes of pathogens. Life Sci Alliance 2023; 6:e202301949. [PMID: 37258276 PMCID: PMC10233725 DOI: 10.26508/lsa.202301949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 06/02/2023] Open
Abstract
The survival of a host during infection relies on its ability to rapidly sense the invading pathogen and mount an appropriate response. The bacterivorous nematode Caenorhabditis elegans lacks most of the traditional pattern recognition mechanisms. In this study, we hypothesized that the 12 pairs of amphid sensory neurons in the heads of worms provide sensing capability and thus affect survival during infection. We tested animals lacking amphid neurons to three major classes of pathogens, namely-a Gram-negative bacterium Pseudomonas aeruginosa, a Gram-positive bacterium Enterococcus faecalis, and a pathogenic yeast Cryptococcus neoformans By using individual neuronal ablation lines or mutants lacking specific neurons, we demonstrate that some neurons broadly suppress the survival of the host and colonization of all pathogens, whereas other amphid neurons differentially regulate host survival during infection. We also show that the roles of some of these neurons are pathogen-specific, as seen with the AWB odor sensory neurons that promote survival only during infections with P aeruginosa Overall, our study reveals broad and specific roles for amphid neurons during infections.
Collapse
Affiliation(s)
- Siddharth R Venkatesh
- Department of Developmental Biology & Genetics, Indian Institute of Science, Bangalore, INDIA
| | - Anjali Gupta
- Center for Biosystems, Science and Engineering, Indian Institute of Science, Bangalore, INDIA
| | - Varsha Singh
- Department of Developmental Biology & Genetics, Indian Institute of Science, Bangalore, INDIA
- Center for Biosystems, Science and Engineering, Indian Institute of Science, Bangalore, INDIA
| |
Collapse
|
8
|
Liu J, Zhang P, Zheng Z, Afridi MI, Zhang S, Wan Z, Zhang X, Stingelin L, Wang Y, Tu H. GABAergic signaling between enteric neurons and intestinal smooth muscle promotes innate immunity and gut defense in Caenorhabditis elegans. Immunity 2023; 56:1515-1532.e9. [PMID: 37437538 DOI: 10.1016/j.immuni.2023.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 03/06/2023] [Accepted: 06/07/2023] [Indexed: 07/14/2023]
Abstract
The nervous system is critical for intestinal homeostasis and function, but questions remain regarding its impact on gut immune defense. By screening the major neurotransmitters of C. elegans, we found that γ-aminobutyric acid (GABA) deficiency enhanced susceptibility to pathogenic Pseudomonas aeruginosa PA14 infection. GABAergic signaling between enteric neurons and intestinal smooth muscle promoted gut defense in a PMK-1/p38-dependent, but IIS/DAF-16- and DBL-1/TGF-β-independent, pathway. Transcriptomic profiling revealed that the neuropeptide, FLP-6, acted downstream of enteric GABAergic signaling. Further data determined that FLP-6 was expressed and secreted by intestinal smooth muscle cells and functioned as a paracrine molecule on the intestinal epithelium. FLP-6 suppressed the transcription factors ZIP-10 and KLF-1 that worked in parallel and converged to the PMK-1/p38 pathway in the intestinal epithelia for innate immunity and gut defense. Collectively, these findings uncover an enteric neuron-muscle-epithelium axis that may be evolutionarily conserved in higher organisms.
Collapse
Affiliation(s)
- Junqiang Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha 410082, Hunan, China
| | - Pei Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha 410082, Hunan, China
| | - Zhongfan Zheng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha 410082, Hunan, China
| | - Muhammad Irfan Afridi
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha 410082, Hunan, China
| | - Shan Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha 410082, Hunan, China
| | - Zhiqing Wan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha 410082, Hunan, China
| | - Xiumei Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha 410082, Hunan, China
| | - Lukas Stingelin
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha 410082, Hunan, China
| | - Yirong Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha 410082, Hunan, China
| | - Haijun Tu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha 410082, Hunan, China.
| |
Collapse
|
9
|
Gendron CM, Chakraborty TS, Duran C, Dono T, Pletcher SD. Ring neurons in the Drosophila central complex act as a rheostat for sensory modulation of aging. PLoS Biol 2023; 21:e3002149. [PMID: 37310911 PMCID: PMC10263353 DOI: 10.1371/journal.pbio.3002149] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 05/03/2023] [Indexed: 06/15/2023] Open
Abstract
Sensory perception modulates aging, yet we know little about how. An understanding of the neuronal mechanisms through which animals orchestrate biological responses to relevant sensory inputs would provide insight into the control systems that may be important for modulating lifespan. Here, we provide new awareness into how the perception of dead conspecifics, or death perception, which elicits behavioral and physiological effects in many different species, affects lifespan in the fruit fly, Drosophila melanogaster. Previous work demonstrated that cohousing Drosophila with dead conspecifics decreases fat stores, reduces starvation resistance, and accelerates aging in a manner that requires both sight and the serotonin receptor 5-HT2A. In this manuscript, we demonstrate that a discrete, 5-HT2A-expressing neural population in the ellipsoid body (EB) of the Drosophila central complex, identified as R2/R4 neurons, acts as a rheostat and plays an important role in transducing sensory information about the presence of dead individuals to modulate lifespan. Expression of the insulin-responsive transcription factor foxo in R2/R4 neurons and insulin-like peptides dilp3 and dilp5, but not dilp2, are required, with the latter likely altered in median neurosecretory cells (MNCs) after R2/R4 neuronal activation. These data generate new insights into the neural underpinnings of how perceptive events may impact aging and physiology across taxa.
Collapse
Affiliation(s)
- Christi M. Gendron
- Department of Molecular and Integrative Physiology and Geriatrics Center, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Tuhin S. Chakraborty
- Department of Molecular and Integrative Physiology and Geriatrics Center, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Cathryn Duran
- Department of Molecular and Integrative Physiology and Geriatrics Center, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Thomas Dono
- Department of Molecular and Integrative Physiology and Geriatrics Center, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Scott D. Pletcher
- Department of Molecular and Integrative Physiology and Geriatrics Center, University of Michigan, Ann Arbor, Michigan, United States of America
| |
Collapse
|
10
|
Wu CH, Hsu WL, Tsai CC, Chao HR, Wu CY, Chen YH, Lai YR, Chen CH, Tsai MH. 7,10,13,16-Docosatetraenoic acid impairs neurobehavioral development by increasing reactive oxidative species production in Caenorhabditis elegans. Life Sci 2023; 319:121500. [PMID: 36796717 DOI: 10.1016/j.lfs.2023.121500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 02/07/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023]
Abstract
AIMS To investigate human breast milk (HBM) lipids that may adversely affect infant neurodevelopment. MAIN METHODS We performed multivariate analyses that combined lipidomics and psychologic Bayley-III scales to identify which HBM lipids are involved in regulating infant neurodevelopment. We observed a significant moderate negative correlation between 7,10,13,16-docosatetraenoic acid (omega-6, C22H36O2, the common name adrenic acid, AdA) and adaptive behavioral development. We further studied the effects of AdA on neurodevelopment by using Caenorhabditis elegans (C. elegans) as a model. Worms from larval stages L1 to L4 were supplemented with AdA at 5 nominal concentrations (0 μM [control], 0.1 μM, 1 μM, 10 μM, and 100 μM) and subjected to behavioral and mechanistic analyses. KEY FINDINGS Supplementation with AdA from larval stages L1 to L4 impaired neurobehavioral development, such as locomotive behaviors, foraging ability, chemotaxis behavior, and aggregation behavior. Furthermore, AdA upregulated the production of intracellular reactive oxygen species. AdA-induced oxidative stress blocked serotonin synthesis and serotoninergic neuron activity and inhibited expression of daf-16 and the daf-16-regulated genes mtl-1, mtl-2, sod-1, and sod-3, resulting in attenuation of the lifespan in C. elegans. SIGNIFICANCE Our study reveals that AdA is a harmful HBM lipid that may have adverse effects on infant adaptive behavioral development. We believe this information may be critical for AdA administration guidance in children's health care.
Collapse
Affiliation(s)
- Chia-Hsiu Wu
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Wen-Li Hsu
- Department of Dermatology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80145, Taiwan; Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| | - Ching-Chung Tsai
- Department of Pediatrics, E-Da Hospital, No. 8, Yida Rd., Kaohsiung 82445, Taiwan; School of Medicine, College of Medicine, I-Shou University, Kaohsiung 82445, Taiwan
| | - How-Ran Chao
- Department of Environmental Science and Engineering, College of Engineering, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan; Emerging Compounds Research Center, General Research Service Center, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan; Institute of Food Safety Management, College of Agriculture, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan.
| | - Ching-Ying Wu
- Department of Dermatology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80145, Taiwan; Department of Cosmetic Science, Chang Gung University of Science and Technology, Taoyuan 33303, Taiwan.
| | - Yi-Hsuan Chen
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Yun-Ru Lai
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Chu-Huang Chen
- Vascular and Medicinal Research, The Texas Heart Institute, Houston, TX 77030, USA; New York Heart Research Foundation, Mineola, NY 11501, USA; Institute for Biomedical Sciences, Shinshu University, Nagano 390-8621, Japan.
| | - Ming-Hsien Tsai
- Department of Child Care, College of Humanities and Social Sciences, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan; Department of Oral Hygiene, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| |
Collapse
|
11
|
Fidalgo S, Yeoman MS. Age-Related Changes in Central Nervous System 5-Hydroxytryptamine Signalling and Its Potential Effects on the Regulation of Lifespan. Subcell Biochem 2023; 102:379-413. [PMID: 36600141 DOI: 10.1007/978-3-031-21410-3_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Serotonin or 5-hydroxytryptamine (5-HT) is an important neurotransmitter in the central nervous system and the periphery. Most 5-HT (~99%) is found in the periphery where it regulates the function of the gastrointestinal (GI) tract and is an important regulator of platelet aggregation. However, the remaining 1% that is found in the central nervous system (CNS) can regulate a range of physiological processes such as learning and memory formation, mood, food intake, sleep, temperature and pain perception. More recent work on the CNS of invertebrate model systems has shown that 5-HT can directly regulate lifespan.This chapter will focus on detailing how CNS 5-HT signalling is altered with increasing age and the potential consequences this has on its ability to regulate lifespan.
Collapse
Affiliation(s)
| | - Mark S Yeoman
- Centre for Stress and Age-Related Disease, School of Applied Sciences, University of Brighton, Brighton, United Kingdom.
| |
Collapse
|
12
|
Nguyen VT, Park AR, Duraisamy K, Vo DD, Kim JC. Elucidation of the nematicidal mode of action of grammicin on Caenorhabditis elegans. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 188:105244. [PMID: 36464355 DOI: 10.1016/j.pestbp.2022.105244] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 09/05/2022] [Accepted: 09/13/2022] [Indexed: 06/17/2023]
Abstract
Grammicin (Gra) is derived from the endophytic fungus Xylaria grammica EL000614 and shows nematicidal activity against the devastating root-knot nematode Meloidogyne incognita in-vitro, in planta, and in-field experiments. However, the mechanism of the nematicidal action of Gra remains unclear. In this study, Gra exposure to the model genetic organism Caenorhabditis elegans affected its L1, L2/3, L4, and young adult stages. In addition, Gra treatment increased the intracellular reactive oxygen species (ROS) levels of C. elegans and M. incognita. Molecular docking interaction analysis indicated that Gra could bind and interact with GCS-1, GST-4, and DAF-16a in order of low binding energy, followed by SOD-3, SKN-1, and DAF-16b. This implies that the anthelmintic action of Gra is related to the oxidative stress response. To validate this mechanism, we examined the expression of the genes involved in the oxidative stress responses following treatment with Gra using transgenic C. elegans strains such as the TJ356 strain zIs356 [daf-16p::daf-16a/b::GFP + rol-6 (su1006)], LD1 ldIs7 [skn-1p::skn-1b/c::GFP + rol-6 (su1006)], LD1171 ldIs3 [gcs-1p::GFP + rol-6 (su1006)], CL2166 dvIs19 [(pAF15) gst-4p::GFP::NLS], and CF1553 strain muIs84 [(pAD76) sod-3p::GFP + rol-6 (su1006)]. Gra treatment caused nuclear translocation of DAF-16/FoxO and enhanced gst-4::GFP expression, but it had no change in sod-3::GFP expression. These results indicate that Gra induces oxidative stress response via phase II detoxification without reduced cellular redox machinery. Gra treatment also inhibited the nuclear localization of SKN-1::GFP in the intestine, which may lead to a condition in which oxidative stress tolerance is insufficient to protect C. elegans by the inactivation of SKN-1, thus inducing nematode lethality. Furthermore, Gra caused the mortality of two mutant strains of C. elegans, CB113 and DA1316, which are resistant to aldicarb and ivermectin, respectively. This indicates that the mode of action of Gra is different from the traditional nematicides currently in use, suggesting that it could help develop novel approaches to control plant-parasitic nematodes.
Collapse
Affiliation(s)
- Van Thi Nguyen
- Department of Agricultural Chemistry, Institute of Environmentally Friendly Agriculture, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Ae Ran Park
- Department of Agricultural Chemistry, Institute of Environmentally Friendly Agriculture, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Kalaiselvi Duraisamy
- Department of Agricultural Chemistry, Institute of Environmentally Friendly Agriculture, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Duc Duy Vo
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, SE-75124 Uppsala, Sweden
| | - Jin-Cheol Kim
- Department of Agricultural Chemistry, Institute of Environmentally Friendly Agriculture, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Republic of Korea.
| |
Collapse
|
13
|
Schiffer JA, Stumbur SV, Seyedolmohadesin M, Xu Y, Serkin WT, McGowan NG, Banjo O, Torkashvand M, Lin A, Hosea CN, Assié A, Samuel BS, O’Donnell MP, Venkatachalam V, Apfeld J. Modulation of sensory perception by hydrogen peroxide enables Caenorhabditis elegans to find a niche that provides both food and protection from hydrogen peroxide. PLoS Pathog 2021; 17:e1010112. [PMID: 34941962 PMCID: PMC8699984 DOI: 10.1371/journal.ppat.1010112] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 11/14/2021] [Indexed: 02/07/2023] Open
Abstract
Hydrogen peroxide (H2O2) is the most common chemical threat that organisms face. Here, we show that H2O2 alters the bacterial food preference of Caenorhabditis elegans, enabling the nematodes to find a safe environment with food. H2O2 induces the nematodes to leave food patches of laboratory and microbiome bacteria when those bacterial communities have insufficient H2O2-degrading capacity. The nematode's behavior is directed by H2O2-sensing neurons that promote escape from H2O2 and by bacteria-sensing neurons that promote attraction to bacteria. However, the input for H2O2-sensing neurons is removed by bacterial H2O2-degrading enzymes and the bacteria-sensing neurons' perception of bacteria is prevented by H2O2. The resulting cross-attenuation provides a general mechanism that ensures the nematode's behavior is faithful to the lethal threat of hydrogen peroxide, increasing the nematode's chances of finding a niche that provides both food and protection from hydrogen peroxide.
Collapse
Affiliation(s)
- Jodie A. Schiffer
- Biology Department, Northeastern University, Boston, Massachusetts, United States of America
| | - Stephanie V. Stumbur
- Biology Department, Northeastern University, Boston, Massachusetts, United States of America
| | - Maedeh Seyedolmohadesin
- Physics Department, Northeastern University, Boston, Massachusetts, United States of America
| | - Yuyan Xu
- Biology Department, Northeastern University, Boston, Massachusetts, United States of America
| | - William T. Serkin
- Biology Department, Northeastern University, Boston, Massachusetts, United States of America
| | - Natalie G. McGowan
- Biology Department, Northeastern University, Boston, Massachusetts, United States of America
| | - Oluwatosin Banjo
- Biology Department, Northeastern University, Boston, Massachusetts, United States of America
| | - Mahdi Torkashvand
- Physics Department, Northeastern University, Boston, Massachusetts, United States of America
| | - Albert Lin
- Department of Physics, Center for Brain Science, Harvard University, Cambridge, Massachusetts, United States of America
| | - Ciara N. Hosea
- Alkek Center for Metagenomics and Microbiome Research and Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Adrien Assié
- Alkek Center for Metagenomics and Microbiome Research and Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Buck S. Samuel
- Alkek Center for Metagenomics and Microbiome Research and Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Michael P. O’Donnell
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut, United States of America
| | - Vivek Venkatachalam
- Physics Department, Northeastern University, Boston, Massachusetts, United States of America
| | - Javier Apfeld
- Biology Department, Northeastern University, Boston, Massachusetts, United States of America
- Bioengineering Department, Northeastern University, Boston, Massachusetts, United States of America
| |
Collapse
|
14
|
Sánchez N, Juárez-Balarezo J, Olhaberry M, González-Oneto H, Muzard A, Mardonez MJ, Franco P, Barrera F, Gaete M. Depression and Antidepressants During Pregnancy: Craniofacial Defects Due to Stem/Progenitor Cell Deregulation Mediated by Serotonin. Front Cell Dev Biol 2021; 9:632766. [PMID: 34476233 PMCID: PMC8406697 DOI: 10.3389/fcell.2021.632766] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 07/13/2021] [Indexed: 12/15/2022] Open
Abstract
Depression is a common and debilitating mood disorder that increases in prevalence during pregnancy. Worldwide, 7 to 12% of pregnant women experience depression, in which the associated risk factors include socio-demographic, psychological, and socioeconomic variables. Maternal depression could have psychological, anatomical, and physiological consequences in the newborn. Depression has been related to a downregulation in serotonin levels in the brain. Accordingly, the most commonly prescribed pharmacotherapy is based on selective serotonin reuptake inhibitors (SSRIs), which increase local serotonin concentration. Even though the use of SSRIs has few adverse effects compared with other antidepressants, altering serotonin levels has been associated with the advent of anatomical and physiological changes in utero, leading to defects in craniofacial development, including craniosynostosis, cleft palate, and dental defects. Migration and proliferation of neural crest cells, which contribute to the formation of bone, cartilage, palate, teeth, and salivary glands in the craniofacial region, are regulated by serotonin. Specifically, craniofacial progenitor cells are affected by serotonin levels, producing a misbalance between their proliferation and differentiation. Thus, it is possible to hypothesize that craniofacial development will be affected by the changes in serotonin levels, happening during maternal depression or after the use of SSRIs, which cross the placental barrier, increasing the risk of craniofacial defects. In this review, we provide a synthesis of the current research on depression and the use of SSRI during pregnancy, and how this could be related to craniofacial defects using an interdisciplinary perspective integrating psychological, clinical, and developmental biology perspectives. We discuss the mechanisms by which serotonin could influence craniofacial development and stem/progenitor cells, proposing some transcription factors as mediators of serotonin signaling, and craniofacial stem/progenitor cell biology. We finally highlight the importance of non-pharmacological therapies for depression on fertile and pregnant women, and provide an individual analysis of the risk-benefit balance for the use of antidepressants during pregnancy.
Collapse
Affiliation(s)
- Natalia Sánchez
- Department of Anatomy, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Jesús Juárez-Balarezo
- Department of Anatomy, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Marcia Olhaberry
- Department of Psychology, Pontificia Universidad Católica de Chile, Santiago, Chile
- Millennium Institute for Research in Depression and Personality (MIDAP), Santiago, Chile
| | - Humberto González-Oneto
- School of Dentistry, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Antonia Muzard
- Department of Psychology, Pontificia Universidad Católica de Chile, Santiago, Chile
- Millennium Institute for Research in Depression and Personality (MIDAP), Santiago, Chile
| | - María Jesús Mardonez
- Department of Psychology, Pontificia Universidad Católica de Chile, Santiago, Chile
- Millennium Institute for Research in Depression and Personality (MIDAP), Santiago, Chile
| | - Pamela Franco
- Department of Psychology, Pontificia Universidad Católica de Chile, Santiago, Chile
- Millennium Institute for Research in Depression and Personality (MIDAP), Santiago, Chile
| | - Felipe Barrera
- School of Dentistry, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Marcia Gaete
- Department of Anatomy, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
15
|
Rana T, Behl T, Sehgal A, Mehta V, Singh S, Sharma N, Bungau S. Elucidating the Possible Role of FoxO in Depression. Neurochem Res 2021; 46:2761-2775. [PMID: 34075521 DOI: 10.1007/s11064-021-03364-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/23/2021] [Accepted: 05/25/2021] [Indexed: 12/21/2022]
Abstract
Forkhead box-O (FoxO) transcriptional factors perform essential functions in several physiological and biological processes. Recent studies have shown that FoxO is implicated in the pathophysiology of depression. Changes in the upstream mediators of FoxOs including brain-derived neurotrophic factor (BDNF) and protein kinase B have been associated with depressive disorder and the antidepressant agents are known to alter the phosphorylation of FoxOs. Moreover, FoxOs might be regulated by serotonin or noradrenaline signaling and the hypothalamic-pituitary-adrenal (HPA)-axis,both of them are associated with the development of the depressive disorder. FoxO also regulates neural morphology, synaptogenesis, and neurogenesis in the hippocampus, which accounts for the pathogenesis of the depressive disorder. The current article underlined the potential functions of FoxOs in the etiology of depressive disorder and formulate few essential proposals for further investigation. The review also proposes that FoxO and its signal pathway might establish possible therapeutic mediators for the management of depressive disorder.
Collapse
Affiliation(s)
- Tarapati Rana
- Chitkara College of Pharmacy, Chitkara University, Chandigarh, Punjab, India.,Government Pharmacy College, Seraj, Mandi, Himachal Pradesh, India
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Chandigarh, Punjab, India.
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Chandigarh, Punjab, India
| | - Vineet Mehta
- Government College of Pharmacy, Rohru, Distt., Shimla, Himachal Pradesh, India
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Chandigarh, Punjab, India
| | - Neelam Sharma
- Chitkara College of Pharmacy, Chitkara University, Chandigarh, Punjab, India
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| |
Collapse
|
16
|
Abstract
Although Caenorhabditis elegans has been used as a model host for studying host-pathogen interactions for more than 20 years, the mechanisms by which it identifies pathogens are not well understood. This is largely due to its lack of most known pattern recognition receptors (PRRs) that recognize pathogen-derived molecules. Recent behavioral research in C. elegans indicates that its nervous system plays a major role in microbe sensing. With the increasing integration of neurobiology in immunological research, future studies may find that neuronal detection of pathogens is an integral part of C. elegans-pathogen interactions. Similar to that of mammals, the C. elegans nervous system regulates its immune system to maintain immunological homeostasis. Studies in the nematode have revealed unprecedented details regarding the molecules, cells, and signaling pathways involved in neural regulation of immunity. Notably, some of the studies indicate that some neuroimmune regulatory circuits need not be "activated" by pathogen infection because they are tonically active and that there could be a predetermined set point for internal immunity, around which the nervous system adjusts immune responses to internal or external environmental changes. Here, we review recent progress on the roles of the C. elegans nervous system in pathogen detection and immune regulation. Because of its advantageous characteristics, we expect that the C. elegans model will be critical for deciphering complex neuroimmune signaling mechanisms that integrate and process multiple sensory cues.
Collapse
Affiliation(s)
- Yiyong Liu
- Department of Biomedical Sciences, Elson S. Floyd College of Medicine, Washington State University, Spokane, Washington, USA
- Genomics Core, Washington State University, Spokane, Washington, USA
| | - Jingru Sun
- Department of Biomedical Sciences, Elson S. Floyd College of Medicine, Washington State University, Spokane, Washington, USA
| |
Collapse
|
17
|
Yang Y, Dong W, Wu Q, Wang D. Induction of Protective Response Associated with Expressional Alterations in Neuronal G Protein-Coupled Receptors in Polystyrene Nanoparticle Exposed Caenorhabditis elegans. Chem Res Toxicol 2021; 34:1308-1318. [PMID: 33650869 DOI: 10.1021/acs.chemrestox.0c00501] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In this study, the association of expressional alterations in neuronal G protein-coupled receptors (GPCRs) with induction of protective response to polystyrene nanoparticles (PS-NPs) was investigated in Caenorhabditis elegans. On the basis of both phenotypic analysis and expression levels, the alterations in expressions of NPR-1, NPR-4, NPR-8, NPR-9, NPR-12, DCAR-1, GTR-1, DOP-2, SER-4, and DAF-37 in neuronal cells mediated the protective response to PS-NPs exposure. In neuronal cells, NPR-9, NPR-12, DCAR-1, and GTR-1 controlled the PS-NPs toxicity by activating or inhibiting JNK-1/JNK MAPK signaling. Neuronal NPR-8, NPR-9, DCAR-1, DOP-2, and DAF-37 controlled the PS-NPs toxicity by activating or inhibiting MPK-1/ERK MAPK signaling. Neuronal NPR-4, NPR-8, NPR-9, NPR-12, GTR-1, DOP-2, and DAF-37 controlled the PS-NPs toxicity by activating or inhibiting DBL-1/TGF-β signaling. Neuronal NPR-1, NPR-4, NPR-12, and GTR-1 controlled the PS-NPs toxicity by activating or inhibiting DAF-7/TGF-β signaling. Our data provides an important neuronal basis for induction of protective response to PS-NPs in C. elegans.
Collapse
Affiliation(s)
- Yunhan Yang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing 210009, China
| | - Wenting Dong
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing 210009, China
| | - Qiuli Wu
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing 210009, China
| | - Dayong Wang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing 210009, China.,College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou 404100, China.,Shenzhen Ruipuxun Academy for Stem Cell & Regenerative Medicine, Shenzhen, 518122, China
| |
Collapse
|
18
|
Yan F, Wang R, Li S, Zhao X, Jiang Y, Liu L, Fang J, Zhen X, Lazarovici P, Zheng W. FoxO3a suppresses neuropeptide W expression in neuronal cells and in rat hypothalamus and its implication in hypothalamic-pituitary-adrenal (HPA) axis. Int J Biol Sci 2020; 16:2775-2787. [PMID: 33061795 PMCID: PMC7545709 DOI: 10.7150/ijbs.45619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 07/20/2020] [Indexed: 12/17/2022] Open
Abstract
FoxO3a, a forkhead family member of transcription factors, is involved in the regulation of cell metabolism, proliferation, differentiation and apoptosis. However, whether FoxO3a participates in the regulation of glucocorticoids induced-hypothalamic-pituitary-adrenal (HPA) dysfunction is still unknown. Our present results indicate that dexamethasone(DEX) increased FoxO3a expression in PC12 and hypothalamic neuronal cultures in correlation to reduced expression of NPW, a process that could be blocked by GR2 antagonist. DEX restrained the phosphorylation of Akt and FoxO3a, but not ERK1/2 phosphorylation, resulting with FoxO3a nuclear localization. Overexpression of FoxO3a inhibited NPW expression, while FoxO3a knockdown by siRNA had the opposite effect. The regulatory region of NPW promoter contains multiple FoxO3a binding sites, and FoxO3a bonding to these sites inhibited its transcriptional activity. In a rat model, chronic administration of corticosterone reduced animals' body weight and sucrose consumption and caused stress- depression like behavior. Corticosterone treatment induced a marked increase in FoxO3a levels, while decreased the expression of NPW protein in the hypothalamus. Immunofluorescent double labeling demonstrated that FoxO3a and NPW were collocated in the hypothalamus. Taken together, these data indicate that NPW is a new direct downstream target gene of FoxO3a. FoxO3a suppressed the transcription of NPW and modulated glucocorticoids-induced HPA dysfunction by directly regulating the expression of NPW. Thus, present findings suggest that FoxO3a and NPW may be potential therapeutic targets for endocrine and psychiatric disorders.
Collapse
Affiliation(s)
- Fengxia Yan
- School of Medical Science, Jinan University, Guangzhou, China
| | - Rikang Wang
- Center of Reproduction, Development & Aging and Institute of Translation Medicine, Faculty of Health Sciences, University of Macau, Macau, China.,National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang 330006, P. R. China
| | - Shuai Li
- Center of Reproduction, Development & Aging and Institute of Translation Medicine, Faculty of Health Sciences, University of Macau, Macau, China
| | - Xia Zhao
- Center of Reproduction, Development & Aging and Institute of Translation Medicine, Faculty of Health Sciences, University of Macau, Macau, China
| | - Yizhou Jiang
- Center of Reproduction, Development & Aging and Institute of Translation Medicine, Faculty of Health Sciences, University of Macau, Macau, China
| | - Linlin Liu
- Center of Reproduction, Development & Aging and Institute of Translation Medicine, Faculty of Health Sciences, University of Macau, Macau, China
| | - Jiankang Fang
- Center of Reproduction, Development & Aging and Institute of Translation Medicine, Faculty of Health Sciences, University of Macau, Macau, China
| | - Xuechu Zhen
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Philip Lazarovici
- School of Pharmacy Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Wenhua Zheng
- Center of Reproduction, Development & Aging and Institute of Translation Medicine, Faculty of Health Sciences, University of Macau, Macau, China
| |
Collapse
|
19
|
O'Donnell MP, Fox BW, Chao PH, Schroeder FC, Sengupta P. A neurotransmitter produced by gut bacteria modulates host sensory behaviour. Nature 2020; 583:415-420. [PMID: 32555456 PMCID: PMC7853625 DOI: 10.1038/s41586-020-2395-5] [Citation(s) in RCA: 160] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Accepted: 03/27/2020] [Indexed: 12/18/2022]
Abstract
Animals coexist in commensal, pathogenic or mutualistic relationships with complex communities of diverse organisms, including microorganisms1. Some bacteria produce bioactive neurotransmitters that have previously been proposed to modulate nervous system activity and behaviours of their hosts2,3. However, the mechanistic basis of this microbiota-brain signalling and its physiological relevance are largely unknown. Here we show that in Caenorhabditis elegans, the neuromodulator tyramine produced by commensal Providencia bacteria, which colonize the gut, bypasses the requirement for host tyramine biosynthesis and manipulates a host sensory decision. Bacterially produced tyramine is probably converted to octopamine by the host tyramine β-hydroxylase enzyme. Octopamine, in turn, targets the OCTR-1 octopamine receptor on ASH nociceptive neurons to modulate an aversive olfactory response. We identify the genes that are required for tyramine biosynthesis in Providencia, and show that these genes are necessary for the modulation of host behaviour. We further find that C. elegans colonized by Providencia preferentially select these bacteria in food choice assays, and that this selection bias requires bacterially produced tyramine and host octopamine signalling. Our results demonstrate that a neurotransmitter produced by gut bacteria mimics the functions of the cognate host molecule to override host control of a sensory decision, and thereby promotes fitness of both the host and the microorganism.
Collapse
Affiliation(s)
| | - Bennett W Fox
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| | - Pin-Hao Chao
- Department of Biology, Brandeis University, Waltham, MA, USA
| | - Frank C Schroeder
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| | - Piali Sengupta
- Department of Biology, Brandeis University, Waltham, MA, USA.
| |
Collapse
|
20
|
DAF-16 and SMK-1 Contribute to Innate Immunity During Adulthood in Caenorhabditis elegans. G3-GENES GENOMES GENETICS 2020; 10:1521-1539. [PMID: 32161087 PMCID: PMC7202018 DOI: 10.1534/g3.120.401166] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Aging is accompanied by a progressive decline in immune function termed "immunosenescence". Deficient surveillance coupled with the impaired function of immune cells compromises host defense in older animals. The dynamic activity of regulatory modules that control immunity appears to underlie age-dependent modifications to the immune system. In the roundworm Caenorhabditis elegans levels of PMK-1 p38 MAP kinase diminish over time, reducing the expression of immune effectors that clear bacterial pathogens. Along with the PMK-1 pathway, innate immunity in C. elegans is regulated by the insulin signaling pathway. Here we asked whether DAF-16, a Forkhead box (FOXO) transcription factor whose activity is inhibited by insulin signaling, plays a role in host defense later in life. While in younger C. elegans DAF-16 is inactive unless stimulated by environmental insults, we found that even in the absence of acute stress the transcriptional activity of DAF-16 increases in an age-dependent manner. Beginning in the reproductive phase of adulthood, DAF-16 upregulates a subset of its transcriptional targets, including genes required to kill ingested microbes. Accordingly, DAF-16 has little to no role in larval immunity, but functions specifically during adulthood to confer resistance to bacterial pathogens. We found that DAF-16-mediated immunity in adults requires SMK-1, a regulatory subunit of the PP4 protein phosphatase complex. Our data suggest that as the function of one branch of the innate immune system of C. elegans (PMK-1) declines over time, DAF-16-mediated immunity ramps up to become the predominant means of protecting adults from infection, thus reconfiguring immunity later in life.
Collapse
|
21
|
Cruz-Corchado J, Ooi FK, Das S, Prahlad V. Global Transcriptome Changes That Accompany Alterations in Serotonin Levels in Caenorhabditis elegans. G3 (BETHESDA, MD.) 2020; 10:1225-1246. [PMID: 31996358 PMCID: PMC7144078 DOI: 10.1534/g3.120.401088] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 01/25/2020] [Indexed: 11/18/2022]
Abstract
Serotonin (5-hydroxytryptamine, 5-HT), is a phylogenetically ancient molecule best characterized as a neurotransmitter that modulates multiple aspects of mood and social cognition. The roles that 5-HT plays in normal and abnormal behavior are not fully understood but have been posited to be due to its common function as a 'defense signal'. However, 5-HT levels also systemically impact cell physiology, modulating cell division, migration, apoptosis, mitochondrial biogenesis, cellular metabolism and differentiation. Whether these diverse cellular effects of 5-HT also share a common basis is unclear. C. elegans provides an ideal system to interrogate the systemic effects of 5-HT, since lacking a blood-brain barrier, 5-HT synthesized and released by neurons permeates the organism to modulate neuronal as well as non-neuronal cells throughout the body. Here we used RNA-Seq to characterize the systemic changes in gene expression that occur in C. elegans upon altering 5-HT levels, and compared the transcriptomes to published datasets. We find that an acute increase in 5-HT is accompanied by a global decrease in gene expression levels, upregulation of genes involved in stress pathways, changes that significantly correlate with the published transcriptomes of animals that have activated defense and immune responses, and an increase in levels of phosphorylated eukaryotic initiation factor, eIF2α. In 5-HT deficient animals lacking tryptophan hydroxylase (tph-1(mg280)II) there is a net increase in gene expression, with an overrepresentation of genes related to development and chromatin. Surprisingly, the transcriptomes of animals with acute increases in 5-HT levels, and 5-HT deficiency do not overlap with transcriptomes of mutants with whom they share striking physiological resemblance. These studies are the first to catalog systemic transcriptome changes that occur upon alterations in 5-HT levels. They further show that in C. elegans changes in gene expression upon altering 5-HT levels, and changes in physiology, are not directly correlated.
Collapse
Affiliation(s)
- Johnny Cruz-Corchado
- Department of Biology, Aging Mind and Brain Initiative, Iowa Neuroscience Institute, 143 Biology Building, Iowa City, IA 52242-1324
| | - Felicia K Ooi
- Department of Biology, Aging Mind and Brain Initiative, Iowa Neuroscience Institute, 143 Biology Building, Iowa City, IA 52242-1324
| | - Srijit Das
- Department of Biology, Aging Mind and Brain Initiative, Iowa Neuroscience Institute, 143 Biology Building, Iowa City, IA 52242-1324
| | - Veena Prahlad
- Department of Biology, Aging Mind and Brain Initiative, Iowa Neuroscience Institute, 143 Biology Building, Iowa City, IA 52242-1324
| |
Collapse
|
22
|
Lin Y, Bao B, Yin H, Wang X, Feng A, Zhao L, Nie X, Yang N, Shi GP, Liu J. Peripheral cathepsin L inhibition induces fat loss in C. elegans and mice through promoting central serotonin synthesis. BMC Biol 2019; 17:93. [PMID: 31771567 PMCID: PMC6880508 DOI: 10.1186/s12915-019-0719-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 11/06/2019] [Indexed: 02/12/2023] Open
Abstract
BACKGROUND Cathepsin L and some other cathepsins have been implicated in the development of obesity in humans and mice. The functional inactivation of the proteases reduces fat accumulation during mammalian adipocyte differentiation. However, beyond degrading extracellular matrix protein fibronectin, the molecular mechanisms by which cathepsins control fat accumulation remain unclear. We now provide evidence from Caenorhabditis elegans and mouse models to suggest a conserved regulatory circuit in which peripheral cathepsin L inhibition lowers fat accumulation through promoting central serotonin synthesis. RESULTS We established a C. elegans model of fat accumulation using dietary supplementation with glucose and palmitic acid. We found that nutrient supplementation elevated fat storage in C. elegans, and along with worm fat accumulation, an increase in the expression of cpl-1 was detected using real-time PCR and western blot. The functional inactivation of cpl-1 reduced fat storage in C. elegans through activating serotonin signaling. Further, knockdown of cpl-1 in the intestine and hypodermis promoted serotonin synthesis in worm ADF neurons and induced body fat loss in C. elegans via central serotonin signaling. We found a similar regulatory circuit in high-fat diet-fed mice. Cathepsin L knockout promoted fat loss and central serotonin synthesis. Intraperitoneal injection of the cathepsin L inhibitor CLIK195 similarly reduced body weight gain and white adipose tissue (WAT) adipogenesis, while elevating brain serotonin level and WAT lipolysis and fatty acid β-oxidation. These effects of inhibiting cathepsin L were abolished by intracranial injection of p-chlorophenylalanine, inhibitor of a rate-limiting enzyme for serotonin synthesis. CONCLUSION This study reveals a previously undescribed molecular mechanism by which peripheral CPL-1/cathepsin L inhibition induces fat loss in C. elegans and mice through promoting central serotonin signaling.
Collapse
Affiliation(s)
- Yan Lin
- School of Food and Biological Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, 230009, Anhui, China
| | - Bin Bao
- School of Food and Biological Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, 230009, Anhui, China.
| | - Hao Yin
- Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Xin Wang
- School of Food and Biological Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, 230009, Anhui, China
| | - Airong Feng
- Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Lin Zhao
- School of Food and Biological Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, 230009, Anhui, China
| | - Xianqi Nie
- School of Food and Biological Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, 230009, Anhui, China
| | - Nan Yang
- School of Food and Biological Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, 230009, Anhui, China
| | - Guo-Ping Shi
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Jian Liu
- School of Food and Biological Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, 230009, Anhui, China.
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, 230009, China.
| |
Collapse
|
23
|
Qiao J, Sun Y, Wu J, Wang L. Investigation of the underling mechanism of ketamine for antidepressant effects in treatment-refractory affective disorders via molecular profile analysis. Exp Ther Med 2019; 18:580-588. [PMID: 31281445 PMCID: PMC6580107 DOI: 10.3892/etm.2019.7633] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 01/24/2019] [Indexed: 11/08/2022] Open
Abstract
Ketamine elicits a rapid antidepressant effect in treatment-refractory affective disorders. The aim of the present study was to elucidate the underlying mechanism of this effect and to identify potential targets of ketamine for antidepressant effects. GSE73798 and GSE73799 datasets were downloaded from the Gene Expression Omnibus database. Differentially expressed genes (DEGs) were identified in hippocampus or striatum samples treated with ketamine, phencyclidyne or memantine compared with a saline or normal group at 1, 2, 4 and 8 h. The overlapping DEGs were the DEGs in both hippocampus and striatum samples. Kyoto Encyclopedia of Genes and Genomes and BioCyc databases were used to perform functional annotation and pathway analyses. Protein-protein interactions (PPIs) were predicted using Search Tool for the Retrieval of Interacting Genes/Proteins version 9.1 for the DEGs in the striatum samples treated with ketamine, phencyclidine or memantine compared with normal samples. Reverse transcription-quantitative polymerase chain reaction was performed to determine mRNA levels. Perilipin 4 (Plin4), serum/glucocorticoid regulated kinase 1 (Sgk1), kruppel like factor 2 (Klf2) and DDB1 and CUL4 associated factor 12 like 1 (Dcaf12l1) were the overlapping DEGs in the striatum samples treated with the three drugs at different time points. The mRNA expression levels of Plin4, Sgk1 and Klf2 were significantly higher (P<0.05), and the mRNA expression level of Dcaf12l1 was significantly lower in the striatum samples of the ketamine-treated group compared with the control group in an in vivo experiment. Both Sgk1 and Klf2 were enriched in the ‘forkhead box O (FoxO) signaling pathway’, and Sgk1 was additionally enriched in the ‘mechanistic target of rapamycin kinase (mTOR) signaling pathway’. PPI networks of DEGs in the striatum samples treated with ketamine, phencyclidine and memantine compared with normal samples were constructed, and Klf2 was involved in more pairs and was therefore a gene hub in the three networks. The four genes, Plin4, Sgk1, Klf2 and Dcaf12l1, were differentially expressed in all of the groups that treated with the three drugs and their expression levels were verified in in vivo experiments. The FoxO and mTOR signaling pathways may be involved in the underlying mechanism of the antidepressant effects of ketamine, and Plin4, Sgk1, Klf2 and Dcaf12l1 may be potential biomarkers for depression in N-methyl-D-aspartic acid receptor antagonist treatment.
Collapse
Affiliation(s)
- Jun Qiao
- Department of Psychiatry, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Yuan Sun
- Department of Anesthesiology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Jinfang Wu
- Department of Anesthesia Surgery, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Li Wang
- Department of Anesthesiology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| |
Collapse
|
24
|
Role of Forkhead Box O Transcription Factors in Oxidative Stress-Induced Chondrocyte Dysfunction: Possible Therapeutic Target for Osteoarthritis? Int J Mol Sci 2018. [PMID: 30487470 DOI: 10.3390/ijms19123794.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Chondrocyte dysfunction occurs during the development of osteoarthritis (OA), typically resulting from a deleterious increase in oxidative stress. Accordingly, strategies for arresting oxidative stress-induced chondrocyte dysfunction may lead to new potential therapeutic targets for OA treatment. Forkhead box O (FoxO) transcription factors have recently been shown to play a protective role in chondrocyte dysfunction through the regulation of inflammation, autophagy, aging, and oxidative stress. They also regulate growth, maturation, and matrix synthesis in chondrocytes. In this review, we discuss the recent progress made in the field of oxidative stress-induced chondrocyte dysfunction. We also discuss the protective role of FoxO transcription factors as potential molecular targets for the treatment of OA. Understanding the function of FoxO transcription factors in the OA pathology may provide new insights that will facilitate the development of next-generation therapies to prevent OA development and to slow OA progression.
Collapse
|
25
|
Wang R, Zhang S, Previn R, Chen D, Jin Y, Zhou G. Role of Forkhead Box O Transcription Factors in Oxidative Stress-Induced Chondrocyte Dysfunction: Possible Therapeutic Target for Osteoarthritis? Int J Mol Sci 2018; 19:ijms19123794. [PMID: 30487470 PMCID: PMC6321605 DOI: 10.3390/ijms19123794] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 11/22/2018] [Accepted: 11/24/2018] [Indexed: 12/11/2022] Open
Abstract
Chondrocyte dysfunction occurs during the development of osteoarthritis (OA), typically resulting from a deleterious increase in oxidative stress. Accordingly, strategies for arresting oxidative stress-induced chondrocyte dysfunction may lead to new potential therapeutic targets for OA treatment. Forkhead box O (FoxO) transcription factors have recently been shown to play a protective role in chondrocyte dysfunction through the regulation of inflammation, autophagy, aging, and oxidative stress. They also regulate growth, maturation, and matrix synthesis in chondrocytes. In this review, we discuss the recent progress made in the field of oxidative stress-induced chondrocyte dysfunction. We also discuss the protective role of FoxO transcription factors as potential molecular targets for the treatment of OA. Understanding the function of FoxO transcription factors in the OA pathology may provide new insights that will facilitate the development of next-generation therapies to prevent OA development and to slow OA progression.
Collapse
Affiliation(s)
- Rikang Wang
- Shenzhen Key Laboratory for Anti-ageing and Regenerative Medicine, Guangdong Key Laboratory for Genome Stability and Disease Prevention, Department of Medical Cell Biology and Genetics, Shenzhen University Health Science Center, Shenzhen 518060, China.
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang 330006, China.
| | - Shuai Zhang
- Shenzhen Key Laboratory for Anti-ageing and Regenerative Medicine, Guangdong Key Laboratory for Genome Stability and Disease Prevention, Department of Medical Cell Biology and Genetics, Shenzhen University Health Science Center, Shenzhen 518060, China.
| | - Rahul Previn
- Shenzhen Key Laboratory for Anti-ageing and Regenerative Medicine, Guangdong Key Laboratory for Genome Stability and Disease Prevention, Department of Medical Cell Biology and Genetics, Shenzhen University Health Science Center, Shenzhen 518060, China.
| | - Di Chen
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612, USA.
| | - Yi Jin
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang 330006, China.
| | - Guangqian Zhou
- Shenzhen Key Laboratory for Anti-ageing and Regenerative Medicine, Guangdong Key Laboratory for Genome Stability and Disease Prevention, Department of Medical Cell Biology and Genetics, Shenzhen University Health Science Center, Shenzhen 518060, China.
| |
Collapse
|
26
|
Bayer EA, Hobert O. Past experience shapes sexually dimorphic neuronal wiring through monoaminergic signalling. Nature 2018; 561:117-121. [PMID: 30150774 PMCID: PMC6126987 DOI: 10.1038/s41586-018-0452-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 07/10/2018] [Indexed: 02/02/2023]
Abstract
Differences between female and male brains exist across the animal kingdom and extend from molecular to anatomical features. Here we show that sexually dimorphic anatomy, gene expression and function in the nervous system can be modulated by past experiences. In the nematode Caenorhabditis elegans, sexual differentiation entails the sex-specific pruning of synaptic connections between neurons that are shared by both sexes, giving rise to sexually dimorphic circuits in adult animals1. We discovered that starvation during juvenile stages is memorized in males to suppress the emergence of sexually dimorphic synaptic connectivity. These circuit changes result in increased chemosensory responsiveness in adult males following juvenile starvation. We find that an octopamine-mediated starvation signal dampens the production of serotonin (5-HT) to convey the memory of starvation. Serotonin production is monitored by a 5-HT1A serotonin receptor homologue that acts cell-autonomously to promote the pruning of sexually dimorphic synaptic connectivity under well-fed conditions. Our studies demonstrate how life history shapes neurotransmitter production, synaptic connectivity and behavioural output in a sexually dimorphic circuit.
Collapse
Affiliation(s)
- Emily A Bayer
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, NY, USA
| | - Oliver Hobert
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, NY, USA.
| |
Collapse
|
27
|
Gracida X, Dion MF, Harris G, Zhang Y, Calarco JA. An Elongin-Cullin-SOCS Box Complex Regulates Stress-Induced Serotonergic Neuromodulation. Cell Rep 2017; 21:3089-3101. [PMID: 29241538 PMCID: PMC6283282 DOI: 10.1016/j.celrep.2017.11.042] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 09/15/2017] [Accepted: 11/11/2017] [Indexed: 02/07/2023] Open
Abstract
Neuromodulatory cells transduce environmental information into long-lasting behavioral responses. However, the mechanisms governing how neuronal cells influence behavioral plasticity are difficult to characterize. Here, we adapted the translating ribosome affinity purification (TRAP) approach in C. elegans to profile ribosome-associated mRNAs from three major tissues and the neuromodulatory dopaminergic and serotonergic cells. We identified elc-2, an Elongin C ortholog, specifically expressed in stress-sensing amphid neuron dual ciliated sensory ending (ADF) serotonergic sensory neurons, and we found that it plays a role in mediating a long-lasting change in serotonin-dependent feeding behavior induced by heat stress. We demonstrate that ELC-2 and the von Hippel-Lindau protein VHL-1, components of an Elongin-Cullin-SOCS box (ECS) E3 ubiquitin ligase, modulate this behavior after experiencing stress. Also, heat stress induces a transient redistribution of ELC-2, becoming more nuclearly enriched. Together, our results demonstrate dynamic regulation of an E3 ligase and a role for an ECS complex in neuromodulation and control of lasting behavioral states.
Collapse
Affiliation(s)
- Xicotencatl Gracida
- FAS Center for Systems Biology, Harvard University, Cambridge, MA 02138, USA; Department of Organismal and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Michael F Dion
- FAS Center for Systems Biology, Harvard University, Cambridge, MA 02138, USA
| | - Gareth Harris
- Department of Organismal and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Yun Zhang
- Department of Organismal and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA; Center for Brain Science, Harvard University, Cambridge, MA 02138, USA.
| | - John A Calarco
- FAS Center for Systems Biology, Harvard University, Cambridge, MA 02138, USA; Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada.
| |
Collapse
|
28
|
Wang B, Wang H, Xiong J, Zhou Q, Wu H, Xia L, Li L, Yu Z. A Proteomic Analysis Provides Novel Insights into the Stress Responses of Caenorhabditis elegans towards Nematicidal Cry6A Toxin from Bacillus thuringiensis. Sci Rep 2017; 7:14170. [PMID: 29074967 PMCID: PMC5658354 DOI: 10.1038/s41598-017-14428-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 10/10/2017] [Indexed: 01/16/2023] Open
Abstract
Cry6A represents a novel family of nematicidal crystal proteins from Bacillus thuringiensis. It has distinctive architecture as well as mechanism of action from Cry5B, a highly focused family of nematicidal crystal proteins, and even from other insecticidal crystal proteins containing the conserved three-domain. However, how nematode defends against Cry6A toxin remains obscure. In this study, the global defense pattern of Caenorhabditis elegans against Cry6Aa2 toxin was investigated by proteomic analysis. In response to Cry6Aa2, 12 proteins with significantly altered abundances were observed from worms, participating in innate immune defense, insulin-like receptor (ILR) signaling pathway, energy metabolism, and muscle assembly. The differentially expressed proteins (DEPs) functioning in diverse biological processes suggest that a variety of defense responses participate in the stress responses of C. elegans to Cry6Aa2. The functional verifications of DEPs suggest that ILR signaling pathway, DIM-1, galectin LEC-6 all are the factors of defense responses to Cry6Aa2. Moreover, Cry6Aa2 also involves in accelerating the metabolic energy production which fulfills the energy demand for the immune responses. In brief, our findings illustrate the global pattern of defense responses of nematode against Cry6A for the first time, and provide a novel insight into the mechanism through which worms respond to Cry6A.
Collapse
Affiliation(s)
- Bing Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, P.R. China
| | - Haiwen Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, P.R. China
| | - Jing Xiong
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, P.R. China
| | - Qiaoni Zhou
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, P.R. China
| | - Huan Wu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, P.R. China
| | - Liqiu Xia
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, P.R. China
| | - Lin Li
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Ziquan Yu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, P.R. China.
| |
Collapse
|
29
|
Kearn J, Lilley C, Urwin P, O'Connor V, Holden-Dye L. Progressive metabolic impairment underlies the novel nematicidal action of fluensulfone on the potato cyst nematode Globodera pallida. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2017; 142:83-90. [PMID: 29107251 DOI: 10.1016/j.pestbp.2017.01.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 01/05/2017] [Accepted: 01/12/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Fluensulfone is a new nematicide with an excellent profile of selective toxicity against plant parasitic nematodes. Here, its effects on the physiology and biochemistry of the potato cyst nematode Globodera pallida have been investigated and comparisons made with its effect on the life-span of the free-living nematode Caenorhabditis elegans to provide insight into its mode of action and its selective toxicity. RESULTS Fluensulfone exerts acute effects (≤1h; ≥100μM) on stylet thrusting and motility of hatched second stage G. pallida juveniles (J2s). Chronic exposure to lower concentrations of fluensulfone (≥3days; ≤30μM), reveals a slowly developing metabolic insult in which G. pallida J2s sequentially exhibit a reduction in motility, loss of a metabolic marker for cell viability, high lipid content and tissue degeneration prior to death. These effects are absent in adults and dauers of the model genetic nematode Caenorhabditis elegans. CONCLUSION The nematicidal action of fluensulfone follows a time-course which progresses from an early impact on motility through to an accumulating metabolic impairment, an inability to access lipid stores and death.
Collapse
Affiliation(s)
- James Kearn
- Biological Sciences, Building 85, University Road, University of Southampton, Southampton SO17 1BJ, UK
| | - Catherine Lilley
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Peter Urwin
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Vincent O'Connor
- Biological Sciences, Building 85, University Road, University of Southampton, Southampton SO17 1BJ, UK
| | - Lindy Holden-Dye
- Biological Sciences, Building 85, University Road, University of Southampton, Southampton SO17 1BJ, UK.
| |
Collapse
|
30
|
Antagonistic Serotonergic and Octopaminergic Neural Circuits Mediate Food-Dependent Locomotory Behavior in Caenorhabditis elegans. J Neurosci 2017; 37:7811-7823. [PMID: 28698386 DOI: 10.1523/jneurosci.2636-16.2017] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 05/18/2017] [Accepted: 07/01/2017] [Indexed: 11/21/2022] Open
Abstract
Biogenic amines are conserved signaling molecules that link food cues to behavior and metabolism in a wide variety of organisms. In the nematode Caenorhabditis elegans, the biogenic amines serotonin (5-HT) and octopamine regulate a number of food-related behaviors. Using a novel method for long-term quantitative behavioral imaging, we show that 5-HT and octopamine jointly influence locomotor activity and quiescence in feeding and fasting hermaphrodites, and we define the neural circuits through which this modulation occurs. We show that 5-HT produced by the ADF neurons acts via the SER-5 receptor in muscles and neurons to suppress quiescent behavior and promote roaming in fasting worms, whereas 5-HT produced by the NSM neurons acts on the MOD-1 receptor in AIY neurons to promote low-amplitude locomotor behavior characteristic of well fed animals. Octopamine, produced by the RIC neurons, acts via SER-3 and SER-6 receptors in SIA neurons to promote roaming behaviors characteristic of fasting animals. We find that 5-HT signaling is required for animals to assume food-appropriate behavior, whereas octopamine signaling is required for animals to assume fasting-appropriate behavior. The requirement for both neurotransmitters in both the feeding and fasting states enables increased behavioral adaptability. Our results define the molecular and neural pathways through which parallel biogenic amine signaling tunes behavior appropriately to nutrient conditions.SIGNIFICANCE STATEMENT Animals adjust behavior in response to environmental changes, such as fluctuations in food abundance, to maximize survival and reproduction. Biogenic amines, such as like serotonin, are conserved neurotransmitters that regulate behavior and metabolism in relation to energy status. Disruptions of biogenic amine signaling contribute to human neurological diseases of mood, appetite, and movement. In this study, we investigated the roles of the biogenic amines serotonin and octopamine in regulating locomotion behaviors associated with feeding and fasting in the roundworm Caenorhabditis elegans We identified neural circuits through which these signals work to govern behavior. Understanding the molecular pathways through which biogenic amines function in model organisms may improve our understanding of dysfunctions of appetite and behavior found in mammals, including humans.
Collapse
|
31
|
Heat-Induced Calcium Leakage Causes Mitochondrial Damage in Caenorhabditis elegans Body-Wall Muscles. Genetics 2017; 206:1985-1994. [PMID: 28576866 PMCID: PMC5560802 DOI: 10.1534/genetics.117.202747] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 05/23/2017] [Indexed: 01/22/2023] Open
Abstract
Acute onset of organ failure in heatstroke is triggered by rhabdomyolysis of skeletal muscle. Here, we showed that elevated temperature increases free cytosolic Ca2+ [Ca2+]f from RYR (ryanodine receptor)/UNC-68in vivo in the muscles of an experimental model animal, the nematode Caenorhabditis elegans. This subsequently leads to mitochondrial fragmentation and dysfunction, and breakdown of myofilaments similar to rhabdomyolysis. In addition, treatment with an inhibitor of RYR (dantrolene) or activation of FoxO (Forkhead box O)/DAF-16 is effective against heat-induced muscle damage. Acute onset of organ failure in heatstroke is triggered by rhabdomyolysis of skeletal muscle. To gain insight into heat-induced muscle breakdown, we investigated alterations of Ca2+ homeostasis and mitochondrial morphology in vivo in body-wall muscles of C. elegans exposed to elevated temperature. Heat stress for 3 hr at 35° increased the concentration of [Ca2+]f, and led to mitochondrial fragmentation and subsequent dysfunction in the muscle cells. A similar mitochondrial fragmentation phenotype is induced in the absence of heat stress by treatment with a calcium ionophore, ionomycin. Mutation of the unc-68 gene, which encodes the ryanodine receptor that is linked to Ca2+ release from the sarcoplasmic reticulum, could suppress the mitochondrial dysfunction, muscle degeneration, and reduced mobility and life span induced by heat stress. In addition, in a daf-2 mutant, in which the DAF-16/FoxO transcription factor is activated, resistance to calcium overload, mitochondrial fragmentation, and dysfunction was observed. These findings reveal that heat-induced Ca2+ accumulation causes mitochondrial damage and consequently induces muscle breakdown.
Collapse
|
32
|
McCloskey RJ, Fouad AD, Churgin MA, Fang-Yen C. Food responsiveness regulates episodic behavioral states in Caenorhabditis elegans. J Neurophysiol 2017; 117:1911-1934. [PMID: 28228583 PMCID: PMC5411472 DOI: 10.1152/jn.00555.2016] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 02/16/2017] [Accepted: 02/16/2017] [Indexed: 02/04/2023] Open
Abstract
Animals optimize survival and reproduction in part through control of behavioral states, which depend on an organism's internal and external environments. In the nematode Caenorhabditis elegans a variety of behavioral states have been described, including roaming, dwelling, quiescence, and episodic swimming. These states have been considered in isolation under varied experimental conditions, making it difficult to establish a unified picture of how they are regulated. Using long-term imaging, we examined C. elegans episodic behavioral states under varied mechanical and nutritional environments. We found that animals alternate between high-activity (active) and low-activity (sedentary) episodes in any mechanical environment, while the incidence of episodes and their behavioral composition depend on food levels. During active episodes, worms primarily roam, as characterized by continuous whole body movement. During sedentary episodes, animals exhibit dwelling (slower movements confined to the anterior half of the body) and quiescence (a complete lack of movement). Roaming, dwelling, and quiescent states are manifest not only through locomotory characteristics but also in pharyngeal pumping (feeding) and in egg-laying behaviors. Next, we analyzed the genetic basis of behavioral states. We found that modulation of behavioral states depends on neuropeptides and insulin-like signaling in the nervous system. Sensory neurons and the Foraging homolog EGL-4 regulate behavior through control of active/sedentary episodes. Optogenetic stimulation of dopaminergic and serotonergic neurons induced dwelling, implicating dopamine as a dwell-promoting neurotransmitter. Our findings provide a more unified description of behavioral states and suggest that perception of nutrition is a conserved mechanism for regulating animal behavior.NEW & NOTEWORTHY One strategy by which animals adapt to their internal states and external environments is by adopting behavioral states. The roundworm Caenorhabditis elegans is an attractive model for investigating how behavioral states are genetically and neuronally controlled. Here we describe the hierarchical organization of behavioral states characterized by locomotory activity, feeding, and egg-laying. We show that decisions to engage in these behaviors are controlled by the nervous system through insulin-like signaling and the perception of food.
Collapse
Affiliation(s)
- Richard J McCloskey
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, Pennsylvania; and
| | - Anthony D Fouad
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, Pennsylvania; and
| | - Matthew A Churgin
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, Pennsylvania; and
| | - Christopher Fang-Yen
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, Pennsylvania; and
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
33
|
Involvement of PI3K/Akt/FoxO3a and PKA/CREB Signaling Pathways in the Protective Effect of Fluoxetine Against Corticosterone-Induced Cytotoxicity in PC12 Cells. J Mol Neurosci 2016; 59:567-78. [DOI: 10.1007/s12031-016-0779-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Accepted: 06/17/2016] [Indexed: 12/19/2022]
|
34
|
Campos B, Rivetti C, Kress T, Barata C, Dircksen H. Depressing Antidepressant: Fluoxetine Affects Serotonin Neurons Causing Adverse Reproductive Responses in Daphnia magna. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:6000-6007. [PMID: 27128505 DOI: 10.1021/acs.est.6b00826] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Selective serotonin reuptake inhibitors (SSRIs) are widely used antidepressants. As endocrine disruptive contaminants in the environment, SSRIs affect reproduction in aquatic organisms. In the water flea Daphnia magna, SSRIs increase offspring production in a food ration-dependent manner. At limiting food conditions, females exposed to SSRIs produce more but smaller offspring, which is a maladaptive life-history strategy. We asked whether increased serotonin levels in newly identified serotonin-neurons in the Daphnia brain mediate these effects. We provide strong evidence that exogenous SSRI fluoxetine selectively increases serotonin-immunoreactivity in identified brain neurons under limiting food conditions thereby leading to maladaptive offspring production. Fluoxetine increases serotonin-immunoreactivity at low food conditions to similar maximal levels as observed under high food conditions and concomitantly enhances offspring production. Sublethal amounts of the neurotoxin 5,7-dihydroxytryptamine known to specifically ablate serotonin-neurons markedly decrease serotonin-immunoreactivity and offspring production, strongly supporting the effect to be serotonin-specific by reversing the reproductive phenotype attained under fluoxetine. Thus, SSRIs impair serotonin-regulation of reproductive investment in a planktonic key organism causing inappropriately increased reproduction with potentially severe ecological impact.
Collapse
Affiliation(s)
- Bruno Campos
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC) , Jordi Girona 18, E-08034, Barcelona, Spain
- Department of Zoology, Stockholm University , Svante Arrhenius väg 18A, S-106 91 Stockholm, Sweden
| | - Claudia Rivetti
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC) , Jordi Girona 18, E-08034, Barcelona, Spain
- Department of Zoology, Stockholm University , Svante Arrhenius väg 18A, S-106 91 Stockholm, Sweden
| | - Timm Kress
- Department of Zoology, Stockholm University , Svante Arrhenius väg 18A, S-106 91 Stockholm, Sweden
| | - Carlos Barata
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC) , Jordi Girona 18, E-08034, Barcelona, Spain
| | - Heinrich Dircksen
- Department of Zoology, Stockholm University , Svante Arrhenius väg 18A, S-106 91 Stockholm, Sweden
| |
Collapse
|
35
|
Zeng Z, Wang X, Bhardwaj SK, Zhou X, Little PJ, Quirion R, Srivastava LK, Zheng W. The Atypical Antipsychotic Agent, Clozapine, Protects Against Corticosterone-Induced Death of PC12 Cells by Regulating the Akt/FoxO3a Signaling Pathway. Mol Neurobiol 2016; 54:3395-3406. [DOI: 10.1007/s12035-016-9904-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 05/03/2016] [Indexed: 01/28/2023]
|
36
|
Yu Y, Zhi L, Wu Q, Jing L, Wang D. NPR-9 regulates the innate immune response in Caenorhabditis elegans by antagonizing the activity of AIB interneurons. Cell Mol Immunol 2016; 15:27-37. [PMID: 27133473 DOI: 10.1038/cmi.2016.8] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 01/23/2016] [Accepted: 01/24/2016] [Indexed: 11/09/2022] Open
Abstract
npr-9 encodes a homologue of the gastrin-releasing peptide receptor (GRPR) and is expressed in AIB interneurons. In this study, we investigated the role of NPR-9 in the neuronal control of innate immunity using the model system Caenorhabditis elegans. After exposure to Pseudomonas aeruginosa PA14, npr-9(tm1652) mutants showed resistance to infection, decreased PA14 colonization and increased expression of immunity-related genes. Nematodes overexpressing NPR-9 exhibited increased susceptibility to infection, increased PA14 colonization and reduced expression of immunity-related genes. In nematodes, ChR2-mediated AIB interneuron activation strengthened the innate immune response and decreased PA14 colonization. Overexpression of NPR-9 suppressed the innate immune response and increased PA14 colonization in nematodes with the activation of AIB interneurons mediated by ChR2 or by expressing pkc-1(gf) in AIB interneurons. We, therefore, hypothesize that NPR-9 regulates the innate immune response by antagonizing the activity of AIB interneurons. Furthermore, expression of GRPR, the human homologue of NPR-9, could largely mimic NPR-9 function by regulating innate immunity in nematodes. Our results provide insight into the pivotal role of interneurons in controlling innate immunity and the complex biological functions of GRPRs.
Collapse
Affiliation(s)
- Yonglin Yu
- Key Laboratory of Developmental Genes and Human Diseases in Ministry of Education, Medical School, Southeast University, Nanjing 210009, China
| | - Lingtong Zhi
- Key Laboratory of Developmental Genes and Human Diseases in Ministry of Education, Medical School, Southeast University, Nanjing 210009, China
| | - Qiuli Wu
- Key Laboratory of Developmental Genes and Human Diseases in Ministry of Education, Medical School, Southeast University, Nanjing 210009, China
| | - Lina Jing
- Key Laboratory of Developmental Genes and Human Diseases in Ministry of Education, Medical School, Southeast University, Nanjing 210009, China
| | - Dayong Wang
- Key Laboratory of Developmental Genes and Human Diseases in Ministry of Education, Medical School, Southeast University, Nanjing 210009, China
| |
Collapse
|
37
|
Alam T, Maruyama H, Li C, Pastuhov SI, Nix P, Bastiani M, Hisamoto N, Matsumoto K. Axotomy-induced HIF-serotonin signalling axis promotes axon regeneration in C. elegans. Nat Commun 2016; 7:10388. [PMID: 26790951 PMCID: PMC4735912 DOI: 10.1038/ncomms10388] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 12/05/2015] [Indexed: 12/28/2022] Open
Abstract
The molecular mechanisms underlying the ability of axons to regenerate after injury remain poorly understood. Here we show that in Caenorhabditis elegans, axotomy induces ectopic expression of serotonin (5-HT) in axotomized non-serotonergic neurons via HIF-1, a hypoxia-inducible transcription factor, and that 5-HT subsequently promotes axon regeneration by autocrine signalling through the SER-7 5-HT receptor. Furthermore, we identify the rhgf-1 and rga-5 genes, encoding homologues of RhoGEF and RhoGAP, respectively, as regulators of axon regeneration. We demonstrate that one pathway initiated by SER-7 acts upstream of the C. elegans RhoA homolog RHO-1 in neuron regeneration, which functions via G12α and RHGF-1. In this pathway, RHO-1 inhibits diacylglycerol kinase, resulting in an increase in diacylglycerol. SER-7 also promotes axon regeneration by activating the cyclic AMP (cAMP) signalling pathway. Thus, HIF-1-mediated activation of 5-HT signalling promotes axon regeneration by activating both the RhoA and cAMP pathways.
Collapse
Affiliation(s)
- Tanimul Alam
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
| | - Hiroki Maruyama
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
| | - Chun Li
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
| | - Strahil Iv. Pastuhov
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
| | - Paola Nix
- Department of Biology, University of Utah, 257 South 1400 East, Salt Lake City, Utah 84112-0840, USA
| | - Michael Bastiani
- Department of Biology, University of Utah, 257 South 1400 East, Salt Lake City, Utah 84112-0840, USA
| | - Naoki Hisamoto
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
| | - Kunihiro Matsumoto
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
| |
Collapse
|
38
|
Forkhead box O transcription factors as possible mediators in the development of major depression. Neuropharmacology 2015; 99:527-37. [DOI: 10.1016/j.neuropharm.2015.08.020] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 07/22/2015] [Accepted: 08/12/2015] [Indexed: 01/26/2023]
|
39
|
Chilmonczyk Z, Bojarski AJ, Pilc A, Sylte I. Functional Selectivity and Antidepressant Activity of Serotonin 1A Receptor Ligands. Int J Mol Sci 2015; 16:18474-506. [PMID: 26262615 PMCID: PMC4581256 DOI: 10.3390/ijms160818474] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 07/29/2015] [Accepted: 07/31/2015] [Indexed: 01/11/2023] Open
Abstract
Serotonin (5-HT) is a monoamine neurotransmitter that plays an important role in physiological functions. 5-HT has been implicated in sleep, feeding, sexual behavior, temperature regulation, pain, and cognition as well as in pathological states including disorders connected to mood, anxiety, psychosis and pain. 5-HT1A receptors have for a long time been considered as an interesting target for the action of antidepressant drugs. It was postulated that postsynaptic 5-HT1A agonists could form a new class of antidepressant drugs, and mixed 5-HT1A receptor ligands/serotonin transporter (SERT) inhibitors seem to possess an interesting pharmacological profile. It should, however, be noted that 5-HT1A receptors can activate several different biochemical pathways and signal through both G protein-dependent and G protein-independent pathways. The variables that affect the multiplicity of 5-HT1A receptor signaling pathways would thus result from the summation of effects specific to the host cell milieu. Moreover, receptor trafficking appears different at pre- and postsynaptic sites. It should also be noted that the 5-HT1A receptor cooperates with other signal transduction systems (like the 5-HT1B or 5-HT2A/2B/2C receptors, the GABAergic and the glutaminergic systems), which also contribute to its antidepressant and/or anxiolytic activity. Thus identifying brain specific molecular targets for 5-HT1A receptor ligands may result in a better targeting, raising a hope for more effective medicines for various pathologies.
Collapse
Affiliation(s)
- Zdzisław Chilmonczyk
- National Medicines Institute, Chełmska 30/34, 00-725 Warszawa, Poland.
- Institute of Nursing and Health Sciences, University of Rzeszów, W. Kopisto 2A, 35-310 Rzeszów, Poland.
| | - Andrzej Jacek Bojarski
- Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, 31-343 Kraków, Poland.
| | - Andrzej Pilc
- Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, 31-343 Kraków, Poland.
| | - Ingebrigt Sylte
- Faculty of Health Sciences, University of Tromsø-The Arctic University of Norway, No-9037 Tromsø, Norway.
| |
Collapse
|
40
|
Entchev EV, Patel DS, Zhan M, Steele AJ, Lu H, Ch'ng Q. A gene-expression-based neural code for food abundance that modulates lifespan. eLife 2015; 4:e06259. [PMID: 25962853 PMCID: PMC4417936 DOI: 10.7554/elife.06259] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 04/03/2015] [Indexed: 12/18/2022] Open
Abstract
How the nervous system internally represents environmental food availability is poorly understood. Here, we show that quantitative information about food abundance is encoded by combinatorial neuron-specific gene-expression of conserved TGFβ and serotonin pathway components in Caenorhabditis elegans. Crosstalk and auto-regulation between these pathways alters the shape, dynamic range, and population variance of the gene-expression responses of daf-7 (TGFβ) and tph-1 (tryptophan hydroxylase) to food availability. These intricate regulatory features provide distinct mechanisms for TGFβ and serotonin signaling to tune the accuracy of this multi-neuron code: daf-7 primarily regulates gene-expression variability, while tph-1 primarily regulates the dynamic range of gene-expression responses. This code is functional because daf-7 and tph-1 mutations bidirectionally attenuate food level-dependent changes in lifespan. Our results reveal a neural code for food abundance and demonstrate that gene expression serves as an additional layer of information processing in the nervous system to control long-term physiology. DOI:http://dx.doi.org/10.7554/eLife.06259.001 To maximize their chances of survival, animals need to be able to sense changes in the abundance of food in their environment and respond in an appropriate manner. The nervous system is able to sense cues from the environment and coordinate responses in the whole organism, but it is not clear how this leads to long-term changes in the organism's biology. In nematode worms, two genes called daf-7 and tph-1 appear to be involved in connecting the sensing of food availability with changes in the biology of the organism. The daf-7 gene encodes a hormone, while tph-1 encodes an enzyme that makes a neurochemical called serotonin. Here, Entchev, Patel, Zhan et al. found that daf-7 and tph-1 genes are active in three pairs of neurons in nematode worms. The experiments show that these neurons collectively form a circuit that carries information about the abundance of food, which leads to changes in how long the worms live. When this circuit was disrupted by removing these genes, the worms' ability to adjust their lifespan in response to changes in the availability of food was weakened, likely because they were unable to sense food. The experiments also show that the circuit regulates itself, largely because daf-7 and tph-1 are able to control each-other's activity. Together, these results suggest that changing the activity of certain genes in neurons enables nematode worms to alter their biology in response to changes in the availability of food. Neurons in the brain use electrical activity to communicate and process information and Entchev, Patel, Zhan et al.'s findings imply that gene activity can also perform a similar role. DOI:http://dx.doi.org/10.7554/eLife.06259.002
Collapse
Affiliation(s)
- Eugeni V Entchev
- MRC Centre for Developmental Neurobiology, King's College London, London, United Kingdom
| | - Dhaval S Patel
- MRC Centre for Developmental Neurobiology, King's College London, London, United Kingdom
| | - Mei Zhan
- Interdisciplinary Bioengineering Graduate Program, Georgia Institute of Technology, Atlanta, United States
| | - Andrew J Steele
- MRC Centre for Developmental Neurobiology, King's College London, London, United Kingdom
| | - Hang Lu
- Interdisciplinary Bioengineering Graduate Program, Georgia Institute of Technology, Atlanta, United States
| | - QueeLim Ch'ng
- MRC Centre for Developmental Neurobiology, King's College London, London, United Kingdom
| |
Collapse
|
41
|
Lemieux GA, Cunningham KA, Lin L, Mayer F, Werb Z, Ashrafi K. Kynurenic acid is a nutritional cue that enables behavioral plasticity. Cell 2015; 160:119-31. [PMID: 25594177 PMCID: PMC4334586 DOI: 10.1016/j.cell.2014.12.028] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 10/16/2014] [Accepted: 12/11/2014] [Indexed: 12/27/2022]
Abstract
The kynurenine pathway of tryptophan metabolism is involved in the pathogenesis of several brain diseases, but its physiological functions remain unclear. We report that kynurenic acid, a metabolite in this pathway, functions as a regulator of food-dependent behavioral plasticity in C. elegans. The experience of fasting in C. elegans alters a variety of behaviors, including feeding rate, when food is encountered post-fast. Levels of neurally produced kynurenic acid are depleted by fasting, leading to activation of NMDA-receptor-expressing interneurons and initiation of a neuropeptide-y-like signaling axis that promotes elevated feeding through enhanced serotonin release when animals re-encounter food. Upon refeeding, kynurenic acid levels are eventually replenished, ending the elevated feeding period. Because tryptophan is an essential amino acid, these findings suggest that a physiological role of kynurenic acid is in directly linking metabolism to activity of NMDA and serotonergic circuits, which regulate a broad range of behaviors and physiologies.
Collapse
Affiliation(s)
- George A Lemieux
- Department of Physiology, University of California, San Francisco, San Francisco, CA 94158-2240, USA
| | - Katherine A Cunningham
- Department of Physiology, University of California, San Francisco, San Francisco, CA 94158-2240, USA
| | - Lin Lin
- Department of Physiology, University of California, San Francisco, San Francisco, CA 94158-2240, USA
| | - Fahima Mayer
- Department of Physiology, University of California, San Francisco, San Francisco, CA 94158-2240, USA
| | - Zena Werb
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143-0452, USA
| | - Kaveh Ashrafi
- Department of Physiology, University of California, San Francisco, San Francisco, CA 94158-2240, USA.
| |
Collapse
|
42
|
Pomytkin IA, Cline BH, Anthony DC, Steinbusch HW, Lesch KP, Strekalova T. Endotoxaemia resulting from decreased serotonin tranporter (5-HTT) function: A reciprocal risk factor for depression and insulin resistance? Behav Brain Res 2015; 276:111-7. [DOI: 10.1016/j.bbr.2014.04.049] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Revised: 04/25/2014] [Accepted: 04/28/2014] [Indexed: 12/31/2022]
|
43
|
Cunningham KA, Bouagnon AD, Barros AG, Lin L, Malard L, Romano-Silva MA, Ashrafi K. Loss of a neural AMP-activated kinase mimics the effects of elevated serotonin on fat, movement, and hormonal secretions. PLoS Genet 2014; 10:e1004394. [PMID: 24921650 PMCID: PMC4055570 DOI: 10.1371/journal.pgen.1004394] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 04/07/2014] [Indexed: 12/30/2022] Open
Abstract
AMP-activated protein kinase (AMPK) is an evolutionarily conserved master regulator of metabolism and a therapeutic target in type 2 diabetes. As an energy sensor, AMPK activity is responsive to both metabolic inputs, for instance the ratio of AMP to ATP, and numerous hormonal cues. As in mammals, each of two genes, aak-1 and aak-2, encode for the catalytic subunit of AMPK in C. elegans. Here we show that in C. elegans loss of aak-2 mimics the effects of elevated serotonin signaling on fat reduction, slowed movement, and promoting exit from dauer arrest. Reconstitution of aak-2 in only the nervous system restored wild type fat levels and movement rate to aak-2 mutants and reconstitution in only the ASI neurons was sufficient to significantly restore dauer maintenance to the mutant animals. As in elevated serotonin signaling, inactivation of AAK-2 in the ASI neurons caused enhanced secretion of dense core vesicles from these neurons. The ASI neurons are the site of production of the DAF-7 TGF-β ligand and the DAF-28 insulin, both of which are secreted by dense core vesicles and play critical roles in whether animals stay in dauer or undergo reproductive development. These findings show that elevated levels of serotonin promote enhanced secretions of systemic regulators of pro-growth and differentiation pathways through inactivation of AAK-2. As such, AMPK is not only a recipient of hormonal signals but can also be an upstream regulator. Our data suggest that some of the physiological phenotypes previously attributed to peripheral AAK-2 activity on metabolic targets may instead be due to the role of this kinase in neural serotonin signaling.
Collapse
Affiliation(s)
- Katherine A. Cunningham
- Department of Physiology, University of California, San Francisco, San Francisco, California, United States of America
| | - Aude D. Bouagnon
- Department of Physiology, University of California, San Francisco, San Francisco, California, United States of America
| | - Alexandre G. Barros
- Instituto Nacional de Ciência e Tecnologia de Medicina Molecular, Faculdade de Medicina da Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Lin Lin
- Department of Physiology, University of California, San Francisco, San Francisco, California, United States of America
| | - Leandro Malard
- Departamento de Física, Instituto de Ciências Exatas da Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Marco Aurélio Romano-Silva
- Instituto Nacional de Ciência e Tecnologia de Medicina Molecular, Faculdade de Medicina da Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Kaveh Ashrafi
- Department of Physiology, University of California, San Francisco, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
44
|
Serotonin control of thermotaxis memory behavior in nematode Caenorhabditis elegans. PLoS One 2013; 8:e77779. [PMID: 24223727 PMCID: PMC3815336 DOI: 10.1371/journal.pone.0077779] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 09/12/2013] [Indexed: 11/26/2022] Open
Abstract
Caenorhabditis elegans is as an ideal model system for the study of mechanisms underlying learning and memory. In the present study, we employed C. elegans assay system of thermotaxis memory to investigate the possible role of serotonin neurotransmitter in memory control. Our data showed that both mutations of tph-1, bas-1, and cat-4 genes, required for serotonin synthesis, and mutations of mod-5 gene, encoding a serotonin reuptake transporter, resulted in deficits in thermotaxis memory behavior. Exogenous treatment with serotonin effectively recovered the deficits in thermotaxis memory of tph-1 and bas-1 mutants to the level of wild-type N2. Neuron-specific activity assay of TPH-1 suggests that serotonin might regulate the thermotaxis memory behavior by release from the ADF sensory neurons. Ablation of ADF sensory neurons by expressing a cell-death activator gene egl-1 decreased the thermotaxis memory, whereas activation of ADF neurons by expression of a constitutively active protein kinase C homologue (pkc-1(gf)) increased the thermotaxis memory and rescued the deficits in thermotaxis memory in tph-1 mutants. Moreover, serotonin released from the ADF sensory neurons might act through the G-protein-coupled serotonin receptors of SER-4 and SER-7 to regulate the thermotaxis memory behavior. Genetic analysis implies that serotonin might further target the insulin signaling pathway to regulate the thermotaxis memory behavior. Thus, our results suggest the possible crucial role of serotonin and ADF sensory neurons in thermotaxis memory control in C. elegans.
Collapse
|
45
|
The role of Akt/FoxO3a in the protective effect of venlafaxine against corticosterone-induced cell death in PC12 cells. Psychopharmacology (Berl) 2013; 228:129-41. [PMID: 23494228 DOI: 10.1007/s00213-013-3017-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2012] [Accepted: 02/01/2013] [Indexed: 01/04/2023]
Abstract
RATIONALE Antidepressants could exert neuroprotective effects against various insults and the antidepressant-like effect may result from its neuroprotective effects. The phosphatidylinositol-3-kinase/protein kinase B/Forkhead box O3 (PI3K/Akt/FoxO3a) pathway is a key signaling pathway in mediating cell survival. However, no information is available regarding the interaction of FoxO3a and antidepressants. OBJECTIVES PC12 cells treated with corticosterone were used as a model to study the protective effect of venlafaxine and underlying mechanisms. METHODS Methyl thiazolyl tetrazolium (MTT) assay, Hoechst staining, and the observation of FoxO3a subcellular location were used to study the protective effect of venlafaxine against cell damage caused by corticosterone. Pretreatments with various pathway inhibitors were used to investigate the possible pathways involved in the protection of venlafaxine. The phosphorylation of Akt and FoxO3a was analyzed by Western blot. RESULTS Corticosterone decreased the phosphorylation of Akt and FoxO3a and led to the nuclear localization of FoxO3a and the apoptosis of PC12 cells. Venlafaxine concentration-dependently protected PC12 cells against corticosterone. The protective effect of venlafaxine was reversed by LY294002 and wortmannin, two PI3K inhibitors, and Akt inhibitor VIII, whereas mitogen-activated protein kinase kinase (MAPK kinase) inhibitor PD98059 and the p38 MAPK inhibitor PD160316 had no effect. Western blot analyses showed that venlafaxine induced the phosphorylation of Akt and FoxO3a by the PI3K/Akt pathway and reversed the reduction of the phosphorylated Akt and FoxO3a, and the nuclear translocation of Foxo3a induced by corticosterone. CONCLUSIONS Venlafaxine protects PC12 cells against corticosterone-induced cell death by modulating the activity of the PI3K/Akt/FoxO3a pathway.
Collapse
|
46
|
Van Wielendaele P, Badisco L, Vanden Broeck J. Neuropeptidergic regulation of reproduction in insects. Gen Comp Endocrinol 2013; 188:23-34. [PMID: 23454669 DOI: 10.1016/j.ygcen.2013.02.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 02/01/2013] [Accepted: 02/10/2013] [Indexed: 12/17/2022]
Abstract
Successful animal reproduction depends on multiple physiological and behavioral processes that take place in a timely and orderly manner in both mating partners. It is not only necessary that all relevant processes are well coordinated, they also need to be adjusted to external factors of abiotic and biotic nature (e.g. population density, mating partner availability). Therefore, it is not surprising that several hormonal factors play a crucial role in the regulation of animal reproductive physiology. In insects (the largest class of animals on planet Earth), lipophilic hormones, such as ecdysteroids and juvenile hormones, as well as several neuropeptides take part in this complex regulation. While some peptides can affect reproduction via an indirect action (e.g. by influencing secretion of juvenile hormone), others exert their regulatory activity by directly targeting the reproductive system. In addition to insect peptides with proven activities, several others were suggested to also play a role in the regulation of reproductive physiology. Because of the long evolutionary history of many insect orders, it is not always clear to what extent functional data obtained in a given species can be extrapolated to other insect taxa. In this paper, we will review the current knowledge concerning the neuropeptidergic regulation of insect reproduction and situate it in a more general physiological context.
Collapse
Affiliation(s)
- Pieter Van Wielendaele
- Molecular Developmental Physiology and Signal Transduction, Department of Animal Physiology and Neurobiology, University of Leuven, Naamsestraat 59, P.O. Box 02465, B-3000 Leuven, Belgium
| | | | | |
Collapse
|
47
|
Than MT, Kudlow BA, Han M. Functional analysis of neuronal microRNAs in Caenorhabditis elegans dauer formation by combinational genetics and Neuronal miRISC immunoprecipitation. PLoS Genet 2013; 9:e1003592. [PMID: 23818874 PMCID: PMC3688502 DOI: 10.1371/journal.pgen.1003592] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 05/09/2013] [Indexed: 01/15/2023] Open
Abstract
Identifying the physiological functions of microRNAs (miRNAs) is often challenging because miRNAs commonly impact gene expression under specific physiological conditions through complex miRNA::mRNA interaction networks and in coordination with other means of gene regulation, such as transcriptional regulation and protein degradation. Such complexity creates difficulties in dissecting miRNA functions through traditional genetic methods using individual miRNA mutations. To investigate the physiological functions of miRNAs in neurons, we combined a genetic “enhancer” approach complemented by biochemical analysis of neuronal miRNA-induced silencing complexes (miRISCs) in C. elegans. Total miRNA function can be compromised by mutating one of the two GW182 proteins (AIN-1), an important component of miRISC. We found that combining an ain-1 mutation with a mutation in unc-3, a neuronal transcription factor, resulted in an inappropriate entrance into the stress-induced, alternative larval stage known as dauer, indicating a role of miRNAs in preventing aberrant dauer formation. Analysis of this genetic interaction suggests that neuronal miRNAs perform such a role partly by regulating endogenous cyclic guanosine monophosphate (cGMP) signaling, potentially influencing two other dauer-regulating pathways. Through tissue-specific immunoprecipitations of miRISC, we identified miRNAs and their likely target mRNAs within neuronal tissue. We verified the biological relevance of several of these miRNAs and found that many miRNAs likely regulate dauer formation through multiple dauer-related targets. Further analysis of target mRNAs suggests potential miRNA involvement in various neuronal processes, but the importance of these miRNA::mRNA interactions remains unclear. Finally, we found that neuronal genes may be more highly regulated by miRNAs than intestinal genes. Overall, our study identifies miRNAs and their targets, and a physiological function of these miRNAs in neurons. It also suggests that compromising other aspects of gene expression, along with miRISC, can be an effective approach to reveal miRNA functions in specific tissues under specific physiological conditions. MicroRNAs (miRNAs) are important in the regulation of gene expression and are present in many organisms. To identify specific biological processes that are regulated by miRNAs, we disturbed total miRNA function under a certain genetic background and searched for defects. Interestingly, we found a prominent developmental defect that was dependent on a mutation in another gene involved in regulating transcription in neurons. Thus, by compromising two different aspects of gene regulation, we were able to identify a specific biological function of miRNAs. By investigating this defect, we determined that neuronal miRNAs likely function to help modulate cyclic guanosine monophosphate signaling. We then took a systematic approach and identified many miRNAs and genes that are likely to be regulated by neuronal miRNAs, and in doing so, we found genes involved in the initial defect. Additionally, we found many other genes, and show that genes expressed in neurons seem to be more regulated by miRNAs than genes in the intestine. Through our study, we identify a biological function of neuronal miRNAs and provide data that will help in identifying other important, novel, and exciting roles of this important class of small RNAs.
Collapse
Affiliation(s)
- Minh T Than
- Howard Hughes Medical Institute and Department of Molecular, Cellular, and Developmental Biology of University of Colorado, Boulder, Colorado, United States of America
| | | | | |
Collapse
|
48
|
Liang C, Chen W, Zhi X, Ma T, Xia X, Liu H, Zhang Q, Hu Q, Zhang Y, Bai X, Liang T. Serotonin promotes the proliferation of serum-deprived hepatocellular carcinoma cells via upregulation of FOXO3a. Mol Cancer 2013; 12:14. [PMID: 23418729 PMCID: PMC3601970 DOI: 10.1186/1476-4598-12-14] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 02/14/2013] [Indexed: 12/13/2022] Open
Abstract
Background Peripheral serotonin is involved in tumorigenesis and induces a pro-proliferative effect in hepatocellular carcinoma (HCC) cells; however, the intracellular mechanisms by which serotonin exerts a mitogenic effect remain unclear. In this research, we examined whether FOXO3a, a transcription factor at the interface of crucial cellular processes, plays a role downstream of serotonin in HCC cells. Results The cell viability and expression of FOXO3a was assessed in three HCC cell lines (Huh7, HepG2 and Hep3B) during serum deprivation in the presence or absence of serotonin. Serum free media significantly inhibited HCC proliferation and led to reduced expression and nuclear accumulation of FOXO3a. Knockdown of FOXO3a enhanced the ability of serum deprivation to inhibit HCC cells proliferation. And overexpression of non-phosphorylated FOXO3a in HCC cells reversed serum-deprivation-induced growth inhibition. Serotonin reversed the serum-deprivation-induced inhibition of cell proliferation and upregulated FOXO3a in Huh7 cells; however, serotonin had no effect on the proliferation of serum-deprived HepG2 or Hep3B cells. In addition to proliferation, serotonin also induced phosphorylation of AKT and FOXO3a in serum-deprived Huh7 cells but not in HepG2 and Hep3B cells. However, the phosphorylation of FOXO3a induced by serotonin did not export FOXO3a from nucleus to cytoplasm in serum-deprived Huh7 cells. Consequently, we demonstrated that serotonin promoted the proliferation of Huh7 cells by increasing the expression of FOXO3a. We also provide preliminary evidence that different expression levels of the 5-HT2B receptor (5-HT2BR) may contribute to the distinct effects of serotonin in different serum-deprived HCC cells. Conclusions This study demonstrates that FOXO3a functions as a growth factor in serum-deprived HCC cells and serotonin promotes the proliferation of serum-deprived HCC cells via upregulation of FOXO3a, in the presence of sufficient levels of the serotonin receptor 5-HT2BR. Drugs targeting the serotonin-5-HT2BR-FOXO3a pathway may provide a novel target for anticancer therapy.
Collapse
Affiliation(s)
- Chao Liang
- Department of Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou 310009, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Song BM, Faumont S, Lockery S, Avery L. Recognition of familiar food activates feeding via an endocrine serotonin signal in Caenorhabditis elegans. eLife 2013; 2:e00329. [PMID: 23390589 PMCID: PMC3564447 DOI: 10.7554/elife.00329] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 12/22/2012] [Indexed: 02/04/2023] Open
Abstract
Familiarity discrimination has a significant impact on the pattern of food intake across species. However, the mechanism by which the recognition memory controls feeding is unclear. Here, we show that the nematode Caenorhabditis elegans forms a memory of particular foods after experience and displays behavioral plasticity, increasing the feeding response when they subsequently recognize the familiar food. We found that recognition of familiar food activates the pair of ADF chemosensory neurons, which subsequently increase serotonin release. The released serotonin activates the feeding response mainly by acting humorally and directly activates SER-7, a type 7 serotonin receptor, in MC motor neurons in the feeding organ. Our data suggest that worms sense the taste and/or smell of novel bacteria, which overrides the stimulatory effect of familiar bacteria on feeding by suppressing the activity of ADF or its upstream neurons. Our study provides insight into the mechanism by which familiarity discrimination alters behavior.DOI:http://dx.doi.org/10.7554/eLife.00329.001.
Collapse
Affiliation(s)
- Bo-mi Song
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, United States
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Serge Faumont
- Institute of Neuroscience, University of Oregon, Eugene, United States
| | - Shawn Lockery
- Institute of Neuroscience, University of Oregon, Eugene, United States
| | - Leon Avery
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, United States
| |
Collapse
|
50
|
Kode A, Mosialou I, Silva BC, Rached MT, Zhou B, Wang J, Townes TM, Hen R, DePinho RA, Guo XE, Kousteni S. FOXO1 orchestrates the bone-suppressing function of gut-derived serotonin. J Clin Invest 2012; 122:3490-503. [PMID: 22945629 DOI: 10.1172/jci64906] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Accepted: 07/12/2012] [Indexed: 11/17/2022] Open
Abstract
Serotonin is a critical regulator of bone mass, fulfilling different functions depending on its site of synthesis. Brain-derived serotonin promotes osteoblast proliferation, whereas duodenal-derived serotonin suppresses it. To understand the molecular mechanisms of duodenal-derived serotonin action on osteoblasts, we explored its transcriptional mediation in mice. We found that the transcription factor FOXO1 is a crucial determinant of the effects of duodenum-derived serotonin on bone formation We identified two key FOXO1 complexes in osteoblasts, one with the transcription factor cAMP-responsive element-binding protein 1 (CREB) and another with activating transcription factor 4 (ATF4). Under normal levels of circulating serotonin, the proliferative activity of FOXO1 was promoted by a balance between its interaction with CREB and ATF4. However, high circulating serotonin levels prevented the association of FOXO1 with CREB, resulting in suppressed osteoblast proliferation. These observations identify FOXO1 as the molecular node of an intricate transcriptional machinery that confers the signal of duodenal-derived serotonin to inhibit bone formation.
Collapse
Affiliation(s)
- Aruna Kode
- Department of Medicine, Division of Endocrinology, College of Physicians and Surgeons, Columbia University, New York, New York 10032, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|