1
|
Pradhan S, Madan GK, Kang D, Bueno E, Atanas AA, Kramer TS, Dag U, Lage JD, Gomes MA, Lu AKY, Park J, Flavell SW. Pathogen infection induces sickness behaviors through neuromodulators linked to stress and satiety in C. elegans. Nat Commun 2025; 16:3200. [PMID: 40180949 PMCID: PMC11968842 DOI: 10.1038/s41467-025-58478-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 03/20/2025] [Indexed: 04/05/2025] Open
Abstract
When animals are infected by a pathogen, peripheral sensors of infection signal to the brain to induce adaptive behavioral changes known as sickness behaviors. While the pathways that signal from the periphery to the brain have been intensively studied, how central circuits are reconfigured to elicit these behavioral changes is not well understood. Here we find that neuromodulatory systems linked to stress and satiety are recruited during chronic pathogen infection to alter the behavior of Caenorhabditis elegans. Upon infection by the bacterium Pseudomonas aeruginosa PA14, C. elegans decrease feeding, then display reversible bouts of quiescence, and eventually die. The ALA neuron and its neuropeptides FLP-7, FLP-24, and NLP-8, which control stress-induced sleep in uninfected animals, promote the PA14-induced feeding reduction. However, the ALA neuropeptide FLP-13 instead delays quiescence and death in infected animals. Cell-specific genetic perturbations show that the neurons that release FLP-13 to delay quiescence in infected animals are distinct from ALA. A brain-wide imaging screen reveals that infection-induced quiescence involves ASI and DAF-7/TGF-beta, which control satiety-induced quiescence in uninfected animals. Our results suggest that a common set of neuromodulators are recruited across different physiological states, acting from distinct neural sources and in distinct combinations to drive state-dependent behaviors.
Collapse
Affiliation(s)
- Sreeparna Pradhan
- Howard Hughes Medical Institute, Picower Institute for Learning & Memory, Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Gurrein K Madan
- Howard Hughes Medical Institute, Picower Institute for Learning & Memory, Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Di Kang
- Howard Hughes Medical Institute, Picower Institute for Learning & Memory, Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Eric Bueno
- Howard Hughes Medical Institute, Picower Institute for Learning & Memory, Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Adam A Atanas
- Howard Hughes Medical Institute, Picower Institute for Learning & Memory, Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Talya S Kramer
- Howard Hughes Medical Institute, Picower Institute for Learning & Memory, Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ugur Dag
- Howard Hughes Medical Institute, Picower Institute for Learning & Memory, Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jessica D Lage
- Howard Hughes Medical Institute, Picower Institute for Learning & Memory, Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Matthew A Gomes
- Howard Hughes Medical Institute, Picower Institute for Learning & Memory, Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Alicia Kun-Yang Lu
- Howard Hughes Medical Institute, Picower Institute for Learning & Memory, Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jungyeon Park
- Howard Hughes Medical Institute, Picower Institute for Learning & Memory, Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Steven W Flavell
- Howard Hughes Medical Institute, Picower Institute for Learning & Memory, Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
2
|
Clark C, Zapata RC, Newman IR, Osborn O, Petrascheck M. Uncoupling overeating and fat storage by modulation of different serotonergic receptors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.18.644037. [PMID: 40166358 PMCID: PMC11957065 DOI: 10.1101/2025.03.18.644037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Psychotropic drugs such as antipsychotics improve symptoms of psychiatric disorders. However, they are associated with severe metabolic side effects that remodel energy balance, resulting in weight gain and increased food intake (hyperphagia). Here, we compare how antipsychotics and exogenous serotonin induce hyperphagia by remodeling energy balance. We find that the ability of serotonin and antipsychotics to remodel energy balance strictly depends on the serotonergic receptors SER-7 and SER-5, respectively. While both molecules induce hyperphagia, serotonin does so by increasing energy expenditure and reducing fat stores. In contrast, antipsychotics block the inhibitory effect of fat storage on feeding, thereby inducing hyperphagia and increasing fat stores. Thus, it is possible to manipulate energy balance to induce hyperphagia while either increasing or decreasing fat storage. Inactivation of the germline remodels energy balance similar to antipsychotic treatment, promoting hyperphagia while increasing fat storage. Consistent with overlapping mechanisms, antipsychotics are no longer able to remodel energy balance in both C. elegans and mice lacking an intact germline. Thus, our results uncouple overeating from fat storage and show that overeating can be induced by mechanisms that reduce or increase fat stores.
Collapse
Affiliation(s)
- Christina Clark
- Department of Molecular and Cellular Biology, The Scripps Research Institute
- Department of Molecular Medicine, The Scripps Research Institute
- Department of Neuroscience, The Scripps Research Institute
| | - Rizaldy C Zapata
- Division of Endocrinology and Metabolism, School of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Ian R Newman
- Department of Molecular and Cellular Biology, The Scripps Research Institute
- Department of Molecular Medicine, The Scripps Research Institute
- Department of Neuroscience, The Scripps Research Institute
| | - Olivia Osborn
- Division of Endocrinology and Metabolism, School of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Michael Petrascheck
- Department of Molecular and Cellular Biology, The Scripps Research Institute
- Department of Molecular Medicine, The Scripps Research Institute
- Department of Neuroscience, The Scripps Research Institute
| |
Collapse
|
3
|
Moses D, Needham CA, DeBardeleben H. Quiescent behavior in response to bacterial infection in C. elegans. MICROPUBLICATION BIOLOGY 2025; 2025. [PMID: 40114851 PMCID: PMC11923603 DOI: 10.17912/micropub.biology.001412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/17/2024] [Accepted: 03/03/2025] [Indexed: 03/22/2025]
Abstract
Sickness behaviors serve an important role in recovery from infection. Using the WorMotel and a motivated displacement assay, we show that C. elegans engages in quiescent behavior following infection with Serratia marcesens , a bacterial pathogen. This quiescence is increased with increasing severity of the infection. Furthermore, we show this behavior is distinct from stress-induced sleep due to a lack of feeding quiescence and regulation by sleep-inducing neurons.
Collapse
Affiliation(s)
- Daniel Moses
- Department of Biological Sciences, Duquesne University, Pittsburgh, Pennsylvania, United States
| | - Carly A Needham
- Biology and Health Sciences, Commonwealth University - Bloomsburg
| | | |
Collapse
|
4
|
Aleogho BM, Mohri M, Jang MS, Tsukada S, Al-Hebri Y, Matsuyama HJ, Tsukada Y, Mori I, Noma K. Aberrant neuronal hyperactivation causes an age-dependent behavioral decline in Caenorhabditis elegans. Proc Natl Acad Sci U S A 2025; 122:e2412391122. [PMID: 39739791 PMCID: PMC11725918 DOI: 10.1073/pnas.2412391122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 11/25/2024] [Indexed: 01/02/2025] Open
Abstract
Age-dependent sensory impairment, memory loss, and cognitive decline are generally attributed to neuron loss, synaptic dysfunction, and decreased neuronal activities over time. Concurrently, increased neuronal activity is reported in humans and other organisms during aging. However, it is unclear whether neuronal hyperactivity is the cause of cognitive impairment or a compensatory mechanism of circuit dysfunction. The roundworm Caenorhabditis elegans exhibits age-dependent declines in an associative learning behavior called thermotaxis, in which its temperature preference on a thermal gradient is contingent on food availability during its cultivation. Cell ablation and calcium imaging demonstrate that the major thermosensory circuit consisting of AFD thermosensory neuron and AIY interneuron is relatively intact in aged animals. On the other hand, ablation of either AWC sensory neurons or AIA interneurons ameliorates the age-dependent thermotaxis decline. Both neurons showed spontaneous and stochastic hyperactivity in aged animals, enhanced by reciprocal communication between AWC and AIA via neurotransmitters and neuropeptides. Our findings suggest that AWC and AIA hyperactivity mediates thermotaxis decline in aged animals. Furthermore, dietary modulation could ameliorate age-dependent thermotaxis decline by suppressing neuronal hyperactivity. We propose that aberrantly enhanced, not diminished, neuronal activities can impair the behavior of aged animals.
Collapse
Affiliation(s)
- Binta Maria Aleogho
- Group of Microbial Motility, Department of Biological Science, Division of Natural Science, Graduate School of Science, Nagoya University, Nagoya464-8602, Japan
- Group of Nutritional Neuroscience, Neuroscience Institute, Graduate School of Science, Nagoya University, Nagoya464-8602, Japan
| | - Mizuho Mohri
- Group of Nutritional Neuroscience, Neuroscience Institute, Graduate School of Science, Nagoya University, Nagoya464-8602, Japan
| | - Moon Sun Jang
- Group of Molecular Neurobiology, Neuroscience Institute, Graduate School of Science, Nagoya University, Nagoya464-8602, Japan
| | - Sachio Tsukada
- Group of Nutritional Neuroscience, Neuroscience Institute, Graduate School of Science, Nagoya University, Nagoya464-8602, Japan
- Milk Science Research Institute, MEGMILK SNOW BRAND Co. Ltd, Saitama350-1165, Japan
| | - Yana Al-Hebri
- Group of Nutritional Neuroscience, Neuroscience Institute, Graduate School of Science, Nagoya University, Nagoya464-8602, Japan
| | - Hironori J. Matsuyama
- Group of Molecular Neurobiology, Neuroscience Institute, Graduate School of Science, Nagoya University, Nagoya464-8602, Japan
| | - Yuki Tsukada
- Group of Molecular Neurobiology, Neuroscience Institute, Graduate School of Science, Nagoya University, Nagoya464-8602, Japan
| | - Ikue Mori
- Group of Molecular Neurobiology, Neuroscience Institute, Graduate School of Science, Nagoya University, Nagoya464-8602, Japan
| | - Kentaro Noma
- Group of Microbial Motility, Department of Biological Science, Division of Natural Science, Graduate School of Science, Nagoya University, Nagoya464-8602, Japan
- Group of Nutritional Neuroscience, Neuroscience Institute, Graduate School of Science, Nagoya University, Nagoya464-8602, Japan
| |
Collapse
|
5
|
Wang Z, Zhang Q, Jiang Y, Zhou J, Tian Y. ASI-RIM neuronal axis regulates systemic mitochondrial stress response via TGF-β signaling cascade. Nat Commun 2024; 15:8997. [PMID: 39426950 PMCID: PMC11490647 DOI: 10.1038/s41467-024-53093-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 09/30/2024] [Indexed: 10/21/2024] Open
Abstract
Morphogens play a critical role in coordinating stress adaptation and aging across tissues, yet their involvement in neuronal mitochondrial stress responses and systemic effects remains unclear. In this study, we reveal that the transforming growth factor beta (TGF-β) DAF-7 is pivotal in mediating the intestinal mitochondrial unfolded protein response (UPRmt) in Caenorhabditis elegans under neuronal mitochondrial stress. Two ASI sensory neurons produce DAF-7, which targets DAF-1/TGF-β receptors on RIM interneurons to orchestrate a systemic UPRmt response. Remarkably, inducing mitochondrial stress specifically in ASI neurons activates intestinal UPRmt, extends lifespan, enhances pathogen resistance, and reduces both brood size and body fat levels. Furthermore, dopamine positively regulates this UPRmt activation, while GABA acts as a systemic suppressor. This study uncovers the intricate mechanisms of systemic mitochondrial stress regulation, emphasizing the vital role of TGF-β in metabolic adaptations that are crucial for organismal fitness and aging during neuronal mitochondrial stress.
Collapse
Affiliation(s)
- Zihao Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100093, Beijing, China
| | - Qian Zhang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Yayun Jiang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100093, Beijing, China
| | - Jun Zhou
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100093, Beijing, China
| | - Ye Tian
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China.
- University of Chinese Academy of Sciences, 100093, Beijing, China.
| |
Collapse
|
6
|
Jiang Y, Xun Y, Zhang Z. Central regulation of feeding and body weight by ciliary GPR75. J Clin Invest 2024; 134:e182121. [PMID: 39137039 PMCID: PMC11444156 DOI: 10.1172/jci182121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 08/07/2024] [Indexed: 08/15/2024] Open
Abstract
Variants of the G protein-coupled receptor 75 (GPR75) are associated with a lower BMI in large-scale human exome-sequencing studies. However, how GPR75 regulates body weight remains poorly understood. Using random germline mutagenesis in mice, we identified a missense allele (Thinner) of Gpr75 that resulted in a lean phenotype and verified the decreased body weight and fat weight in Gpr75-knockout (Gpr75-/-) mice. Gpr75-/- mice displayed reduced food intake under high-fat diet (HFD) feeding, and pair-feeding normalized their body weight. The endogenous GPR75 protein was exclusively expressed in the brains of 3xFlag-tagged Gpr75-knockin (3xFlag-Gpr75) mice, with consistent expression across different brain regions. GPR75 interacted with Gαq to activate various signaling pathways after HFD feeding. Additionally, GPR75 was localized in the primary cilia of hypothalamic cells, whereas the Thinner mutation (L144P) and human GPR75 variants in individuals with a lower BMI failed to localize in the cilia. Loss of GPR75 selectively inhibited weight gain in HFD-fed mice but failed to suppress the development of obesity in leptin ob-mutant (Lepob-mutant) mice and adenylate cyclase 3-mutant (Adcy3-mutant) mice on a chow diet. Our data reveal that GPR75 is a ciliary protein expressed in the brain and plays an important role in regulating food intake.
Collapse
Affiliation(s)
- Yiao Jiang
- Center for the Genetics of Host Defense and
- Division of Endocrinology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Yu Xun
- Center for the Genetics of Host Defense and
- Division of Endocrinology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Zhao Zhang
- Center for the Genetics of Host Defense and
- Division of Endocrinology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
7
|
Lee H, Boor SA, Hilbert ZA, Meisel JD, Park J, Wang Y, McKeown R, Fischer SEJ, Andersen EC, Kim DH. Genetic variants that modify neuroendocrine gene expression and foraging behavior of C. elegans. SCIENCE ADVANCES 2024; 10:eadk9481. [PMID: 38865452 PMCID: PMC11168454 DOI: 10.1126/sciadv.adk9481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 04/30/2024] [Indexed: 06/14/2024]
Abstract
The molecular mechanisms underlying diversity in animal behavior are not well understood. A major experimental challenge is determining the contribution of genetic variants that affect neuronal gene expression to differences in behavioral traits. In Caenorhabditis elegans, the neuroendocrine transforming growth factor-β ligand, DAF-7, regulates diverse behavioral responses to bacterial food and pathogens. The dynamic neuron-specific expression of daf-7 is modulated by environmental and endogenous bacteria-derived cues. Here, we investigated natural variation in the expression of daf-7 from the ASJ pair of chemosensory neurons. We identified common genetic variants in gap-2, encoding a Ras guanosine triphosphatase (GTPase)-activating protein homologous to mammalian synaptic Ras GTPase-activating protein, which modify daf-7 expression cell nonautonomously and promote exploratory foraging behavior in a partially DAF-7-dependent manner. Our data connect natural variation in neuron-specific gene expression to differences in behavior and suggest that genetic variation in neuroendocrine signaling pathways mediating host-microbe interactions may give rise to diversity in animal behavior.
Collapse
Affiliation(s)
- Harksun Lee
- Division of Infectious Diseases, Department of Pediatrics, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Sonia A. Boor
- Division of Infectious Diseases, Department of Pediatrics, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Zoë A. Hilbert
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Joshua D. Meisel
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jaeseok Park
- Division of Infectious Diseases, Department of Pediatrics, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Ye Wang
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Ryan McKeown
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Sylvia E. J. Fischer
- Division of Infectious Diseases, Department of Pediatrics, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA
- Harvard Medical School Initiative for RNA Medicine, Boston, MA 02115, USA
| | - Erik C. Andersen
- Department of Biology, Johns Hopkins University, Baltimore, MD 21212, USA
| | - Dennis H. Kim
- Division of Infectious Diseases, Department of Pediatrics, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
8
|
Haley JA, Chalasani SH. C. elegans foraging as a model for understanding the neuronal basis of decision-making. Cell Mol Life Sci 2024; 81:252. [PMID: 38849591 PMCID: PMC11335288 DOI: 10.1007/s00018-024-05223-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/27/2024] [Accepted: 03/30/2024] [Indexed: 06/09/2024]
Abstract
Animals have evolved to seek, select, and exploit food sources in their environment. Collectively termed foraging, these ubiquitous behaviors are necessary for animal survival. As a foundation for understanding foraging, behavioral ecologists established early theoretical and mathematical frameworks which have been subsequently refined and supported by field and laboratory studies of foraging animals. These simple models sought to explain how animals decide which strategies to employ when locating food, what food items to consume, and when to explore the environment for new food sources. These foraging decisions involve integration of prior experience with multimodal sensory information about the animal's current environment and internal state. We suggest that the nematode Caenorhabditis elegans is well-suited for a high-resolution analysis of complex goal-oriented behaviors such as foraging. We focus our discussion on behavioral studies highlighting C. elegans foraging on bacteria and summarize what is known about the underlying neuronal and molecular pathways. Broadly, we suggest that this simple model system can provide a mechanistic understanding of decision-making and present additional avenues for advancing our understanding of complex behavioral processes.
Collapse
Affiliation(s)
- Jessica A Haley
- Neurosciences Graduate Program, University of California San Diego, La Jolla, CA, 92093, USA
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Sreekanth H Chalasani
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA.
| |
Collapse
|
9
|
Aprison EZ, Dzitoyeva S, Ruvinsky I. The roles of TGFβ and serotonin signaling in regulating proliferation of oocyte precursors and germline aging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.08.593208. [PMID: 38766220 PMCID: PMC11100717 DOI: 10.1101/2024.05.08.593208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
The decline of oocyte quality in aging but otherwise relatively healthy individuals compels a search for underlying mechanisms. Building upon a finding that exposure to male pheromone ascr#10 improves oocyte quality in C. elegans, we uncovered a regulatory cascade that promotes proliferation of oocyte precursors in adults and regulates oocyte quality. We found that the male pheromone promotes proliferation of oocyte precursors by upregulating LAG-2, a ligand of the Notch-like pathway in the germline stem cell niche. LAG-2 is upregulated by a TGFβ-like ligand DAF-7 revealing similarity of regulatory mechanisms that promote germline proliferation in adults and larvae. A serotonin circuit that also regulates food search and consumption upregulates DAF-7 specifically in adults. The serotonin/DAF-7 signaling promotes germline expansion to compensate for oocyte expenditure which is increased by the male pheromone. Finally, we show that the earliest events in reproductive aging may be due to declining expression of LAG-2 and DAF-7. Our findings highlight neuronal signals that promote germline proliferation in response to the environment and argue that deteriorating oocyte quality may be due to reduced neuronal expression of key germline regulators.
Collapse
Affiliation(s)
- Erin Z. Aprison
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Svetlana Dzitoyeva
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Ilya Ruvinsky
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
10
|
Chen L, Su P, Wang Y, Liu Y, Chen LM, Gao S. CKR-1 orchestrates two motor states from a single motoneuron in C. elegans. iScience 2024; 27:109390. [PMID: 38510145 PMCID: PMC10952047 DOI: 10.1016/j.isci.2024.109390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/22/2023] [Accepted: 02/28/2024] [Indexed: 03/22/2024] Open
Abstract
Neuromodulation is pivotal in modifying neuronal properties and motor states. CKR-1, a homolog of the cholecystokinin receptor, modulates robust escape steering and undulation body bending in C. elegans. Nevertheless, the mechanisms through which CKR-1 governs these motor states remain elusive. We elucidate the head motoneuron SMD as the orchestrator of both motor states. This regulation involves two neuropeptides: NLP-12 from DVA enhances undulation body curvature, while NLP-18 from ASI amplifies Ω-turn head curvature. Moreover, synthetic NLP-12 and NLP-18 peptides elicit CKR-1-dependent currents in Xenopus oocytes and Ca2+ transients in SMD neurons. Notably, CKR-1 shows higher sensitivity to NLP-18 compared to NLP-12. In situ patch-clamp recordings reveal CKR-1, NLP-12, and NLP-18 are not essential for neurotransmission at C. elegans neuromuscular junction, suggesting that SMD independently regulates head and body bending. Our studies illustrate that a single motoneuron SMD utilizes a cholecystokinin receptor CKR-1 to integrate two motor states.
Collapse
Affiliation(s)
- Lili Chen
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Pan Su
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Ya Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yuting Liu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Li-Ming Chen
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Shangbang Gao
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
11
|
Jiang L, Yu Z, Zhao Y, Yin D. Obesogenic potentials of environmental artificial sweeteners with disturbances on both lipid metabolism and neural responses. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170755. [PMID: 38340820 DOI: 10.1016/j.scitotenv.2024.170755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/03/2024] [Accepted: 02/04/2024] [Indexed: 02/12/2024]
Abstract
Artificial sweeteners (ASs) entered the environments after application and emissions. Recent studies showed that some ASs had obesogenic risks. However, it remained unclear whether such risks are common and how they provoke such effects. Presently, the effects of 8 widely used ASs on lipid accumulation were measured in Caenorhabditis elegans. Potential mechanisms were explored with feeding and locomotion behavior, lipid metabolism and neural regulation. Results showed that acesulfame (ACE), aspartame (ASP), saccharin sodium (SOD), sucralose (SUC) and cyclamate (CYC) stimulated lipid accumulation at μg/L levels, showing obesogenic potentials. Behavior investigation showed that ACE, ASP, SOD, SUC and CYC biased more feeding in the energy intake aspect against the locomotion in the energy consumption one. Neotame (NEO), saccharin (SAC) and alitame (ALT) reduced the lipid accumulation without significant obesogenic potentials in the present study. However, all 8 ASs commonly disturbed enzymes (e.g., acetyl-CoA carboxylase) in lipogenesis and those (e.g., carnitine palmitoyl transferase) in lipolysis. In addition, ASs disturbed PPARγ (via expressions of nhr-49), TGF-β/DAF-7 (daf-7) and SREBP (sbp-1) pathways. Moreover, they also interfered neurotransmitters including serotonin (5-HT), dopamine (DA) and acetylcholine (ACh), with influences in Gsα (e.g., via expressions of gsα-1, ser-7), glutamate (e.g., mgl-1), and cGMP-dependent signaling pathways (e.g., egl-4). In summary, environmental ASs commonly disturbed neural regulation connecting behavior and lipid metabolism, and 5 out of 8 showed clear obesogenic potentials. ENVIRONMENTAL IMPLICATION: Artificial sweeteners (ASs) are become emerging pollutants after wide application and continuous emission. Recent studies showed that some environmental ASs had obesogenic risks. The present study employed Caenorhabditis elegans to explore the influences of 8 commonly used ASs on lipid metabolisms and also the underlying mechanisms. Five out of 8 ASs stimulated lipid accumulation at μg/L levels, and they biased energy intake against energy consumption. The other three ASs reduced the lipid accumulation. ASs commonly disturbed lipogenesis and lipolysis via PPARγ, TGF-β and SREBP pathways, and also influenced neurotransmitters with Gsα, glutamate and cGMP-dependent signaling pathways.
Collapse
Affiliation(s)
- Linhong Jiang
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Zhenyang Yu
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| | - Yanbin Zhao
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China; School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Daqiang Yin
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| |
Collapse
|
12
|
Turner CD, Stuhr NL, Ramos CM, Van Camp BT, Curran SP. A dicer-related helicase opposes the age-related pathology from SKN-1 activation in ASI neurons. Proc Natl Acad Sci U S A 2023; 120:e2308565120. [PMID: 38113255 PMCID: PMC10756303 DOI: 10.1073/pnas.2308565120] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 11/02/2023] [Indexed: 12/21/2023] Open
Abstract
Coordination of cellular responses to stress is essential for health across the lifespan. The transcription factor SKN-1 is an essential homeostat that mediates survival in stress-inducing environments and cellular dysfunction, but constitutive activation of SKN-1 drives premature aging thus revealing the importance of turning off cytoprotective pathways. Here, we identify how SKN-1 activation in two ciliated ASI neurons in Caenorhabditis elegans results in an increase in organismal transcriptional capacity that drives pleiotropic outcomes in peripheral tissues. An increase in the expression of established SKN-1 stress response and lipid metabolism gene classes of RNA in the ASI neurons, in addition to the increased expression of several classes of noncoding RNA, define a molecular signature of animals with constitutive SKN-1 activation and diminished healthspan. We reveal neddylation as a unique regulator of the SKN-1 homeostat that mediates SKN-1 abundance within intestinal cells. Moreover, RNAi-independent activity of the dicer-related DExD/H-box helicase, drh-1, in the intestine, can oppose the effects of aberrant SKN-1 transcriptional activation and delays age-dependent decline in health. Taken together, our results uncover a cell nonautonomous circuit to maintain organism-level homeostasis in response to excessive SKN-1 transcriptional activity in the sensory nervous system.
Collapse
Affiliation(s)
- Chris D. Turner
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA90089
- Molecular and Computational Biology, University of Southern California, Los Angeles, CA90089
| | - Nicole L. Stuhr
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA90089
- Molecular and Computational Biology, University of Southern California, Los Angeles, CA90089
| | - Carmen M. Ramos
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA90089
- Molecular and Computational Biology, University of Southern California, Los Angeles, CA90089
| | - Bennett T. Van Camp
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA90089
| | - Sean P. Curran
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA90089
- Molecular and Computational Biology, University of Southern California, Los Angeles, CA90089
| |
Collapse
|
13
|
Lewbart GA, Zachariah TT. Aquatic and Terrestrial Invertebrate Welfare. Animals (Basel) 2023; 13:3375. [PMID: 37958134 PMCID: PMC10649180 DOI: 10.3390/ani13213375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/14/2023] [Accepted: 10/20/2023] [Indexed: 11/15/2023] Open
Abstract
Invertebrates are a diverse group of animals that make up the majority of the animal kingdom and encompass a wide array of species with varying adaptations and characteristics. Invertebrates are found in nearly all of the world's habitats, including aquatic, marine, and terrestrial environments. There are many misconceptions about invertebrate sentience, welfare requirements, the need for environmental enrichment, and overall care and husbandry for this amazing group of animals. This review addresses these topics and more for a select group of invertebrates with biomedical, economical, display, and human companionship importance.
Collapse
Affiliation(s)
- Gregory A. Lewbart
- College of Veterinary Medicine, NC State University, Raleigh, NC 27607, USA
| | - Trevor T. Zachariah
- Brevard Zoo|Sea Turtle Healing Center, 8225 North Wickham Road, Melbourne, FL 32940, USA;
| |
Collapse
|
14
|
Easwaran S, Montell DJ. The molecular mechanisms of diapause and diapause-like reversible arrest. Biochem Soc Trans 2023; 51:1847-1856. [PMID: 37800560 PMCID: PMC10657177 DOI: 10.1042/bst20221431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/12/2023] [Accepted: 09/25/2023] [Indexed: 10/07/2023]
Abstract
Diapause is a protective mechanism that many organisms deploy to overcome environmental adversities. Diapause extends lifespan and fertility to enhance the reproductive success and survival of the species. Although diapause states have been known and employed for commercial purposes, for example in the silk industry, detailed molecular and cell biological studies are an exciting frontier. Understanding diapause-like protective mechanisms will shed light on pathways that steer organisms through adverse conditions. One hope is that an understanding of the mechanisms that support diapause might be leveraged to extend the lifespan and/or health span of humans as well as species threatened by climate change. In addition, recent findings suggest that cancer cells that persist after treatment mimic diapause-like states, implying that these programs may facilitate cancer cell survival from chemotherapy and cause relapse. Here, we review the molecular mechanisms underlying diapause programs in a variety of organisms, and we discuss pathways supporting diapause-like states in tumor persister cells.
Collapse
Affiliation(s)
- Sreesankar Easwaran
- Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, CA 93106, U.S.A
| | - Denise J. Montell
- Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, CA 93106, U.S.A
| |
Collapse
|
15
|
Abstract
Nutrient intake is obligatory for animal growth and development, but nutrients alone are not sufficient. Indeed, insulin and homologous hormones are required for normal growth even in the presence of nutrients. These hormones communicate nutrient status between organs, allowing animals to coordinate growth and metabolism with nutrient supply. Insulin and related hormones, such as insulin-like growth factors and insulin-like peptides, play important roles in development and metabolism, with defects in insulin production and signaling leading to hyperglycemia and diabetes. Here, we describe the insulin hormone family and the signal transduction pathways activated by these hormones. We highlight the roles of insulin signaling in coordinating maternal and fetal metabolism and growth during pregnancy, and we describe how secretion of insulin is regulated at different life stages. Additionally, we discuss the roles of insulin signaling in cell growth, stem cell proliferation and cell differentiation. We provide examples of the role of insulin in development across multiple model organisms: Caenorhabditis elegans, Drosophila, zebrafish, mouse and human.
Collapse
Affiliation(s)
- Miyuki Suzawa
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA
| | - Michelle L. Bland
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA
| |
Collapse
|
16
|
Bechtel W, Bich L. Using neurons to maintain autonomy: Learning from C. elegans. Biosystems 2023; 232:105017. [PMID: 37666409 DOI: 10.1016/j.biosystems.2023.105017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/29/2023] [Accepted: 08/29/2023] [Indexed: 09/06/2023]
Abstract
Understanding how biological organisms are autonomous-maintain themselves far from equilibrium through their own activities-requires understanding how they regulate those activities. In multicellular animals, such control can be exercised either via endocrine signaling through the vasculature or via neurons. In C. elegans this control is exercised by a well-delineated relatively small but distributed nervous system that relies on both chemical and electric transmission of signals. This system provides resources to integrate information from multiple sources as needed to maintain the organism. Especially important for the exercise of neural control are neuromodulators, which we present as setting agendas for control through more traditional electrical signaling. To illustrate how the C. elegans nervous system integrates multiple sources of information in controlling activities important for autonomy, we focus on feeding behavior and responses to adverse conditions. We conclude by considering how a distributed nervous system without a centralized controller is nonetheless adequate for autonomy.
Collapse
Affiliation(s)
- William Bechtel
- Department of Philosophy; University of California, San Diego; La Jolla, CA 92093-0119, USA.
| | - Leonardo Bich
- IAS-Research Centre for Life, Mind and Society; Department of Philosophy; University of the Basque Country (UPV/EHU); Avenida de Tolosa 70; Donostia-San Sebastian, 20018; Spain.
| |
Collapse
|
17
|
Chandra R, Farah F, Muñoz-Lobato F, Bokka A, Benedetti KL, Brueggemann C, Saifuddin MFA, Miller JM, Li J, Chang E, Varshney A, Jimenez V, Baradwaj A, Nassif C, Alladin S, Andersen K, Garcia AJ, Bi V, Nordquist SK, Dunn RL, Garcia V, Tokalenko K, Soohoo E, Briseno F, Kaur S, Harris M, Guillen H, Byrd D, Fung B, Bykov AE, Odisho E, Tsujimoto B, Tran A, Duong A, Daigle KC, Paisner R, Zuazo CE, Lin C, Asundi A, Churgin MA, Fang-Yen C, Bremer M, Kato S, VanHoven MK, L'Étoile ND. Sleep is required to consolidate odor memory and remodel olfactory synapses. Cell 2023; 186:2911-2928.e20. [PMID: 37269832 PMCID: PMC10354834 DOI: 10.1016/j.cell.2023.05.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 02/02/2023] [Accepted: 05/05/2023] [Indexed: 06/05/2023]
Abstract
Animals with complex nervous systems demand sleep for memory consolidation and synaptic remodeling. Here, we show that, although the Caenorhabditis elegans nervous system has a limited number of neurons, sleep is necessary for both processes. In addition, it is unclear if, in any system, sleep collaborates with experience to alter synapses between specific neurons and whether this ultimately affects behavior. C. elegans neurons have defined connections and well-described contributions to behavior. We show that spaced odor-training and post-training sleep induce long-term memory. Memory consolidation, but not acquisition, requires a pair of interneurons, the AIYs, which play a role in odor-seeking behavior. In worms that consolidate memory, both sleep and odor conditioning are required to diminish inhibitory synaptic connections between the AWC chemosensory neurons and the AIYs. Thus, we demonstrate in a living organism that sleep is required for events immediately after training that drive memory consolidation and alter synaptic structures.
Collapse
Affiliation(s)
- Rashmi Chandra
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Fatima Farah
- Department of Biological Sciences, San José State University, San José, CA 95192, USA
| | - Fernando Muñoz-Lobato
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Anirudh Bokka
- Department of Biological Sciences, San José State University, San José, CA 95192, USA
| | - Kelli L Benedetti
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Chantal Brueggemann
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Mashel Fatema A Saifuddin
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Julia M Miller
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Joy Li
- Department of Biological Sciences, San José State University, San José, CA 95192, USA
| | - Eric Chang
- Department of Biological Sciences, San José State University, San José, CA 95192, USA
| | - Aruna Varshney
- Department of Biological Sciences, San José State University, San José, CA 95192, USA
| | - Vanessa Jimenez
- Department of Biological Sciences, San José State University, San José, CA 95192, USA
| | - Anjana Baradwaj
- Department of Biological Sciences, San José State University, San José, CA 95192, USA
| | - Cibelle Nassif
- Department of Biological Sciences, San José State University, San José, CA 95192, USA
| | - Sara Alladin
- Department of Biological Sciences, San José State University, San José, CA 95192, USA
| | - Kristine Andersen
- Department of Biological Sciences, San José State University, San José, CA 95192, USA
| | - Angel J Garcia
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Veronica Bi
- Department of Biological Sciences, San José State University, San José, CA 95192, USA
| | - Sarah K Nordquist
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Raymond L Dunn
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Vanessa Garcia
- Department of Biological Sciences, San José State University, San José, CA 95192, USA
| | - Kateryna Tokalenko
- Department of Biological Sciences, San José State University, San José, CA 95192, USA
| | - Emily Soohoo
- Department of Biological Sciences, San José State University, San José, CA 95192, USA
| | - Fabiola Briseno
- Department of Biological Sciences, San José State University, San José, CA 95192, USA
| | - Sukhdeep Kaur
- Department of Biological Sciences, San José State University, San José, CA 95192, USA
| | - Malcolm Harris
- Department of Biological Sciences, San José State University, San José, CA 95192, USA
| | - Hazel Guillen
- Department of Biological Sciences, San José State University, San José, CA 95192, USA
| | - Decklin Byrd
- Department of Biological Sciences, San José State University, San José, CA 95192, USA
| | - Brandon Fung
- Department of Biological Sciences, San José State University, San José, CA 95192, USA
| | - Andrew E Bykov
- Department of Biological Sciences, San José State University, San José, CA 95192, USA
| | - Emma Odisho
- Department of Biological Sciences, San José State University, San José, CA 95192, USA
| | - Bryan Tsujimoto
- Department of Biological Sciences, San José State University, San José, CA 95192, USA
| | - Alan Tran
- Department of Biological Sciences, San José State University, San José, CA 95192, USA
| | - Alex Duong
- Department of Biological Sciences, San José State University, San José, CA 95192, USA
| | - Kevin C Daigle
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Rebekka Paisner
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Carlos E Zuazo
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Christine Lin
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Aarati Asundi
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Matthew A Churgin
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Neuroscience, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Christopher Fang-Yen
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Neuroscience, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Martina Bremer
- Department of Mathematics and Statistics, San José State University, San José, CA 95192, USA
| | - Saul Kato
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Miri K VanHoven
- Department of Biological Sciences, San José State University, San José, CA 95192, USA.
| | - Noëlle D L'Étoile
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
18
|
Qiao X, Kang L, Shi C, Ye A, Wu D, Huang Y, Deng M, Wang J, Zhao Y, Chen C. Exploring the precision redox map during fasting-refeeding and satiation in C. elegans. STRESS BIOLOGY 2023; 3:17. [PMID: 37676352 PMCID: PMC10442001 DOI: 10.1007/s44154-023-00096-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 05/22/2023] [Indexed: 09/08/2023]
Abstract
Fasting is a popular dietary strategy because it grants numerous advantages, and redox regulation is one mechanism involved. However, the precise redox changes with respect to the redox species, organelles and tissues remain unclear, which hinders the understanding of the metabolic mechanism, and exploring the precision redox map under various dietary statuses is of great significance. Twelve redox-sensitive C. elegans strains stably expressing genetically encoded redox fluorescent probes (Hyperion sensing H2O2 and Grx1-roGFP2 sensing GSH/GSSG) in three organelles (cytoplasm, mitochondria and endoplasmic reticulum (ER)) were constructed in two tissues (body wall muscle and neurons) and were confirmed to respond to redox challenge. The H2O2 and GSSG/GSH redox changes in two tissues and three organelles were obtained by confocal microscopy during fasting, refeeding, and satiation. We found that under fasting condition, H2O2 decreased in most compartments, except for an increase in mitochondria, while GSSG/GSH increased in the cytoplasm of body muscle and the ER of neurons. After refeeding, the redox changes in H2O2 and GSSG/GSH caused by fasting were reversed in most organelles of the body wall muscle and neurons. In the satiated state, H2O2 increased markedly in the cytoplasm, mitochondria and ER of muscle and the ER of neurons, while GSSG/GSH exhibited no change in most organelles of the two tissues except for an increase in the ER of muscle. Our study systematically and precisely presents the redox characteristics under different dietary states in living animals and provides a basis for further investigating the redox mechanism in metabolism and optimizing dietary guidance.
Collapse
Affiliation(s)
- Xinhua Qiao
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Lu Kang
- School of Basic Medical Sciences of Southwest Medical University, Luzhou, 646000, China
| | - Chang Shi
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Aojun Ye
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dongli Wu
- School of Basic Medical Sciences of Southwest Medical University, Luzhou, 646000, China
| | - Yuyunfei Huang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Minghao Deng
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiarui Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuzheng Zhao
- School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China.
| | - Chang Chen
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
- School of Basic Medical Sciences of Southwest Medical University, Luzhou, 646000, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
19
|
Anilkumar A, Batra A, Talukder S, Sharma R. Microfluidics based bioimaging with cost-efficient fabrication of multi-level micrometer-sized trenches. BIOMICROFLUIDICS 2023; 17:034103. [PMID: 37334275 PMCID: PMC10275646 DOI: 10.1063/5.0151868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 05/31/2023] [Indexed: 06/20/2023]
Abstract
Microfluidic devices, through their vast applicability as tools for miniaturized experimental setups, have become indispensable for cutting edge research and diagnostics. However, the high operational cost and the requirement of sophisticated equipment and clean room facility for the fabrication of these devices make their use unfeasible for many research laboratories in resource limited settings. Therefore, with the aim of increasing accessibility, in this article, we report a novel, cost-effective micro-fabrication technique for fabricating multi-layer microfluidic devices using only common wet-lab facilities, thereby significantly lowering the cost. Our proposed process-flow-design eliminates the need for a mastermold, does not require any sophisticated lithography tools, and can be executed successfully outside a clean room. In this work, we also optimized the critical steps (such as spin coating and wet etching) of our fabrication process and validated the process flow and the device by trapping and imaging Caenorhabditis elegans. The fabricated devices are effective in conducting lifetime assays and flushing out larvae, which are, in general, manually picked from Petri dishes or separated using sieves. Our technique is not only cost effective but also scalable, as it can be used to fabricate devices with multiple layers of confinements ranging from 0.6 to more than 50 μ m, thus enabling the study of unicellular and multicellular organisms. This technique, therefore, has the potential to be adopted widely by many research laboratories for a variety of applications.
Collapse
Affiliation(s)
- Anand Anilkumar
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Bhopal 462066, Madhya Pradesh, India
| | - Abhilasha Batra
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Bhopal 462066, Madhya Pradesh, India
| | - Santanu Talukder
- Department of Electrical Engineering and Computer Science, Indian Institute of Science Education and Research (IISER), Bhopal 462066, Madhya Pradesh, India
| | - Rati Sharma
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Bhopal 462066, Madhya Pradesh, India
| |
Collapse
|
20
|
Jiranek J, Gibson A. Diet can alter the cost of resistance to a natural parasite in Caenorhabditis elegans. Ecol Evol 2023; 13:e9793. [PMID: 36789344 PMCID: PMC9911625 DOI: 10.1002/ece3.9793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/07/2023] [Accepted: 01/16/2023] [Indexed: 02/12/2023] Open
Abstract
Resistance to parasites confers a fitness advantage, yet hosts show substantial variation in resistance in natural populations. Evolutionary theory indicates that resistant and susceptible genotypes can coexist if resistance is costly, but there is mixed evidence that resistant individuals have lower fitness in the absence of parasites. One explanation for this discrepancy is that the cost of resistance varies with environmental context. We tested this hypothesis using Caenorhabditis elegans and its natural microsporidian parasite, Nematocida ironsii. We used multiple metrics to compare the fitness of two near-isogenic host genotypes differing at regions associated with resistance to N. ironsii. To quantify the effect of the environment on the cost associated with these known resistance regions, we measured fitness on three microbial diets. We found that the cost of resistance varied with both diet and the measure of fitness. We detected no cost to resistance, irrespective of diet, when fitness was measured as fecundity. However, we detected a cost when fitness was measured in terms of population growth, and the magnitude of this cost varied with diet. These results provide a proof of concept that, by mediating the cost of resistance, environmental context may govern the rate and nature of resistance evolution in heterogeneous environments.
Collapse
Affiliation(s)
- Juliana Jiranek
- Department of BiologyUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Amanda Gibson
- Department of BiologyUniversity of VirginiaCharlottesvilleVirginiaUSA
| |
Collapse
|
21
|
Gallo KJ, Wheeler NJ, Elmi AM, Airs PM, Zamanian M. Pharmacological Profiling of a Brugia malayi Muscarinic Acetylcholine Receptor as a Putative Antiparasitic Target. Antimicrob Agents Chemother 2023; 67:e0118822. [PMID: 36602350 PMCID: PMC9872666 DOI: 10.1128/aac.01188-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 12/05/2022] [Indexed: 01/06/2023] Open
Abstract
The diversification of anthelmintic targets and mechanisms of action will help ensure the sustainable control of nematode infections in response to the growing threat of drug resistance. G protein-coupled receptors (GPCRs) are established drug targets in human medicine but remain unexploited as anthelmintic substrates despite their important roles in nematode neuromuscular and physiological processes. Bottlenecks in exploring the druggability of parasitic nematode GPCRs include a limited helminth genetic toolkit and difficulties establishing functional heterologous expression. In an effort to address some of these challenges, we profile the function and pharmacology of muscarinic acetylcholine receptors in the human parasite Brugia malayi, an etiological agent of human lymphatic filariasis. While acetylcholine-gated ion channels are intensely studied as targets of existing anthelmintics, comparatively little is known about metabotropic receptor contributions to parasite cholinergic signaling. Using multivariate phenotypic assays in microfilariae and adults, we show that nicotinic and muscarinic compounds disparately affect parasite fitness traits. We identify a putative G protein-linked acetylcholine receptor of B. malayi (Bma-GAR-3) that is highly expressed across intramammalian life stages and adapt spatial RNA in situ hybridization to map receptor transcripts to critical parasite tissues. Tissue-specific expression of Bma-gar-3 in Caenorhabditis elegans (body wall muscle, sensory neurons, and pharynx) enabled receptor deorphanization and pharmacological profiling in a nematode physiological context. Finally, we developed an image-based feeding assay as a reporter of pharyngeal activity to facilitate GPCR screening in parasitized strains. We expect that these receptor characterization approaches and improved knowledge of GARs as putative drug targets will further advance the study of GPCR biology across medically important nematodes.
Collapse
Affiliation(s)
- Kendra J. Gallo
- Department of Pathobiological Sciences, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Nicolas J. Wheeler
- Department of Pathobiological Sciences, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Abdifatah M. Elmi
- Department of Pathobiological Sciences, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Paul M. Airs
- Department of Pathobiological Sciences, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Mostafa Zamanian
- Department of Pathobiological Sciences, University of Wisconsin—Madison, Madison, Wisconsin, USA
| |
Collapse
|
22
|
Application of Caenorhabditis elegans in Lipid Metabolism Research. Int J Mol Sci 2023; 24:ijms24021173. [PMID: 36674689 PMCID: PMC9860639 DOI: 10.3390/ijms24021173] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/01/2023] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
Over the last decade, the development and prevalence of obesity have posed a serious public health risk, which has prompted studies on the regulation of adiposity. With the ease of genetic manipulation, the diversity of the methods for characterizing body fat levels, and the observability of feeding behavior, Caenorhabditis elegans (C. elegans) is considered an excellent model for exploring energy homeostasis and the regulation of the cellular fat storage. In addition, the homology with mammals in the genes related to the lipid metabolism allows many aspects of lipid modulation by the regulators of the central nervous system to be conserved in this ideal model organism. In recent years, as the complex network of genes that maintain an energy balance has been gradually expanded and refined, the regulatory mechanisms of lipid storage have become clearer. Furthermore, the development of methods and devices to assess the lipid levels has become a powerful tool for studies in lipid droplet biology and the regulation of the nematode lipid metabolism. Herein, based on the rapid progress of C. elegans lipid metabolism-related studies, this review outlined the lipid metabolic processes, the major signaling pathways of fat storage regulation, and the primary experimental methods to assess the lipid content in nematodes. Therefore, this model system holds great promise for facilitating the understanding, management, and therapies of human obesity and other metabolism-related diseases.
Collapse
|
23
|
Davis K, Mitchell C, Weissenfels O, Bai J, Raizen DM, Ailion M, Topalidou I. G protein-coupled receptor kinase-2 (GRK-2) controls exploration through neuropeptide signaling in Caenorhabditis elegans. PLoS Genet 2023; 19:e1010613. [PMID: 36652499 PMCID: PMC9886303 DOI: 10.1371/journal.pgen.1010613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 01/30/2023] [Accepted: 01/12/2023] [Indexed: 01/19/2023] Open
Abstract
Animals alter their behavior in manners that depend on environmental conditions as well as their developmental and metabolic states. For example, C. elegans is quiescent during larval molts or during conditions of satiety. By contrast, worms enter an exploration state when removed from food. Sensory perception influences movement quiescence (defined as a lack of body movement), as well as the expression of additional locomotor states in C. elegans that are associated with increased or reduced locomotion activity, such as roaming (exploration behavior) and dwelling (local search). Here we find that movement quiescence is enhanced, and exploration behavior is reduced in G protein-coupled receptor kinase grk-2 mutant animals. grk-2 was previously shown to act in chemosensation, locomotion, and egg-laying behaviors. Using neuron-specific rescuing experiments, we show that GRK-2 acts in multiple ciliated chemosensory neurons to control exploration behavior. grk-2 acts in opposite ways from the cGMP-dependent protein kinase gene egl-4 to control movement quiescence and exploration behavior. Analysis of mutants with defects in ciliated sensory neurons indicates that grk-2 and the cilium-structure mutants act in the same pathway to control exploration behavior. We find that GRK-2 controls exploration behavior in an opposite manner from the neuropeptide receptor NPR-1 and the neuropeptides FLP-1 and FLP-18. Finally, we show that secretion of the FLP-1 neuropeptide is negatively regulated by GRK-2 and that overexpression of FLP-1 reduces exploration behavior. These results define neurons and molecular pathways that modulate movement quiescence and exploration behavior.
Collapse
Affiliation(s)
- Kristen Davis
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Center for Excellence in Environmental Toxicology (CEET), Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Neuroscience, Vickie and Jack Farber Institute of Neuroscience, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Christo Mitchell
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
| | - Olivia Weissenfels
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
| | - Jihong Bai
- Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - David M. Raizen
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Michael Ailion
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
| | - Irini Topalidou
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
- Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| |
Collapse
|
24
|
Lo WS, Roca M, Dardiry M, Mackie M, Eberhardt G, Witte H, Hong R, Sommer RJ, Lightfoot JW. Evolution and Diversity of TGF-β Pathways are Linked with Novel Developmental and Behavioral Traits. Mol Biol Evol 2022; 39:msac252. [PMID: 36469861 PMCID: PMC9733428 DOI: 10.1093/molbev/msac252] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 10/19/2022] [Accepted: 11/07/2022] [Indexed: 12/12/2022] Open
Abstract
Transforming growth factor-β (TGF-β) signaling is essential for numerous biologic functions. It is a highly conserved pathway found in all metazoans including the nematode Caenorhabditis elegans, which has also been pivotal in identifying many components. Utilizing a comparative evolutionary approach, we explored TGF-β signaling in nine nematode species and revealed striking variability in TGF-β gene frequency across the lineage. Of the species analyzed, gene duplications in the DAF-7 pathway appear common with the greatest disparity observed in Pristionchus pacificus. Specifically, multiple paralogues of daf-3, daf-4 and daf-7 were detected. To investigate this additional diversity, we induced mutations in 22 TGF-β components and generated corresponding double, triple, and quadruple mutants revealing both conservation and diversification in function. Although the DBL-1 pathway regulating body morphology appears highly conserved, the DAF-7 pathway exhibits functional divergence, notably in some aspects of dauer formation. Furthermore, the formation of the phenotypically plastic mouth in P. pacificus is partially influenced through TGF-β with the strongest effect in Ppa-tag-68. This appears important for numerous processes in P. pacificus but has no known function in C. elegans. Finally, we observe behavioral differences in TGF-β mutants including in chemosensation and the establishment of the P. pacificus kin-recognition signal. Thus, TGF-β signaling in nematodes represents a stochastic genetic network capable of generating novel functions through the duplication and deletion of associated genes.
Collapse
Affiliation(s)
- Wen-Sui Lo
- Department for Integrative Evolutionary Biology, Max-Planck Institute for Biology Tübingen, Max-Planck Ring 9, 72076 Tübingen, Germany
| | - Marianne Roca
- Max Planck Research Group Genetics of Behavior, Max Planck Institute for Neurobiology of Behavior—Caesar, Ludwig-Erhard-Allee 2, 53175, Bonn, Germany
| | - Mohannad Dardiry
- Department for Integrative Evolutionary Biology, Max-Planck Institute for Biology Tübingen, Max-Planck Ring 9, 72076 Tübingen, Germany
| | - Marisa Mackie
- Department of Biology, California State University, Northridge, CA
| | - Gabi Eberhardt
- Department for Integrative Evolutionary Biology, Max-Planck Institute for Biology Tübingen, Max-Planck Ring 9, 72076 Tübingen, Germany
| | - Hanh Witte
- Department for Integrative Evolutionary Biology, Max-Planck Institute for Biology Tübingen, Max-Planck Ring 9, 72076 Tübingen, Germany
| | - Ray Hong
- Department of Biology, California State University, Northridge, CA
| | - Ralf J Sommer
- Department for Integrative Evolutionary Biology, Max-Planck Institute for Biology Tübingen, Max-Planck Ring 9, 72076 Tübingen, Germany
| | - James W Lightfoot
- Max Planck Research Group Genetics of Behavior, Max Planck Institute for Neurobiology of Behavior—Caesar, Ludwig-Erhard-Allee 2, 53175, Bonn, Germany
| |
Collapse
|
25
|
Kreuzinger‐Janik B, Gansfort B, Traunspurger W, Ptatscheck C. It's all about food: Environmental factors cause species‐specific dispersal. Ecosphere 2022. [DOI: 10.1002/ecs2.4251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
26
|
Bonnard E, Liu J, Zjacic N, Alvarez L, Scholz M. Automatically tracking feeding behavior in populations of foraging C. elegans. eLife 2022; 11:e77252. [PMID: 36083280 PMCID: PMC9462848 DOI: 10.7554/elife.77252] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
Caenorhabditis elegans feeds on bacteria and other small microorganisms which it ingests using its pharynx, a neuromuscular pump. Currently, measuring feeding behavior requires tracking a single animal, indirectly estimating food intake from population-level metrics, or using restrained animals. To enable large throughput feeding measurements of unrestrained, crawling worms on agarose plates at a single worm resolution, we developed an imaging protocol and a complementary image analysis tool called PharaGlow. We image up to 50 unrestrained crawling worms simultaneously and extract locomotion and feeding behaviors. We demonstrate the tool's robustness and high-throughput capabilities by measuring feeding in different use-case scenarios, such as through development, with genetic and chemical perturbations that result in faster and slower pumping, and in the presence or absence of food. Finally, we demonstrate that our tool is capable of long-term imaging by showing behavioral dynamics of mating animals and worms with different genetic backgrounds. The low-resolution fluorescence microscopes required are readily available in C. elegans laboratories, and in combination with our python-based analysis workflow makes this methodology easily accessible. PharaGlow therefore enables the observation and analysis of the temporal dynamics of feeding and locomotory behaviors with high-throughput and precision in a user-friendly system.
Collapse
Affiliation(s)
- Elsa Bonnard
- Max Planck Research Group Neural Information Flow, Max Planck Institute for Neurobiology of Behavior – caesarBonnGermany
| | - Jun Liu
- Max Planck Research Group Neural Information Flow, Max Planck Institute for Neurobiology of Behavior – caesarBonnGermany
| | - Nicolina Zjacic
- Max Planck Research Group Neural Information Flow, Max Planck Institute for Neurobiology of Behavior – caesarBonnGermany
- Institute of Medical Genetics, University of ZurichZurichSwitzerland
| | - Luis Alvarez
- Max Planck Research Group Neural Information Flow, Max Planck Institute for Neurobiology of Behavior – caesarBonnGermany
| | - Monika Scholz
- Max Planck Research Group Neural Information Flow, Max Planck Institute for Neurobiology of Behavior – caesarBonnGermany
| |
Collapse
|
27
|
Patel R, Galagali H, Kim JK, Frand AR. Feedback between a retinoid-related nuclear receptor and the let-7 microRNAs controls the pace and number of molting cycles in C. elegans. eLife 2022; 11:e80010. [PMID: 35968765 PMCID: PMC9377799 DOI: 10.7554/elife.80010] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/22/2022] [Indexed: 11/13/2022] Open
Abstract
Animal development requires coordination among cyclic processes, sequential cell fate specifications, and once-a-lifetime morphogenic events, but the underlying timing mechanisms are not well understood. Caenorhabditis elegans undergoes four molts at regular 8 to 10 hour intervals. The pace of the cycle is governed by PERIOD/lin-42 and other as-yet unknown factors. Cessation of the cycle in young adults is controlled by the let-7 family of microRNAs and downstream transcription factors in the heterochronic pathway. Here, we characterize a negative feedback loop between NHR-23, the worm homolog of mammalian retinoid-related orphan receptors (RORs), and the let-7 family of microRNAs that regulates both the frequency and finite number of molts. The molting cycle is decelerated in nhr-23 knockdowns and accelerated in let-7(-) mutants, but timed similarly in let-7(-) nhr-23(-) double mutants and wild-type animals. NHR-23 binds response elements (ROREs) in the let-7 promoter and activates transcription. In turn, let-7 dampens nhr-23 expression across development via a complementary let-7-binding site (LCS) in the nhr-23 3' UTR. The molecular interactions between NHR-23 and let-7 hold true for other let-7 family microRNAs. Either derepression of nhr-23 transcripts by LCS deletion or high gene dosage of nhr-23 leads to protracted behavioral quiescence and extra molts in adults. NHR-23 and let-7 also coregulate scores of genes required for execution of the molts, including lin-42. In addition, ROREs and LCSs isolated from mammalian ROR and let-7 genes function in C. elegans, suggesting conservation of this feedback mechanism. We propose that this feedback loop unites the molting timer and the heterochronic gene regulatory network, possibly by functioning as a cycle counter.
Collapse
Affiliation(s)
- Ruhi Patel
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los AngelesLos AngelesUnited States
| | - Himani Galagali
- Department of Biology, Johns Hopkins UniversityBaltimoreUnited States
| | - John K Kim
- Department of Biology, Johns Hopkins UniversityBaltimoreUnited States
| | - Alison R Frand
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los AngelesLos AngelesUnited States
| |
Collapse
|
28
|
Ardiel EL, Lauziere A, Xu S, Harvey BJ, Christensen RP, Nurrish S, Kaplan JM, Shroff H. Stereotyped behavioral maturation and rhythmic quiescence in C.elegans embryos. eLife 2022; 11:76836. [PMID: 35929725 PMCID: PMC9448323 DOI: 10.7554/elife.76836] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 08/01/2022] [Indexed: 11/18/2022] Open
Abstract
Systematic analysis of rich behavioral recordings is being used to uncover how circuits encode complex behaviors. Here, we apply this approach to embryos. What are the first embryonic behaviors and how do they evolve as early neurodevelopment ensues? To address these questions, we present a systematic description of behavioral maturation for Caenorhabditis elegans embryos. Posture libraries were built using a genetically encoded motion capture suit imaged with light-sheet microscopy and annotated using custom tracking software. Analysis of cell trajectories, postures, and behavioral motifs revealed a stereotyped developmental progression. Early movement is dominated by flipping between dorsal and ventral coiling, which gradually slows into a period of reduced motility. Late-stage embryos exhibit sinusoidal waves of dorsoventral bends, prolonged bouts of directed motion, and a rhythmic pattern of pausing, which we designate slow wave twitch (SWT). Synaptic transmission is required for late-stage motion but not for early flipping nor the intervening inactive phase. A high-throughput behavioral assay and calcium imaging revealed that SWT is elicited by the rhythmic activity of a quiescence-promoting neuron (RIS). Similar periodic quiescent states are seen prenatally in diverse animals and may play an important role in promoting normal developmental outcomes.
Collapse
Affiliation(s)
- Evan L Ardiel
- Department of Molecular Biology, Massachusetts General Hospital, Boston, United States
| | - Andrew Lauziere
- National Institute of Biomedical Imaging and Bioengineering, Bethesda, United States
| | - Stephen Xu
- National Institute of Biomedical Imaging and Bioengineering, Bethesda, United States
| | - Brandon J Harvey
- National Institute of Biomedical Imaging and Bioengineering, Bethesda, United States
| | | | - Stephen Nurrish
- Department of Molecular Biology, Massachusetts General Hospital, Boston, United States
| | - Joshua M Kaplan
- Department of Molecular Biology, Massachusetts General Hospital, Boston, United States
| | - Hari Shroff
- National Institute of Biomedical Imaging and Bioengineering, Bethesda, United States
| |
Collapse
|
29
|
Chen J, Zhou Y, Lei Y, Shi Q, Qi G, He Y, Lyu L. Role of the foraging gene in worker behavioral transition in the red imported fire ant, Solenopsis invicta (Hymenoptera: Formicidae). PEST MANAGEMENT SCIENCE 2022; 78:2964-2975. [PMID: 35419943 DOI: 10.1002/ps.6921] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 03/11/2022] [Accepted: 04/14/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Worker division of labor is predominant in social insects. The foraging (for) gene, which encodes cGMP-dependent protein kinase (PKG), has been implicated in the regulation of behavioral transitions in honeybees, but information regarding its function in other social insects is scarce. RESULTS We investigated the role of the for (Sifor) gene in the red imported fire ant, Solenopsis invicta, and found that Sifor and PKG exhibited different expression patterns in different castes, body sizes, ages and tissues of fire ants, especially in foragers and nurses. Foragers displayed greater locomotor activity but showed no preference for larval or adult odors, whereas nurses showed lesser locomotor activity but had a strong preference for larval odors. We found that the expression of Sifor was significantly higher in the heads of foragers (compared to nurses). RNA interference-mediated Sifor knockdown in foraging workers induced behavioral transition of foragers toward the nurse phenotype characterized by reduced locomotor activity and a stronger preference for larval odors. By contrast, treating nurses with 8-Br-cGMP, an activator of PKG, resulted in behavioral transition toward the forager phenotype characterized by higher locomotor activity but reduced preference for larval odors. CONCLUSION Our results suggest that Sifor plays a critical role in the behavioral transition between foragers and nurses of workers, which may be a promising target for RNAi-based management of worker caste organization in S. invicta. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jie Chen
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Yangyang Zhou
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Yanyuan Lei
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Qingxing Shi
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Guojun Qi
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Yurong He
- Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Lihua Lyu
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| |
Collapse
|
30
|
Ramos CD, Bohnert KA, Johnson AE. Reproductive tradeoffs govern sexually dimorphic tubular lysosome induction in Caenorhabditis elegans. J Exp Biol 2022; 225:jeb244282. [PMID: 35620964 PMCID: PMC9250795 DOI: 10.1242/jeb.244282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 05/23/2022] [Indexed: 11/20/2022]
Abstract
Sex-specific differences in animal behavior commonly reflect unique reproductive interests. In the nematode Caenorhabditis elegans, hermaphrodites can reproduce without a mate and thus prioritize feeding to satisfy the high energetic costs of reproduction. However, males, which must mate to reproduce, sacrifice feeding to prioritize mate-searching behavior. Here, we demonstrate that these behavioral differences influence sexual dimorphism at the organelle level; young males raised on a rich food source show constitutive induction of gut tubular lysosomes, a non-canonical lysosome morphology that forms in the gut of hermaphrodites when food is limited or as animals age. We found that constitutive induction of gut tubular lysosomes in males results from self-imposed dietary restriction through DAF-7/TGFβ, which promotes exploratory behavior. In contrast, age-dependent induction of gut tubular lysosomes in hermaphrodites is stimulated by self-fertilization activity. Thus, separate reproductive tradeoffs influence tubular lysosome induction in each sex, potentially supporting different requirements for reproductive success.
Collapse
Affiliation(s)
| | - K. Adam Bohnert
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Alyssa E. Johnson
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|
31
|
Handley A, Wu Q, Sherry T, Cornell R, Pocock R. Diet-responsive transcriptional regulation of insulin in a single neuron controls systemic metabolism. PLoS Biol 2022; 20:e3001655. [PMID: 35594303 PMCID: PMC9162364 DOI: 10.1371/journal.pbio.3001655] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 06/02/2022] [Accepted: 04/29/2022] [Indexed: 11/18/2022] Open
Abstract
Metabolic homeostasis is coordinated through a robust network of signaling pathways acting across all tissues. A key part of this network is insulin-like signaling, which is fundamental for surviving glucose stress. Here, we show that Caenorhabditis elegans fed excess dietary glucose reduce insulin-1 (INS-1) expression specifically in the BAG glutamatergic sensory neurons. We demonstrate that INS-1 expression in the BAG neurons is directly controlled by the transcription factor ETS-5, which is also down-regulated by glucose. We further find that INS-1 acts exclusively from the BAG neurons, and not other INS-1-expressing neurons, to systemically inhibit fat storage via the insulin-like receptor DAF-2. Together, these findings reveal an intertissue regulatory pathway where regulation of insulin expression in a specific neuron controls systemic metabolism in response to excess dietary glucose. Metabolic homeostasis is coordinated through a robust network of signaling pathways acting across all tissues. This study shows that Caenorhabditis elegans nematodes fed excess dietary glucose reduce the expression of insulin-1 specifically in the BAG glutamatergic sensory neurons, and that insulin-1 produced by these neurons systemically inhibits fat storage via the insulin-like receptor DAF-2.
Collapse
Affiliation(s)
- Ava Handley
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Australia
- * E-mail: (AH); (RP)
| | - Qiuli Wu
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Australia
- Key Laboratory of Developmental Genes and Human Diseases in Ministry of Education, Medical School of Southeast University, Nanjing, China
| | - Tessa Sherry
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Australia
| | - Rebecca Cornell
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Australia
| | - Roger Pocock
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Australia
- * E-mail: (AH); (RP)
| |
Collapse
|
32
|
Microbiomes: How a gut bacterium promotes healthier living in a nematode. Curr Biol 2022; 32:R428-R430. [DOI: 10.1016/j.cub.2022.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
33
|
Quach KT, Chalasani SH. Flexible reprogramming of Pristionchus pacificus motivation for attacking Caenorhabditis elegans in predator-prey competition. Curr Biol 2022; 32:1675-1688.e7. [PMID: 35259340 PMCID: PMC9050875 DOI: 10.1016/j.cub.2022.02.033] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/18/2021] [Accepted: 02/09/2022] [Indexed: 12/16/2022]
Abstract
Animals with diverse diets must adapt their food priorities to a wide variety of environmental conditions. This diet optimization problem is especially complex for predators that compete with prey for food. Although predator-prey competition is widespread and ecologically critical, it remains difficult to disentangle predatory and competitive motivations for attacking competing prey. Here, we dissect the foraging decisions of the omnivorous nematode Pristionchus pacificus to reveal that its seemingly failed predatory attempts against Caenorhabditis elegans are actually motivated acts of efficacious territorial aggression. While P. pacificus easily kills and eats larval C. elegans with a single bite, adult C. elegans typically survives and escapes bites. However, non-fatal biting can provide competitive benefits by reducing access of adult C. elegans and its progeny to bacterial food that P. pacificus also eats. We show that the costs and benefits of both predatory and territorial outcomes influence how P. pacificus decides which food goal, prey or bacteria, should guide its motivation for biting. These predatory and territorial motivations impose different sets of rules for adjusting willingness to bite in response to changes in bacterial abundance. In addition to biting, predatory and territorial motivations also influence which search tactic P. pacificus uses to increase encounters with C. elegans. When treated with an octopamine receptor antagonist, P. pacificus switches from territorial to predatory motivation for both biting and search. Overall, we demonstrate that P. pacificus assesses alternate outcomes of attacking C. elegans and flexibly reprograms its foraging strategy to prioritize either prey or bacterial food.
Collapse
Affiliation(s)
- Kathleen T. Quach
- Neurosciences Graduate Program, University of California San Diego, Gilman Drive, La Jolla, CA 92037, USA.,Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Sreekanth H. Chalasani
- Neurosciences Graduate Program, University of California San Diego, Gilman Drive, La Jolla, CA 92037, USA.,Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, North Torrey Pines Road, La Jolla, CA 92037, USA.,Lead Contact,Correspondence: , Twitter: @shreklab
| |
Collapse
|
34
|
Kreuzinger-Janik B, Gansfort B, Ptatscheck C. Population density, bottom-up and top-down control as an interactive triplet to trigger dispersal. Sci Rep 2022; 12:5578. [PMID: 35368038 PMCID: PMC8976845 DOI: 10.1038/s41598-022-09631-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 03/21/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractDispersal reflects the trade-offs between the cost of a change in habitat and the fitness benefits conferred by that change. Many factors trigger the dispersal of animals, but in field studies they are typically not controllable; consequently, they are mostly studied in the laboratory, where their single and interactive effects on dispersal can be investigated. We tested whether three fundamental factors, population density as well as bottom-up and top-down control, influence the emigration of the nematode Caenorhabditis elegans. Nematode movement was observed in experiments conducted in two-chamber arenas in which these factors were manipulated. The results showed that both decreasing food availability and increasing population density had a positive influence on nematode dispersal. The presence of the predatory flatworm Polycelis tenuis did not consistently affect dispersal but worked as an amplifier when linked with population density with respect to certain food-supply levels. Our study indicates that nematode dispersal on small scales is non-random; rather, the worms’ ability to perceive environmental information leads to a context-dependent decision by individuals to leave or stay in a patch. The further use of nematodes to gain insights into both the triggers that initiate dispersal, and the traits of dispersing individuals will improve the modeling of animal behavior in changing and spatial heterogenous landscapes.
Collapse
|
35
|
Flavell SW, Gordus A. Dynamic functional connectivity in the static connectome of Caenorhabditis elegans. Curr Opin Neurobiol 2022; 73:102515. [PMID: 35183877 PMCID: PMC9621599 DOI: 10.1016/j.conb.2021.12.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 12/16/2021] [Accepted: 12/22/2021] [Indexed: 01/01/2023]
Abstract
A hallmark of adaptive behavior is the ability to flexibly respond to sensory cues. To understand how neural circuits implement this flexibility, it is critical to resolve how a static anatomical connectome can be modulated such that functional connectivity in the network can be dynamically regulated. Here, we review recent work in the roundworm Caenorhabditis elegans on this topic. EM studies have mapped anatomical connectomes of many C. elegans animals, highlighting the level of stereotypy in the anatomical network. Brain-wide calcium imaging and studies of specified neural circuits have uncovered striking flexibility in the functional coupling of neurons. The coupling between neurons is controlled by neuromodulators that act over long timescales. This gives rise to persistent behavioral states that animals switch between, allowing them to generate adaptive behavioral responses across environmental conditions. Thus, the dynamic coupling of neurons enables multiple behavioral states to be encoded in a physically stereotyped connectome.
Collapse
Affiliation(s)
- Steven W Flavell
- Picower Institute for Learning and Memory, Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Andrew Gordus
- Department of Biology, Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
36
|
Chen L, Liu Y, Su P, Hung W, Li H, Wang Y, Yue Z, Ge MH, Wu ZX, Zhang Y, Fei P, Chen LM, Tao L, Mao H, Zhen M, Gao S. Escape steering by cholecystokinin peptidergic signaling. Cell Rep 2022; 38:110330. [PMID: 35139370 DOI: 10.1016/j.celrep.2022.110330] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 11/19/2021] [Accepted: 01/11/2022] [Indexed: 11/26/2022] Open
Abstract
Escape is an evolutionarily conserved and essential avoidance response. Considered to be innate, most studies on escape responses focused on hard-wired circuits. We report here that a neuropeptide NLP-18 and its cholecystokinin receptor CKR-1 enable the escape circuit to execute a full omega (Ω) turn. We demonstrate in vivo NLP-18 is mainly secreted by the gustatory sensory neuron (ASI) to activate CKR-1 in the head motor neuron (SMD) and the turn-initiating interneuron (AIB). Removal of NLP-18 or CKR-1 or specific knockdown of CKR-1 in SMD or AIB neurons leads to shallower turns, hence less robust escape steering. Consistently, elevation of head motor neuron (SMD)'s Ca2+ transients during escape steering is attenuated upon the removal of NLP-18 or CKR-1. In vitro, synthetic NLP-18 directly evokes CKR-1-dependent currents in oocytes and CKR-1-dependent Ca2+ transients in SMD. Thus, cholecystokinin peptidergic signaling modulates an escape circuit to generate robust escape steering.
Collapse
Affiliation(s)
- Lili Chen
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, P.R. China
| | - Yuting Liu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, P.R. China
| | - Pan Su
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, P.R. China
| | - Wesley Hung
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, ON M5G 1X5, Canada
| | - Haiwen Li
- Center for Quantitative Biology, Peking University, Beijing 100871, P.R. China; LMAM, School of Mathematical Sciences, Peking University, Beijing 100871, P.R. China
| | - Ya Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, P.R. China
| | - Zhongpu Yue
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, P.R. China
| | - Ming-Hai Ge
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, P.R. China
| | - Zheng-Xing Wu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, P.R. China
| | - Yan Zhang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, P.R. China
| | - Peng Fei
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, P.R. China
| | - Li-Ming Chen
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, P.R. China
| | - Louis Tao
- Center for Quantitative Biology, Peking University, Beijing 100871, P.R. China
| | - Heng Mao
- LMAM, School of Mathematical Sciences, Peking University, Beijing 100871, P.R. China
| | - Mei Zhen
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, ON M5G 1X5, Canada
| | - Shangbang Gao
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, P.R. China.
| |
Collapse
|
37
|
Luo Z, Yu Z, Yin D. Obesogenic effect of erythromycin on Caenorhabditis elegans through over-eating and lipid metabolism disturbances. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 294:118615. [PMID: 34863891 DOI: 10.1016/j.envpol.2021.118615] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/08/2021] [Accepted: 11/29/2021] [Indexed: 06/13/2023]
Abstract
Environmental obesogens contributed significantly to the obesity prevalence. Recently, antibiotics joined the list of environmental obesogens, while the underlying mechanisms remained to be explored. In the present study, effects of erythromycin (ERY), one widely used macrolide antibiotic, were measured on C. elegans to investigate the obesogenic mechanism. Results showed that ERY at 0.1 μg/L significantly increased the fat content by 17.4% more than the control and also stimulated triacylglycerol (TAG) levels by 25.7% more than the control. Regarding the obesogenic mechanisms, ERY provoked over-eating by stimulation on the pharyngeal pumping and reduction on the satiety quiescence percentage and duration. Such effects were resulted from stimulation on the neurotransmitters including serotonin (5-HT), dopamine (DA) and acetylcholine (ACh). The nervous responses involved the up-regulation of Gsα (e.g., ser-7, gsa-1, acy-1 and kin-2) signaling pathway and the down-regulation of TGFβ (daf-7) but not via cGMP-dependent regulations (e.g., egl-4). Moreover, ERY stimulated the activities of fatty acid synthase (FAS) and glycerol-3-phosphateacyl transferases (GPAT) that catalyze lipogenesis, while ERY inhibited those of acyl-CoA synthetase (ACS), carnitine palmitoyl transferase (CPT) and acyl-CoA oxidase (ACO) that catalyze lipolysis. The unbalance between lipogenesis and lipolysis resulted in the fat accumulation which was consistent with up-regulation on mgl-1 and mgl-3 which are the down-steam of TGFβ regulation. Such consistence supported the close connection between nervous regulation and lipid metabolism. In addition, ERY also disturbed insulin which connects lipid with glucose in metabolism.
Collapse
Affiliation(s)
- Zhili Luo
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; Jiaxing Tongji Institute for Environment, Jiaxing, Zhejiang Province, 3014051, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China
| | - Zhenyang Yu
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; Jiaxing Tongji Institute for Environment, Jiaxing, Zhejiang Province, 3014051, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China.
| | - Daqiang Yin
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China
| |
Collapse
|
38
|
Fueser H, Pilger C, Kong C, Huser T, Traunspurger W. Polystyrene microbeads influence lipid storage distribution in C. elegans as revealed by coherent anti-Stokes Raman scattering (CARS) microscopy. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 294:118662. [PMID: 34896225 DOI: 10.1016/j.envpol.2021.118662] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 12/04/2021] [Accepted: 12/07/2021] [Indexed: 06/14/2023]
Abstract
The exposure of Caenorhabditis elegans to polystyrene (PS) beads of a wide range of sizes impedes feeding, by reducing food consumption, and has been linked to inhibitory effects on the reproductive capacity of this nematode, as determined in standardized toxicity tests. Lipid storage provides energy for longevity, growth, and reproduction and may influence the organismal response to stress, including the food deprivation resulting from microplastics exposure. However, the effects of microplastics on energy storage have not been investigated in detail. In this study, C. elegans was exposed to ingestible sizes of PS beads in a standardized toxicity test (96 h) and in a multigeneration test (∼21 days), after which lipid storage was quantitatively analyzed in individual adults using coherent anti-Stokes Raman scattering (CARS) microscopy. The results showed that lipid storage distribution in C. elegans was altered when worms were exposed to microplastics in form of PS beads. For example, when exposed to 0.1-μm PS beads, the lipid droplet count was 93% higher, the droplets were up to 56% larger, and the area of the nematode body covered by lipids was up to 79% higher than in unexposed nematodes. The measured values tended to increase as PS bead sizes decreased. Cultivating the nematodes for 96 h under restricted food conditions in the absence of beads reproduced the altered lipid storage and suggested that it was triggered by food deprivation, including that induced by the dilutional effects of PS bead exposure. Our study demonstrates the utility of CARS microscopy to comprehensively image the smaller microplastics (<10 μm) ingested by nematodes and possibly other biota in investigations of the effects at the level of the individual organism.
Collapse
Affiliation(s)
- Hendrik Fueser
- Bielefeld University, Animal Ecology, Konsequenz 45, 33615, Bielefeld, Germany.
| | - Christian Pilger
- Bielefeld University, Biomolecular Photonics, Universitätsstraße 25, 33615, Bielefeld, Germany
| | - Cihang Kong
- Bielefeld University, Biomolecular Photonics, Universitätsstraße 25, 33615, Bielefeld, Germany
| | - Thomas Huser
- Bielefeld University, Biomolecular Photonics, Universitätsstraße 25, 33615, Bielefeld, Germany
| | - Walter Traunspurger
- Bielefeld University, Animal Ecology, Konsequenz 45, 33615, Bielefeld, Germany
| |
Collapse
|
39
|
Bayer EA, Liberatore KM, Schneider JR, Schlesinger E, He Z, Birnbaum S, Wightman B. Insulin signaling and osmotic stress response regulate arousal and developmental progression of C. elegans at hatching. Genetics 2022; 220:iyab202. [PMID: 34788806 PMCID: PMC8733457 DOI: 10.1093/genetics/iyab202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/03/2021] [Indexed: 12/29/2022] Open
Abstract
The progression of animal development from embryonic to juvenile life depends on the coordination of organism-wide responses with environmental conditions. We found that two transcription factors that function in interneuron differentiation in Caenorhabditis elegans, fax-1, and unc-42, are required for arousal and progression from embryogenesis to larval life by potentiating insulin signaling. The combination of mutations in either transcription factor and a mutation in daf-2 insulin receptor results in a novel perihatching arrest phenotype; embryos are fully developed but inactive, often remaining trapped within the eggshell, and fail to initiate pharyngeal pumping. This pathway is opposed by an osmotic sensory response pathway that promotes developmental arrest and a sleep state at the end of embryogenesis in response to elevated salt concentration. The quiescent state induced by loss of insulin signaling or by osmotic stress can be reversed by mutations in genes that are required for sleep. Therefore, countervailing signals regulate late embryonic arousal and developmental progression to larval life, mechanistically linking the two responses. Our findings demonstrate a role for insulin signaling in an arousal circuit, consistent with evidence that insulin-related regulation may function in control of sleep states in many animals. The opposing quiescent arrest state may serve as an adaptive response to the osmotic threat from high salinity environments.
Collapse
Affiliation(s)
- Emily A Bayer
- Biology Department, Muhlenberg College, Allentown, PA 18104, USA
| | | | | | - Evan Schlesinger
- Biology Department, Muhlenberg College, Allentown, PA 18104, USA
| | - Zhengying He
- Biology Department, Muhlenberg College, Allentown, PA 18104, USA
| | - Susanna Birnbaum
- Biology Department, Muhlenberg College, Allentown, PA 18104, USA
| | - Bruce Wightman
- Biology Department, Muhlenberg College, Allentown, PA 18104, USA
| |
Collapse
|
40
|
Takei Y. Evolution of the membrane/particulate guanylyl cyclase: From physicochemical sensors to hormone receptors. Gen Comp Endocrinol 2022; 315:113797. [PMID: 33957096 DOI: 10.1016/j.ygcen.2021.113797] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 04/19/2021] [Accepted: 04/28/2021] [Indexed: 12/26/2022]
Abstract
Guanylyl cyclase (GC) is an enzyme that produces 3',5'-cyclic guanosine monophosphate (cGMP), one of the two canonical cyclic nucleotides used as a second messenger for intracellular signal transduction. The GCs are classified into two groups, particulate/membrane GCs (pGC) and soluble/cytosolic GCs (sGC). In relation to the endocrine system, pGCs include hormone receptors for natriuretic peptides (GC-A and GC-B) and guanylin peptides (GC-C), while sGC is a receptor for nitric oxide and carbon monoxide. Comparing the functions of pGCs in eukaryotes, it is apparent that pGCs perceive various environmental factors such as light, temperature, and various external chemical signals in addition to endocrine hormones, and transmit the information into the cell using the intracellular signaling cascade initiated by cGMP, e.g., cGMP-dependent protein kinases, cGMP-sensitive cyclic nucleotide-gated ion channels and cGMP-regulated phosphodiesterases. Among vertebrate pGCs, GC-E and GC-F are localized on retinal epithelia and are involved in modifying signal transduction from the photoreceptor, rhodopsin. GC-D and GC-G are localized in olfactory epithelia and serve as sensors at the extracellular domain for external chemical signals such as odorants and pheromones. GC-G also responds to guanylin peptides in the urine, which alters sensitivity to other chemicals. In addition, guanylin peptides that are secreted into the intestinal lumen, a pseudo-external environment, act on the GC-C on the apical membrane for regulation of epithelial transport. In this context, GC-C and GC-G appear to be in transition from exocrine pheromone receptor to endocrine hormone receptor. The pGCs also exist in various deuterostome and protostome invertebrates, and act as receptors for environmental, exocrine and endocrine factors including hormones. Tracing the evolutionary history of pGCs, it appears that pGCs first appeared as a sensor for physicochemical signals in the environment, and then evolved to function as hormone receptors. In this review, the author proposes an evolutionary history of pGCs that highlights the emerging role of the GC/cGMP system for signal transduction in hormone action.
Collapse
Affiliation(s)
- Yoshio Takei
- Laboratory of Physiology, Department of Marine Bioscience, Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Chiba 277-8564, Japan.
| |
Collapse
|
41
|
Schiffer JA, Stumbur SV, Seyedolmohadesin M, Xu Y, Serkin WT, McGowan NG, Banjo O, Torkashvand M, Lin A, Hosea CN, Assié A, Samuel BS, O’Donnell MP, Venkatachalam V, Apfeld J. Modulation of sensory perception by hydrogen peroxide enables Caenorhabditis elegans to find a niche that provides both food and protection from hydrogen peroxide. PLoS Pathog 2021; 17:e1010112. [PMID: 34941962 PMCID: PMC8699984 DOI: 10.1371/journal.ppat.1010112] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 11/14/2021] [Indexed: 02/07/2023] Open
Abstract
Hydrogen peroxide (H2O2) is the most common chemical threat that organisms face. Here, we show that H2O2 alters the bacterial food preference of Caenorhabditis elegans, enabling the nematodes to find a safe environment with food. H2O2 induces the nematodes to leave food patches of laboratory and microbiome bacteria when those bacterial communities have insufficient H2O2-degrading capacity. The nematode's behavior is directed by H2O2-sensing neurons that promote escape from H2O2 and by bacteria-sensing neurons that promote attraction to bacteria. However, the input for H2O2-sensing neurons is removed by bacterial H2O2-degrading enzymes and the bacteria-sensing neurons' perception of bacteria is prevented by H2O2. The resulting cross-attenuation provides a general mechanism that ensures the nematode's behavior is faithful to the lethal threat of hydrogen peroxide, increasing the nematode's chances of finding a niche that provides both food and protection from hydrogen peroxide.
Collapse
Affiliation(s)
- Jodie A. Schiffer
- Biology Department, Northeastern University, Boston, Massachusetts, United States of America
| | - Stephanie V. Stumbur
- Biology Department, Northeastern University, Boston, Massachusetts, United States of America
| | - Maedeh Seyedolmohadesin
- Physics Department, Northeastern University, Boston, Massachusetts, United States of America
| | - Yuyan Xu
- Biology Department, Northeastern University, Boston, Massachusetts, United States of America
| | - William T. Serkin
- Biology Department, Northeastern University, Boston, Massachusetts, United States of America
| | - Natalie G. McGowan
- Biology Department, Northeastern University, Boston, Massachusetts, United States of America
| | - Oluwatosin Banjo
- Biology Department, Northeastern University, Boston, Massachusetts, United States of America
| | - Mahdi Torkashvand
- Physics Department, Northeastern University, Boston, Massachusetts, United States of America
| | - Albert Lin
- Department of Physics, Center for Brain Science, Harvard University, Cambridge, Massachusetts, United States of America
| | - Ciara N. Hosea
- Alkek Center for Metagenomics and Microbiome Research and Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Adrien Assié
- Alkek Center for Metagenomics and Microbiome Research and Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Buck S. Samuel
- Alkek Center for Metagenomics and Microbiome Research and Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Michael P. O’Donnell
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut, United States of America
| | - Vivek Venkatachalam
- Physics Department, Northeastern University, Boston, Massachusetts, United States of America
| | - Javier Apfeld
- Biology Department, Northeastern University, Boston, Massachusetts, United States of America
- Bioengineering Department, Northeastern University, Boston, Massachusetts, United States of America
| |
Collapse
|
42
|
Popović ŽD, Maier V, Avramov M, Uzelac I, Gošić-Dondo S, Blagojević D, Koštál V. Acclimations to Cold and Warm Conditions Differently Affect the Energy Metabolism of Diapausing Larvae of the European Corn Borer Ostrinia nubilalis (Hbn.). Front Physiol 2021; 12:768593. [PMID: 34880780 PMCID: PMC8647814 DOI: 10.3389/fphys.2021.768593] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/02/2021] [Indexed: 11/18/2022] Open
Abstract
The European corn borer Ostrinia nubilalis is a pest species, whose fifth instar larvae gradually develop cold hardiness during diapause. The physiological changes underlying diapause progression and cold hardiness development are still insufficiently understood in insects. Here, we follow a complex of changes related to energy metabolism during cold acclimation (5°C) of diapausing larvae and compare this to warm-acclimated (22°C) and non-diapause controls. Capillary electrophoresis of nucleotides and coenzymes has shown that in gradually cold-acclimated groups concentrations of ATP/ADP and, consequently, energy charge slowly decrease during diapause, while the concentration of AMP increases, especially in the first months of diapause. Also, the activity of cytochrome c oxidase (COX), as well as the concentrations of NAD+ and GMP, decline in cold-acclimated groups, until the latter part of diapause, when they recover. Relative expression of NADH dehydrogenase (nd1), coenzyme Q-cytochrome c reductase (uqcr), COX, ATP synthase (atp), ADP/ATP translocase (ant), and prohibitin 2 (phb2) is supressed in cold-acclimated larvae during the first months of diapause and gradually increases toward the termination of diapause. Contrary to this, NADP+ and UMP levels significantly increased in the first few months of diapause, after gradual cold acclimation, which is in connection with the biosynthesis of cryoprotective molecules, as well as regeneration of small antioxidants. Our findings evidence the existence of a cold-induced energy-saving program that facilitates long-term maintenance of larval diapause, as well as gradual development of cold hardiness. In contrast, warm acclimation induced faster depletion of ATP, ADP, UMP, NAD+, and NADP+, as well as higher activity of COX and generally higher expression of all energy-related genes in comparison to cold-acclimated larvae. Moreover, such unusually high metabolic activity, driven by high temperatures, lead to premature mortality in the warm-acclimated group after 2 months of diapause. Thus, our findings strongly support the importance of low temperature exposure in early diapause for gradual cold hardiness acquisition, successful maintenance of the resting state and return to active development. Moreover, they demonstrate potentially adverse effects of global climate changes and subsequent increase in winter temperatures on cold-adapted terrestrial organisms in temperate and subpolar regions.
Collapse
Affiliation(s)
- Željko D. Popović
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia
| | - Vítězslav Maier
- Department of Analytical Chemistry, Faculty of Science, Palacký University, Olomouc, Czechia
| | - Miloš Avramov
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia
| | - Iva Uzelac
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia
| | | | - Duško Blagojević
- Institute for Biological Research “Siniša Stanković”, Belgrade, Serbia
| | - Vladimír Koštál
- Biology Centre, Institute of Entomology, Academy of Sciences of the Czech Republic, České Budějovice, Czechia
| |
Collapse
|
43
|
Methylmercury-Induced Metabolic Alterations in Caenorhabditis elegans Are Diet-Dependent. TOXICS 2021; 9:toxics9110287. [PMID: 34822679 PMCID: PMC8619518 DOI: 10.3390/toxics9110287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/22/2021] [Accepted: 10/29/2021] [Indexed: 01/12/2023]
Abstract
Methylmercury (MeHg) is a well-known neurotoxicant; however, its role in metabolic diseases has been gaining wider attention. Chronic exposure to MeHg in human populations shows an association with diabetes mellitus and metabolic syndrome (MS). As the incidences of both obesity and MS are on the rise globally, it is important to understand the potential role of MeHg in the development of the disease. There is a dearth of information on dietary interactions between MeHg and lipids, which play an important role in developing MS. We have previously shown that MeHg increases food seeking behaviors, lipid levels, fat storage, and pro-adipogenic gene expression in C. elegans fed the standard OP50 Escherichia coli diet. However, we hypothesized that these metabolic changes could be prevented if the worms were fed a bacterial diet lower in lipid content. We tested whether C. elegans developed metabolic alterations in response to MeHg if they were fed two alternative E. coli strains (HT115 and HB101) that are known absorb significantly less lipids from their media. Additionally, to explore the effect of a high-lipid and high-cholesterol diet on MeHg-induced metabolic dysfunction, we supplemented the OP50 strain with twice the standard concentration of cholesterol in the nematode growth media. Wild-type worms fed either the HB101 or HT115 diet were more resistant to MeHg than the worms fed the OP50 diet, showing a significant right-hand shift in the dose–response survival curve. Worms fed the OP50 diet supplemented with cholesterol were more sensitive to MeHg, showing a significant left-hand shift in the dose–response survival curve. Changes in sensitivity to MeHg by differential diet were not due to altered MeHg intake in the worms as measured by inductively coupled mass spectrometry. Worms fed the low-fat diets showed protection from MeHg-induced metabolic changes, including decreased food consumption, lower triglyceride content, and lower fat storage than the worms fed either of the higher-fat diets. Oxidative stress is a common characteristic of both MeHg exposure and high-fat diets. Worms fed either OP50 or OP50 supplemented with cholesterol and treated with MeHg had significantly higher levels of reactive oxygen species, carbonylated proteins, and loss of glutathione than the worms fed the HT115 or HB101 low-lipid diets. Taken together, our data suggest a synergistic effect of MeHg and dietary lipid levels on MeHg toxicity and fat metabolism in C. elegans, which may affect the ability of MeHg to cause metabolic dysfunction.
Collapse
|
44
|
Jensen GS, Leon-Palmer NE, Townsend KL. Bone morphogenetic proteins (BMPs) in the central regulation of energy balance and adult neural plasticity. Metabolism 2021; 123:154837. [PMID: 34331962 DOI: 10.1016/j.metabol.2021.154837] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 06/28/2021] [Accepted: 07/19/2021] [Indexed: 12/14/2022]
Abstract
The current worldwide obesity pandemic highlights a need to better understand the regulation of energy balance and metabolism, including the role of the nervous system in controlling energy intake and energy expenditure. Neural plasticity in the hypothalamus of the adult brain has been implicated in full-body metabolic health, however, the mechanisms surrounding hypothalamic plasticity are incompletely understood. Bone morphogenetic proteins (BMPs) control metabolic health through actions in the brain as well as in peripheral tissues such as adipose, together regulating both energy intake and energy expenditure. BMP ligands, receptors, and inhibitors are found throughout plastic adult brain regions and have been demonstrated to modulate neurogenesis and gliogenesis, as well as synaptic and dendritic plasticity. This role for BMPs in adult neural plasticity is distinct from their roles in brain development. Existing evidence suggests that BMPs induce weight loss through hypothalamic pathways, and part of the mechanism of action may be through inducing neural plasticity. In this review, we summarize the data regarding how BMPs affect neural plasticity in the adult mammalian brain, as well as the relationship between central BMP signaling and metabolic health.
Collapse
Affiliation(s)
- Gabriel S Jensen
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, United States of America; Department of Neurological Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, United States of America
| | - Noelle E Leon-Palmer
- School of Biology and Ecology, University of Maine, Orono, ME, United States of America
| | - Kristy L Townsend
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, United States of America; Department of Neurological Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, United States of America; School of Biology and Ecology, University of Maine, Orono, ME, United States of America.
| |
Collapse
|
45
|
Huang Y, Sterken MG, van Zwet K, van Sluijs L, Pijlman GP, Kammenga JE. Heat Stress Reduces the Susceptibility of Caenorhabditis elegans to Orsay Virus Infection. Genes (Basel) 2021; 12:1161. [PMID: 34440335 PMCID: PMC8392475 DOI: 10.3390/genes12081161] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/21/2021] [Accepted: 07/26/2021] [Indexed: 11/16/2022] Open
Abstract
The nematode Caenorhabditis elegans has been a versatile model for understanding the molecular responses to abiotic stress and pathogens. In particular, the response to heat stress and virus infection has been studied in detail. The Orsay virus (OrV) is a natural virus of C. elegans and infection leads to intracellular infection and proteostatic stress, which activates the intracellular pathogen response (IPR). IPR related gene expression is regulated by the genes pals-22 and pals-25, which also control thermotolerance and immunity against other natural pathogens. So far, we have a limited understanding of the molecular responses upon the combined exposure to heat stress and virus infection. We test the hypothesis that the response of C. elegans to OrV infection and heat stress are co-regulated and may affect each other. We conducted a combined heat-stress-virus infection assay and found that after applying heat stress, the susceptibility of C. elegans to OrV was decreased. This difference was found across different wild types of C. elegans. Transcriptome analysis revealed a list of potential candidate genes associated with heat stress and OrV infection. Subsequent mutant screens suggest that pals-22 provides a link between viral response and heat stress, leading to enhanced OrV tolerance of C. elegans after heat stress.
Collapse
Affiliation(s)
- Yuqing Huang
- Laboratory of Nematology, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands; (Y.H.); (M.G.S.); (K.v.Z.); (L.v.S.)
| | - Mark G. Sterken
- Laboratory of Nematology, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands; (Y.H.); (M.G.S.); (K.v.Z.); (L.v.S.)
| | - Koen van Zwet
- Laboratory of Nematology, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands; (Y.H.); (M.G.S.); (K.v.Z.); (L.v.S.)
| | - Lisa van Sluijs
- Laboratory of Nematology, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands; (Y.H.); (M.G.S.); (K.v.Z.); (L.v.S.)
| | - Gorben P. Pijlman
- Laboratory of Virology, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands;
| | - Jan E. Kammenga
- Laboratory of Nematology, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands; (Y.H.); (M.G.S.); (K.v.Z.); (L.v.S.)
| |
Collapse
|
46
|
Makino M, Ulzii E, Shirasaki R, Kim J, You YJ. Regulation of Satiety Quiescence by Neuropeptide Signaling in Caenorhabditis elegans. Front Neurosci 2021; 15:678590. [PMID: 34335159 PMCID: PMC8319666 DOI: 10.3389/fnins.2021.678590] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 06/11/2021] [Indexed: 11/16/2022] Open
Abstract
Sleep and metabolism are interconnected homeostatic states; the sleep cycle can be entrained by the feeding cycle, and perturbation of the sleep often results in dysregulation in metabolism. However, the neuro-molecular mechanism by which metabolism regulates sleep is not fully understood. We investigated how metabolism and feeding regulate sleep using satiety quiescence behavior as a readout in Caenorhabditis elegans, which shares certain key aspects of postprandial sleep in mammals. From an RNA interference-based screen of two neuropeptide families, RFamide-related peptides (FLPs) and insulin-like peptides (INSs), we identified flp-11, known to regulate other types of sleep-like behaviors in C. elegans, as a gene that plays the most significant role in satiety quiescence. A mutation in flp-11 significantly reduces quiescence, whereas over-expression of the gene enhances it. A genetic analysis shows that FLP-11 acts upstream of the cGMP signaling but downstream of the TGFβ pathway, suggesting that TGFβ released from a pair of head sensory neurons (ASI) activates FLP-11 in an interneuron (RIS). Then, cGMP signaling acting in downstream of RIS neurons induces satiety quiescence. Among the 28 INSs genes screened, ins-1, known to play a significant role in starvation-associated behavior working in AIA is inhibitory to satiety quiescence. Our study suggests that specific combinations of neuropeptides are released, and their signals are integrated in order for an animal to gauge its metabolic state and to control satiety quiescence, a feeding-induced sleep-like state in C. elegans.
Collapse
Affiliation(s)
- Mei Makino
- Neuroscience Institute, Department of Biology, Nagoya University, Furo-cho, Japan
| | - Enkhjin Ulzii
- Neuroscience Institute, Department of Biology, Nagoya University, Furo-cho, Japan
| | - Riku Shirasaki
- Neuroscience Institute, Department of Biology, Nagoya University, Furo-cho, Japan
| | - Jeongho Kim
- Department of Biological Sciences, Inha University, Incheon, South Korea
| | - Young-Jai You
- Neuroscience Institute, Department of Biology, Nagoya University, Furo-cho, Japan.,Center for Hypothalamic Research, University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
47
|
Wang Z, Dai S, Wang J, Du W, Zhu L. Assessment on chronic and transgenerational toxicity of methamphetamine to Caenorhabditis elegans and associated aquatic risk through toxicity indicator sensitivity distribution (TISD) analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 288:117696. [PMID: 34243081 DOI: 10.1016/j.envpol.2021.117696] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/27/2021] [Accepted: 06/29/2021] [Indexed: 02/08/2023]
Abstract
Evidence about the adverse effects of methamphetamine (METH) on invertebrates is scarce. Hence, C. elegans, a representative invertebrate model, was exposed to METH at environmental levels to estimate chronic and transgenerational toxicity. The results of chronic exposure were integrated into an underlying toxicity framework of METH in invertebrates (e.g., benthos) at environmentally relevant concentrations. The induction of cellular oxidative damage-induced apoptosis and fluctuation of ecologically important traits (i.e., feeding and locomotion) might be attributed by the activation of the longevity regulating pathway regulated by DAF-16/FOXO, and detoxification by CYP family enzymes. The adverse effects to the organism level included impaired viability and decreased fecundity. The results from transgenerational exposure elucidated the cumulative METH-induced damage in invertebrates. Finally, a new risk assessment method named toxicity indicator sensitivity distribution (TISD) analysis was proposed by combining multiple toxicity indicator test data (ECx) to derive the hazardous concentration for 10% indicators (C10) of one species. The risk quotient (RQ) values calculated by measured environmental concentrations and C10 in southern China, southeastern Australia, and the western US crossed the alarm line (RQ = 5), suggesting a need for long-term monitoring.
Collapse
Affiliation(s)
- Zhenglu Wang
- College of Oceanography, Hohai University, Nanjing, Jiangsu, 210098, PR China
| | - Shuiping Dai
- National Center for Geriatrics Clinical Medicine Research, Department of Geriatrics and Gerontology, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Jinze Wang
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai, 200241, PR China
| | - Wei Du
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai, 200241, PR China.
| | - Lin Zhu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, PR China
| |
Collapse
|
48
|
Fueser H, Rauchschwalbe MT, Höss S, Traunspurger W. Food bacteria and synthetic microparticles of similar size influence pharyngeal pumping of Caenorhabditis elegans. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 235:105827. [PMID: 33882407 DOI: 10.1016/j.aquatox.2021.105827] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/30/2021] [Accepted: 04/01/2021] [Indexed: 06/12/2023]
Abstract
Toxicity tests using the model organism Caenorhabditis elegans have shown that exposure to small microplastics such as polystyrene (PS) beads lead to high body burdens and dietary restrictions that in turn inhibit reproduction. Pharyngeal pumping is the key mechanism of C. elegans for governing the uptake of food and other particles and can be easily monitored by determining the pumping rates. In this study, pharyngeal pumping of C. elegans was examined in response to increasing quantities of food bacteria (E. coli: 106-1010 cells ml-1) and synthetic particles (107-109 beads ml-1) of similar size (1 µm). While the average pumping rate of C. elegans exposed to E. coli depended on the density of the bacterial cells, this was not the case for the synthetic beads. At 107 items ml-1, bacterial cells and synthetic beads triggered a basic stimulation of the pumping rate, independent of the nutritional value of the particle. At quantities >107 items ml-1, however, the nutritional value was essential to maximize the pumping rate, as it was upregulated only by E. coli cells, which can be chemosensorially recognized by C. elegans. Given the unselective uptake of all particles in the size range of bacteria, restricting the pumping rates for particles with low nutritional value to a basic rate, prevents the nematodes from wasting energy by high-frequency pumping, but still allows a food-quality screening at low food levels.
Collapse
Affiliation(s)
- Hendrik Fueser
- Bielefeld University, Animal Ecology, Konsequenz 45, 33615 Bielefeld, Germany.
| | | | - Sebastian Höss
- Bielefeld University, Animal Ecology, Konsequenz 45, 33615 Bielefeld, Germany; Ecossa, Giselastr. 6, 82319 Starnberg, Germany
| | - Walter Traunspurger
- Bielefeld University, Animal Ecology, Konsequenz 45, 33615 Bielefeld, Germany
| |
Collapse
|
49
|
Kraus A, Buckley KM, Salinas I. Sensing the world and its dangers: An evolutionary perspective in neuroimmunology. eLife 2021; 10:66706. [PMID: 33900197 PMCID: PMC8075586 DOI: 10.7554/elife.66706] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/09/2021] [Indexed: 12/14/2022] Open
Abstract
Detecting danger is key to the survival and success of all species. Animal nervous and immune systems cooperate to optimize danger detection. Preceding studies have highlighted the benefits of bringing neurons into the defense game, including regulation of immune responses, wound healing, pathogen control, and survival. Here, we summarize the body of knowledge in neuroimmune communication and assert that neuronal participation in the immune response is deeply beneficial in each step of combating infection, from inception to resolution. Despite the documented tight association between the immune and nervous systems in mammals or invertebrate model organisms, interdependence of these two systems is largely unexplored across metazoans. This review brings a phylogenetic perspective of the nervous and immune systems in the context of danger detection and advocates for the use of non-model organisms to diversify the field of neuroimmunology. We identify key taxa that are ripe for investigation due to the emergence of key evolutionary innovations in their immune and nervous systems. This novel perspective will help define the primordial principles that govern neuroimmune communication across taxa.
Collapse
Affiliation(s)
- Aurora Kraus
- Department of Biology, University of New Mexico, Albuquerque, United States
| | | | - Irene Salinas
- Department of Biology, University of New Mexico, Albuquerque, United States
| |
Collapse
|
50
|
Host Immunity Alters Community Ecology and Stability of the Microbiome in a Caenorhabditis elegans Model. mSystems 2021; 6:6/2/e00608-20. [PMID: 33879498 PMCID: PMC8561663 DOI: 10.1128/msystems.00608-20] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
A growing body of data suggests that the microbiome of a species can vary considerably from individual to individual, but the reasons for this variation—and the consequences for the ecology of these communities—remain only partially explained. In mammals, the emerging picture is that the metabolic state and immune system status of the host affect the composition of the microbiome, but quantitative ecological microbiome studies are challenging to perform in higher organisms. Here, we show that these phenomena can be quantitatively analyzed in the tractable nematode host Caenorhabditis elegans. Mutants in innate immunity, in particular the DAF-2/insulin growth factor (IGF) pathway, are shown to contain a microbiome that differs from that of wild-type nematodes. We analyzed the underlying basis of these differences from the perspective of community ecology by comparing experimental observations to the predictions of a neutral sampling model and concluded that fundamental differences in microbiome ecology underlie the observed differences in microbiome composition. We tested this hypothesis by introducing a minor perturbation into the colonization conditions, allowing us to assess stability of communities in different host strains. Our results show that altering host immunity changes the importance of interspecies interactions within the microbiome, resulting in differences in community composition and stability that emerge from these differences in host-microbe ecology. IMPORTANCE Here, we used a Caenorhabditis elegans microbiome model to demonstrate how genetic differences in innate immunity alter microbiome composition, diversity, and stability by changing the ecological processes that shape these communities. These results provide insight into the role of host genetics in controlling the ecology of the host-associated microbiota, resulting in differences in community composition, successional trajectories, and response to perturbation.
Collapse
|