1
|
Costa-Bartuli E, Paixão LP, Crepaldi LD, da Fonseca R, Vianna M, Moraes-Ribeiro R, Lima GV, Nascimento Junior JXD, Branco JR, Caldas CAG, Belo TCA, Takiya CM, de Almeida LA, Zancan P, Sola-Penna M. Enhanced citrate consumption increases colon permeability in C57BL/6J mice by affecting gut microbiota and activating HIF-1α. J Nutr Biochem 2025; 143:109942. [PMID: 40320183 DOI: 10.1016/j.jnutbio.2025.109942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 02/28/2025] [Accepted: 04/26/2025] [Indexed: 05/25/2025]
Abstract
Citrate is a ubiquitously used food additive added to almost all industrialized alimentary product regardless the degree of processing. Indeed, citrate consumption has increased over the years since it is classified as a "generally recognized as safe" product, with no limitations to its use. Recently, we have shown that enhanced citrate consumption by mice impact physiology, impairing glucose tolerance and promoting low-grade systemic inflammation. Here, we treated mice for 24 hours or 12 weeks with standard chow diet enhanced with 40 mg citrate per gram of food, doubling its standard amount, and evaluated the colon of these animals and gut microbiota. Enhance citrate consumption for both 24 hours or 12 weeks promoted similar outcomes on mouse, as impairing glucose tolerance, thinning mucosal barrier and augmenting colon permeability and inflammation. Moreover, there is a robust change in gut microbiota population, that increased total bacteria with decreased variability, showing an obesogenic-like profile. Furthermore, enhanced citrate consumption upregulated the plasma membrane citrate transporter SLC13a5, HIF-1α and ATP: citrate lyase, boosting cytosolic citrate metabolism. In the end, we propose that enhanced citrate consumption increases cytosolic Acetyl-CoA formation, promoting lipid synthesis and acetylation of proteins and nucleic acids, and thus favoring epigenetic modifications.
Collapse
Affiliation(s)
- Emylle Costa-Bartuli
- The metaboliZSm' grouP (ZSP group), Laboratório de Enzimologia e Controle do Metabolismo (LabECoM), Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Larissa Pereira Paixão
- The metaboliZSm' grouP (ZSP group), Laboratório de Enzimologia e Controle do Metabolismo (LabECoM), Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Leticia Diniz Crepaldi
- The metaboliZSm' grouP (ZSP group), Laboratório de Enzimologia e Controle do Metabolismo (LabECoM), Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rhayane da Fonseca
- The metaboliZSm' grouP (ZSP group), Laboratório de Enzimologia e Controle do Metabolismo (LabECoM), Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mel Vianna
- The metaboliZSm' grouP (ZSP group), Laboratório de Enzimologia e Controle do Metabolismo (LabECoM), Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Renata Moraes-Ribeiro
- The metaboliZSm' grouP (ZSP group), Laboratório de Enzimologia e Controle do Metabolismo (LabECoM), Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gabrielle Vitoria Lima
- The metaboliZSm' grouP (ZSP group), Laboratório de Enzimologia e Controle do Metabolismo (LabECoM), Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - José Xavier do Nascimento Junior
- The metaboliZSm' grouP (ZSP group), Laboratório de Oncobiologia Molecular (LabOMol), Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jessica Ristow Branco
- The metaboliZSm' grouP (ZSP group), Laboratório de Oncobiologia Molecular (LabOMol), Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carlos Alexandre Gonçalves Caldas
- The metaboliZSm' grouP (ZSP group), Laboratório de Enzimologia e Controle do Metabolismo (LabECoM), Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Christina M Takiya
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Patricia Zancan
- The metaboliZSm' grouP (ZSP group), Laboratório de Oncobiologia Molecular (LabOMol), Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mauro Sola-Penna
- The metaboliZSm' grouP (ZSP group), Laboratório de Enzimologia e Controle do Metabolismo (LabECoM), Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
2
|
Dogra D, Phan VA, Zhang S, Gavrilovici C, DiMarzo N, Narang A, Ibhazehiebo K, Kurrasch DM. Modulation of NMDA receptor signaling and zinc chelation prevent seizure-like events in a zebrafish model of SLC13A5 epilepsy. PLoS Biol 2025; 23:e3002499. [PMID: 40208862 PMCID: PMC12047791 DOI: 10.1371/journal.pbio.3002499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 05/02/2025] [Accepted: 02/26/2025] [Indexed: 04/12/2025] Open
Abstract
SLC13A5 encodes a citrate transporter highly expressed in the brain and is important for regulating intra- and extracellular citrate levels. Mutations in this gene cause rare infantile epilepsy characterized by lifelong seizures, developmental delays, behavioral deficits, poor motor progression, and language impairments. SLC13A5 individuals respond poorly to treatment options; yet drug discovery programs are limited due to a paucity of animal models that phenocopy human symptoms. Here, we used CRISPR/Cas9 to create loss-of-function mutations in slc13a5a and slc13a5b, the zebrafish paralogs to human SLC13A5. slc13a5 mutant larvae showed cognitive dysfunction and sleep disturbances, consistent with SLC13A5 individuals. These mutants also exhibited fewer neurons and a concomitant increase in apoptosis across the optic tectum, a region important for sensory processing. Further, slc13a5 mutants displayed hallmark features of epilepsy, including an imbalance in glutamatergic and GABAergic excitatory-inhibitory gene expression, increased fosab expression, disrupted neurometabolism, and neuronal hyperexcitation as measured in vivo by extracellular field recordings and live calcium imaging. Mechanistically, we tested the involvement of NMDA signaling and zinc chelation in slc13a5 mutant epilepsy-like phenotypes. Slc13a5 protein co-localizes with excitatory NMDA receptors in wild-type zebrafish and NMDA receptor expression is upregulated in the brain of slc13a5 mutant larvae. Additionally, low levels of zinc are found in the plasma membrane of slc13a5 mutants. NMDA receptor suppression and ZnCl2 treatment in slc13a5 mutant larvae rescued neurometabolic and hyperexcitable calcium events, as well as behavioral defects. These data provide empirical evidence in support of the hypothesis that excess extracellular citrate over-chelates the zinc ions needed to regulate NMDA receptor function, leading to sustained channel opening and an exaggerated excitatory response that manifests as seizures. These data show the utility of slc13a5 mutant zebrafish for studying SLC13A5 epilepsy and open new avenues for drug discovery.
Collapse
Affiliation(s)
- Deepika Dogra
- Department of Medical Genetics, University of Calgary, Calgary, Alberta, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Van Anh Phan
- Department of Medical Genetics, University of Calgary, Calgary, Alberta, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Sinan Zhang
- Department of Medical Genetics, University of Calgary, Calgary, Alberta, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Cezar Gavrilovici
- Department of Medical Genetics, University of Calgary, Calgary, Alberta, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Departments of Pediatrics, Clinical Neurosciences, Physiology & Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Nadia DiMarzo
- Department of Medical Genetics, University of Calgary, Calgary, Alberta, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Ankita Narang
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Kingsley Ibhazehiebo
- Department of Medical Genetics, University of Calgary, Calgary, Alberta, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Deborah M. Kurrasch
- Department of Medical Genetics, University of Calgary, Calgary, Alberta, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
3
|
Kim S, Park JG, Choi SH, Kim JW, Jin MS. Cryo-EM structures reveal the H +/citrate symport mechanism of Drosophila INDY. Life Sci Alliance 2025; 8:e202402992. [PMID: 39884835 PMCID: PMC11782487 DOI: 10.26508/lsa.202402992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 01/10/2025] [Accepted: 01/13/2025] [Indexed: 02/01/2025] Open
Abstract
Drosophila I'm Not Dead Yet (INDY) functions as a transporter for citrate, a key metabolite in the citric acid cycle, across the plasma membrane. Partial deficiency of INDY extends lifespan, akin to the effects of caloric restriction. In this work, we use cryo-electron microscopy to determine structures of INDY in the presence and absence of citrate and in complex with the well-known inhibitor 4,4'-diisothiocyano-2,2'-disulfonic acid stilbene (DIDS) at resolutions ranging from 2.7 to 3.6 Å. Together with functional data obtained in vitro, the INDY structures reveal the H+/citrate co-transport mechanism, in which aromatic residue F119 serves as a one-gate element. They also provide insight into how protein-lipid interactions at the dimerization interface affect the stability and function of the transporter, and how DIDS disrupts the transport cycle.
Collapse
Affiliation(s)
- Subin Kim
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Jun Gyou Park
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Seung Hun Choi
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Ji Won Kim
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Mi Sun Jin
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| |
Collapse
|
4
|
El Bounkari O, Zan C, Yang B, Ebert S, Wagner J, Bugar E, Kramer N, Bourilhon P, Kontos C, Zarwel M, Sinitski D, Milic J, Jansen Y, Kempf WE, Sachs N, Maegdefessel L, Ji H, Gokce O, Riols F, Haid M, Gerra S, Hoffmann A, Brandhofer M, Avdic M, Bucala R, Megens RTA, Willemsen N, Messerer D, Schulz C, Bartelt A, Harm T, Rath D, Döring Y, Gawaz M, Weber C, Kapurniotu A, Bernhagen J. An atypical atherogenic chemokine that promotes advanced atherosclerosis and hepatic lipogenesis. Nat Commun 2025; 16:2297. [PMID: 40055309 PMCID: PMC11889166 DOI: 10.1038/s41467-025-57540-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 02/25/2025] [Indexed: 05/13/2025] Open
Abstract
Atherosclerosis is the underlying cause of myocardial infarction and ischemic stroke. It is a lipid-triggered and cytokine/chemokine-driven arterial inflammatory condition. We identify D-dopachrome tautomerase/macrophage migration-inhibitory factor-2 (MIF-2), a paralog of the cytokine MIF, as an atypical chemokine promoting both atherosclerosis and hepatic lipid accumulation. In hyperlipidemic Apoe-/- mice, Mif-2-deficiency and pharmacological MIF-2-blockade protect against lesion formation and vascular inflammation in early and advanced atherogenesis. MIF-2 promotes leukocyte migration, endothelial arrest, and foam-cell formation, and we identify CXCR4 as a receptor for MIF-2. Mif-2-deficiency in Apoe-/- mice leads to decreased plasma lipid levels and suppressed hepatic lipid accumulation, characterized by reductions in lipogenesis-related pathways, tri-/diacylglycerides, and cholesterol-esters, as revealed by hepatic transcriptomics/lipidomics. Hepatocyte cultures and FLIM-FRET-microscopy suggest that MIF-2 activates SREBP-driven lipogenic genes, mechanistically involving MIF-2-inducible CD74/CXCR4 complexes and PI3K/AKT but not AMPK signaling. MIF-2 is upregulated in unstable carotid plaques from atherosclerotic patients and its plasma concentration correlates with disease severity in patients with coronary artery disease. These findings establish MIF-2 as an atypical chemokine linking vascular inflammation to metabolic dysfunction in atherosclerosis.
Collapse
Affiliation(s)
- Omar El Bounkari
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU Klinikum, Ludwig Maximilian University (LMU) Munich, Munich, Germany.
| | - Chunfang Zan
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU Klinikum, Ludwig Maximilian University (LMU) Munich, Munich, Germany
| | - Bishan Yang
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU Klinikum, Ludwig Maximilian University (LMU) Munich, Munich, Germany
| | - Simon Ebert
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU Klinikum, Ludwig Maximilian University (LMU) Munich, Munich, Germany
| | - Jonas Wagner
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU Klinikum, Ludwig Maximilian University (LMU) Munich, Munich, Germany
| | - Elina Bugar
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU Klinikum, Ludwig Maximilian University (LMU) Munich, Munich, Germany
| | - Naomi Kramer
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU Klinikum, Ludwig Maximilian University (LMU) Munich, Munich, Germany
| | - Priscila Bourilhon
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU Klinikum, Ludwig Maximilian University (LMU) Munich, Munich, Germany
| | - Christos Kontos
- Division of Peptide Biochemistry, TUM School of Life Sciences, Technische Universität München (TUM), Freising, Germany
| | - Marlies Zarwel
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU Klinikum, Ludwig Maximilian University (LMU) Munich, Munich, Germany
| | - Dzmitry Sinitski
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU Klinikum, Ludwig Maximilian University (LMU) Munich, Munich, Germany
| | - Jelena Milic
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU Klinikum, Ludwig Maximilian University (LMU) Munich, Munich, Germany
| | - Yvonne Jansen
- Institute for Cardiovascular Prevention, LMU Klinikum, Ludwig Maximilian University (LMU) Munich, Munich, Germany
| | - Wolfgang E Kempf
- Institute of Molecular Vascular Medicine, TUM Klinikum, Technische Universität München (TUM), Munich, Germany
| | - Nadja Sachs
- Institute of Molecular Vascular Medicine, TUM Klinikum, Technische Universität München (TUM), Munich, Germany
- German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany
| | - Lars Maegdefessel
- Institute of Molecular Vascular Medicine, TUM Klinikum, Technische Universität München (TUM), Munich, Germany
- German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany
| | - Hao Ji
- Systems Neuroscience Lab, Institute for Stroke and Dementia Research (ISD), LMU Klinikum, Ludwig Maximilian University (LMU) Munich, Munich, Germany
| | - Ozgun Gokce
- Systems Neuroscience Lab, Institute for Stroke and Dementia Research (ISD), LMU Klinikum, Ludwig Maximilian University (LMU) Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Department of Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn Venusberg-Campus 1, Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE) Bonn, Munich, Germany
| | - Fabien Riols
- Metabolomics and Proteomics Core, Helmholtz Zentrum, Neuherberg, Germany
| | - Mark Haid
- Metabolomics and Proteomics Core, Helmholtz Zentrum, Neuherberg, Germany
| | - Simona Gerra
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU Klinikum, Ludwig Maximilian University (LMU) Munich, Munich, Germany
| | - Adrian Hoffmann
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU Klinikum, Ludwig Maximilian University (LMU) Munich, Munich, Germany
- Department of Anaesthesiology, LMU Klinikum, Ludwig Maximilian University (LMU) Munich, Munich, Germany
| | - Markus Brandhofer
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU Klinikum, Ludwig Maximilian University (LMU) Munich, Munich, Germany
| | - Maida Avdic
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU Klinikum, Ludwig Maximilian University (LMU) Munich, Munich, Germany
| | | | - Remco T A Megens
- Institute for Cardiovascular Prevention, LMU Klinikum, Ludwig Maximilian University (LMU) Munich, Munich, Germany
- German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Nienke Willemsen
- Institute for Cardiovascular Prevention, LMU Klinikum, Ludwig Maximilian University (LMU) Munich, Munich, Germany
| | - Denise Messerer
- Department of Medicine I, LMU Klinikum, Ludwig Maximilian University (LMU) Munich, Munich, Germany
| | - Christian Schulz
- Department of Medicine I, LMU Klinikum, Ludwig Maximilian University (LMU) Munich, Munich, Germany
- Department of Immunopharmacology, Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Alexander Bartelt
- Institute for Cardiovascular Prevention, LMU Klinikum, Ludwig Maximilian University (LMU) Munich, Munich, Germany
- German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany
- Institute for Diabetes and Cancer (IDC), Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Tobias Harm
- Department of Cardiology and Angiology, University Hospital Tübingen, Eberhard-Karls-University Tübingen, Tübingen, Germany
| | - Dominik Rath
- Department of Cardiology and Angiology, University Hospital Tübingen, Eberhard-Karls-University Tübingen, Tübingen, Germany
| | - Yvonne Döring
- Institute for Cardiovascular Prevention, LMU Klinikum, Ludwig Maximilian University (LMU) Munich, Munich, Germany
- Division of Angiology, Swiss Cardiovascular Center, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Meinrad Gawaz
- Department of Cardiology and Angiology, University Hospital Tübingen, Eberhard-Karls-University Tübingen, Tübingen, Germany
| | - Christian Weber
- Institute for Cardiovascular Prevention, LMU Klinikum, Ludwig Maximilian University (LMU) Munich, Munich, Germany
- German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Aphrodite Kapurniotu
- Division of Peptide Biochemistry, TUM School of Life Sciences, Technische Universität München (TUM), Freising, Germany
| | - Jürgen Bernhagen
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU Klinikum, Ludwig Maximilian University (LMU) Munich, Munich, Germany.
- German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany.
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| |
Collapse
|
5
|
Du J, Shen M, Chen J, Yan H, Xu Z, Yang X, Yang B, Luo P, Ding K, Hu Y, He Q. The impact of solute carrier proteins on disrupting substance regulation in metabolic disorders: insights and clinical applications. Front Pharmacol 2025; 15:1510080. [PMID: 39850557 PMCID: PMC11754210 DOI: 10.3389/fphar.2024.1510080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 12/20/2024] [Indexed: 01/25/2025] Open
Abstract
Carbohydrates, lipids, bile acids, various inorganic salt ions and organic acids are the main nutrients or indispensable components of the human body. Dysregulation in the processes of absorption, transport, metabolism, and excretion of these metabolites can lead to the onset of severe metabolic disorders, such as type 2 diabetes, non-alcoholic fatty liver disease, gout and hyperbilirubinemia. As the second largest membrane receptor supergroup, several major families in the solute carrier (SLC) supergroup have been found to play key roles in the transport of substances such as carbohydrates, lipids, urate, bile acids, monocarboxylates and zinc ions. Based on common metabolic dysregulation and related metabolic substances, we explored the relationship between several major families of SLC supergroup and metabolic diseases, providing examples of drugs targeting SLC proteins that have been approved or are currently in clinical/preclinical research as well as SLC-related diagnostic techniques that are in clinical use or under investigation. By highlighting these connections, we aim to provide insights that may contribute to the development of improved treatment strategies and targeted therapies for metabolic disorders.
Collapse
Affiliation(s)
- Jiangxia Du
- Center for Medical Research and Innovation in Digestive System Tumors, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Minhui Shen
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jiajia Chen
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hao Yan
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhifei Xu
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaochun Yang
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Bo Yang
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| | - Peihua Luo
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Department of Pharmaceutical and Translational Toxicology, Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, Zhejiang, China
| | - Kefeng Ding
- Center for Medical Research and Innovation in Digestive System Tumors, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yuhuai Hu
- Yuhong Pharmaceutical Technology Co., Ltd., Hangzhou, Zhejiang, China
| | - Qiaojun He
- Center for Medical Research and Innovation in Digestive System Tumors, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
- Department of Pharmaceutical and Translational Toxicology, Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
6
|
Angelini G, Russo S, Carli F, Infelise P, Panunzi S, Bertuzzi A, Caristo ME, Lembo E, Calce R, Bornstein SR, Gastaldelli A, Mingrone G. Dodecanedioic acid prevents and reverses metabolic-associated liver disease and obesity and ameliorates liver fibrosis in a rodent model of diet-induced obesity. FASEB J 2024; 38:e70202. [PMID: 39600104 PMCID: PMC11599784 DOI: 10.1096/fj.202402108r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 11/07/2024] [Accepted: 11/13/2024] [Indexed: 11/29/2024]
Abstract
Dodecanedioic acid (DC12) is a dicarboxylic acid present in protective polymers of fruit and leaves. We explored the effects of DC12 on metabolic dysfunction-associated steatohepatitis (MASH) and obesity. DC12 supplementation (100 mg/kg/day) was added to a high-fat diet (HFD) for 8 weeks in rodents to assess its impact on obesity and MASH prevention. Rats given DC12 experienced significant reductions of weight gain, liver and visceral fat weight, and improved glucose tolerance and insulin sensitivity. Liver histology showed protection against diet-induced MASH, with reduced steatosis, hepatocyte ballooning, and fibrosis. For weight-loss and MASH reversion, rats were fed HFD for 14 weeks, followed by 6 weeks with or without DC12. DC12 supplementation (100 mg/kg/day) led to a significant reduction of weight gain and liver weight. DC12 induced white adipose tissue beiging and reduced adiposity with a decrease of visceral fat. It also improved glucose tolerance, insulin sensitivity, and reduced hepatic gluconeogenic gene expression. Liver histology revealed a significant reduction in steatosis, hepatocyte ballooning, and inflammation as well as fibrosis, indicating MASH reversal. DC12 reduced hepatic lipogenesis enzymes as well as de novo lipogenesis measured by deuterated water and increased fatty acid β-oxidation. Plasma lipid profile showed lower triglycerides and phosphatidylcholines in the DC12 group. Notably, DC12 decreased mINDY expression, the cell membrane Na+-coupled citrate transporter, reducing citrate uptake and de-novo lipogenesis, linking its effects to improved lipid metabolism and reduced steatosis. We found that during the hepatic first pass, half of the DC12 ingested with water was taken up by the liver. The concentration of DC12 in the portal vein falls within the range identified in vitro as sufficient to inhibit citrate transport in hepatocytes.
Collapse
Affiliation(s)
- Giulia Angelini
- Department of Translational Medicine and SurgeryUniversità Cattolica del Sacro CuoreRomeItaly
- Department of Medical and Surgical SciencesFondazione Policlinico Universitario A. Gemelli IRCCSRomeItaly
| | - Sara Russo
- Department of Translational Medicine and SurgeryUniversità Cattolica del Sacro CuoreRomeItaly
- Department of Medical and Surgical SciencesFondazione Policlinico Universitario A. Gemelli IRCCSRomeItaly
| | - Fabrizia Carli
- Cardiometabolic Risk LaboratoryInstitute of Clinical Physiology (IFC), National Research Council (CNR)PisaItaly
| | - Patrizia Infelise
- Cardiometabolic Risk LaboratoryInstitute of Clinical Physiology (IFC), National Research Council (CNR)PisaItaly
| | - Simona Panunzi
- CNR‐IASI, Laboratorio di Biomatematica, Consiglio Nazionale delle RicercheIstituto di Analisi dei Sistemi ed InformaticaRomeItaly
| | - Alessandro Bertuzzi
- CNR‐IASI, Consiglio Nazionale delle RicercheIstituto di Analisi dei Sistemi ed Informatica, Laboratorio di BiomatematicaRomeItaly
| | - Maria Emiliana Caristo
- Department of Translational Medicine and SurgeryUniversità Cattolica del Sacro CuoreRomeItaly
| | - Erminia Lembo
- Department of Translational Medicine and SurgeryUniversità Cattolica del Sacro CuoreRomeItaly
- Department of Medical and Surgical SciencesFondazione Policlinico Universitario A. Gemelli IRCCSRomeItaly
| | - Roberta Calce
- Department of Translational Medicine and SurgeryUniversità Cattolica del Sacro CuoreRomeItaly
- Department of Medical and Surgical SciencesFondazione Policlinico Universitario A. Gemelli IRCCSRomeItaly
| | - Stefan R. Bornstein
- Department of Medicine IIIUniversitätsklinikum Carl Gustav Carus an der Technischen Universität DresdenDresdenGermany
- Division of Diabetes & Nutritional Sciences, School of Cardiovascular and Metabolic Medicine & SciencesKing's College LondonLondonUK
| | - Amalia Gastaldelli
- Cardiometabolic Risk LaboratoryInstitute of Clinical Physiology (IFC), National Research Council (CNR)PisaItaly
| | - Geltrude Mingrone
- Department of Translational Medicine and SurgeryUniversità Cattolica del Sacro CuoreRomeItaly
- Department of Medical and Surgical SciencesFondazione Policlinico Universitario A. Gemelli IRCCSRomeItaly
- Division of Diabetes & Nutritional Sciences, School of Cardiovascular and Metabolic Medicine & SciencesKing's College LondonLondonUK
| |
Collapse
|
7
|
Adams RM, Ozlu C, Bailey LE, Solidum RM, Cooper S, Best CR, Elacio J, Kavanaugh BC, Brown TL, Nye K, Liu J, Porter BE, Goodspeed K, Bailey RM. Sleep Abnormalities in SLC13A5 Citrate Transporter Disorder. Genes (Basel) 2024; 15:1338. [PMID: 39457462 PMCID: PMC11507356 DOI: 10.3390/genes15101338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/08/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND SLC13A5 Citrate Transporter Disorder is a rare pediatric neurodevelopmental disorder. Patients have epilepsy, developmental disability, and impaired mobility. While sleep disorders are common in children with neurodevelopmental disorders, sleep abnormalities have not been reported in SLC13A5 patients. METHODS Here, we assessed sleep disturbances in patients through caregiver reported surveys and in a transgenic mouse model of SLC13A5 deficiency. A total of 26 patients were evaluated with the Sleep Disturbance Scale for Children three times over a one-year span. Sleep and wake activities were assessed in the SLC13A5 knock-out (KO) mice using wireless telemetry devices. RESULTS A high burden of clinically significant sleep disturbances were reported in the patients, with heterogeneous symptoms that remained stable across time. While sleep disturbances were common, less than 30% of patients were prescribed medications for sleep. Comparatively, in SLC13A5 KO mice using EEG recordings, significant alterations were found during light cycles, when rodents typically sleep. During the sleep period, SLC13A5 mice had increased activity, decreased paradoxical sleep, and changes in absolute power spectral density, indicating altered sleep architecture in the mouse model. CONCLUSIONS Our results demonstrate a significant component of sleep disturbances in SLC13A5 patients and mice, highlighting a potential gap in patient care. Further investigation of sleep dysfunction and the underlying etiologies of sleep disturbances in SLC13A5 citrate transporter disorder is warranted.
Collapse
Affiliation(s)
- Raegan M. Adams
- Center for Alzheimer’s and Neurodegenerative Diseases, UT Southwestern Medical Center, Dallas, TX 75390, USA; (R.M.A.)
| | - Can Ozlu
- Department of Pediatrics, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lauren E. Bailey
- Center for Alzheimer’s and Neurodegenerative Diseases, UT Southwestern Medical Center, Dallas, TX 75390, USA; (R.M.A.)
| | - Rayann M. Solidum
- Department of Neurology and Neurological Sciences, Stanford University, Palo Alto, CA 94304, USA
| | - Sydney Cooper
- Perot Neuroscience Translational Research Center, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Carrie R. Best
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA
- Department of Psychiatry & Human Behavior, Brown University, Providence, RI 02912, USA
| | - Jennifer Elacio
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA
| | - Brian C. Kavanaugh
- Department of Psychiatry & Human Behavior, Brown University, Providence, RI 02912, USA
| | | | - Kimberly Nye
- TESS Research Foundation, Menlo Park, CA 94026, USA
| | - Judy Liu
- Department of Neurology, Brown University, Providence, RI 02912, USA
| | - Brenda E. Porter
- Department of Neurology and Neurological Sciences, Stanford University, Palo Alto, CA 94304, USA
| | - Kimberly Goodspeed
- Department of Pediatrics, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Rachel M. Bailey
- Center for Alzheimer’s and Neurodegenerative Diseases, UT Southwestern Medical Center, Dallas, TX 75390, USA; (R.M.A.)
- Department of Pediatrics, UT Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
8
|
Espadas I, Cáliz‐Molina MÁ, López‐Fernández‐Sobrino R, Panadero‐Morón C, Sola‐García A, Soriano‐Navarro M, Martínez‐Force E, Venegas‐Calerón M, Salas JJ, Martín F, Gauthier BR, Alfaro‐Cervelló C, Martí‐Aguado D, Capilla‐González V, Martín‐Montalvo A. Hydroxycitrate delays early mortality in mice and promotes muscle regeneration while inducing a rich hepatic energetic status. Aging Cell 2024; 23:e14205. [PMID: 38760909 PMCID: PMC11488303 DOI: 10.1111/acel.14205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/09/2024] [Accepted: 05/06/2024] [Indexed: 05/20/2024] Open
Abstract
ATP citrate lyase (ACLY) inhibitors have the potential of modulating central processes in protein, carbohydrate, and lipid metabolism, which can have relevant physiological consequences in aging and age-related diseases. Here, we show that hepatic phospho-active ACLY correlates with overweight and Model for End-stage Liver Disease score in humans. Wild-type mice treated chronically with the ACLY inhibitor potassium hydroxycitrate exhibited delayed early mortality. In AML12 hepatocyte cultures, the ACLY inhibitors potassium hydroxycitrate, SB-204990, and bempedoic acid fostered lipid accumulation, which was also observed in the liver of healthy-fed mice treated with potassium hydroxycitrate. Analysis of soleus tissue indicated that potassium hydroxycitrate produced the modulation of wound healing processes. In vivo, potassium hydroxycitrate modulated locomotor function toward increased wire hang performance and reduced rotarod performance in healthy-fed mice, and improved locomotion in mice exposed to cardiotoxin-induced muscle atrophy. Our findings implicate ACLY and ACLY inhibitors in different aspects of aging and muscle regeneration.
Collapse
Affiliation(s)
- Isabel Espadas
- Andalusian Molecular Biology and Regenerative Medicine Centre‐CABIMERUniversidad de Sevilla‐CSIC‐Universidad Pablo de OlavideSevilleSpain
| | - María Ángeles Cáliz‐Molina
- Andalusian Molecular Biology and Regenerative Medicine Centre‐CABIMERUniversidad de Sevilla‐CSIC‐Universidad Pablo de OlavideSevilleSpain
| | - Raúl López‐Fernández‐Sobrino
- Andalusian Molecular Biology and Regenerative Medicine Centre‐CABIMERUniversidad de Sevilla‐CSIC‐Universidad Pablo de OlavideSevilleSpain
| | - Concepción Panadero‐Morón
- Andalusian Molecular Biology and Regenerative Medicine Centre‐CABIMERUniversidad de Sevilla‐CSIC‐Universidad Pablo de OlavideSevilleSpain
| | - Alejandro Sola‐García
- Andalusian Molecular Biology and Regenerative Medicine Centre‐CABIMERUniversidad de Sevilla‐CSIC‐Universidad Pablo de OlavideSevilleSpain
| | - Mario Soriano‐Navarro
- Electron Microscopy Core Facility, Centro de Investigación Príncipe Felipe (CIPF)ValenciaSpain
| | | | | | - Joaquin J. Salas
- Instituto de la Grasa (CSIC)Universidad Pablo de OlavideSevillaSpain
| | - Franz Martín
- Andalusian Molecular Biology and Regenerative Medicine Centre‐CABIMERUniversidad de Sevilla‐CSIC‐Universidad Pablo de OlavideSevilleSpain
- Biomedical Research Network on Diabetes and Related Metabolic Diseases‐CIBERDEMInstituto de Salud Carlos IIIMadridSpain
| | - Benoit R. Gauthier
- Andalusian Molecular Biology and Regenerative Medicine Centre‐CABIMERUniversidad de Sevilla‐CSIC‐Universidad Pablo de OlavideSevilleSpain
- Biomedical Research Network on Diabetes and Related Metabolic Diseases‐CIBERDEMInstituto de Salud Carlos IIIMadridSpain
| | - Clara Alfaro‐Cervelló
- Pathology Department, INCLIVA Health Research Institute, Clinic University HospitalUniversity of ValenciaValenciaSpain
| | - David Martí‐Aguado
- Digestive Disease Department, Clinic University HospitalINCLIVA Health Research InstituteValenciaSpain
- Division of Gastroenterology, Hepatology and NutritionCenter for Liver Diseases
| | - Vivian Capilla‐González
- Andalusian Molecular Biology and Regenerative Medicine Centre‐CABIMERUniversidad de Sevilla‐CSIC‐Universidad Pablo de OlavideSevilleSpain
| | - Alejandro Martín‐Montalvo
- Andalusian Molecular Biology and Regenerative Medicine Centre‐CABIMERUniversidad de Sevilla‐CSIC‐Universidad Pablo de OlavideSevilleSpain
- Biomedical Research Network on Diabetes and Related Metabolic Diseases‐CIBERDEMInstituto de Salud Carlos IIIMadridSpain
| |
Collapse
|
9
|
Sandforth L, Brachs S, Reinke J, Willmes D, Sancar G, Seigner J, Juarez-Lopez D, Sandforth A, McBride JD, Ma JX, Haufe S, Jordan J, Birkenfeld AL. Role of human Kallistatin in glucose and energy homeostasis in mice. Mol Metab 2024; 82:101905. [PMID: 38431218 PMCID: PMC10937158 DOI: 10.1016/j.molmet.2024.101905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 03/05/2024] Open
Abstract
OBJECTIVE Kallistatin (KST), also known as SERPIN A4, is a circulating, broadly acting human plasma protein with pleiotropic properties. Clinical studies in humans revealed reduced KST levels in obesity. The exact role of KST in glucose and energy homeostasis in the setting of insulin resistance and type 2 diabetes is currently unknown. METHODS Kallistatin mRNA expression in human subcutaneous white adipose tissue (sWAT) of 47 people with overweight to obesity of the clinical trial "Comparison of Low Fat and Low Carbohydrate Diets With Respect to Weight Loss and Metabolic Effects (B-SMART)" was measured. Moreover, we studied transgenic mice systemically overexpressing human KST (hKST-TG) and wild type littermate control mice (WT) under normal chow (NCD) and high-fat diet (HFD) conditions. RESULTS In sWAT of people with overweight to obesity, KST mRNA increased after diet-induced weight loss. On NCD, we did not observe differences between hKST-TG and WT mice. Under HFD conditions, body weight, body fat and liver fat content did not differ between genotypes. Yet, during intraperitoneal glucose tolerance tests (ipGTT) insulin excursions and HOMA-IR were lower in hKST-TG (4.42 ± 0.87 AU, WT vs. 2.20 ± 0.27 AU, hKST-TG, p < 0.05). Hyperinsulinemic euglycemic clamp studies with tracer-labeled glucose infusion confirmed improved insulin sensitivity by higher glucose infusion rates in hKST-TG mice (31.5 ± 1.78 mg/kg/min, hKST-TG vs. 18.1 ± 1.67 mg/kg/min, WT, p < 0.05). Improved insulin sensitivity was driven by reduced hepatic insulin resistance (clamp hepatic glucose output: 7.7 ± 1.9 mg/kg/min, hKST-TG vs 12.2 ± 0.8 mg/kg/min, WT, p < 0.05), providing evidence for direct insulin sensitizing effects of KST for the first time. Insulin sensitivity was differentially affected in skeletal muscle and adipose tissue. Mechanistically, we observed reduced Wnt signaling in the liver but not in skeletal muscle, which may explain the effect. CONCLUSIONS KST expression increases after weight loss in sWAT from people with obesity. Furthermore, human KST ameliorates diet-induced hepatic insulin resistance in mice, while differentially affecting skeletal muscle and adipose tissue insulin sensitivity. Thus, KST may be an interesting, yet challenging, therapeutic target for patients with obesity and insulin resistance.
Collapse
Affiliation(s)
- Leontine Sandforth
- Internal Medicine IV, Endocrinology, Diabetology and Nephrology, University Hospital of Tuebingen, Tuebingen, Germany; Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich, Tuebingen, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Sebastian Brachs
- Department of Endocrinology and Metabolism, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany
| | - Julia Reinke
- Department of Endocrinology and Metabolism, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Section of Metabolic Vascular Medicine, Department of Medicine III, University Clinic Dresden, TU Dresden, Germany
| | - Diana Willmes
- Department of Endocrinology and Metabolism, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Section of Metabolic Vascular Medicine, Department of Medicine III, University Clinic Dresden, TU Dresden, Germany
| | - Gencer Sancar
- Internal Medicine IV, Endocrinology, Diabetology and Nephrology, University Hospital of Tuebingen, Tuebingen, Germany; Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich, Tuebingen, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Judith Seigner
- Internal Medicine IV, Endocrinology, Diabetology and Nephrology, University Hospital of Tuebingen, Tuebingen, Germany; Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich, Tuebingen, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - David Juarez-Lopez
- Internal Medicine IV, Endocrinology, Diabetology and Nephrology, University Hospital of Tuebingen, Tuebingen, Germany; Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich, Tuebingen, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Arvid Sandforth
- Internal Medicine IV, Endocrinology, Diabetology and Nephrology, University Hospital of Tuebingen, Tuebingen, Germany; Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich, Tuebingen, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Jeffrey D McBride
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Jian-Xing Ma
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Sven Haufe
- Department of Rehabilitation and Sports Medicine, Hannover Medical School (MHH), Hannover, Germany
| | - Jens Jordan
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany; Medical Faculty, University of Cologne, Cologne, Germany
| | - Andreas L Birkenfeld
- Internal Medicine IV, Endocrinology, Diabetology and Nephrology, University Hospital of Tuebingen, Tuebingen, Germany; Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich, Tuebingen, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany; Section of Metabolic Vascular Medicine, Department of Medicine III, University Clinic Dresden, TU Dresden, Germany; Department of Diabetes, Life Sciences & Medicine, Cardiovascular Medicine & Life Sciences, King's College London, UK.
| |
Collapse
|
10
|
Le J, Chen Y, Yang W, Chen L, Ye J. Metabolic basis of solute carrier transporters in treatment of type 2 diabetes mellitus. Acta Pharm Sin B 2024; 14:437-454. [PMID: 38322335 PMCID: PMC10840401 DOI: 10.1016/j.apsb.2023.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/10/2023] [Accepted: 08/09/2023] [Indexed: 02/08/2024] Open
Abstract
Solute carriers (SLCs) constitute the largest superfamily of membrane transporter proteins. These transporters, present in various SLC families, play a vital role in energy metabolism by facilitating the transport of diverse substances, including glucose, fatty acids, amino acids, nucleotides, and ions. They actively participate in the regulation of glucose metabolism at various steps, such as glucose uptake (e.g., SLC2A4/GLUT4), glucose reabsorption (e.g., SLC5A2/SGLT2), thermogenesis (e.g., SLC25A7/UCP-1), and ATP production (e.g., SLC25A4/ANT1 and SLC25A5/ANT2). The activities of these transporters contribute to the pathogenesis of type 2 diabetes mellitus (T2DM). Notably, SLC5A2 has emerged as a valid drug target for T2DM due to its role in renal glucose reabsorption, leading to groundbreaking advancements in diabetes drug discovery. Alongside SLC5A2, multiple families of SLC transporters involved in the regulation of glucose homeostasis hold potential applications for T2DM therapy. SLCs also impact drug metabolism of diabetic medicines through gene polymorphisms, such as rosiglitazone (SLCO1B1/OATP1B1) and metformin (SLC22A1-3/OCT1-3 and SLC47A1, 2/MATE1, 2). By consolidating insights into the biological activities and clinical relevance of SLC transporters in T2DM, this review offers a comprehensive update on their roles in controlling glucose metabolism as potential drug targets.
Collapse
Affiliation(s)
- Jiamei Le
- Shanghai Key Laboratory of Molecular Imaging, Zhoupu Hospital, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yilong Chen
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Wei Yang
- Metabolic Disease Research Center, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou 450007, China
| | - Ligong Chen
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Jianping Ye
- Metabolic Disease Research Center, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou 450007, China
- Research Center for Basic Medicine, Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
11
|
Beltran AS. Novel Approaches to Studying SLC13A5 Disease. Metabolites 2024; 14:84. [PMID: 38392976 PMCID: PMC10890222 DOI: 10.3390/metabo14020084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 02/25/2024] Open
Abstract
The role of the sodium citrate transporter (NaCT) SLC13A5 is multifaceted and context-dependent. While aberrant dysfunction leads to neonatal epilepsy, its therapeutic inhibition protects against metabolic disease. Notably, insights regarding the cellular and molecular mechanisms underlying these phenomena are limited due to the intricacy and complexity of the latent human physiology, which is poorly captured by existing animal models. This review explores innovative technologies aimed at bridging such a knowledge gap. First, I provide an overview of SLC13A5 variants in the context of human disease and the specific cell types where the expression of the transporter has been observed. Next, I discuss current technologies for generating patient-specific induced pluripotent stem cells (iPSCs) and their inherent advantages and limitations, followed by a summary of the methods for differentiating iPSCs into neurons, hepatocytes, and organoids. Finally, I explore the relevance of these cellular models as platforms for delving into the intricate molecular and cellular mechanisms underlying SLC13A5-related disorders.
Collapse
Affiliation(s)
- Adriana S Beltran
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
12
|
Brown TL, Bainbridge MN, Zahn G, Nye KL, Porter BE. The growing research toolbox for SLC13A5 citrate transporter disorder: a rare disease with animal models, cell lines, an ongoing Natural History Study and an engaged patient advocacy organization. THERAPEUTIC ADVANCES IN RARE DISEASE 2024; 5:26330040241263972. [PMID: 39091896 PMCID: PMC11292725 DOI: 10.1177/26330040241263972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 06/06/2024] [Indexed: 08/04/2024]
Abstract
TESS Research Foundation (TESS) is a patient-led nonprofit organization seeking to understand the basic biology and clinical impact of pathogenic variants in the SLC13A5 gene. TESS aims to improve the fundamental understanding of citrate's role in the brain, and ultimately identify treatments and cures for the associated disease. TESS identifies, organizes, and develops collaboration between researchers, patients, clinicians, and the pharmaceutical industry to improve the lives of those suffering from SLC13A5 citrate transport disorder. TESS and its partners have developed multiple molecular tools, cellular and animal models, and taken the first steps toward drug discovery and development for this disease. However, much remains to be done to improve our understanding of the disorder associated with SLC13A5 variants and identify effective treatments for this devastating disease. Here, we describe the available SLC13A5 resources from the community of experts, to foundational tools, to in vivo and in vitro tools, and discuss unanswered research questions needed to move closer to a cure.
Collapse
Affiliation(s)
| | | | | | - Kim L. Nye
- TESS Research Foundation, Menlo Park, CA, USA
| | - Brenda E. Porter
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| |
Collapse
|
13
|
Gill D, Zagkos L, Gill R, Benzing T, Jordan J, Birkenfeld AL, Burgess S, Zahn G. The citrate transporter SLC13A5 as a therapeutic target for kidney disease: evidence from Mendelian randomization to inform drug development. BMC Med 2023; 21:504. [PMID: 38110950 PMCID: PMC10729503 DOI: 10.1186/s12916-023-03227-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 12/12/2023] [Indexed: 12/20/2023] Open
Abstract
BACKGROUND Solute carrier family 13 member 5 (SLC13A5) is a Na+-coupled citrate co-transporter that mediates entry of extracellular citrate into the cytosol. SLC13A5 inhibition has been proposed as a target for reducing progression of kidney disease. The aim of this study was to leverage the Mendelian randomization paradigm to gain insight into the effects of SLC13A5 inhibition in humans, towards prioritizing and informing clinical development efforts. METHODS The primary Mendelian randomization analyses investigated the effect of SLC13A5 inhibition on measures of kidney function, including creatinine and cystatin C-based measures of estimated glomerular filtration rate (creatinine-eGFR and cystatin C-eGFR), blood urea nitrogen (BUN), urine albumin-creatinine ratio (uACR), and risk of chronic kidney disease and microalbuminuria. Secondary analyses included a paired plasma and urine metabolome-wide association study, investigation of secondary traits related to SLC13A5 biology, a phenome-wide association study (PheWAS), and a proteome-wide association study. All analyses were compared to the effect of genetically predicted plasma citrate levels using variants selected from across the genome, and statistical sensitivity analyses robust to the inclusion of pleiotropic variants were also performed. Data were obtained from large-scale genetic consortia and biobanks, with sample sizes ranging from 5023 to 1,320,016 individuals. RESULTS We found evidence of associations between genetically proxied SLC13A5 inhibition and higher creatinine-eGFR (p = 0.002), cystatin C-eGFR (p = 0.005), and lower BUN (p = 3 × 10-4). Statistical sensitivity analyses robust to the inclusion of pleiotropic variants suggested that these effects may be a consequence of higher plasma citrate levels. There was no strong evidence of associations of genetically proxied SLC13A5 inhibition with uACR or risk of CKD or microalbuminuria. Secondary analyses identified evidence of associations with higher plasma calcium levels (p = 6 × 10-13) and lower fasting glucose (p = 0.02). PheWAS did not identify any safety concerns. CONCLUSIONS This Mendelian randomization analysis provides human-centric insight to guide clinical development of an SLC13A5 inhibitor. We identify plasma calcium and citrate as biologically plausible biomarkers of target engagement, and plasma citrate as a potential biomarker of mechanism of action. Our human genetic evidence corroborates evidence from various animal models to support effects of SLC13A5 inhibition on improving kidney function.
Collapse
Affiliation(s)
- Dipender Gill
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK.
- Primula Group Ltd, London, UK.
| | - Loukas Zagkos
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | | | - Thomas Benzing
- Department II of Internal Medicine and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- Cologne Excellence Cluster On Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Jens Jordan
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
- Medical Faculty, University of Cologne, Cologne, Germany
| | - Andreas L Birkenfeld
- Department of Diabetology Endocrinology and Nephrology, Internal Medicine IV, University Hospital Tübingen, Eberhard Karls University Tübingen, Tübingen, Germany
- Division of Translational Diabetology, Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich, Eberhard Karls University Tübingen, Tübingen, Germany
- Department of Diabetes, School of Life Course Science and Medicine, King's College London, London, UK
| | - Stephen Burgess
- Medical Research Council Biostatistics Unit at the University of Cambridge, Cambridge, UK
| | | |
Collapse
|
14
|
Zahn G, Baukmann HA, Wu J, Jordan J, Birkenfeld AL, Dirckx N, Schmidt MF. Targeting Longevity Gene SLC13A5: A Novel Approach to Prevent Age-Related Bone Fragility and Osteoporosis. Metabolites 2023; 13:1186. [PMID: 38132868 PMCID: PMC10744747 DOI: 10.3390/metabo13121186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 11/24/2023] [Accepted: 12/01/2023] [Indexed: 12/23/2023] Open
Abstract
Reduced expression of the plasma membrane citrate transporter SLC13A5, also known as INDY, has been linked to increased longevity and mitigated age-related cardiovascular and metabolic diseases. Citrate, a vital component of the tricarboxylic acid cycle, constitutes 1-5% of bone weight, binding to mineral apatite surfaces. Our previous research highlighted osteoblasts' specialized metabolic pathway facilitated by SLC13A5 regulating citrate uptake, production, and deposition within bones. Disrupting this pathway impairs bone mineralization in young mice. New Mendelian randomization analysis using UK Biobank data indicated that SNPs linked to reduced SLC13A5 function lowered osteoporosis risk. Comparative studies of young (10 weeks) and middle-aged (52 weeks) osteocalcin-cre-driven osteoblast-specific Slc13a5 knockout mice (Slc13a5cKO) showed a sexual dimorphism: while middle-aged females exhibited improved elasticity, middle-aged males demonstrated enhanced bone strength due to reduced SLC13A5 function. These findings suggest reduced SLC13A5 function could attenuate age-related bone fragility, advocating for SLC13A5 inhibition as a potential osteoporosis treatment.
Collapse
Affiliation(s)
- Grit Zahn
- Eternygen GmbH, Westhafenstrasse 1, 13353 Berlin, Germany
| | | | - Jasmine Wu
- Department of Orthopaedics, School of Medicine, University of Maryland-Baltimore, Baltimore, MD 21201, USA
| | - Jens Jordan
- German Aerospace Center (DLR), Institute of Aerospace Medicine, 51147 Cologne, Germany;
| | - Andreas L. Birkenfeld
- Department of Diabetology Endocrinology and Nephrology, Internal Medicine IV, University Hospital Tübingen, Eberhard Karls University Tübingen, 72074 Tübingen, Germany
- German Center for Diabetes Research (DZD), Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich, Eberhard Karls University Tübingen, 72074 Tübingen, Germany
- Department of Diabetes, Life Sciences and Medicine, Cardiovascular Medicine and Sciences, Kings College London, London WC2R 2LS, UK
| | - Naomi Dirckx
- Department of Orthopaedics, School of Medicine, University of Maryland-Baltimore, Baltimore, MD 21201, USA
| | - Marco F. Schmidt
- biotx.ai GmbH, Am Mühlenberg 11, 14476 Potsdam, Germany (M.F.S.)
| |
Collapse
|
15
|
Sun Q, Guo Y, Hu W, Zhang M, Wang S, Lei Y, Meng H, Li N, Xu P, Li Z, Lin H, Huang F, Qiu Z. Bempedoic Acid Unveils Therapeutic Potential in Non-Alcoholic Fatty Liver Disease: Suppression of the Hepatic PXR-SLC13A5/ACLY Signaling Axis. Drug Metab Dispos 2023; 51:1628-1641. [PMID: 37684055 DOI: 10.1124/dmd.123.001449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 08/25/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
The hepatic SLC13A5/SLC25A1-ATP-dependent citrate lyase (ACLY) signaling pathway, responsible for maintaining the citrate homeostasis, plays a crucial role in the pathogenesis of non-alcoholic fatty liver disease (NAFLD). Bempedoic acid (BA), an ACLY inhibitor commonly used for managing hypercholesterolemia, has shown promising results in addressing hepatic steatosis. This study aimed to elucidate the intricate relationships in processes of hepatic lipogenesis among SLC13A5, SLC25A1, and ACLY and to examine the therapeutic potential of BA in NAFLD, providing insights into its underlying mechanism. In murine primary hepatocytes and HepG2 cells, the silencing or pharmacological inhibition of SLC25A1/ACLY resulted in significant upregulation of SLC13A5 transcription and activity. This increase in SLC13A5 activity subsequently led to enhanced lipogenesis, indicating a compensatory role of SLC13A5 when the SLC25A1/ACLY pathway was inhibited. However, BA effectively counteracted this upregulation, reduced lipid accumulation, and ameliorated various biomarkers of NAFLD. The disease-modifying effects of BA were further confirmed in NAFLD mice. Mechanistic investigations revealed that BA could reverse the elevated transcription levels of SLC13A5 and ACLY, and the subsequent lipogenesis induced by PXR activation in vitro and in vivo. Importantly, this effect was diminished when PXR was knocked down, suggesting the involvement of the hepatic PXR-SLC13A5/ACLY signaling axis in the mechanism of BA action. In conclusion, SLC13A5-mediated extracellular citrate influx emerges as an alternative pathway to SLC25A1/ACLY in the regulation of lipogenesis in hepatocytes, BA exhibits therapeutic potential in NAFLD by suppressing the hepatic PXR-SLC13A5/ACLY signaling axis, while PXR, a key regulator in drug metabolism may be involved in the pathogenesis of NAFLD. SIGNIFICANCE STATEMENT: This work describes that bempedoic acid, an ATP-dependent citrate lyase (ACLY) inhibitor, ameliorates hepatic lipid accumulation and various hallmarks of non-alcoholic fatty liver disease. Suppression of hepatic SLC25A1-ACLY pathway upregulates SLC13A5 transcription, which in turn activates extracellular citrate influx and the subsequent DNL. Whereas in hepatocytes or the liver tissue challenged with high energy intake, bempedoic acid reverses compensatory activation of SLC13A5 via modulating the hepatic PXR-SLC13A5/ACLY axis, thereby simultaneously downregulating SLC13A5 and ACLY.
Collapse
Affiliation(s)
- Qiushuang Sun
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy (Q.S., Y.G., F.H.), Departments of Pharmacology (W.H., S.W., Y.L., Z.Q.) and Medicinal Chemistry, School of Pharmacy (P.X., Z.L.), School of Basic Medical Sciences and Clinical Pharmacy (M.Z.), and National Experimental Teaching Demonstration Center of Pharmacy, School of Pharmacy (N.L.), China Pharmaceutical University, Nanjing, China; Shimadzu (China) Co., LTD., Nanjing Branch, Nanjing, China (H.M.); and College of Pharmacy, Shenzhen Technology University, Shenzhen, China (H.L.)
| | - Yating Guo
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy (Q.S., Y.G., F.H.), Departments of Pharmacology (W.H., S.W., Y.L., Z.Q.) and Medicinal Chemistry, School of Pharmacy (P.X., Z.L.), School of Basic Medical Sciences and Clinical Pharmacy (M.Z.), and National Experimental Teaching Demonstration Center of Pharmacy, School of Pharmacy (N.L.), China Pharmaceutical University, Nanjing, China; Shimadzu (China) Co., LTD., Nanjing Branch, Nanjing, China (H.M.); and College of Pharmacy, Shenzhen Technology University, Shenzhen, China (H.L.)
| | - Wenjun Hu
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy (Q.S., Y.G., F.H.), Departments of Pharmacology (W.H., S.W., Y.L., Z.Q.) and Medicinal Chemistry, School of Pharmacy (P.X., Z.L.), School of Basic Medical Sciences and Clinical Pharmacy (M.Z.), and National Experimental Teaching Demonstration Center of Pharmacy, School of Pharmacy (N.L.), China Pharmaceutical University, Nanjing, China; Shimadzu (China) Co., LTD., Nanjing Branch, Nanjing, China (H.M.); and College of Pharmacy, Shenzhen Technology University, Shenzhen, China (H.L.)
| | - Mengdi Zhang
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy (Q.S., Y.G., F.H.), Departments of Pharmacology (W.H., S.W., Y.L., Z.Q.) and Medicinal Chemistry, School of Pharmacy (P.X., Z.L.), School of Basic Medical Sciences and Clinical Pharmacy (M.Z.), and National Experimental Teaching Demonstration Center of Pharmacy, School of Pharmacy (N.L.), China Pharmaceutical University, Nanjing, China; Shimadzu (China) Co., LTD., Nanjing Branch, Nanjing, China (H.M.); and College of Pharmacy, Shenzhen Technology University, Shenzhen, China (H.L.)
| | - Shijiao Wang
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy (Q.S., Y.G., F.H.), Departments of Pharmacology (W.H., S.W., Y.L., Z.Q.) and Medicinal Chemistry, School of Pharmacy (P.X., Z.L.), School of Basic Medical Sciences and Clinical Pharmacy (M.Z.), and National Experimental Teaching Demonstration Center of Pharmacy, School of Pharmacy (N.L.), China Pharmaceutical University, Nanjing, China; Shimadzu (China) Co., LTD., Nanjing Branch, Nanjing, China (H.M.); and College of Pharmacy, Shenzhen Technology University, Shenzhen, China (H.L.)
| | - Yuanyuan Lei
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy (Q.S., Y.G., F.H.), Departments of Pharmacology (W.H., S.W., Y.L., Z.Q.) and Medicinal Chemistry, School of Pharmacy (P.X., Z.L.), School of Basic Medical Sciences and Clinical Pharmacy (M.Z.), and National Experimental Teaching Demonstration Center of Pharmacy, School of Pharmacy (N.L.), China Pharmaceutical University, Nanjing, China; Shimadzu (China) Co., LTD., Nanjing Branch, Nanjing, China (H.M.); and College of Pharmacy, Shenzhen Technology University, Shenzhen, China (H.L.)
| | - Haitao Meng
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy (Q.S., Y.G., F.H.), Departments of Pharmacology (W.H., S.W., Y.L., Z.Q.) and Medicinal Chemistry, School of Pharmacy (P.X., Z.L.), School of Basic Medical Sciences and Clinical Pharmacy (M.Z.), and National Experimental Teaching Demonstration Center of Pharmacy, School of Pharmacy (N.L.), China Pharmaceutical University, Nanjing, China; Shimadzu (China) Co., LTD., Nanjing Branch, Nanjing, China (H.M.); and College of Pharmacy, Shenzhen Technology University, Shenzhen, China (H.L.)
| | - Ning Li
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy (Q.S., Y.G., F.H.), Departments of Pharmacology (W.H., S.W., Y.L., Z.Q.) and Medicinal Chemistry, School of Pharmacy (P.X., Z.L.), School of Basic Medical Sciences and Clinical Pharmacy (M.Z.), and National Experimental Teaching Demonstration Center of Pharmacy, School of Pharmacy (N.L.), China Pharmaceutical University, Nanjing, China; Shimadzu (China) Co., LTD., Nanjing Branch, Nanjing, China (H.M.); and College of Pharmacy, Shenzhen Technology University, Shenzhen, China (H.L.)
| | - Pengfei Xu
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy (Q.S., Y.G., F.H.), Departments of Pharmacology (W.H., S.W., Y.L., Z.Q.) and Medicinal Chemistry, School of Pharmacy (P.X., Z.L.), School of Basic Medical Sciences and Clinical Pharmacy (M.Z.), and National Experimental Teaching Demonstration Center of Pharmacy, School of Pharmacy (N.L.), China Pharmaceutical University, Nanjing, China; Shimadzu (China) Co., LTD., Nanjing Branch, Nanjing, China (H.M.); and College of Pharmacy, Shenzhen Technology University, Shenzhen, China (H.L.)
| | - Zhiyu Li
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy (Q.S., Y.G., F.H.), Departments of Pharmacology (W.H., S.W., Y.L., Z.Q.) and Medicinal Chemistry, School of Pharmacy (P.X., Z.L.), School of Basic Medical Sciences and Clinical Pharmacy (M.Z.), and National Experimental Teaching Demonstration Center of Pharmacy, School of Pharmacy (N.L.), China Pharmaceutical University, Nanjing, China; Shimadzu (China) Co., LTD., Nanjing Branch, Nanjing, China (H.M.); and College of Pharmacy, Shenzhen Technology University, Shenzhen, China (H.L.)
| | - Haishu Lin
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy (Q.S., Y.G., F.H.), Departments of Pharmacology (W.H., S.W., Y.L., Z.Q.) and Medicinal Chemistry, School of Pharmacy (P.X., Z.L.), School of Basic Medical Sciences and Clinical Pharmacy (M.Z.), and National Experimental Teaching Demonstration Center of Pharmacy, School of Pharmacy (N.L.), China Pharmaceutical University, Nanjing, China; Shimadzu (China) Co., LTD., Nanjing Branch, Nanjing, China (H.M.); and College of Pharmacy, Shenzhen Technology University, Shenzhen, China (H.L.)
| | - Fang Huang
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy (Q.S., Y.G., F.H.), Departments of Pharmacology (W.H., S.W., Y.L., Z.Q.) and Medicinal Chemistry, School of Pharmacy (P.X., Z.L.), School of Basic Medical Sciences and Clinical Pharmacy (M.Z.), and National Experimental Teaching Demonstration Center of Pharmacy, School of Pharmacy (N.L.), China Pharmaceutical University, Nanjing, China; Shimadzu (China) Co., LTD., Nanjing Branch, Nanjing, China (H.M.); and College of Pharmacy, Shenzhen Technology University, Shenzhen, China (H.L.)
| | - Zhixia Qiu
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy (Q.S., Y.G., F.H.), Departments of Pharmacology (W.H., S.W., Y.L., Z.Q.) and Medicinal Chemistry, School of Pharmacy (P.X., Z.L.), School of Basic Medical Sciences and Clinical Pharmacy (M.Z.), and National Experimental Teaching Demonstration Center of Pharmacy, School of Pharmacy (N.L.), China Pharmaceutical University, Nanjing, China; Shimadzu (China) Co., LTD., Nanjing Branch, Nanjing, China (H.M.); and College of Pharmacy, Shenzhen Technology University, Shenzhen, China (H.L.)
| |
Collapse
|
16
|
Icard P, Simula L, Zahn G, Alifano M, Mycielska ME. The dual role of citrate in cancer. Biochim Biophys Acta Rev Cancer 2023; 1878:188987. [PMID: 37717858 DOI: 10.1016/j.bbcan.2023.188987] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/04/2023] [Accepted: 09/07/2023] [Indexed: 09/19/2023]
Abstract
Citrate is a key metabolite of the Krebs cycle that can also be exported in the cytosol, where it performs several functions. In normal cells, citrate sustains protein acetylation, lipid synthesis, gluconeogenesis, insulin secretion, bone tissues formation, spermatozoid mobility, and immune response. Dysregulation of citrate metabolism is implicated in several pathologies, including cancer. Here we discuss how cancer cells use citrate to sustain their proliferation, survival, and metastatic progression. Also, we propose two paradoxically opposite strategies to reduce tumour growth by targeting citrate metabolism in preclinical models. In the first strategy, we propose to administer in the tumor microenvironment a high amount of citrate, which can then act as a glycolysis inhibitor and apoptosis inducer, whereas the other strategy targets citrate transporters to starve cancer cells from citrate. These strategies, effective in several preclinical in vitro and in vivo cancer models, could be exploited in clinics, particularly to increase sensibility to current anti-cancer agents.
Collapse
Affiliation(s)
- Philippe Icard
- Normandie Univ, UNICAEN, INSERM U1086 Interdisciplinary Research Unit for Cancer Prevention and Treatment, Caen, France; Service of Thoracic Surgery, Cochin Hospital, AP-, HP, 75014, Paris, France.
| | - Luca Simula
- Cochin Institute, INSERM U1016, CNRS UMR8104, University of Paris-Cité, Paris 75014, France
| | | | - Marco Alifano
- Service of Thoracic Surgery, Cochin Hospital, AP-, HP, 75014, Paris, France; INSERM U1138, Integrative Cancer Immunology, University of Paris, 75006 Paris, France
| | - Maria E Mycielska
- Department of Structural Biology, Institute of Biophysics and Physical Biochemistry, University of Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
17
|
François CM, Pihl T, Dunoyer de Segonzac M, Hérault C, Hudry B. Metabolic regulation of proteome stability via N-terminal acetylation controls male germline stem cell differentiation and reproduction. Nat Commun 2023; 14:6737. [PMID: 37872135 PMCID: PMC10593830 DOI: 10.1038/s41467-023-42496-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 10/12/2023] [Indexed: 10/25/2023] Open
Abstract
The molecular mechanisms connecting cellular metabolism with differentiation remain poorly understood. Here, we find that metabolic signals contribute to stem cell differentiation and germline homeostasis during Drosophila melanogaster spermatogenesis. We discovered that external citrate, originating outside the gonad, fuels the production of Acetyl-coenzyme A by germline ATP-citrate lyase (dACLY). We show that this pathway is essential during the final spermatogenic stages, where a high Acetyl-coenzyme A level promotes NatB-dependent N-terminal protein acetylation. Using genetic and biochemical experiments, we establish that N-terminal acetylation shields key target proteins, essential for spermatid differentiation, from proteasomal degradation by the ubiquitin ligase dUBR1. Our work uncovers crosstalk between metabolism and proteome stability that is mediated via protein post-translational modification. We propose that this system coordinates the metabolic state of the organism with gamete production. More broadly, modulation of proteome turnover by circulating metabolites may be a conserved regulatory mechanism to control cell functions.
Collapse
Affiliation(s)
- Charlotte M François
- Université Côte d'Azur, CNRS, Inserm, Institut de Biologie Valrose, Nice, 06108, France
| | - Thomas Pihl
- Université Côte d'Azur, CNRS, Inserm, Institut de Biologie Valrose, Nice, 06108, France
| | | | - Chloé Hérault
- Université Côte d'Azur, CNRS, Inserm, Institut de Biologie Valrose, Nice, 06108, France
| | - Bruno Hudry
- Université Côte d'Azur, CNRS, Inserm, Institut de Biologie Valrose, Nice, 06108, France.
| |
Collapse
|
18
|
Mapping the Metabolic Niche of Citrate Metabolism and SLC13A5. Metabolites 2023; 13:metabo13030331. [PMID: 36984771 PMCID: PMC10054676 DOI: 10.3390/metabo13030331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/17/2023] [Accepted: 02/20/2023] [Indexed: 02/26/2023] Open
Abstract
The small molecule citrate is a key molecule that is synthesized de novo and involved in diverse biochemical pathways influencing cell metabolism and function. Citrate is highly abundant in the circulation, and cells take up extracellular citrate via the sodium-dependent plasma membrane transporter NaCT encoded by the SLC13A5 gene. Citrate is critical to maintaining metabolic homeostasis and impaired NaCT activity is implicated in metabolic disorders. Though citrate is one of the best known and most studied metabolites in humans, little is known about the consequences of altered citrate uptake and metabolism. Here, we review recent findings on SLC13A5, NaCT, and citrate metabolism and discuss the effects on metabolic homeostasis and SLC13A5-dependent phenotypes. We discuss the “multiple-hit theory” and how stress factors induce metabolic reprogramming that may synergize with impaired NaCT activity to alter cell fate and function. Furthermore, we underline how citrate metabolism and compartmentalization can be quantified by combining mass spectrometry and tracing approaches. We also discuss species-specific differences and potential therapeutic implications of SLC13A5 and NaCT. Understanding the synergistic impact of multiple stress factors on citrate metabolism may help to decipher the disease mechanisms associated with SLC13A5 citrate transport disorders.
Collapse
|
19
|
Dirckx N, Zhang Q, Chu EY, Tower RJ, Li Z, Guo S, Yuan S, Khare PA, Zhang C, Verardo A, Alejandro LO, Park A, Faugere MC, Helfand SL, Somerman MJ, Riddle RC, de Cabo R, Le A, Schmidt-Rohr K, Clemens TL. A specialized metabolic pathway partitions citrate in hydroxyapatite to impact mineralization of bones and teeth. Proc Natl Acad Sci U S A 2022; 119:e2212178119. [PMID: 36322718 PMCID: PMC9659386 DOI: 10.1073/pnas.2212178119] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/17/2022] [Indexed: 11/06/2022] Open
Abstract
Citrate is a critical metabolic substrate and key regulator of energy metabolism in mammalian cells. It has been known for decades that the skeleton contains most (>85%) of the body's citrate, but the question of why and how this metabolite should be partitioned in bone has received singularly little attention. Here, we show that osteoblasts use a specialized metabolic pathway to regulate uptake, endogenous production, and the deposition of citrate into bone. Osteoblasts express high levels of the membranous Na+-dependent citrate transporter solute carrier family 13 member 5 (Slc13a5) gene. Inhibition or genetic disruption of Slc13a5 reduced osteogenic citrate uptake and disrupted mineral nodule formation. Bones from mice lacking Slc13a5 globally, or selectively in osteoblasts, showed equivalent reductions in cortical thickness, with similarly compromised mechanical strength. Surprisingly, citrate content in mineral from Slc13a5-/- osteoblasts was increased fourfold relative to controls, suggesting the engagement of compensatory mechanisms to augment endogenous citrate production. Indeed, through the coordinated functioning of the apical membrane citrate transporter SLC13A5 and a mitochondrial zinc transporter protein (ZIP1; encoded by Slc39a1), a mediator of citrate efflux from the tricarboxylic acid cycle, SLC13A5 mediates citrate entry from blood and its activity exerts homeostatic control of cytoplasmic citrate. Intriguingly, Slc13a5-deficient mice also exhibited defective tooth enamel and dentin formation, a clinical feature, which we show is recapitulated in primary teeth from children with SLC13A5 mutations. Together, our results reveal the components of an osteoblast metabolic pathway, which affects bone strength by regulating citrate deposition into mineral hydroxyapatite.
Collapse
Affiliation(s)
- Naomi Dirckx
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Qian Zhang
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Emily Y. Chu
- Department of General Dentistry, Operative Division, University of Maryland School of Dentistry, Baltimore, MD 21201
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, MD 20892
| | - Robert J. Tower
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Zhu Li
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Shenghao Guo
- Department of Biomedical Engineering, Johns Hopkins University Whiting School of Engineering, Baltimore, MD 21218
| | - Shichen Yuan
- Department of Chemistry, Brandeis University, Waltham, MA 02453
| | - Pratik A. Khare
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218
| | - Cissy Zhang
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21287
| | - Angela Verardo
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Lucy O. Alejandro
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, MD 20892
| | - Angelina Park
- Department of General Dentistry, Operative Division, University of Maryland School of Dentistry, Baltimore, MD 21201
| | | | - Stephen L. Helfand
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02906
| | - Martha J. Somerman
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, MD 20892
| | - Ryan C. Riddle
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD 21201
- Research and Development Service, The Baltimore Veterans Administration Medical Center, Baltimore, MD 21201
| | - Rafael de Cabo
- Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD 21224
| | - Anne Le
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21231
| | | | - Thomas L. Clemens
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD 21201
- Research and Development Service, The Baltimore Veterans Administration Medical Center, Baltimore, MD 21201
| |
Collapse
|
20
|
Zhang X, Shi L, Li Q, Song C, Han N, Yan T, Zhang L, Ren D, Zhao Y, Yang X. Caloric Restriction, Friend or Foe: Effects on Metabolic Status in Association with the Intestinal Microbiome and Metabolome. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:14061-14072. [PMID: 36263977 DOI: 10.1021/acs.jafc.2c06162] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Daily calorie restriction (CR) has shown benefits on weight loss and alleviation of metabolic disorders. We investigated the effects of three CR regimens, i.e., 20% (CR-20), 40% (CR-40), and 60% (CR-60) less than the average daily calorie intake, respectively, on the metabolic parameters, gut microbiome composition, and its related metabolites in healthy mice. Compared with mice fed ad libitum (AL), CR dose-dependently reduced the body weight, and weights of liver and epididymal adipose tissues, and enhanced the insulin sensitivity, glucose tolerance, and lipid homeostasis. Moreover, expression levels of intestinal tight junction proteins (i.e., ZO-1, claudin, and occludin) were significantly promoted by CR than those of AL mice, demonstrating the CR-induced improvement of the intestinal barrier integrity. CR contributed to the enrichment of beneficial microbiota (e.g., Lactobacillus, Bacteroides, and Akkermansia) and increased propionic acid levels. Notably, CR-60 deleteriously caused liver injury, and enhanced hepatic inflammatory cytokines (i.e., IL-1, IL-6, and TNF-α) and lipopolysaccharides, which were accompanied by high levels of trimethylamine (TMA) and trimethylamine oxide (TMAO) in relation to CR-60-altered gut microbiota structure and fecal metabolome. Additionally, we found differential impacts of CR-20, -40, or -60 on amino acid absorption and metabolism. Our findings support the health-promoting benefits of 60-80% daily calorie intake on the metabolic status by regulating the gut microbiota in healthy mice. However, excessive CR caused liver injury and gut microbiota-dependent elevation of TMAO. The differential effects of CR regimens on the intestinal microbiome and fecal metabolome provide novel insights into the dietary pattern-gut microbiome interactions linked with host metabolism.
Collapse
Affiliation(s)
- Xiangnan Zhang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Lin Shi
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Qiannan Li
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Chaofan Song
- Key Laboratory of Ministry of Education for Medicinal Resource and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Ning Han
- Key Laboratory of Ministry of Education for Medicinal Resource and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Tao Yan
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Liansheng Zhang
- Key Laboratory of Ministry of Education for Medicinal Resource and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Daoyuan Ren
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Yan Zhao
- Key Laboratory of Ministry of Education for Medicinal Resource and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Xingbin Yang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| |
Collapse
|
21
|
Goodspeed K, Liu JS, Nye KL, Prasad S, Sadhu C, Tavakkoli F, Bilder DA, Minassian BA, Bailey RM. SLC13A5 Deficiency Disorder: From Genetics to Gene Therapy. Genes (Basel) 2022; 13:1655. [PMID: 36140822 PMCID: PMC9498415 DOI: 10.3390/genes13091655] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/05/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022] Open
Abstract
Epileptic encephalopathies may arise from single gene variants. In recent years, next-generation sequencing technologies have enabled an explosion of gene identification in monogenic epilepsies. One such example is the epileptic encephalopathy SLC13A5 deficiency disorder, which is caused by loss of function pathogenic variants to the gene SLC13A5 that results in deficiency of the sodium/citrate cotransporter. Patients typically experience seizure onset within the first week of life and have developmental delay and intellectual disability. Current antiseizure medications may reduce seizure frequency, yet more targeted treatments are needed to address the epileptic and non-epileptic features of SLC13A5 deficiency disorder. Gene therapy may offer hope to these patients and better clinical outcomes than current available treatments. Here, we discuss SLC13A5 genetics, natural history, available treatments, potential outcomes and assessments, and considerations for translational medical research for an AAV9-based gene replacement therapy.
Collapse
Affiliation(s)
- Kimberly Goodspeed
- Division of Child Neurology, Department of Pediatrics, University of Texas Southwestern, Dallas, TX 75390, USA
| | - Judy S. Liu
- Warren Alpert School of Medicine, Brown University, Providence, RI 02903, USA
| | | | - Suyash Prasad
- Department of Research & Development, Taysha Gene Therapies, Dallas, TX 75247, USA
| | - Chanchal Sadhu
- Department of Research & Development, Taysha Gene Therapies, Dallas, TX 75247, USA
| | - Fatemeh Tavakkoli
- Department of Research & Development, Taysha Gene Therapies, Dallas, TX 75247, USA
| | - Deborah A. Bilder
- Division of Child & Adolescent Psychiatry, Department of Psychiatry, University of Utah, Salt Lake City, UT 84108, USA
| | - Berge A. Minassian
- Division of Child Neurology, Department of Pediatrics, University of Texas Southwestern, Dallas, TX 75390, USA
| | - Rachel M. Bailey
- Division of Child Neurology, Department of Pediatrics, University of Texas Southwestern, Dallas, TX 75390, USA
- Center for Alzheimer’s and Neurodegenerative Diseases, University of Texas Southwestern, Dallas, TX 75390, USA
| |
Collapse
|
22
|
A Novel and Cross-Species Active Mammalian INDY (NaCT) Inhibitor Ameliorates Hepatic Steatosis in Mice with Diet-Induced Obesity. Metabolites 2022; 12:metabo12080732. [PMID: 36005604 PMCID: PMC9413491 DOI: 10.3390/metabo12080732] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/31/2022] [Accepted: 08/02/2022] [Indexed: 11/25/2022] Open
Abstract
Mammalian INDY (mINDY, NaCT, gene symbol SLC13A5) is a potential target for the treatment of metabolically associated fatty liver disease (MAFLD). This study evaluated the effects of a selective, cross-species active, non-competitive, non-substrate-like inhibitor of NaCT. First, the small molecule inhibitor ETG-5773 was evaluated for citrate and succinate uptake and fatty acid synthesis in cell lines expressing both human NaCT and mouse Nact. Once its suitability was established, the inhibitor was evaluated in a diet-induced obesity (DIO) mouse model. DIO mice treated with 15 mg/kg compound ETG-5773 twice daily for 28 days had reduced body weight, fasting blood glucose, and insulin, and improved glucose tolerance. Liver triglycerides were significantly reduced, and body composition was improved by reducing fat mass, supported by a significant reduction in the expression of genes for lipogenesis such as SREBF1 and SCD1. Most of these effects were also evident after a seven-day treatment with the same dose. Further mechanistic investigation in the seven-day study showed increased plasma β-hydroxybutyrate and activated hepatic adenosine monophosphate-activated protein kinase (AMPK), reflecting findings from Indy (−/−) knockout mice. These results suggest that the inhibitor ETG-5773 blocked citrate uptake mediated by mouse and human NaCT to reduce liver steatosis and body fat and improve glucose regulation, proving the concept of NaCT inhibition as a future liver treatment for MAFLD.
Collapse
|
23
|
Mishra D, Kannan K, Meadows K, Macro J, Li M, Frankel S, Rogina B. INDY-From Flies to Worms, Mice, Rats, Non-Human Primates, and Humans. FRONTIERS IN AGING 2022; 2:782162. [PMID: 35822025 PMCID: PMC9261455 DOI: 10.3389/fragi.2021.782162] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 11/24/2021] [Indexed: 01/17/2023]
Abstract
I’m Not Dead Yet (Indy) is a fly homologue of the mammalian SLC13A5 (mSLC13A5) plasma membrane citrate transporter, a key metabolic regulator and energy sensor involved in health, longevity, and disease. Reduction of Indy gene activity in flies, and its homologs in worms, modulates metabolism and extends longevity. The metabolic changes are similar to what is obtained with caloric restriction (dietary restriction). Similar effects on metabolism have been observed in mice and rats. As a citrate transporter, INDY regulates cytoplasmic citrate levels. Indy flies heterozygous for a P-element insertion have increased spontaneous physical activity, increased fecundity, reduced insulin signaling, increased mitochondrial biogenesis, preserved intestinal stem cell homeostasis, lower lipid levels, and increased stress resistance. Mammalian Indy knockout (mIndy-KO) mice have higher sensitivity to insulin signaling, lower blood pressure and heart rate, preserved memory and are protected from the negative effects of a high-fat diet and some of the negative effects of aging. Reducing mIndy expression in human hepatocarcinoma cells has recently been shown to inhibit cell proliferation. Reduced Indy expression in the fly intestine affects intestinal stem cell proliferation, and has recently been shown to also inhibit germ cell proliferation in males with delayed sperm maturation and decreased spermatocyte numbers. These results highlight a new connection between energy metabolism and cell proliferation. The overrall picture in a variety of species points to a conserved role of INDY for metabolism and health. This is illustrated by an association of high mIndy gene expression with non-alcoholic fatty liver disease in obese humans. mIndy (mSLC13A5) coding region mutations (e.g., loss-of-function) are also associated with adverse effects in humans, such as autosomal recessive early infantile epileptic encephalopathy and Kohlschütter−Tönz syndrome. The recent findings illustrate the importance of mIndy gene for human health and disease. Furthermore, recent work on small-molecule regulators of INDY highlights the promise of INDY-based treatments for ameliorating disease and promoting healthy aging.
Collapse
Affiliation(s)
- Dushyant Mishra
- Department of Genetics and Genome Sciences, School of Medicine, University of Connecticut Health Center, Farmington, CT, United States
| | - Kavitha Kannan
- Department of Genetics and Genome Sciences, School of Medicine, University of Connecticut Health Center, Farmington, CT, United States
| | - Kali Meadows
- Department of Genetics and Genome Sciences, School of Medicine, University of Connecticut Health Center, Farmington, CT, United States
| | - Jacob Macro
- Department of Genetics and Genome Sciences, School of Medicine, University of Connecticut Health Center, Farmington, CT, United States
| | - Michael Li
- Department of Genetics and Genome Sciences, School of Medicine, University of Connecticut Health Center, Farmington, CT, United States
| | - Stewart Frankel
- Department of Biology, University of Hartford, West Hartford, CT, United States
| | - Blanka Rogina
- Department of Genetics and Genome Sciences, School of Medicine, University of Connecticut Health Center, Farmington, CT, United States.,Institute for Systems Genomics, School of Medicine, University of Connecticut Health Center, Farmington, CT, United States
| |
Collapse
|
24
|
Ramanathan R, Ali AH, Ibdah JA. Mitochondrial Dysfunction Plays Central Role in Nonalcoholic Fatty Liver Disease. Int J Mol Sci 2022; 23:ijms23137280. [PMID: 35806284 PMCID: PMC9267060 DOI: 10.3390/ijms23137280] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 06/27/2022] [Accepted: 06/29/2022] [Indexed: 12/04/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a global pandemic that affects one-quarter of the world’s population. NAFLD includes a spectrum of progressive liver disease from steatosis to nonalcoholic steatohepatitis (NASH), fibrosis, and cirrhosis and can be complicated by hepatocellular carcinoma. It is strongly associated with metabolic syndromes, obesity, and type 2 diabetes, and it has been shown that metabolic dysregulation is central to its pathogenesis. Recently, it has been suggested that metabolic- (dysfunction) associated fatty liver disease (MAFLD) is a more appropriate term to describe the disease than NAFLD, which puts increased emphasis on the important role of metabolic dysfunction in its pathogenesis. There is strong evidence that mitochondrial dysfunction plays a significant role in the development and progression of NAFLD. Impaired mitochondrial fatty acid oxidation and, more recently, a reduction in mitochondrial quality, have been suggested to play a major role in NAFLD development and progression. In this review, we provide an overview of our current understanding of NAFLD and highlight how mitochondrial dysfunction contributes to its pathogenesis in both animal models and human subjects. Further we discuss evidence that the modification of mitochondrial function modulates NAFLD and that targeting mitochondria is a promising new avenue for drug development to treat NAFLD/NASH.
Collapse
Affiliation(s)
- Raghu Ramanathan
- Division of Gastroenterology and Hepatology, University of Missouri, Columbia, MO 65212, USA; (R.R.); (A.H.A.)
- Harry S. Truman Memorial Veterans Medical Center, Columbia, MO 65201, USA
| | - Ahmad Hassan Ali
- Division of Gastroenterology and Hepatology, University of Missouri, Columbia, MO 65212, USA; (R.R.); (A.H.A.)
- Harry S. Truman Memorial Veterans Medical Center, Columbia, MO 65201, USA
| | - Jamal A. Ibdah
- Division of Gastroenterology and Hepatology, University of Missouri, Columbia, MO 65212, USA; (R.R.); (A.H.A.)
- Harry S. Truman Memorial Veterans Medical Center, Columbia, MO 65201, USA
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO 65212, USA
- Correspondence: ; Tel.: +573-882-7349; Fax: +573-884-4595
| |
Collapse
|
25
|
Goodspeed K, Bailey RM, Prasad S, Sadhu C, Cardenas JA, Holmay M, Bilder DA, Minassian BA. Gene Therapy: Novel Approaches to Targeting Monogenic Epilepsies. Front Neurol 2022; 13:805007. [PMID: 35847198 PMCID: PMC9284605 DOI: 10.3389/fneur.2022.805007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 04/20/2022] [Indexed: 11/18/2022] Open
Abstract
Genetic epilepsies are a spectrum of disorders characterized by spontaneous and recurrent seizures that can arise from an array of inherited or de novo genetic variants and disrupt normal brain development or neuronal connectivity and function. Genetically determined epilepsies, many of which are due to monogenic pathogenic variants, can result in early mortality and may present in isolation or be accompanied by neurodevelopmental disability. Despite the availability of more than 20 antiseizure medications, many patients with epilepsy fail to achieve seizure control with current therapies. Patients with refractory epilepsy—particularly of childhood onset—experience increased risk for severe disability and premature death. Further, available medications inadequately address the comorbid developmental disability. The advent of next-generation gene sequencing has uncovered genetic etiologies and revolutionized diagnostic practices for many epilepsies. Advances in the field of gene therapy also present the opportunity to address the underlying mechanism of monogenic epilepsies, many of which have only recently been described due to advances in precision medicine and biology. To bring precision medicine and genetic therapies closer to clinical applications, experimental animal models are needed that replicate human disease and reflect the complexities of these disorders. Additionally, identifying and characterizing clinical phenotypes, natural disease course, and meaningful outcome measures from epileptic and neurodevelopmental perspectives are necessary to evaluate therapies in clinical studies. Here, we discuss the range of genetically determined epilepsies, the existing challenges to effective clinical management, and the potential role gene therapy may play in transforming treatment options available for these conditions.
Collapse
Affiliation(s)
- Kimberly Goodspeed
- Division of Child Neurology, Department of Pediatrics, University of Texas Southwestern, Dallas, TX, United States
| | - Rachel M. Bailey
- Division of Child Neurology, Department of Pediatrics, University of Texas Southwestern, Dallas, TX, United States
- Center for Alzheimer's and Neurodegenerative Diseases, University of Texas Southwestern, Dallas, TX, United States
| | - Suyash Prasad
- Department of Research and Development, Taysha Gene Therapies, Dallas, TX, United States
| | - Chanchal Sadhu
- Department of Research and Development, Taysha Gene Therapies, Dallas, TX, United States
| | - Jessica A. Cardenas
- Department of Research and Development, Taysha Gene Therapies, Dallas, TX, United States
| | - Mary Holmay
- Department of Research and Development, Taysha Gene Therapies, Dallas, TX, United States
| | - Deborah A. Bilder
- Division of Child and Adolescent Psychiatry, Department of Psychiatry, Huntsman Mental Health Institute, University of Utah, Salt Lake City, UT, United States
| | - Berge A. Minassian
- Division of Child Neurology, Department of Pediatrics, University of Texas Southwestern, Dallas, TX, United States
- *Correspondence: Berge A. Minassian
| |
Collapse
|
26
|
Lin WS, Wang PY. Janus-faced citrate in aging and metabolism. Aging (Albany NY) 2022; 14:4929-4930. [PMID: 35714976 PMCID: PMC9271304 DOI: 10.18632/aging.204138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 06/09/2022] [Indexed: 11/25/2022]
Affiliation(s)
- Wei-Sheng Lin
- Department of Pediatrics, Taipei Veterans General Hospital, Taipei, Taiwan.,School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Pei-Yu Wang
- Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
27
|
Transcriptome Sequencing Analysis Reveals Dynamic Changes in Major Biological Functions during the Early Development of Clearhead Icefish, Protosalanx chinensis. FISHES 2022. [DOI: 10.3390/fishes7030115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Early development, when many important developmental events occur, is a critical period for fish. However, research on the early development of clearhead icefish is very limited, especially in molecular research. In this study, we aimed to explore the dynamic changes in the biological functions of five key periods in clearhead icefish early development, namely the YL (embryonic), PM (first day after hatching), KK (fourth day after hatching), LC (seventh day after hatching), and SL (tenth day after hatching) stages, through transcriptome sequencing and different analysis strategies. A trend expression analysis and an enrichment analysis revealed that the expression ofgenes encoding G protein-coupled receptors and their ligands, i.e., prss1_2_3, pomc, npy, npb, sst, rln3, crh, gh, and prl that are associated with digestion and feeding regulation gradually increased during early development. In addition, a weighted gene co-expression network analysis (WGCNA) showed that eleven modules were significantly associated with early development, among which nine modules were significantly positively correlated. Through the enrichment analysis and hub gene identification results of these nine modules, it was found that the pathways related to eye, bone, and heart development were significantly enriched in the YL stage, and the ccnd2, seh1l, kdm6a, arf4, and ankrd28 genes that are associated with cell proliferation and differentiation played important roles in these developmental processes; the pak3, dlx3, dgat2, and tas1r1 genes that are associated with jaw and tooth development, TG (triacylglycerol) synthesis, and umami amino acid receptors were identified as hub genes for the PM stage; the pathways associated with aerobic metabolism and unsaturated fatty acid synthesis were significantly enriched in the KK stage, with the foxk, slc13a2_3_5, ndufa5, and lsc2 genes playing important roles; the pathways related to visual perception were significantly enriched in the LC stage; and the bile acid biosynthetic and serine-type peptidase activity pathways were significantly enriched in the SL stage. These results provide a more detailed understanding of the processes of early development of clearhead icefish.
Collapse
|
28
|
Sauer DB, Marden JJ, Sudar JC, Song J, Mulligan C, Wang DN. Structural basis of ion - substrate coupling in the Na +-dependent dicarboxylate transporter VcINDY. Nat Commun 2022; 13:2644. [PMID: 35551191 PMCID: PMC9098524 DOI: 10.1038/s41467-022-30406-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 04/28/2022] [Indexed: 11/21/2022] Open
Abstract
The Na+-dependent dicarboxylate transporter from Vibrio cholerae (VcINDY) is a prototype for the divalent anion sodium symporter (DASS) family. While the utilization of an electrochemical Na+ gradient to power substrate transport is well established for VcINDY, the structural basis of this coupling between sodium and substrate binding is not currently understood. Here, using a combination of cryo-EM structure determination, succinate binding and site-directed cysteine alkylation assays, we demonstrate that the VcINDY protein couples sodium- and substrate-binding via a previously unseen cooperative mechanism by conformational selection. In the absence of sodium, substrate binding is abolished, with the succinate binding regions exhibiting increased flexibility, including HPinb, TM10b and the substrate clamshell motifs. Upon sodium binding, these regions become structurally ordered and create a proper binding site for the substrate. Taken together, these results provide strong evidence that VcINDY's conformational selection mechanism is a result of the sodium-dependent formation of the substrate binding site.
Collapse
Affiliation(s)
- David B Sauer
- Department of Cell Biology, New York University School of Medicine, New York, NY, 10016, USA
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY, 10016, USA
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Jennifer J Marden
- Department of Cell Biology, New York University School of Medicine, New York, NY, 10016, USA
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY, 10016, USA
| | - Joseph C Sudar
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY, 10016, USA
| | - Jinmei Song
- Department of Cell Biology, New York University School of Medicine, New York, NY, 10016, USA
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY, 10016, USA
| | | | - Da-Neng Wang
- Department of Cell Biology, New York University School of Medicine, New York, NY, 10016, USA.
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY, 10016, USA.
| |
Collapse
|
29
|
Lambros M, Tran T(H, Fei Q, Nicolaou M. Citric Acid: A Multifunctional Pharmaceutical Excipient. Pharmaceutics 2022; 14:972. [PMID: 35631557 PMCID: PMC9148065 DOI: 10.3390/pharmaceutics14050972] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/15/2022] [Accepted: 04/23/2022] [Indexed: 02/04/2023] Open
Abstract
Citric acid, a tricarboxylic acid, has found wide application in the chemical and pharmaceutical industry due to its biocompatibility, versatility, and green, environmentally friendly chemistry. This review emphasizes the pharmaceutical uses of citric acid as a strategic ingredient in drug formulation while focusing on the impact of its physicochemical properties. The functionality of citric acid is due to its three carboxylic groups and one hydroxyl group. These allow it to be used in many ways, including its ability to be used as a crosslinker to form biodegradable polymers and as a co-former in co-amorphous and co-crystal applications. This paper also analyzes the effect of citric acid in physiological processes and how this effect can be used to enhance the attributes of pharmaceutical preparations, as well as providing a critical discussion on the issues that may arise out of the presence of citric acid in formulations.
Collapse
Affiliation(s)
- Maria Lambros
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, 309 E Second Street, Pomona, CA 91766, USA; (T.T.); (Q.F.)
| | - Thac (Henry) Tran
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, 309 E Second Street, Pomona, CA 91766, USA; (T.T.); (Q.F.)
| | - Qinqin Fei
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, 309 E Second Street, Pomona, CA 91766, USA; (T.T.); (Q.F.)
| | - Mike Nicolaou
- Doric Pharma LLC, 5270 California Ave, Suite 300, Irvine, CA 92617, USA;
| |
Collapse
|
30
|
Milosavljevic S, Glinton KE, Li X, Medeiros C, Gillespie P, Seavitt JR, Graham BH, Elsea SH. Untargeted Metabolomics of Slc13a5 Deficiency Reveal Critical Liver-Brain Axis for Lipid Homeostasis. Metabolites 2022; 12:metabo12040351. [PMID: 35448538 PMCID: PMC9032242 DOI: 10.3390/metabo12040351] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/29/2022] [Accepted: 04/03/2022] [Indexed: 01/17/2023] Open
Abstract
Though biallelic variants in SLC13A5 are known to cause severe encephalopathy, the mechanism of this disease is poorly understood. SLC13A5 protein deficiency reduces citrate transport into the cell. Downstream abnormalities in fatty acid synthesis and energy generation have been described, though biochemical signs of these perturbations are inconsistent across SLC13A5 deficiency patients. To investigate SLC13A5-related disorders, we performed untargeted metabolic analyses on the liver, brain, and serum from a Slc13a5-deficient mouse model. Metabolomic data were analyzed using the connect-the-dots (CTD) methodology and were compared to plasma and CSF metabolomics from SLC13A5-deficient patients. Mice homozygous for the Slc13a5tm1b/tm1b null allele had perturbations in fatty acids, bile acids, and energy metabolites in all tissues examined. Further analyses demonstrated that for several of these molecules, the ratio of their relative tissue concentrations differed widely in the knockout mouse, suggesting that deficiency of Slc13a5 impacts the biosynthesis and flux of metabolites between tissues. Similar findings were observed in patient biofluids, indicating altered transport and/or flux of molecules involved in energy, fatty acid, nucleotide, and bile acid metabolism. Deficiency of SLC13A5 likely causes a broader state of metabolic dysregulation than previously recognized, particularly regarding lipid synthesis, storage, and metabolism, supporting SLC13A5 deficiency as a lipid disorder.
Collapse
Affiliation(s)
- Sofia Milosavljevic
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; (S.M.); (K.E.G.); (X.L.); (J.R.S.)
- Harvard Medical School, Boston, MA 02215, USA
| | - Kevin E. Glinton
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; (S.M.); (K.E.G.); (X.L.); (J.R.S.)
| | - Xiqi Li
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; (S.M.); (K.E.G.); (X.L.); (J.R.S.)
| | - Cláudia Medeiros
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (C.M.); (P.G.); (B.H.G.)
| | - Patrick Gillespie
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (C.M.); (P.G.); (B.H.G.)
| | - John R. Seavitt
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; (S.M.); (K.E.G.); (X.L.); (J.R.S.)
| | - Brett H. Graham
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (C.M.); (P.G.); (B.H.G.)
| | - Sarah H. Elsea
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; (S.M.); (K.E.G.); (X.L.); (J.R.S.)
- Correspondence: ; Tel.: +1-713-798-5484
| |
Collapse
|
31
|
Parkinson EK, Prime SS. Oral Senescence: From Molecular Biology to Clinical Research. FRONTIERS IN DENTAL MEDICINE 2022. [DOI: 10.3389/fdmed.2022.822397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cellular senescence is an irreversible cell cycle arrest occurring following multiple rounds of cell division (replicative senescence) or in response to cellular stresses such as ionizing radiation, signaling imbalances and oxidative damage (stress-induced premature senescence). Even very small numbers of senescent cells can be deleterious and there is evidence that senescent cells are instrumental in a number of oral pathologies including cancer, oral sub mucous fibrosis and the side effects of cancer therapy. In addition, senescent cells are present and possibly important in periodontal disease and other chronic inflammatory conditions of the oral cavity. However, senescence is a double-edged sword because although it operates as a suppressor of malignancy in pre-malignant epithelia, senescent cells in the neoplastic environment promote tumor growth and progression. Many of the effects of senescent cells are dependent on the secretion of an array of diverse therapeutically targetable proteins known as the senescence-associated secretory phenotype. However, as senescence may have beneficial roles in wound repair, preventing fibrosis and stem cell activation the clinical exploitation of senescent cells is not straightforward. Here, we discuss biological mechanisms of senescence and we review the current approaches to target senescent cells therapeutically, including senostatics and senolytics which are entering clinical trials.
Collapse
|
32
|
Zhang L, Tan C, Xin Z, Huang S, Ma J, Zhang M, Shu G, Luo H, Deng B, Jiang Q, Deng J. UPLC-Orbitrap-MS/MS Combined With Biochemical Analysis to Determine the Growth and Development of Mothers and Fetuses in Different Gestation Periods on Tibetan Sow Model. Front Nutr 2022; 9:836938. [PMID: 35425793 PMCID: PMC9001880 DOI: 10.3389/fnut.2022.836938] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/16/2022] [Indexed: 11/24/2022] Open
Abstract
Pregnancy is a complex and dynamic process, the physiological and metabolite changes of the mother are affected by different pregnancy stages, but little information is available about their changes and potential mechanisms during pregnancy, especially in blood and amniotic fluid. Here, the maternal metabolism rules at different pregnancy stages were investigated by using a Tibetan sow model to analyze the physiological hormones and nutrient metabolism characteristics of maternal serum and amniotic fluid as well as their correlations with each other. Our results showed that amniotic fluid had a decrease (P < 0.05) in the concentrations of glucose, insulin and hepatocyte growth factor as pregnancy progressed, while maternal serum exhibited the highest concentrations of glucose and insulin at 75 days of gestation (P < 0.05), and a significant positive correlation (P < 0.05) between insulin and citric acid. Additionally, T4 and cortisol had the highest levels during late gestation (P < 0.05). Furthermore, metabolomics analysis revealed significant enrichment in the citrate cycle pathway and the phenylalanine/tyrosine/tryptophan biosynthesis pathway (P < 0.05) with the progress of gestation. This study clarified the adaptive changes of glucose, insulin and citric acid in Tibetan sows during pregnancy as well as the influence of aromatic amino acids, hepatocyte growth factor, cortisol and other physiological indicators on fetal growth and development, providing new clues for the normal development of the mother and the fetus, which may become a promising target for improving the well-being of pregnancy.
Collapse
Affiliation(s)
- Longmiao Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Chengquan Tan
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Zhongquan Xin
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Shuangbo Huang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Junwu Ma
- State Key Laboratory of Pig Genetic Improvement and Production Technology, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Meiyu Zhang
- College of Animal Science and Technology, Guangdong Polytechnic of Science and Trade, Guangzhou, China
| | - Gang Shu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Hefeng Luo
- Dekon Food and Agriculture Group, Chengdu, China
| | - Baichuan Deng
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China
- *Correspondence: Baichuan Deng,
| | - Qingyan Jiang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China
- Qingyan Jiang,
| | - Jinping Deng
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China
- Jinping Deng,
| |
Collapse
|
33
|
Metabolic Alterations in Cellular Senescence: The Role of Citrate in Ageing and Age-Related Disease. Int J Mol Sci 2022; 23:ijms23073652. [PMID: 35409012 PMCID: PMC8998297 DOI: 10.3390/ijms23073652] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 03/18/2022] [Accepted: 03/23/2022] [Indexed: 01/27/2023] Open
Abstract
Recent mouse model experiments support an instrumental role for senescent cells in age-related diseases and senescent cells may be causal to certain age-related pathologies. A strongly supported hypothesis is that extranuclear chromatin is recognized by the cyclic GMP–AMP synthase-stimulator of interferon genes pathway, which in turn leads to the induction of several inflammatory cytokines as part of the senescence-associated secretory phenotype. This sterile inflammation increases with chronological age and age-associated disease. More recently, several intracellular and extracellular metabolic changes have been described in senescent cells but it is not clear whether any of them have functional significance. In this review, we highlight the potential effect of dietary and age-related metabolites in the modulation of the senescent phenotype in addition to discussing how experimental conditions may influence senescent cell metabolism, especially that of energy regulation. Finally, as extracellular citrate accumulates following certain types of senescence, we focus on the recently reported role of extracellular citrate in aging and age-related pathologies. We propose that citrate may be an active component of the senescence-associated secretory phenotype and via its intake through the diet may even contribute to the cause of age-related disease.
Collapse
|
34
|
Surrer DB, Fromm MF, Maas R, König J. L-Arginine and Cardioactive Arginine Derivatives as Substrates and Inhibitors of Human and Mouse NaCT/Nact. Metabolites 2022; 12:metabo12040273. [PMID: 35448460 PMCID: PMC9026504 DOI: 10.3390/metabo12040273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/17/2022] [Accepted: 03/19/2022] [Indexed: 01/25/2023] Open
Abstract
The uptake transporter NaCT (gene symbol SLC13A5) is expressed in liver and brain and important for energy metabolism and brain development. Substrates include tricarboxylic acid cycle intermediates, e.g., citrate and succinate. To gain insights into the substrate spectrum of NaCT, we tested whether arginine and the cardioactive L-arginine metabolites asymmetric dimethylarginine (ADMA) and L-homoarginine are also transported by human and mouse NaCT/Nact. Using HEK293 cells overexpressing human or mouse NaCT/Nact we characterized these substances as substrates. Furthermore, inhibition studies were performed using the arginine derivative symmetric dimethylarginine (SDMA), the NaCT transport inhibitor BI01383298, and the prototypic substrate citrate. Arginine and the derivatives ADMA and L-homoarginine were identified as substrates of human and mouse NaCT. Transport of arginine and derivatives mediated by human and mouse NaCT were dose-dependently inhibited by SDMA. Whereas BI01383298 inhibited only human NaCT-mediated citrate uptake, it inhibits the uptake of arginine and derivatives mediated by both human NaCT and mouse Nact. In contrast, the prototypic substrate citrate inhibited the transport of arginine and derivatives mediated only by human NaCT. These results demonstrate a so far unknown link between NaCT/Nact and L-arginine and its cardiovascular important derivatives.
Collapse
Affiliation(s)
| | | | | | - Jörg König
- Correspondence: ; Tel.: +49-9131-8522077
| |
Collapse
|
35
|
Pesta D, Jordan J. INDY as a Therapeutic Target for Cardio-Metabolic Disease. Metabolites 2022; 12:metabo12030244. [PMID: 35323687 PMCID: PMC8949283 DOI: 10.3390/metabo12030244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/01/2022] [Accepted: 03/07/2022] [Indexed: 12/04/2022] Open
Abstract
Decreased expression of the plasma membrane citrate transporter INDY (acronym I’m Not Dead, Yet) promotes longevity and protects from high-fat diet- and aging-induced metabolic derangements. Preventing citrate import into hepatocytes by different strategies can reduce hepatic triglyceride accumulation and improve hepatic insulin sensitivity, even in the absence of effects on body composition. These beneficial effects likely derive from decreased hepatic de novo fatty acid biosynthesis as a result of reduced cytoplasmic citrate levels. While in vivo and in vitro studies show that inhibition of INDY prevents intracellular lipid accumulation, body weight is not affected by organ-specific INDY inhibition. Besides these beneficial metabolic effects, INDY inhibition may also improve blood pressure control through sympathetic nervous system inhibition, partly via reduced peripheral catecholamine synthesis. These effects make INDY a promising candidate with bidirectional benefits for improving both metabolic disease and blood pressure control.
Collapse
Affiliation(s)
- Dominik Pesta
- German Aerospace Center (DLR), Institute of Aerospace Medicine, D-51147 Cologne, Germany;
- Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, D-50931 Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, D-50931 Cologne, Germany
- Correspondence:
| | - Jens Jordan
- German Aerospace Center (DLR), Institute of Aerospace Medicine, D-51147 Cologne, Germany;
| |
Collapse
|
36
|
Sauer DB, Wang B, Sudar JC, Song J, Marden J, Rice WJ, Wang DN. The ups and downs of elevator-type di-/tricarboxylate membrane transporters. FEBS J 2022; 289:1515-1523. [PMID: 34403567 PMCID: PMC9832446 DOI: 10.1111/febs.16158] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/27/2021] [Accepted: 08/16/2021] [Indexed: 01/13/2023]
Abstract
The divalent anion sodium symporter (DASS) family contains both sodium-driven anion cotransporters and anion/anion exchangers. The family belongs to a broader ion transporter superfamily (ITS), which comprises 24 families of transporters, including those of AbgT antibiotic efflux transporters. The human proteins in the DASS family play major physiological roles and are drug targets. We recently determined multiple structures of the human sodium-dependent citrate transporter (NaCT) and the succinate/dicarboxylate transporter from Lactobacillus acidophilus (LaINDY). Structures of both proteins show high degrees of structural similarity to the previously determined VcINDY fold. Conservation between these DASS protein structures and those from the AbgT family indicates that the VcINDY fold represents the overall protein structure for the entire ITS. The new structures of NaCT and LaINDY are captured in the inward- or outward-facing conformations, respectively. The domain arrangements in these structures agree with a rigid body elevator-type transport mechanism for substrate translocation across the membrane. Two separate NaCT structures in complex with a substrate or an inhibitor allowed us to explain the inhibition mechanism and propose a detailed classification scheme for grouping disease-causing mutations in the human protein. Structural understanding of multiple kinetic states of DASS proteins is a first step toward the detailed characterization of their entire transport cycle.
Collapse
Affiliation(s)
- David B. Sauer
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY 10016, USA
| | - Bing Wang
- Cryo-Electron Microscopy Core, New York University School of Medicine, New York, NY 10016, USA
| | - Joseph C. Sudar
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY 10016, USA
| | - Jinmei Song
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY 10016, USA
| | - Jennifer Marden
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY 10016, USA
| | - William J. Rice
- Cryo-Electron Microscopy Core, New York University School of Medicine, New York, NY 10016, USA
| | - Da-Neng Wang
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY 10016, USA
- Department of Cell Biology, New York University School of Medicine, New York, NY 10016, USA
| |
Collapse
|
37
|
Xu J, Shen J, Yuan R, Jia B, Zhang Y, Wang S, Zhang Y, Liu M, Wang T. Mitochondrial Targeting Therapeutics: Promising Role of Natural Products in Non-alcoholic Fatty Liver Disease. Front Pharmacol 2022; 12:796207. [PMID: 35002729 PMCID: PMC8733608 DOI: 10.3389/fphar.2021.796207] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 11/18/2021] [Indexed: 12/20/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) has become one of the most common chronic liver diseases worldwide, and its prevalence is still growing rapidly. However, the efficient therapies for this liver disease are still limited. Mitochondrial dysfunction has been proven to be closely associated with NAFLD. The mitochondrial injury caused reactive oxygen species (ROS) production, and oxidative stress can aggravate the hepatic lipid accumulation, inflammation, and fibrosis. which contribute to the pathogenesis and progression of NAFLD. Therefore, pharmacological therapies that target mitochondria could be a promising way for the NAFLD intervention. Recently, natural products targeting mitochondria have been extensively studied and have shown promising pharmacological activity. In this review, the recent research progress on therapeutic effects of natural-product-derived compounds that target mitochondria and combat NAFLD was summarized, aiming to provide new potential therapeutic lead compounds and reference for the innovative drug development and clinical treatment of NAFLD.
Collapse
Affiliation(s)
- Jingqi Xu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jiayan Shen
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Ruolan Yuan
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Bona Jia
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yiwen Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Sijian Wang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yi Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Mengyang Liu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Tao Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
38
|
Mendelsohn AR, Larrick JW. Stem Cell Rejuvenation by Restoration of Youthful Metabolic Compartmentalization. Rejuvenation Res 2021; 24:470-474. [PMID: 34846176 DOI: 10.1089/rej.2021.0076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Stem cell dysfunction is a hallmark of aging. Much recent study suggests that epigenetic changes play a critical role in the loss of stem cell function with age. However, the underlying mechanisms require elucidation. A recent report describes a process by which mild mitochondrial stress associated with aging causes lysosomal-mediated decreases in CiC, the mitochondrial citrate transporter, in bone marrow-derived mesenchymal stem cells (MSCs). This, in turn, results in a deficit of acetyl-CoA in the nucleus and hypoacetylation of histones. The altered epigenome results in skewered stem cell differentiation favoring adipogenesis and disfavoring osteogenesis, which is problematic given the role the MSCs play in maintaining the integrity of bone tissue. Restoration of nuclear acetyl-CoA by either ectopic expression of CiC or acetate supplementation of MSCs in culture rejuvenates the MSC, restoring the potential to efficiently differentiate along the osteogenic lineage. Citrate, which has recently been reported to extend lifespan in Drosophila, chemically incorporates acetyl-CoA and may prove useful to restore cytoplasmic and nuclear acetyl-CoA levels. The general applicability of the CiC defect in old cells, particularly stem cells, should be established.
Collapse
Affiliation(s)
- Andrew R Mendelsohn
- Panorama Research Institute, Sunnyvale, California, USA.,Regenerative Sciences Institute, Sunnyvale, California, USA
| | - James W Larrick
- Panorama Research Institute, Sunnyvale, California, USA.,Regenerative Sciences Institute, Sunnyvale, California, USA
| |
Collapse
|
39
|
Li Z, Li L, Heyward S, Men S, Xu M, Sueyoshi T, Wang H. Phenobarbital Induces SLC13A5 Expression through Activation of PXR but Not CAR in Human Primary Hepatocytes. Cells 2021; 10:cells10123381. [PMID: 34943889 PMCID: PMC8699749 DOI: 10.3390/cells10123381] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 02/05/2023] Open
Abstract
Phenobarbital (PB), a widely used antiepileptic drug, is known to upregulate the expression of numerous drug-metabolizing enzymes and transporters in the liver primarily via activation of the constitutive androstane receptor (CAR, NR1I3). The solute carrier family 13 member 5 (SLC13A5), a sodium-coupled citrate transporter, plays an important role in intracellular citrate homeostasis that is associated with a number of metabolic syndromes and neurological disorders. Here, we show that PB markedly elevates the expression of SLC13A5 through a pregnane X receptor (PXR)-dependent but CAR-independent signaling pathway. In human primary hepatocytes, the mRNA and protein expression of SLC13A5 was robustly induced by PB treatment, while genetic knockdown or pharmacological inhibition of PXR significantly attenuated this induction. Utilizing genetically modified HepaRG cells, we found that PB induces SLC13A5 expression in both wild type and CAR-knockout HepaRG cells, whereas such induction was fully abolished in the PXR-knockout HepaRG cells. Mechanistically, we identified and functionally characterized three enhancer modules located upstream from the transcription start site or introns of the SLC13A5 gene that are associated with the regulation of PXR-mediated SLC13A5 induction. Moreover, metformin, a deactivator of PXR, dramatically suppressed PB-mediated induction of hepatic SLC13A5 as well as its activation of the SLC13A5 luciferase reporter activity via PXR. Collectively, these data reveal PB as a potent inducer of SLC13A5 through the activation of PXR but not CAR in human primary hepatocytes.
Collapse
Affiliation(s)
- Zhihui Li
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn Street, Baltimore, MD 21201, USA; (Z.L.); (L.L.); (S.M.)
| | - Linhao Li
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn Street, Baltimore, MD 21201, USA; (Z.L.); (L.L.); (S.M.)
| | - Scott Heyward
- BioIVT, 1450 S Rolling Road, Halethorpe, MD 21227, USA;
| | - Shuaiqian Men
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn Street, Baltimore, MD 21201, USA; (Z.L.); (L.L.); (S.M.)
| | - Meishu Xu
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA;
| | - Tatsuya Sueyoshi
- Pharmacogenetics Section, Laboratory of Reproductive and Developmental Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA;
| | - Hongbing Wang
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn Street, Baltimore, MD 21201, USA; (Z.L.); (L.L.); (S.M.)
- Correspondence: ; Tel.: +1-410-706-1280
| |
Collapse
|
40
|
Fan S, Lin C, Wei Y, Yeh S, Tsai Y, Lee AC, Lin W, Wang P. Dietary citrate supplementation enhances longevity, metabolic health, and memory performance through promoting ketogenesis. Aging Cell 2021; 20:e13510. [PMID: 34719871 PMCID: PMC8672782 DOI: 10.1111/acel.13510] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 09/23/2021] [Accepted: 10/18/2021] [Indexed: 01/28/2023] Open
Abstract
Citrate is an essential substrate for energy metabolism that plays critical roles in regulating cell growth and survival. However, the action of citrate in regulating metabolism, cognition, and aging at the organismal level remains poorly understood. Here, we report that dietary supplementation with citrate significantly reduces energy status and extends lifespan in Drosophila melanogaster. Our genetic studies in fruit flies implicate a molecular mechanism associated with AMP‐activated protein kinase (AMPK), target of rapamycin (TOR), and ketogenesis. Mice fed a high‐fat diet that supplemented with citrate or the ketone body β‐hydroxybutyrate (βOHB) also display improved metabolic health and memory. These results suggest that dietary citrate supplementation may prove to be a useful intervention in the future treatment of age‐related dysfunction.
Collapse
Affiliation(s)
- Shou‐Zen Fan
- Department of Anesthesiology National Taiwan University Hospital National Taiwan University Taipei Taiwan
| | - Cheng‐Sheng Lin
- Graduate Institute of Brain and Mind Sciences College of Medicine National Taiwan University Taipei Taiwan
| | - Yu‐Wen Wei
- Graduate Institute of Brain and Mind Sciences College of Medicine National Taiwan University Taipei Taiwan
| | - Sheng‐Rong Yeh
- Department of Anesthesiology National Taiwan University Hospital National Taiwan University Taipei Taiwan
- Graduate Institute of Brain and Mind Sciences College of Medicine National Taiwan University Taipei Taiwan
| | - Yi‐Hsuan Tsai
- Graduate Institute of Brain and Mind Sciences College of Medicine National Taiwan University Taipei Taiwan
| | - Andrew Chengyu Lee
- Graduate Institute of Brain and Mind Sciences College of Medicine National Taiwan University Taipei Taiwan
| | - Wei‐Sheng Lin
- Department of Pediatrics Taipei Veterans General Hospital Taipei Taiwan
| | - Pei‐Yu Wang
- Graduate Institute of Brain and Mind Sciences College of Medicine National Taiwan University Taipei Taiwan
- Neurobiology and Cognitive Science Center National Taiwan University Taipei Taiwan
- Ph.D. Program in Translational Medicine National Taiwan University and Academia Sinica Taipei Taiwan
- Taiwan International Graduate Program in Interdisciplinary Neuroscience National Taiwan University and Academia Sinica Taipei Taiwan
- Graduate Institute of Neural Regenerative Medicine College of Medical Science and Technology Taipei Medical University Taipei Taiwan
| |
Collapse
|
41
|
Thermostability-based binding assays reveal complex interplay of cation, substrate and lipid binding in the bacterial DASS transporter, VcINDY. Biochem J 2021; 478:3847-3867. [PMID: 34643224 PMCID: PMC8652582 DOI: 10.1042/bcj20210061] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 10/08/2021] [Accepted: 10/13/2021] [Indexed: 12/04/2022]
Abstract
The divalent anion sodium symporter (DASS) family of transporters (SLC13 family in humans) are key regulators of metabolic homeostasis, disruption of which results in protection from diabetes and obesity, and inhibition of liver cancer cell proliferation. Thus, DASS transporter inhibitors are attractive targets in the treatment of chronic, age-related metabolic diseases. The characterisation of several DASS transporters has revealed variation in the substrate selectivity and flexibility in the coupling ion used to power transport. Here, using the model DASS co-transporter, VcINDY from Vibrio cholerae, we have examined the interplay of the three major interactions that occur during transport: the coupling ion, the substrate, and the lipid environment. Using a series of high-throughput thermostability-based interaction assays, we have shown that substrate binding is Na+-dependent; a requirement that is orchestrated through a combination of electrostatic attraction and Na+-induced priming of the binding site architecture. We have identified novel DASS ligands and revealed that ligand binding is dominated by the requirement of two carboxylate groups in the ligand that are precisely distanced to satisfy carboxylate interaction regions of the substrate-binding site. We have also identified a complex relationship between substrate and lipid interactions, which suggests a dynamic, regulatory role for lipids in VcINDY's transport cycle.
Collapse
|
42
|
Jeong J, Lee J, Kim JH, Lim C. Metabolic flux from the Krebs cycle to glutamate transmission tunes a neural brake on seizure onset. PLoS Genet 2021; 17:e1009871. [PMID: 34714823 PMCID: PMC8555787 DOI: 10.1371/journal.pgen.1009871] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 10/11/2021] [Indexed: 01/18/2023] Open
Abstract
Kohlschütter-Tönz syndrome (KTS) manifests as neurological dysfunctions, including early-onset seizures. Mutations in the citrate transporter SLC13A5 are associated with KTS, yet their underlying mechanisms remain elusive. Here, we report that a Drosophila SLC13A5 homolog, I'm not dead yet (Indy), constitutes a neurometabolic pathway that suppresses seizure. Loss of Indy function in glutamatergic neurons caused "bang-induced" seizure-like behaviors. In fact, glutamate biosynthesis from the citric acid cycle was limiting in Indy mutants for seizure-suppressing glutamate transmission. Oral administration of the rate-limiting α-ketoglutarate in the metabolic pathway rescued low glutamate levels in Indy mutants and ameliorated their seizure-like behaviors. This metabolic control of the seizure susceptibility was mapped to a pair of glutamatergic neurons, reversible by optogenetic controls of their activity, and further relayed onto fan-shaped body neurons via the ionotropic glutamate receptors. Accordingly, our findings reveal a micro-circuit that links neural metabolism to seizure, providing important clues to KTS-associated neurodevelopmental deficits.
Collapse
Affiliation(s)
- Jiwon Jeong
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Jongbin Lee
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Ji-hyung Kim
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Chunghun Lim
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
- * E-mail:
| |
Collapse
|
43
|
Brown TL, Nye KL, Porter BE. Growth and Overall Health of Patients with SLC13A5 Citrate Transporter Disorder. Metabolites 2021; 11:metabo11110746. [PMID: 34822404 PMCID: PMC8625967 DOI: 10.3390/metabo11110746] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/22/2021] [Accepted: 10/27/2021] [Indexed: 11/16/2022] Open
Abstract
We were interested in elucidating the non-neurologic health of patients with autosomal recessive SLC13A5 Citrate Transporter (NaCT) Disorder. Multiple variants have been reported that cause a loss of transporter activity, resulting in significant neurologic impairment, including seizures, as well as motor and cognitive dysfunction. Additionally, most patients lack tooth enamel (amelogenesis imperfecta). However, patients have not had their overall health and growth described in detail. Here we characterized the non-neurologic health of 15 patients with medical records uploaded to Ciitizen, a cloud-based patient medical records portal. Ciitizen used a query method for data extraction. Overall, the patients’ records suggested a moderate number of gastrointestinal issues related to feeding, reflux, vomiting and weight gain and a diverse number of respiratory complaints. Other organ systems had single or no abnormal diagnoses, including liver, renal and cardiac. Growth parameters were mostly in the normal range during early life, with a trend toward slower growth in the few adolescent patients with data available. The gastrointestinal and pulmonary issues may at least partially be explained by the severity of the neurologic disorder. More data are needed to clarify if growth is impacted during adolescence and if adult patients develop or are protected from non-neurologic disorders.
Collapse
Affiliation(s)
- Tanya L. Brown
- Treatments for Epilepsy and Symptoms of SLC13A5 Foundation, TESS Research Foundation, Menlo Park, CA 94026, USA;
- Correspondence:
| | - Kimberly L. Nye
- Treatments for Epilepsy and Symptoms of SLC13A5 Foundation, TESS Research Foundation, Menlo Park, CA 94026, USA;
| | - Brenda E. Porter
- Department of Neurology and Neurological Sciences, Stanford University, Palo Alto, CA 94070, USA;
| |
Collapse
|
44
|
Kannan K, Rogina B. The Role of Citrate Transporter INDY in Metabolism and Stem Cell Homeostasis. Metabolites 2021; 11:705. [PMID: 34677421 PMCID: PMC8540898 DOI: 10.3390/metabo11100705] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/05/2021] [Accepted: 10/12/2021] [Indexed: 12/11/2022] Open
Abstract
I'm Not Dead Yet (Indy) is a fly gene that encodes a homologue of mammalian SLC13A5 plasma membrane citrate transporter. Reducing expression of Indy gene in flies, and its homologues in worms, extends longevity. Indy reduction in flies, worms, mice and rats affects metabolism by regulating the levels of cytoplasmic citrate, inducing a state similar to calorie restriction. Changes include lower lipid levels, increased insulin sensitivity, increased mitochondrial biogenesis, and prevention of weight gain, among others. The INDY protein is predominantly expressed in fly metabolic tissues: the midgut, fat body and oenocytes. Changes in fly midgut metabolism associated with reduced Indy gene activity lead to preserved mitochondrial function and reduced production of reactive oxygen species. All these changes lead to preserved intestinal stem cell homeostasis, which has a key role in maintaining intestinal epithelium function and enhancing fly healthspan and lifespan. Indy gene expression levels change in response to caloric content of the diet, inflammation and aging, suggesting that INDY regulates metabolic adaptation to nutrition or energetic requirements by controlling citrate levels.
Collapse
Affiliation(s)
- Kavitha Kannan
- Department of Genetics & Genome Sciences, School of Medicine, University of Connecticut Health Center, Farmington, CT 06030, USA;
| | - Blanka Rogina
- Department of Genetics & Genome Sciences, School of Medicine, University of Connecticut Health Center, Farmington, CT 06030, USA;
- Institute for Systems Genomics, School of Medicine, University of Connecticut Health Center, Farmington, CT 06030, USA
| |
Collapse
|
45
|
Molecular Mechanisms of the SLC13A5 Gene Transcription. Metabolites 2021; 11:metabo11100706. [PMID: 34677420 PMCID: PMC8537064 DOI: 10.3390/metabo11100706] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 12/02/2022] Open
Abstract
Citrate is a crucial energy sensor that plays a central role in cellular metabolic homeostasis. The solute carrier family 13 member 5 (SLC13A5), a sodium-coupled citrate transporter highly expressed in the mammalian liver with relatively low levels in the testis and brain, imports citrate from extracellular spaces into the cells. The perturbation of SLC13A5 expression and/or activity is associated with non-alcoholic fatty liver disease, obesity, insulin resistance, cell proliferation, and early infantile epileptic encephalopathy. SLC13A5 has been proposed as a promising therapeutic target for the treatment of these metabolic disorders. In the liver, the inductive expression of SLC13A5 has been linked to several xenobiotic receptors such as the pregnane X receptor and the aryl hydrocarbon receptor as well as certain hormonal and nutritional stimuli. Nevertheless, in comparison to the heightened interest in understanding the biological function and clinical relevance of SLC13A5, studies focusing on the regulatory mechanisms of SLC13A5 expression are relatively limited. In this review, we discuss the current advances in our understanding of the molecular mechanisms by which the expression of SLC13A5 is regulated. We expect this review will provide greater insights into the regulation of the SLC13A5 gene transcription and the signaling pathways involved therein.
Collapse
|
46
|
Jaramillo-Martinez V, Sivaprakasam S, Ganapathy V, Urbatsch IL. Drosophila INDY and Mammalian INDY: Major Differences in Transport Mechanism and Structural Features despite Mostly Similar Biological Functions. Metabolites 2021; 11:metabo11100669. [PMID: 34677384 PMCID: PMC8537002 DOI: 10.3390/metabo11100669] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 09/27/2021] [Indexed: 12/12/2022] Open
Abstract
INDY (I’m Not Dead Yet) is a plasma membrane transporter for citrate, first identified in Drosophila. Partial deficiency of INDY extends lifespan in this organism in a manner similar to that of caloric restriction. The mammalian counterpart (NaCT/SLC13A5) also transports citrate. In mice, it is the total, not partial, absence of the transporter that leads to a metabolic phenotype similar to that caloric restriction; however, there is evidence for subtle neurological dysfunction. Loss-of-function mutations in SLC13A5 (solute carrier gene family 13, member A5) occur in humans, causing a recessive disease, with severe clinical symptoms manifested by neonatal seizures and marked disruption in neurological development. Though both Drosophila INDY and mammalian INDY transport citrate, the translocation mechanism differs, the former being a dicarboxylate exchanger for the influx of citrate2− in exchange for other dicarboxylates, and the latter being a Na+-coupled uniporter for citrate2−. Their structures also differ as evident from only ~35% identity in amino acid sequence and from theoretically modeled 3D structures. The varied biological consequences of INDY deficiency across species, with the beneficial effects predominating in lower organisms and detrimental effects overwhelming in higher organisms, are probably reflective of species-specific differences in tissue expression and also in relative contribution of extracellular citrate to metabolic pathways in different tissues
Collapse
Affiliation(s)
- Valeria Jaramillo-Martinez
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA;
| | - Sathish Sivaprakasam
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (S.S.); (V.G.)
| | - Vadivel Ganapathy
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (S.S.); (V.G.)
| | - Ina L. Urbatsch
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (S.S.); (V.G.)
- Correspondence:
| |
Collapse
|
47
|
Kumar A, Cordes T, Thalacker-Mercer AE, Pajor AM, Murphy AN, Metallo CM. NaCT/SLC13A5 facilitates citrate import and metabolism under nutrient-limited conditions. Cell Rep 2021; 36:109701. [PMID: 34525352 PMCID: PMC8500708 DOI: 10.1016/j.celrep.2021.109701] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 06/19/2021] [Accepted: 08/20/2021] [Indexed: 01/11/2023] Open
Abstract
Citrate lies at a critical node of metabolism, linking tricarboxylic acid metabolism and lipogenesis via acetyl-coenzyme A. Recent studies have observed that deficiency of the sodium-dependent citrate transporter (NaCT), encoded by SLC13A5, dysregulates hepatic metabolism and drives pediatric epilepsy. To examine how NaCT contributes to citrate metabolism in cells relevant to the pathophysiology of these diseases, we apply 13C isotope tracing to SLC13A5-deficient hepatocellular carcinoma (HCC) cells and primary rat cortical neurons. Exogenous citrate appreciably contributes to intermediary metabolism only under hypoxic conditions. In the absence of glutamine, citrate supplementation increases de novo lipogenesis and growth of HCC cells. Knockout of SLC13A5 in Huh7 cells compromises citrate uptake and catabolism. Citrate supplementation rescues Huh7 cell viability in response to glutamine deprivation or Zn2+ treatment, and NaCT deficiency mitigates these effects. Collectively, these findings demonstrate that NaCT-mediated citrate uptake is metabolically important under nutrient-limited conditions and may facilitate resistance to metal toxicity.
Collapse
Affiliation(s)
- Avi Kumar
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Thekla Cordes
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Anna E Thalacker-Mercer
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14850, USA; Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Ana M Pajor
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Anne N Murphy
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Christian M Metallo
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA; Moores Cancer Center, University of California, San Diego, La Jolla, CA 92037, USA.
| |
Collapse
|
48
|
Metformin, valproic acid, and starvation induce seizures in a patient with partial SLC13A5 deficiency: a case of pharmaco-synergistic heterozygosity. Psychiatr Genet 2021; 31:32-35. [PMID: 33290383 DOI: 10.1097/ypg.0000000000000269] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
SLC13A5/NaCT is a sodium-coupled citrate transporter expressed in the plasma membrane of the liver, testis, and brain. In these tissues, SLC13A5 has important functions in the synthesis of fatty acids, cholesterol, and neurotransmitters. In recent years, patients homozygous for recessive mutations in SLC13A5, known as SLC13A5 deficiency [early infantile epileptic encephalopathy-25 (EIEE-25)], exhibit severe global developmental delay, early-onset intractable seizures, spasticity, and amelogenesis imperfecta affecting tooth development. Although the pathogenesis of SLC13A5 deficiency remains not clearly understood, cytoplasmic citrate deficits, decreased energy status in neurons, and citrate-zinc chelation are hypothesized to explain the neurological deficits. However, no study has examined the possibility of specific pharmacological drugs and/or lifestyle changes synergizing with heterozygosity of SLC13A5 deficiency to increase the risk of EIEE-25 clinical phenotype. Here, we report on a heterozygous SLC13A5-deficient patient who demonstrated evidence of pharmaco-synergistic heterozygosity upon administration of metformin, valproic acid, and starvation. The report illustrates the importance of careful consideration of the potential adverse effects of specific pharmacological treatments in patients with heterozygosity for disease-causing recessive mutations in SLC13A5.
Collapse
|
49
|
Signals from the Circle: Tricarboxylic Acid Cycle Intermediates as Myometabokines. Metabolites 2021; 11:metabo11080474. [PMID: 34436415 PMCID: PMC8398969 DOI: 10.3390/metabo11080474] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 12/15/2022] Open
Abstract
Regular physical activity is an effective strategy to prevent and ameliorate aging-associated diseases. In particular, training increases muscle performance and improves whole-body metabolism. Since exercise affects the whole organism, it has countless health benefits. The systemic effects of exercise can, in part, be explained by communication between the contracting skeletal muscle and other organs and cell types. While small proteins and peptides known as myokines are the most prominent candidates to mediate this tissue cross-talk, recent investigations have paid increasing attention to metabolites. The purpose of this review is to highlight the potential role of tricarboxylic acid (TCA) metabolites as humoral mediators of exercise adaptation processes. We focus on TCA metabolites that are released from human skeletal muscle in response to exercise and provide an overview of their potential auto-, para- or endocrine health-promoting effects.
Collapse
|
50
|
von Loeffelholz C, Coldewey SM, Birkenfeld AL. A Narrative Review on the Role of AMPK on De Novo Lipogenesis in Non-Alcoholic Fatty Liver Disease: Evidence from Human Studies. Cells 2021; 10:cells10071822. [PMID: 34359991 PMCID: PMC8306246 DOI: 10.3390/cells10071822] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/01/2021] [Accepted: 07/15/2021] [Indexed: 02/06/2023] Open
Abstract
5′AMP-activated protein kinase (AMPK) is known as metabolic sensor in mammalian cells that becomes activated by an increasing adenosine monophosphate (AMP)/adenosine triphosphate (ATP) ratio. The heterotrimeric AMPK protein comprises three subunits, each of which has multiple phosphorylation sites, playing an important role in the regulation of essential molecular pathways. By phosphorylation of downstream proteins and modulation of gene transcription AMPK functions as a master switch of energy homeostasis in tissues with high metabolic turnover, such as the liver, skeletal muscle, and adipose tissue. Regulation of AMPK under conditions of chronic caloric oversupply emerged as substantial research target to get deeper insight into the pathogenesis of non-alcoholic fatty liver disease (NAFLD). Evidence supporting the role of AMPK in NAFLD is mainly derived from preclinical cell culture and animal studies. Dysbalanced de novo lipogenesis has been identified as one of the key processes in NAFLD pathogenesis. Thus, the scope of this review is to provide an integrative overview of evidence, in particular from clinical studies and human samples, on the role of AMPK in the regulation of primarily de novo lipogenesis in human NAFLD.
Collapse
Affiliation(s)
- Christian von Loeffelholz
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, 07747 Jena, Germany;
- Correspondence: ; Tel.: +49-3641-9323-177; Fax: +49-3641-9323-102
| | - Sina M. Coldewey
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, 07747 Jena, Germany;
- Septomics Research Center, Jena University Hospital, 07747 Jena, Germany
- Center for Sepsis Control and Care, Jena University Hospital, 07747 Jena, Germany
| | - Andreas L. Birkenfeld
- Department of Diabetology Endocrinology and Nephrology, University Hospital Tübingen, Eberhard Karls University Tübingen, 72074 Tübingen, Germany;
- Department of Therapy of Diabetes, Institute of Diabetes Research and Metabolic Diseases in the Helmholtz Center Munich, Eberhard Karls University Tübingen, 72074 Tübingen, Germany
- Division of Diabetes and Nutritional Sciences, Rayne Institute, King’s College London, London SE5 9RJ, UK
| |
Collapse
|