1
|
Butler V, Shaaban H, Nasanovsky L, White JKV, Hebb O, Jones L, Whiting M, Mukherjee-Roy N, Montalbano AP, Machado Vides CE, Nitschke F, Tetlow IJ. Covalently linked phosphate monoesters on alpha-polyglucans reduce substrate affinity of branching enzymes. Carbohydr Polym 2025; 359:123561. [PMID: 40306772 DOI: 10.1016/j.carbpol.2025.123561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 03/07/2025] [Accepted: 03/28/2025] [Indexed: 05/02/2025]
Abstract
Starch and glycogen are α-polyglucans which represent important sources of long- and short-term cellular carbohydrate storage synthesized in living cells. Both polyglucans contain variable, but significant, levels of covalently bound phosphate monoesters whose biological role is likely connected to the regulation of turnover of these storage polymers by promoting water solubility. The amount of α-glucan-bound phosphate found in plant starch appears to be closely related to the average chain length of α-1,4-glucans, and inversely related to the frequency of α-1,6-branch linkages. The enzymes responsible for adding branches to linear α-1,4-glucan chains in starch and glycogen are 1,4-α-glucan: 1,4-α-glucan 6-glucosyl transferases (branching enzymes). In this study, glucan bound phosphate was shown to reduce the affinity of branching enzymes for α-glucan substrates. Plant starch branching enzymes and glycogen branching enzymes from various prokaryotic and eukaryotic sources showed reduced substrate affinities in native gels as the α-glucan phosphate content was increased. The substrate affinities of all branching enzymes tested showed an inverse linear relationship with α-glucan phosphate content. The possible biological significance of this phenomenon is discussed in relation to known models of starch structure in plants and specific glycogen storage diseases in mammals.
Collapse
Affiliation(s)
- Victoria Butler
- Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, Ontario N1G2W1, Canada
| | - Hanan Shaaban
- Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, Ontario N1G2W1, Canada; Botany Department, Faculty of Science, Ain Shams University, Cairo 11566, Egypt
| | - Lilya Nasanovsky
- Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, Ontario N1G2W1, Canada
| | - Jessica K V White
- Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, Ontario N1G2W1, Canada
| | - Owen Hebb
- Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, Ontario N1G2W1, Canada
| | - Lynne Jones
- Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, Ontario N1G2W1, Canada
| | - Megan Whiting
- Department of Biochemistry, University of Texas Southwestern Medical Centre, Dallas, TX 75390, USA
| | - Neije Mukherjee-Roy
- Department of Biochemistry, University of Texas Southwestern Medical Centre, Dallas, TX 75390, USA
| | - Alina P Montalbano
- Department of Biochemistry, University of Texas Southwestern Medical Centre, Dallas, TX 75390, USA
| | - Carmen Elena Machado Vides
- Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, Ontario N1G2W1, Canada
| | - Felix Nitschke
- Department of Biochemistry, University of Texas Southwestern Medical Centre, Dallas, TX 75390, USA
| | - Ian J Tetlow
- Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, Ontario N1G2W1, Canada.
| |
Collapse
|
2
|
Compart J, Fettke J. Starch phosphorylation - A new perspective: A review. Int J Biol Macromol 2025; 298:139889. [PMID: 39818391 DOI: 10.1016/j.ijbiomac.2025.139889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 12/19/2024] [Accepted: 01/13/2025] [Indexed: 01/18/2025]
Abstract
The phosphorylation of the storage carbohydrates, starch and glycogen, is a process that is fundamental to their physicochemical properties and their turnover. Therefore, the interest utilising phosphorylation as a biotechnological tool to customize polysaccharides has risen permanently. Today, the phosphoesterification of both carbohydrate forms is much better understood. In recent years, important new insights have been gained into the molecular mechanism of starch phosphoesterification and its effects. In the following, the current state of knowledge on starch phosphorylation is briefly summarized. In addition, protein structure predictions for GWD are presented and considered for the first time in the context of recently published analyses of starch phosphorylation, which have opened up novel perspectives on this process. Therefore, we focus on a detailed discussion of the molecular events that occur at the surface of starch granules and enable a revised and in-depth understanding of starch granule phosphorylation.
Collapse
Affiliation(s)
- Julia Compart
- Biopolymer Analytics, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, Building 20, Potsdam, Golm, Germany
| | - Joerg Fettke
- Biopolymer Analytics, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, Building 20, Potsdam, Golm, Germany.
| |
Collapse
|
3
|
Nitschke S, Montalbano AP, Whiting ME, Smith BH, Mukherjee-Roy N, Marchioni CR, Sullivan MA, Zhao X, Wang P, Mount H, Verma M, Minassian BA, Nitschke F. Glycogen synthase GYS1 overactivation contributes to glycogen insolubility and malto-oligoglucan-associated neurodegenerative disease. EMBO J 2025; 44:1379-1413. [PMID: 39806098 PMCID: PMC11876434 DOI: 10.1038/s44318-024-00339-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 01/16/2025] Open
Abstract
Polyglucosans are glycogen molecules with overlong chains, which are hyperphosphorylated in the neurodegenerative Lafora disease (LD). Brain polyglucosan bodies (PBs) cause fatal neurodegenerative diseases including Lafora disease and adult polyglucosan body disease (ABPD), for which treatments, biomarkers, and good understanding of their pathogenesis are currently missing. Mutations in the genes for the phosphatase laforin or the E3 ubiquitin ligase malin can cause LD. By depleting PTG, an activator of the glycogen chain-elongating enzyme glycogen synthase (GYS1), in laforin- and malin-deficient LD mice, we show that abnormal glycogen chain lengths and not hyperphosphorylation underlie polyglucosan formation, and that polyglucosan bodies induce neuroinflammation. We provide evidence indicating that a small pool of overactive GYS1 contributes to glycogen insolubility in LD and APBD. In contrast to previous findings, metabolomics experiments using in situ-fixed brains reveal only modest metabolic changes in laforin-deficient mice. These changes are not replicated in malin-deficient or APBD mice, and are not normalized in rescued LD mice. Finally, we identify a pool of metabolically volatile malto-oligoglucans as a polyglucosan body- and neuroinflammation-associated brain energy source, and promising candidate biomarkers for LD and APBD, including malto-oligoglucans and the neurodegeneration marker CHI3L1/YKL40.
Collapse
Affiliation(s)
- Silvia Nitschke
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Alina P Montalbano
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Megan E Whiting
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Brandon H Smith
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Neije Mukherjee-Roy
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Charlotte R Marchioni
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Biochemistry and Molecular Genetics Department, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Mitchell A Sullivan
- Glycation and Diabetes Complications, Mater Research Institute - The University of Queensland, Translational Research Institute, Brisbane, QLD, 4102, Australia
- School of Health, University of the Sunshine Coast, Sippy Downs, QLD, 4556, Australia
| | - Xiaochu Zhao
- Program in Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, ON, M5G 0A4, Canada
| | - Peixiang Wang
- Program in Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, ON, M5G 0A4, Canada
| | - Howard Mount
- Tanz Centre for Research in Neurodegenerative Diseases, Departments of Psychiatry and Physiology, University of Toronto, Toronto, ON, M5T 0S8, Canada
| | - Mayank Verma
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Berge A Minassian
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
- O'Donnell Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| | - Felix Nitschke
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
- O'Donnell Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
4
|
Neoh GKS, Tan X, Chen S, Roura E, Dong X, Gilbert RG. Glycogen metabolism and structure: A review. Carbohydr Polym 2024; 346:122631. [PMID: 39245499 DOI: 10.1016/j.carbpol.2024.122631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 09/10/2024]
Abstract
Glycogen is a glucose polymer that plays a crucial role in glucose homeostasis by functioning as a short-term energy storage reservoir in animals and bacteria. Abnormalities in its metabolism and structure can cause several problems, including diabetes, glycogen storage diseases (GSDs) and muscular disorders. Defects in the enzymes involved in glycogen synthesis or breakdown, resulting in either excessive accumulation or insufficient availability of glycogen in cells seem to account for the most common pathogenesis. This review discusses glycogen metabolism and structure, including molecular architecture, branching dynamics, and the role of associated components within the granules. The review also discusses GSD type XV and Lafora disease, illustrating the broader implications of aberrant glycogen metabolism and structure. These conditions also impart information on important regulatory mechanisms of glycogen, which hint at potential therapeutic targets. Knowledge gaps and potential future research directions are identified.
Collapse
Affiliation(s)
- Galex K S Neoh
- School of Medicine, Shanghai University, Shanghai 200444, China.
| | - Xinle Tan
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Queensland 4072, Australia; Centre for Animal Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Queensland 4072, Australia.
| | - Si Chen
- School of Medicine, Shanghai University, Shanghai 200444, China.
| | - Eugeni Roura
- Centre for Animal Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Queensland 4072, Australia.
| | - Xin Dong
- School of Medicine, Shanghai University, Shanghai 200444, China.
| | - Robert G Gilbert
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Queensland 4072, Australia; Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
5
|
Aisyah R, Ohshima N, Watanabe D, Nakagawa Y, Sakuma T, Nitschke F, Nakamura M, Sato K, Nakahata K, Yokoyama C, Marchioni CR, Kumrungsee T, Shimizu T, Sotomaru Y, Takeo T, Nakagata N, Izumi T, Miura S, Minassian BA, Yamamoto T, Wada M, Yanaka N. GDE5/Gpcpd1 activity determines phosphatidylcholine composition in skeletal muscle and regulates contractile force in mice. Commun Biol 2024; 7:604. [PMID: 38769369 PMCID: PMC11106330 DOI: 10.1038/s42003-024-06298-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 05/07/2024] [Indexed: 05/22/2024] Open
Abstract
Glycerophosphocholine (GPC) is an important precursor for intracellular choline supply in phosphatidylcholine (PC) metabolism. GDE5/Gpcpd1 hydrolyzes GPC into choline and glycerol 3-phosphate; this study aimed to elucidate its physiological function in vivo. Heterozygous whole-body GDE5-deficient mice reveal a significant GPC accumulation across tissues, while homozygous whole-body knockout results in embryonic lethality. Skeletal muscle-specific GDE5 deletion (Gde5 skKO) exhibits reduced passive force and improved fatigue resistance in electrically stimulated gastrocnemius muscles in vivo. GDE5 deficiency also results in higher glycolytic metabolites and glycogen levels, and glycerophospholipids alteration, including reduced levels of phospholipids that bind polyunsaturated fatty acids (PUFAs), such as DHA. Interestingly, this PC fatty acid compositional change is similar to that observed in skeletal muscles of denervated and Duchenne muscular dystrophy mouse models. These are accompanied by decrease of GDE5 expression, suggesting a regulatory role of GDE5 activity for glycerophospholipid profiles. Furthermore, a DHA-rich diet enhances contractile force and lowers fatigue resistance, suggesting a functional relationship between PC fatty acid composition and muscle function. Finally, skinned fiber experiments show that GDE5 loss increases the probability of the ryanodine receptor opening and lowers the maximum Ca2+-activated force. Collectively, GDE5 activity plays roles in PC and glucose/glycogen metabolism in skeletal muscle.
Collapse
Affiliation(s)
- Rahmawati Aisyah
- Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | | | - Daiki Watanabe
- Graduate School of Humanities and Social Sciences, Hiroshima University, Hiroshima, Japan
- Graduate School of Sport and Health Sciences, Osaka University of Health and Sport Sciences, Osaka, Japan
| | - Yoshiko Nakagawa
- Center for Animal Resources and Development (CARD), Kumamoto University, Kumamoto, Japan
| | - Tetsushi Sakuma
- Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Felix Nitschke
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Minako Nakamura
- Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Koji Sato
- Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Kaori Nakahata
- Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Chihiro Yokoyama
- Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Charlotte R Marchioni
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | - Takahiko Shimizu
- Aging Stress Response Research Project Team, National Center for Geriatrics and Gerontology, Aichi, Japan
| | - Yusuke Sotomaru
- Natural Science Center for Basic Research and Development, Hiroshima University, Hiroshima, Japan
| | - Toru Takeo
- Center for Animal Resources and Development (CARD), Kumamoto University, Kumamoto, Japan
| | - Naomi Nakagata
- Center for Animal Resources and Development (CARD), Kumamoto University, Kumamoto, Japan
| | - Takashi Izumi
- Graduate School of Medicine, Gunma University, Gunma, Japan
- Faculty of Health Care, Teikyo Heisei University, Tokyo, Japan
| | - Shinji Miura
- Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka, Japan
| | - Berge A Minassian
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Takashi Yamamoto
- Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Masanobu Wada
- Graduate School of Humanities and Social Sciences, Hiroshima University, Hiroshima, Japan
| | - Noriyuki Yanaka
- Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan.
| |
Collapse
|
6
|
Koch RL, Kiely BT, Choi SJ, Jeck WR, Flores LS, Sood V, Alam S, Porta G, LaVecchio K, Soler-Alfonso C, Kishnani PS. Natural history study of hepatic glycogen storage disease type IV and comparison to Gbe1ys/ys model. JCI Insight 2024; 9:e177722. [PMID: 38912588 PMCID: PMC11383185 DOI: 10.1172/jci.insight.177722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 05/08/2024] [Indexed: 06/25/2024] Open
Abstract
BackgroundGlycogen storage disease type IV (GSD IV) is an ultrarare autosomal recessive disorder that causes deficiency of functional glycogen branching enzyme and formation of abnormally structured glycogen termed polyglucosan. GSD IV has traditionally been categorized based on primary hepatic or neuromuscular involvement, with hepatic GSD IV subclassified as discrete subtypes: classic (progressive) and nonprogressive.MethodsTo better understand the progression of liver disease in GSD IV, we present clinical and histopathology data from 23 patients from around the world and characterized the liver involvement in the Gbe1ys/ys knockin mouse model.ResultsWe propose an alternative to the established subtype-based terminology for characterizing liver disease in GSD IV and recognize 3 tiers of disease severity: (i) "severe progressive" liver disease, (ii) "intermediate progressive" liver disease, and (iii) "attenuated" liver disease. Analysis of liver pathology revealed that risk for liver failure cannot be predicted from liver biopsy findings alone in individuals affected by GSD IV. Moreover, analysis of postmortem liver pathology from an individual who died over 40 years after being diagnosed with nonprogressive hepatic GSD IV in childhood verified that liver fibrosis did not regress. Last, characterization of the liver involvement in a mouse model known to recapitulate the adult-onset neurodegenerative form of GSD IV (Gbe1ys/ys mouse model) demonstrated hepatic disease.ConclusionOur findings challenge the established subtype-based view of GSD IV and suggest that liver disease severity among patients with GSD IV represents a disease continuum.Trial registrationClinicalTrials.gov NCT02683512FundingNone.
Collapse
Affiliation(s)
- Rebecca L Koch
- Division of Medical Genetics, Department of Pediatrics, and
| | | | - Su Jin Choi
- Division of Medical Genetics, Department of Pediatrics, and
| | - William R Jeck
- Department of Pathology, Duke University Medical Center, Durham, North Carolina, USA
| | | | - Vikrant Sood
- Department of Pediatric Hepatology and Liver Transplantation, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Seema Alam
- Department of Pediatric Hepatology and Liver Transplantation, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Gilda Porta
- Hepatology and Liver Transplant Unit, Menino Jesus Hospital, São Paulo, Brazil
| | - Katy LaVecchio
- Department of Pathology, The Queen's Medical Center, Honolulu, Hawaii, USA
| | - Claudia Soler-Alfonso
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | | |
Collapse
|
7
|
Skurat AV, Segvich DM, Contreras CJ, Hu YC, Hurley TD, DePaoli-Roach AA, Roach PJ. Impaired malin expression and interaction with partner proteins in Lafora disease. J Biol Chem 2024; 300:107271. [PMID: 38588813 PMCID: PMC11063907 DOI: 10.1016/j.jbc.2024.107271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 04/10/2024] Open
Abstract
Lafora disease (LD) is an autosomal recessive myoclonus epilepsy with onset in the teenage years leading to death within a decade of onset. LD is characterized by the overaccumulation of hyperphosphorylated, poorly branched, insoluble, glycogen-like polymers called Lafora bodies. The disease is caused by mutations in either EPM2A, encoding laforin, a dual specificity phosphatase that dephosphorylates glycogen, or EMP2B, encoding malin, an E3-ubiquitin ligase. While glycogen is a widely accepted laforin substrate, substrates for malin have been difficult to identify partly due to the lack of malin antibodies able to detect malin in vivo. Here we describe a mouse model in which the malin gene is modified at the C-terminus to contain the c-myc tag sequence, making an expression of malin-myc readily detectable. Mass spectrometry analyses of immunoprecipitates using c-myc tag antibodies demonstrate that malin interacts with laforin and several glycogen-metabolizing enzymes. To investigate the role of laforin in these interactions we analyzed two additional mouse models: malin-myc/laforin knockout and malin-myc/LaforinCS, where laforin was either absent or the catalytic Cys was genomically mutated to Ser, respectively. The interaction of malin with partner proteins requires laforin but is not dependent on its catalytic activity or the presence of glycogen. Overall, the results demonstrate that laforin and malin form a complex in vivo, which stabilizes malin and enhances interaction with partner proteins to facilitate normal glycogen metabolism. They also provide insights into the development of LD and the rescue of the disease by the catalytically inactive phosphatase.
Collapse
Affiliation(s)
- Alexander V Skurat
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA; Lafora Epilepsy Cure Initiative, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Dyann M Segvich
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA; Lafora Epilepsy Cure Initiative, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Christopher J Contreras
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA; Lafora Epilepsy Cure Initiative, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Yueh-Chiang Hu
- Division of Developmental Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Thomas D Hurley
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA; Lafora Epilepsy Cure Initiative, University of Kentucky College of Medicine, Lexington, Kentucky, USA.
| | - Anna A DePaoli-Roach
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA; Lafora Epilepsy Cure Initiative, University of Kentucky College of Medicine, Lexington, Kentucky, USA.
| | - Peter J Roach
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA; Lafora Epilepsy Cure Initiative, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| |
Collapse
|
8
|
Liu J, Wang X, Guan Z, Wu M, Wang X, Fan R, Zhang F, Yan J, Liu Y, Zhang D, Yin P, Yan J. The LIKE SEX FOUR 1-malate dehydrogenase complex functions as a scaffold to recruit β-amylase to promote starch degradation. THE PLANT CELL 2023; 36:194-212. [PMID: 37804098 PMCID: PMC10734626 DOI: 10.1093/plcell/koad259] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 10/08/2023]
Abstract
In plant leaves, starch is composed of glucan polymers that accumulate in chloroplasts as the products of photosynthesis during the day; starch is mobilized at night to continuously provide sugars to sustain plant growth and development. Efficient starch degradation requires the involvement of several enzymes, including β-amylase and glucan phosphatase. However, how these enzymes cooperate remains largely unclear. Here, we show that the glucan phosphatase LIKE SEX FOUR 1 (LSF1) interacts with plastid NAD-dependent malate dehydrogenase (MDH) to recruit β-amylase (BAM1), thus reconstituting the BAM1-LSF1-MDH complex. The starch hydrolysis activity of BAM1 drastically increased in the presence of LSF1-MDH in vitro. We determined the structure of the BAM1-LSF1-MDH complex by a combination of cryo-electron microscopy, crosslinking mass spectrometry, and molecular docking. The starch-binding domain of the dual-specificity phosphatase and carbohydrate-binding module of LSF1 was docked in proximity to BAM1, thus facilitating BAM1 access to and hydrolysis of the polyglucans of starch, thus revealing the molecular mechanism by which the LSF1-MDH complex improves the starch degradation activity of BAM1. Moreover, LSF1 is phosphatase inactive, and the enzymatic activity of MDH was dispensable for starch degradation, suggesting nonenzymatic scaffold functions for LSF1-MDH in starch degradation. These findings provide important insights into the precise regulation of starch degradation.
Collapse
Affiliation(s)
- Jian Liu
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China
| | - Xuecui Wang
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China
| | - Zeyuan Guan
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China
| | - Menglong Wu
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China
| | - Xinyue Wang
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China
| | - Rong Fan
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China
| | - Fei Zhang
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China
| | - Junjun Yan
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China
| | - Yanjun Liu
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China
| | - Delin Zhang
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China
| | - Ping Yin
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China
| | - Junjie Yan
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
9
|
Ferrari Aggradi CR, Rimoldi M, Romagnoli G, Velardo D, Meneri M, Iacobucci D, Ripolone M, Napoli L, Ciscato P, Moggio M, Comi GP, Ronchi D, Corti S, Abati E. Lafora Disease: A Case Report and Evolving Treatment Advancements. Brain Sci 2023; 13:1679. [PMID: 38137127 PMCID: PMC10742041 DOI: 10.3390/brainsci13121679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/20/2023] [Accepted: 12/03/2023] [Indexed: 12/24/2023] Open
Abstract
Lafora disease is a rare genetic disorder characterized by a disruption in glycogen metabolism. It manifests as progressive myoclonus epilepsy and cognitive decline during adolescence. Pathognomonic is the presence of abnormal glycogen aggregates that, over time, produce large inclusions (Lafora bodies) in various tissues. This study aims to describe the clinical and histopathological aspects of a novel Lafora disease patient, and to provide an update on the therapeutical advancements for this disorder. A 20-year-old Libyan boy presented with generalized tonic-clonic seizures, sporadic muscular jerks, eyelid spasms, and mental impairment. Electroencephalography showed multiple discharges across both brain hemispheres. Brain magnetic resonance imaging was unremarkable. Muscle biopsy showed increased lipid content and a very mild increase of intermyofibrillar glycogen, without the polyglucosan accumulation typically observed in Lafora bodies. Despite undergoing three lines of antiepileptic treatment, the patient's condition showed minimal to no improvement. We identified the homozygous variant c.137G>A, p.(Cys46Tyr), in the EPM2B/NHLRC1 gene, confirming the diagnosis of Lafora disease. To our knowledge, the presence of lipid aggregates without Lafora bodies is atypical. Lafora disease should be considered during the differential diagnosis of progressive, myoclonic, and refractory epilepsies in both children and young adults, especially when accompanied by cognitive decline. Although there are no effective therapies yet, the development of promising new strategies prompts the need for an early and accurate diagnosis.
Collapse
Affiliation(s)
- Carola Rita Ferrari Aggradi
- Dino Ferrari Centre, Department of Pathophysiology and Transplantation (DEPT), University of Milan, 20122 Milan, Italy; (C.R.F.A.); (G.R.); (M.M.); (G.P.C.); (D.R.)
| | - Martina Rimoldi
- Neuromuscular and Rare Diseases Unit, Department of Neuroscience, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (M.R.); (D.V.); (M.R.); (P.C.); (M.M.)
- Medical Genetics Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Gloria Romagnoli
- Dino Ferrari Centre, Department of Pathophysiology and Transplantation (DEPT), University of Milan, 20122 Milan, Italy; (C.R.F.A.); (G.R.); (M.M.); (G.P.C.); (D.R.)
| | - Daniele Velardo
- Neuromuscular and Rare Diseases Unit, Department of Neuroscience, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (M.R.); (D.V.); (M.R.); (P.C.); (M.M.)
| | - Megi Meneri
- Dino Ferrari Centre, Department of Pathophysiology and Transplantation (DEPT), University of Milan, 20122 Milan, Italy; (C.R.F.A.); (G.R.); (M.M.); (G.P.C.); (D.R.)
- Stroke Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Davide Iacobucci
- Neurology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Michela Ripolone
- Neuromuscular and Rare Diseases Unit, Department of Neuroscience, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (M.R.); (D.V.); (M.R.); (P.C.); (M.M.)
| | - Laura Napoli
- Neuromuscular and Rare Diseases Unit, Department of Neuroscience, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (M.R.); (D.V.); (M.R.); (P.C.); (M.M.)
| | - Patrizia Ciscato
- Neuromuscular and Rare Diseases Unit, Department of Neuroscience, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (M.R.); (D.V.); (M.R.); (P.C.); (M.M.)
| | - Maurizio Moggio
- Neuromuscular and Rare Diseases Unit, Department of Neuroscience, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (M.R.); (D.V.); (M.R.); (P.C.); (M.M.)
| | - Giacomo Pietro Comi
- Dino Ferrari Centre, Department of Pathophysiology and Transplantation (DEPT), University of Milan, 20122 Milan, Italy; (C.R.F.A.); (G.R.); (M.M.); (G.P.C.); (D.R.)
- Neurology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Dario Ronchi
- Dino Ferrari Centre, Department of Pathophysiology and Transplantation (DEPT), University of Milan, 20122 Milan, Italy; (C.R.F.A.); (G.R.); (M.M.); (G.P.C.); (D.R.)
- Neurology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Stefania Corti
- Dino Ferrari Centre, Department of Pathophysiology and Transplantation (DEPT), University of Milan, 20122 Milan, Italy; (C.R.F.A.); (G.R.); (M.M.); (G.P.C.); (D.R.)
- Neuromuscular and Rare Diseases Unit, Department of Neuroscience, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (M.R.); (D.V.); (M.R.); (P.C.); (M.M.)
| | - Elena Abati
- Dino Ferrari Centre, Department of Pathophysiology and Transplantation (DEPT), University of Milan, 20122 Milan, Italy; (C.R.F.A.); (G.R.); (M.M.); (G.P.C.); (D.R.)
| |
Collapse
|
10
|
Donohue KJ, Fitzsimmons B, Bruntz RC, Markussen KH, Young LEA, Clarke HA, Coburn PT, Griffith LE, Sanders W, Klier J, Burke SN, Maurer AP, Minassian BA, Sun RC, Kordasiewisz HB, Gentry MS. Gys1 Antisense Therapy Prevents Disease-Driving Aggregates and Epileptiform Discharges in a Lafora Disease Mouse Model. Neurotherapeutics 2023; 20:1808-1819. [PMID: 37700152 PMCID: PMC10684475 DOI: 10.1007/s13311-023-01434-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/22/2023] [Indexed: 09/14/2023] Open
Abstract
Patients with Lafora disease have a mutation in EPM2A or EPM2B, resulting in dysregulation of glycogen metabolism throughout the body and aberrant glycogen molecules that aggregate into Lafora bodies. Lafora bodies are particularly damaging in the brain, where the aggregation drives seizures with increasing severity and frequency, coupled with neurodegeneration. Previous work employed mouse genetic models to reduce glycogen synthesis by approximately 50%, and this strategy significantly reduced Lafora body formation and disease phenotypes. Therefore, an antisense oligonucleotide (ASO) was developed to reduce glycogen synthesis in the brain by targeting glycogen synthase 1 (Gys1). To test the distribution and efficacy of this drug, the Gys1-ASO was administered to Epm2b-/- mice via intracerebroventricular administration at 4, 7, and 10 months. The mice were then sacrificed at 13 months and their brains analyzed for Gys1 expression, glycogen aggregation, and neuronal excitability. The mice treated with Gys1-ASO exhibited decreased Gys1 protein levels, decreased glycogen aggregation, and reduced epileptiform discharges compared to untreated Epm2b-/- mice. This work provides proof of concept that a Gys1-ASO halts disease progression of EPM2B mutations of Lafora disease.
Collapse
Affiliation(s)
- Katherine J Donohue
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, 40506, USA
| | - Bethany Fitzsimmons
- Department of Antisense Drug Discovery, Ionis Pharmaceuticals, Carlsbad, CA, 92010, USA
| | - Ronald C Bruntz
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, 40506, USA
| | - Kia H Markussen
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, 40506, USA
| | - Lyndsay E A Young
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, 40506, USA
| | - Harrison A Clarke
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL, 32610, USA
| | - Peyton T Coburn
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, 40506, USA
| | - Laiken E Griffith
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, 40506, USA
| | - William Sanders
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, 40506, USA
| | - Jack Klier
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, 40506, USA
| | - Sara N Burke
- Department of Neuroscience and Center for Cognitive Aging and Memory, University of Florida, Gainesville, FL, 32610, USA
| | - Andrew P Maurer
- Department of Neuroscience and Center for Cognitive Aging and Memory, University of Florida, Gainesville, FL, 32610, USA
| | - Berge A Minassian
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Ramon C Sun
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL, 32610, USA
| | - Holly B Kordasiewisz
- Department of Antisense Drug Discovery, Ionis Pharmaceuticals, Carlsbad, CA, 92010, USA
| | - Matthew S Gentry
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL, 32610, USA.
| |
Collapse
|
11
|
Laffargue T, Moulis C, Remaud-Simeon M. Phosphorylated polysaccharides: Applications, natural abundance, and new-to-nature structures generated by chemical and enzymatic functionalization. Biotechnol Adv 2023; 65:108140. [PMID: 36958536 DOI: 10.1016/j.biotechadv.2023.108140] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/14/2023] [Accepted: 03/18/2023] [Indexed: 03/25/2023]
Abstract
Polysaccharides are foreseen as serious candidates for the future generation of polymers, as they are biosourced and biodegradable materials. Their functionalisation is an attractive way to modify their properties, thereby increasing their range of applications. Introduction of phosphate groups in polysaccharide chains for the stimulation of the immune system was first described in the nineteen seventies. Since then, the use of phosphorylated polysaccharides has been proposed in various domains, such as healthcare, water treatment, cosmetic, biomaterials, etc. These alternative usages capitalize on newly acquired physico-chemical or biological properties, leading to materials as diverse as flame-resistant agents or drug delivery systems. Phosphorylated polysaccharides are found in Nature and need to be extracted to assess their biological potential. However, they are not abundant, often present complex backbones hard to characterize, and most of them have a low phosphate content. These drawbacks have pushed forward the development of chemical phosphorylation employing a wide variety of phosphorylating agents to obtain polysaccharides with a large range of phosphate content. Chemical phosphorylation requires the use of harsh conditions and toxic, petroleum-based solvents, which hinders their exploitation in the food and health industry. Over the last 20 years, although enzymes are regiospecific catalysts that work in aqueous and mild conditions, enzymatic phosphorylation has been little investigated. To date, only three families of enzymes have been used for the in vitro phosphorylation of polysaccharides. Considering the number of unresolved metabolic pathways leading to phosphorylated polysaccharides, the huge diversity of kinase sequences, and the recent progress in protein engineering one can envision native and engineered kinases as promising tools for polysaccharide phosphorylation.
Collapse
Affiliation(s)
- Thibaud Laffargue
- Biotechnology Institute (TBI), Université de Toulouse, CNRS, INRAE, INSA, 135, Avenue de Rangueil, CEDEX 04, F-31077 Toulouse, France
| | - Claire Moulis
- Biotechnology Institute (TBI), Université de Toulouse, CNRS, INRAE, INSA, 135, Avenue de Rangueil, CEDEX 04, F-31077 Toulouse, France
| | - Magali Remaud-Simeon
- Biotechnology Institute (TBI), Université de Toulouse, CNRS, INRAE, INSA, 135, Avenue de Rangueil, CEDEX 04, F-31077 Toulouse, France.
| |
Collapse
|
12
|
Koch RL, Soler-Alfonso C, Kiely BT, Asai A, Smith AL, Bali DS, Kang PB, Landstrom AP, Akman HO, Burrow TA, Orthmann-Murphy JL, Goldman DS, Pendyal S, El-Gharbawy AH, Austin SL, Case LE, Schiffmann R, Hirano M, Kishnani PS. Diagnosis and management of glycogen storage disease type IV, including adult polyglucosan body disease: A clinical practice resource. Mol Genet Metab 2023; 138:107525. [PMID: 36796138 DOI: 10.1016/j.ymgme.2023.107525] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/20/2023] [Accepted: 01/22/2023] [Indexed: 01/26/2023]
Abstract
Glycogen storage disease type IV (GSD IV) is an ultra-rare autosomal recessive disorder caused by pathogenic variants in GBE1 which results in reduced or deficient glycogen branching enzyme activity. Consequently, glycogen synthesis is impaired and leads to accumulation of poorly branched glycogen known as polyglucosan. GSD IV is characterized by a remarkable degree of phenotypic heterogeneity with presentations in utero, during infancy, early childhood, adolescence, or middle to late adulthood. The clinical continuum encompasses hepatic, cardiac, muscular, and neurologic manifestations that range in severity. The adult-onset form of GSD IV, referred to as adult polyglucosan body disease (APBD), is a neurodegenerative disease characterized by neurogenic bladder, spastic paraparesis, and peripheral neuropathy. There are currently no consensus guidelines for the diagnosis and management of these patients, resulting in high rates of misdiagnosis, delayed diagnosis, and lack of standardized clinical care. To address this, a group of experts from the United States developed a set of recommendations for the diagnosis and management of all clinical phenotypes of GSD IV, including APBD, to support clinicians and caregivers who provide long-term care for individuals with GSD IV. The educational resource includes practical steps to confirm a GSD IV diagnosis and best practices for medical management, including (a) imaging of the liver, heart, skeletal muscle, brain, and spine, (b) functional and neuromusculoskeletal assessments, (c) laboratory investigations, (d) liver and heart transplantation, and (e) long-term follow-up care. Remaining knowledge gaps are detailed to emphasize areas for improvement and future research.
Collapse
Affiliation(s)
- Rebecca L Koch
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA.
| | - Claudia Soler-Alfonso
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Bridget T Kiely
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Akihiro Asai
- Department of Pediatrics, University of Cincinnati Medical Center, Cincinnati, OH, USA; Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Ariana L Smith
- Division of Urology, Department of Surgery, University of Pennsylvania Health System, Philadelphia, PA, USA
| | - Deeksha S Bali
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Peter B Kang
- Paul and Sheila Wellstone Muscular Dystrophy Center, Department of Neurology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Andrew P Landstrom
- Division of Cardiology, Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA; Department of Cell Biology, Duke University School of Medicine, Durham, NC, USA
| | - H Orhan Akman
- Department of Neurology, Columbia University Irving Medical Center, New York City, NY, USA
| | - T Andrew Burrow
- Section of Genetics and Metabolism, Department of Pediatrics, University of Arkansas for Medical Sciences, Arkansas Children's Hospital, Little Rock, AR, USA
| | | | - Deberah S Goldman
- Adult Polyglucosan Body Disease Research Foundation, Brooklyn, NY, USA
| | - Surekha Pendyal
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Areeg H El-Gharbawy
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Stephanie L Austin
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Laura E Case
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA; Doctor of Physical Therapy Division, Department of Orthopedic Surgery, Duke University School of Medicine, Durham, NC, USA
| | | | - Michio Hirano
- Department of Neurology, Columbia University Irving Medical Center, New York City, NY, USA
| | - Priya S Kishnani
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
13
|
Gentry MS, Harris RA, Tagliabracci VS. Peter J. Roach (1948-2022). Cell Metab 2022. [PMID: 35793655 DOI: 10.1016/j.cmet.2022.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Matthew S Gentry
- Department of Biochemistry & Molecular Biology, University of Florida, College of Medicine, Gainesville, FL, USA.
| | - Robert A Harris
- Department of Biochemistry & Molecular Biology, Kansas University, School of Medicine, Kansas City, KS, USA.
| | - Vincent S Tagliabracci
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX; Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX.
| |
Collapse
|
14
|
Trehalose Treatment in Zebrafish Model of Lafora Disease. Int J Mol Sci 2022; 23:ijms23126874. [PMID: 35743315 PMCID: PMC9224929 DOI: 10.3390/ijms23126874] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/15/2022] [Accepted: 06/17/2022] [Indexed: 01/18/2023] Open
Abstract
Mutations in the EPM2A gene encoding laforin cause Lafora disease (LD), a progressive myoclonic epilepsy characterized by drug-resistant seizures and progressive neurological impairment. To date, rodents are the only available models for studying LD; however, their use for drug screening is limited by regulatory restrictions and high breeding costs. To investigate the role of laforin loss of function in early neurodevelopment, and to screen for possible new compounds for treating the disorder, we developed a zebrafish model of LD. Our results showed the epm2a−/− zebrafish to be a faithful model of LD, exhibiting the main disease features, namely motor impairment and neuronal hyperexcitability with spontaneous seizures. The model also showed increased inflammatory response and apoptotic death, as well as an altered autophagy pathway that occurs early in development and likely contributes to the disease progression. Early administration of trehalose was found to be effective for rescuing motor impairment and neuronal hyperexcitability associated with seizures. Our study adds a new tool for investigating LD and might help to identify new treatment opportunities.
Collapse
|
15
|
Wang L, Wang Y, Makhmoudova A, Nitschke F, Tetlow IJ, Emes MJ. CRISPR-Cas9-mediated editing of starch branching enzymes results in altered starch structure in Brassica napus. PLANT PHYSIOLOGY 2022; 188:1866-1886. [PMID: 34850950 PMCID: PMC8968267 DOI: 10.1093/plphys/kiab535] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/20/2021] [Indexed: 05/24/2023]
Abstract
Starch branching enzymes (SBEs) are one of the major classes of enzymes that catalyze starch biosynthesis in plants. Here, we utilized the clustered regularly interspaced short palindromic repeats-CRISPR associated protein 9 (CRISPR-Cas9)-mediated gene editing system to investigate the effects of SBE mutation on starch structure and turnover in the oilseed crop Brassica napus. Multiple single-guide RNA (sgRNA) expression cassettes were assembled into a binary vector and two rounds of transformation were employed to edit all six BnaSBE genes. All mutations were heterozygous monoallelic or biallelic, and no chimeric mutations were detected from a total of 216 editing events. Previously unannotated gene duplication events associated with two BnaSBE genes were characterized through analysis of DNA sequencing chromatograms, reflecting the complexity of genetic information in B. napus. Five Cas9-free homozygous mutant lines carrying two to six mutations of BnaSBE were obtained, allowing us to compare the effect of editing different BnaSBE isoforms. We also found that in the sextuple sbe mutant, although indels were introduced at the genomic DNA level, an alternate transcript of one BnaSBE2.1 gene bypassed the indel-induced frame shift and was translated to a modified full-length protein. Subsequent analyses showed that the sextuple mutant possesses much lower SBE enzyme activity and starch branching frequency, higher starch-bound phosphate content, and altered pattern of amylopectin chain length distribution relative to wild-type (WT) plants. In the sextuple mutant, irregular starch granules and a slower rate of starch degradation during darkness were observed in rosette leaves. At the pod-filling stage, the sextuple mutant was distinguishable from WT plants by its thick main stem. This work demonstrates the applicability of the CRISPR-Cas9 system for the study of multi-gene families and for investigation of gene-dosage effects in the oil crop B. napus. It also highlights the need for rigorous analysis of CRISPR-Cas9-mutated plants, particularly with higher levels of ploidy, to ensure detection of gene duplications.
Collapse
Affiliation(s)
- Liping Wang
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - You Wang
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Amina Makhmoudova
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Felix Nitschke
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ian J Tetlow
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Michael J Emes
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
16
|
An empirical pipeline for personalized diagnosis of Lafora disease mutations. iScience 2021; 24:103276. [PMID: 34755096 PMCID: PMC8564118 DOI: 10.1016/j.isci.2021.103276] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/14/2021] [Accepted: 10/12/2021] [Indexed: 11/23/2022] Open
Abstract
Lafora disease (LD) is a fatal childhood dementia characterized by progressive myoclonic epilepsy manifesting in the teenage years, rapid neurological decline, and death typically within ten years of onset. Mutations in either EPM2A, encoding the glycogen phosphatase laforin, or EPM2B, encoding the E3 ligase malin, cause LD. Whole exome sequencing has revealed many EPM2A variants associated with late-onset or slower disease progression. We established an empirical pipeline for characterizing the functional consequences of laforin missense mutations in vitro using complementary biochemical approaches. Analysis of 26 mutations revealed distinct functional classes associated with different outcomes that were supported by clinical cases. For example, F321C and G279C mutations have attenuated functional defects and are associated with slow progression. This pipeline enabled rapid characterization and classification of newly identified EPM2A mutations, providing clinicians and researchers genetic information to guide treatment of LD patients. Lafora disease (LD) patients present with varying clinical progression LD missense mutations differentially affect laforin function An empirical in vitro pipeline is used to classify laforin missense mutations Patient progression can be predicted based on mutation class
Collapse
|
17
|
Canine Lafora Disease: An Unstable Repeat Expansion Disorder. Life (Basel) 2021; 11:life11070689. [PMID: 34357061 PMCID: PMC8304204 DOI: 10.3390/life11070689] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/11/2021] [Accepted: 07/12/2021] [Indexed: 11/17/2022] Open
Abstract
Canine Lafora disease is a recessively inherited, rapidly progressing neurodegenerative disease caused by the accumulation of abnormally constructed insoluble glycogen Lafora bodies in the brain and other tissues due to the loss of NHL repeat containing E3 ubiquitin protein ligase 1 (NHLRC1). Dogs have a dodecamer repeat sequence within the NHLRC1 gene, which is prone to unstable (dynamic) expansion and loss of function. Progressive signs of Lafora disease include hypnic jerks, reflex and spontaneous myoclonus, seizures, vision loss, ataxia and decreased cognitive function. We studied five dogs (one Chihuahua, two French Bulldogs, one Griffon Bruxellois, one mixed breed) with clinical signs associated with canine Lafora disease. Identification of polyglucosan bodies (Lafora bodies) in myocytes supported diagnosis in the French Bulldogs; muscle areas close to the myotendinous junction and the myofascial union segment had the highest yield of inclusions. Postmortem examination of one of the French Bulldogs revealed brain Lafora bodies. Genetic testing for the known canine NHLRC1 mutation confirmed the presence of a homozygous mutation associated with canine Lafora disease. Our results show that Lafora disease extends beyond previous known breeds to the French Bulldog, Griffon Bruxellois and even mixed-breed dogs, emphasizing the likely species-wide nature of this genetic problem. It also establishes these breeds as animal models for the devastating human disease. Genetic testing should be used when designing breeding strategies to determine the frequency of the NHLRC1 mutation in affected breeds. Lafora diseases should be suspected in any older dog presenting with myoclonus, hypnic jerks or photoconvulsions.
Collapse
|
18
|
Brain glycogen serves as a critical glucosamine cache required for protein glycosylation. Cell Metab 2021; 33:1404-1417.e9. [PMID: 34043942 PMCID: PMC8266748 DOI: 10.1016/j.cmet.2021.05.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 03/02/2021] [Accepted: 05/03/2021] [Indexed: 02/08/2023]
Abstract
Glycosylation defects are a hallmark of many nervous system diseases. However, the molecular and metabolic basis for this pathology is not fully understood. In this study, we found that N-linked protein glycosylation in the brain is metabolically channeled to glucosamine metabolism through glycogenolysis. We discovered that glucosamine is an abundant constituent of brain glycogen, which functions as a glucosamine reservoir for multiple glycoconjugates. We demonstrated the enzymatic incorporation of glucosamine into glycogen by glycogen synthase, and the release by glycogen phosphorylase by biochemical and structural methodologies, in primary astrocytes, and in vivo by isotopic tracing and mass spectrometry. Using two mouse models of glycogen storage diseases, we showed that disruption of brain glycogen metabolism causes global decreases in free pools of UDP-N-acetylglucosamine and N-linked protein glycosylation. These findings revealed fundamental biological roles of brain glycogen in protein glycosylation with direct relevance to multiple human diseases of the central nervous system.
Collapse
|
19
|
Simmons ZR, Sharma S, Wayne J, Li S, Vander Kooi CW, Gentry MS. Generation and characterization of a laforin nanobody inhibitor. Clin Biochem 2021; 93:80-89. [PMID: 33831386 PMCID: PMC8217207 DOI: 10.1016/j.clinbiochem.2021.03.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/05/2021] [Accepted: 03/29/2021] [Indexed: 02/06/2023]
Abstract
OBJECTIVES Mutations in the gene encoding the glycogen phosphatase laforin result in the fatal childhood dementia Lafora disease (LD). A cellular hallmark of LD is cytoplasmic, hyper-phosphorylated, glycogen-like aggregates called Lafora bodies (LBs) that form in nearly all tissues and drive disease progression. Additional tools are needed to define the cellular function of laforin, understand the pathological role of laforin in LD, and determine the role of glycogen phosphate in glycogen metabolism. In this work, we present the generation and characterization of laforin nanobodies, with one being a laforin inhibitor. DESIGN AND METHODS We identify multiple classes of specific laforin-binding nanobodies and determine their binding epitopes using hydrogen deuterium exchange (HDX) mass spectrometry. Using para-nitrophenyl phosphate (pNPP) and a malachite gold-based assay specific for glucan phosphatase activity, we assess the inhibitory effect of one nanobody on laforin's catalytic activity. RESULTS Six families of laforin nanobodies are characterized and their epitopes mapped. One nanobody is identified and characterized that serves as an inhibitor of laforin's phosphatase activity. CONCLUSIONS The six generated and characterized laforin nanobodies, with one being a laforin inhibitor, are an important set of tools that open new avenues to define unresolved glycogen metabolism questions.
Collapse
Affiliation(s)
- Zoe R Simmons
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY 40536, United States
| | - Savita Sharma
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY 40536, United States
| | - Jeremiah Wayne
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY 40536, United States
| | - Sheng Li
- Department of Medicine, University of California at San Diego, La Jolla, CA 92093, United States
| | - Craig W Vander Kooi
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY 40536, United States; Lafora Epilepsy Cure Initiative, University of Kentucky College of Medicine, Lexington, KY 40536, United States
| | - Matthew S Gentry
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY 40536, United States; Lafora Epilepsy Cure Initiative, University of Kentucky College of Medicine, Lexington, KY 40536, United States.
| |
Collapse
|
20
|
Vemana HP, Saraswat A, Bhutkar S, Patel K, Dukhande VV. A novel gene therapy for neurodegenerative Lafora disease via EPM2A-loaded DLinDMA lipoplexes. Nanomedicine (Lond) 2021; 16:1081-1095. [PMID: 33960213 DOI: 10.2217/nnm-2020-0477] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Aim: To develop novel cationic liposomes as a nonviral gene delivery vector for the treatment of rare diseases, such as Lafora disease - a neurodegenerative epilepsy. Materials & methods: DLinDMA and DOTAP liposomes were formulated and characterized for the delivery of gene encoding laforin and expression of functional protein in HEK293 and neuroblastoma cells. Results: Liposomes with cationic lipids DLinDMA and DOTAP showed good physicochemical characteristics. Nanosized DLinDMA liposomes demonstrated desired transfection efficiency, negligible hemolysis and minimal cytotoxicity. Western blotting confirmed successful expression and glucan phosphatase assay demonstrated the biological activity of laforin. Conclusion: Our study is a novel preclinical effort in formulating cationic lipoplexes containing plasmid DNA for the therapy of rare genetic diseases such as Lafora disease.
Collapse
Affiliation(s)
- Hari Priya Vemana
- Department of Pharmaceutical Sciences, College of Pharmacy & Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Aishwarya Saraswat
- Department of Pharmaceutical Sciences, College of Pharmacy & Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Shraddha Bhutkar
- Department of Pharmaceutical Sciences, College of Pharmacy & Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Ketan Patel
- Department of Pharmaceutical Sciences, College of Pharmacy & Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Vikas V Dukhande
- Department of Pharmaceutical Sciences, College of Pharmacy & Health Sciences, St. John's University, Queens, NY 11439, USA
| |
Collapse
|
21
|
TRIM32 and Malin in Neurological and Neuromuscular Rare Diseases. Cells 2021; 10:cells10040820. [PMID: 33917450 PMCID: PMC8067510 DOI: 10.3390/cells10040820] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/01/2021] [Accepted: 04/04/2021] [Indexed: 12/27/2022] Open
Abstract
Tripartite motif (TRIM) proteins are RING E3 ubiquitin ligases defined by a shared domain structure. Several of them are implicated in rare genetic diseases, and mutations in TRIM32 and TRIM-like malin are associated with Limb-Girdle Muscular Dystrophy R8 and Lafora disease, respectively. These two proteins are evolutionary related, share a common ancestor, and both display NHL repeats at their C-terminus. Here, we revmniew the function of these two related E3 ubiquitin ligases discussing their intrinsic and possible common pathophysiological pathways.
Collapse
|
22
|
Tetlow IJ, Bertoft E. A Review of Starch Biosynthesis in Relation to the Building Block-Backbone Model. Int J Mol Sci 2020; 21:E7011. [PMID: 32977627 PMCID: PMC7582286 DOI: 10.3390/ijms21197011] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/15/2020] [Accepted: 09/16/2020] [Indexed: 01/31/2023] Open
Abstract
Starch is a water-insoluble polymer of glucose synthesized as discrete granules inside the stroma of plastids in plant cells. Starch reserves provide a source of carbohydrate for immediate growth and development, and act as long term carbon stores in endosperms and seed tissues for growth of the next generation, making starch of huge agricultural importance. The starch granule has a highly complex hierarchical structure arising from the combined actions of a large array of enzymes as well as physicochemical self-assembly mechanisms. Understanding the precise nature of granule architecture, and how both biological and abiotic factors determine this structure is of both fundamental and practical importance. This review outlines current knowledge of granule architecture and the starch biosynthesis pathway in relation to the building block-backbone model of starch structure. We highlight the gaps in our knowledge in relation to our understanding of the structure and synthesis of starch, and argue that the building block-backbone model takes accurate account of both structural and biochemical data.
Collapse
Affiliation(s)
- Ian J. Tetlow
- Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, Guelph, ON N1G 2W1, Canada
| | | |
Collapse
|
23
|
Nitschke S, Petković S, Ahonen S, Minassian BA, Nitschke F. Sensitive quantification of α-glucans in mouse tissues, cell cultures, and human cerebrospinal fluid. J Biol Chem 2020; 295:14698-14709. [PMID: 32817315 DOI: 10.1074/jbc.ra120.015061] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/04/2020] [Indexed: 12/30/2022] Open
Abstract
The soluble α-polyglucan glycogen is a central metabolite enabling transient glucose storage to suit cellular energy needs. Glycogen storage diseases (GSDs) comprise over 15 entities caused by generalized or tissue-specific defects in enzymes of glycogen metabolism. In several, e.g. in Lafora disease caused by the absence of the glycogen phosphatase laforin or its interacting partner malin, degradation-resistant abnormally structured insoluble glycogen accumulates. Sensitive quantification methods for soluble and insoluble glycogen are critical to research, including therapeutic studies, in such diseases. This paper establishes methodological advancements relevant to glycogen metabolism investigations generally, and GSDs. Introducing a pre-extraction incubation method, we measure degradation-resistant glycogen in as little as 30 mg of skeletal muscle or a single hippocampus from Lafora disease mouse models. The digestion-resistant glycogen correlates with the disease-pathogenic insoluble glycogen and can readily be detected in very young mice where glycogen accumulation has just begun. Second, we establish a high-sensitivity glucose assay with detection of ATP depletion, enabling 1) quantification of α-glucans in cell culture using a medium-throughput assay suitable for assessment of candidate glycogen synthesis inhibitors, and 2) discovery of α-glucan material in healthy human cerebrospinal fluid, establishing a novel methodological platform for biomarker analyses in Lafora disease and other GSDs.
Collapse
Affiliation(s)
- Silvia Nitschke
- Departments of Pediatrics and Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Sara Petković
- Program in Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | - Saija Ahonen
- Program in Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | - Berge A Minassian
- Departments of Pediatrics and Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, USA; Program in Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | - Felix Nitschke
- Departments of Pediatrics and Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, USA.
| |
Collapse
|
24
|
Starch and Glycogen Analyses: Methods and Techniques. Biomolecules 2020; 10:biom10071020. [PMID: 32660096 PMCID: PMC7407607 DOI: 10.3390/biom10071020] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/06/2020] [Accepted: 07/07/2020] [Indexed: 01/16/2023] Open
Abstract
For complex carbohydrates, such as glycogen and starch, various analytical methods and techniques exist allowing the detailed characterization of these storage carbohydrates. In this article, we give a brief overview of the most frequently used methods, techniques, and results. Furthermore, we give insights in the isolation, purification, and fragmentation of both starch and glycogen. An overview of the different structural levels of the glucans is given and the corresponding analytical techniques are discussed. Moreover, future perspectives of the analytical needs and the challenges of the currently developing scientific questions are included.
Collapse
|
25
|
Sullivan MA, Nitschke S, Skwara EP, Wang P, Zhao X, Pan XS, Chown EE, Wang T, Perri AM, Lee JPY, Vilaplana F, Minassian BA, Nitschke F. Skeletal Muscle Glycogen Chain Length Correlates with Insolubility in Mouse Models of Polyglucosan-Associated Neurodegenerative Diseases. Cell Rep 2020; 27:1334-1344.e6. [PMID: 31042462 DOI: 10.1016/j.celrep.2019.04.017] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 01/29/2019] [Accepted: 04/02/2019] [Indexed: 01/31/2023] Open
Abstract
Lafora disease (LD) and adult polyglucosan body disease (APBD) are glycogen storage diseases characterized by a pathogenic buildup of insoluble glycogen. Mechanisms causing glycogen insolubility are poorly understood. Here, in two mouse models of LD (Epm2a-/- and Epm2b-/-) and one of APBD (Gbe1ys/ys), the separation of soluble and insoluble muscle glycogen is described, enabling separate analysis of each fraction. Total glycogen is increased in LD and APBD mice, which, together with abnormal chain length and molecule size distributions, is largely if not fully attributed to insoluble glycogen. Soluble glycogen consists of molecules with distinct chain length distributions and differential corresponding solubility, providing a mechanistic link between soluble and insoluble glycogen in vivo. Phosphorylation states differ across glycogen fractions and mouse models, demonstrating that hyperphosphorylation is not a basic feature of insoluble glycogen. Lastly, model-specific variances in protein and activity levels of key glycogen synthesis enzymes suggest uninvestigated regulatory mechanisms.
Collapse
Affiliation(s)
- Mitchell A Sullivan
- Program in Genetics and Genome Biology, Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada; Glycation and Diabetes, Translational Research Institute, Mater Research Institute - University of Queensland, Brisbane, QLD 4102, Australia
| | - Silvia Nitschke
- Program in Genetics and Genome Biology, Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada
| | - Evan P Skwara
- Program in Genetics and Genome Biology, Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada
| | - Peixiang Wang
- Program in Genetics and Genome Biology, Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada
| | - Xiaochu Zhao
- Program in Genetics and Genome Biology, Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada
| | - Xiao S Pan
- Program in Genetics and Genome Biology, Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada; Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Erin E Chown
- Program in Genetics and Genome Biology, Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada; Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Travis Wang
- Program in Genetics and Genome Biology, Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada
| | - Ami M Perri
- Program in Genetics and Genome Biology, Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada
| | - Jennifer P Y Lee
- Program in Genetics and Genome Biology, Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada
| | - Francisco Vilaplana
- Division of Glycoscience, Department of Chemistry, KTH Royal Institute of Technology, AlbaNova University Centre, Stockholm 10691, Sweden
| | - Berge A Minassian
- Program in Genetics and Genome Biology, Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada; Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada; Division of Neurology, Department of Pediatrics, University of Texas Southwestern, Dallas, TX 75390, USA
| | - Felix Nitschke
- Program in Genetics and Genome Biology, Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada.
| |
Collapse
|
26
|
Kundap UP, Paudel YN, Shaikh MF. Animal Models of Metabolic Epilepsy and Epilepsy Associated Metabolic Dysfunction: A Systematic Review. Pharmaceuticals (Basel) 2020; 13:ph13060106. [PMID: 32466498 PMCID: PMC7345684 DOI: 10.3390/ph13060106] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 05/22/2020] [Accepted: 05/23/2020] [Indexed: 12/13/2022] Open
Abstract
Epilepsy is a serious neurological disorder affecting around 70 million people globally and is characterized by spontaneous recurrent seizures. Recent evidence indicates that dysfunction in metabolic processes can lead to the alteration of neuronal and network excitability, thereby contributing to epileptogenesis. Developing a suitable animal model that can recapitulate all the clinical phenotypes of human metabolic epilepsy (ME) is crucial yet challenging. The specific environment of many symptoms as well as the primary state of the applicable neurobiology, genetics, and lack of valid biomarkers/diagnostic tests are the key factors that hinder the process of developing a suitable animal model. The present systematic review summarizes the current state of available animal models of metabolic dysfunction associated with epileptic disorders. A systematic search was performed by using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) model. A range of electronic databases, including google scholar, Springer, PubMed, ScienceDirect, and Scopus, were scanned between January 2000 and April 2020. Based on the selection criteria, 23 eligible articles were chosen and are discussed in the current review. Critical analysis of the selected literature delineated several available approaches that have been modeled into metabolic epilepsy and pointed out several drawbacks associated with the currently available models. The result describes available models of metabolic dysfunction associated with epileptic disorder, such as mitochondrial respiration deficits, Lafora disease (LD) model-altered glycogen metabolism, causing epilepsy, glucose transporter 1 (GLUT1) deficiency, adiponectin responsive seizures, phospholipid dysfunction, glutaric aciduria, mitochondrial disorders, pyruvate dehydrogenase (PDH) α-subunit gene (PDHA1), pyridoxine dependent epilepsy (PDE), BCL2-associated agonist of cell death (BAD), Kcna1 knock out (KO), and long noncoding RNAs (lncRNA) cancer susceptibility candidate 2 (lncRNA CASC2). Finally, the review highlights certain focus areas that may increase the possibilities of developing more suitable animal models and underscores the importance of the rationalization of animal models and evaluation methods for studying ME. The review also suggests the pressing need of developing precise robust animal models and evaluation methods for investigating ME.
Collapse
Affiliation(s)
- Uday Praful Kundap
- Research Center of the University of Montreal Hospital Center (CRCHUM), Department of Neurosciences, Université de Montréal, Montréal, QC H2X 0A9, Canada; (U.P.K.); (Y.N.P.)
- Neuropharmacology Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Selangor 47500, Malaysia
| | - Yam Nath Paudel
- Research Center of the University of Montreal Hospital Center (CRCHUM), Department of Neurosciences, Université de Montréal, Montréal, QC H2X 0A9, Canada; (U.P.K.); (Y.N.P.)
| | - Mohd. Farooq Shaikh
- Neuropharmacology Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Selangor 47500, Malaysia
- Correspondence: ; Tel.: +60-3-551-44-483
| |
Collapse
|
27
|
Brewer MK, Putaux JL, Rondon A, Uittenbogaard A, Sullivan MA, Gentry MS. Polyglucosan body structure in Lafora disease. Carbohydr Polym 2020; 240:116260. [PMID: 32475552 DOI: 10.1016/j.carbpol.2020.116260] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/16/2020] [Accepted: 04/03/2020] [Indexed: 12/18/2022]
Abstract
Abnormal carbohydrate structures known as polyglucosan bodies (PGBs) are associated with neurological disorders, glycogen storage diseases (GSDs), and aging. A hallmark of the GSD Lafora disease (LD), a fatal childhood epilepsy caused by recessive mutations in the EPM2A or EPM2B genes, are cytoplasmic PGBs known as Lafora bodies (LBs). LBs result from aberrant glycogen metabolism and drive disease progression. They are abundant in brain, muscle and heart of LD patients and Epm2a-/- and Epm2b-/- mice. LBs and PGBs are histologically reminiscent of starch, semicrystalline carbohydrates synthesized for glucose storage in plants. In this study, we define LB architecture, tissue-specific differences, and dynamics. We propose a model for how small polyglucosans aggregate to form LBs. LBs are very similar to PGBs of aging and other neurological disorders, and so these studies have direct relevance to the general understanding of PGB structure and formation.
Collapse
Affiliation(s)
- M Kathryn Brewer
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY, 40536, USA; Lafora Epilepsy Cure Initiative, Epilepsy and Brain Metabolism Center, and Center for Structural Biology, University of Kentucky College of Medicine, Lexington, KY, 40536, USA; Institute for Research in Biomedicine (IRB Barcelona), 08028, Barcelona, Spain
| | - Jean-Luc Putaux
- Univ. Grenoble Alpes, CNRS, CERMAV, F-38000, Grenoble, France
| | - Alberto Rondon
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY, 40536, USA
| | - Annette Uittenbogaard
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY, 40536, USA
| | - Mitchell A Sullivan
- Glycation and Diabetes Group, Mater Research Institute-The University of Queensland, Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Matthew S Gentry
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY, 40536, USA; Lafora Epilepsy Cure Initiative, Epilepsy and Brain Metabolism Center, and Center for Structural Biology, University of Kentucky College of Medicine, Lexington, KY, 40536, USA.
| |
Collapse
|
28
|
Young LE, Brizzee CO, Macedo JKA, Murphy RD, Contreras CJ, DePaoli-Roach AA, Roach PJ, Gentry MS, Sun RC. Accurate and sensitive quantitation of glucose and glucose phosphates derived from storage carbohydrates by mass spectrometry. Carbohydr Polym 2020; 230:115651. [PMID: 31887930 PMCID: PMC7018519 DOI: 10.1016/j.carbpol.2019.115651] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/13/2019] [Accepted: 11/19/2019] [Indexed: 01/30/2023]
Abstract
The addition of phosphate groups into glycogen modulates its branching pattern and solubility which all impact its accessibility to glycogen interacting enzymes. As glycogen architecture modulates its metabolism, it is essential to accurately evaluate and quantify its phosphate content. Simultaneous direct quantitation of glucose and its phosphate esters requires an assay with high sensitivity and a robust dynamic range. Herein, we describe a highly-sensitive method for the accurate detection of both glycogen-derived glucose and glucose-phosphate esters utilizing gas-chromatography coupled mass spectrometry. Using this method, we observed higher glycogen levels in the liver compared to skeletal muscle, but skeletal muscle contained many more phosphate esters. Importantly, this method can detect femtomole levels of glucose and glucose phosphate esters within an extremely robust dynamic range with excellent accuracy and reproducibility. The method can also be easily adapted for the quantification of plant starch, amylopectin or other biopolymers.
Collapse
Affiliation(s)
- Lyndsay E.A. Young
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Corey O. Brizzee
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Jessica K. A. Macedo
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Robert D. Murphy
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Christopher J. Contreras
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202,Lafora Epilepsy Cure Initiative, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Anna A. DePaoli-Roach
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202,Lafora Epilepsy Cure Initiative, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Peter J. Roach
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202,Lafora Epilepsy Cure Initiative, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Matthew S. Gentry
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY 40536, USA,University of Kentucky Epilepsy & Brain Metabolism Alliance, University of Kentucky College of Medicine, Lexington, KY 40536, USA,Lafora Epilepsy Cure Initiative, University of Kentucky College of Medicine, Lexington, KY 40536, USA,Markey Cancer Center, Lexington, KY 40536, USA
| | - Ramon C. Sun
- Department of Neuroscience, University of Kentucky College of Medicine, Lexington, KY 40536, USA,Markey Cancer Center, Lexington, KY 40536, USA,To whom correspondence should be addressed: Ramon Sun: Department of Neuroscience BBSRB B179, University of Kentucky, Lexington, KY, 40536-0509 USA; ; Tel. +1 (859)562-2298 Fax. +1 (859)323-5505
| |
Collapse
|
29
|
Brewer MK, Uittenbogaard A, Austin GL, Segvich DM, DePaoli-Roach A, Roach PJ, McCarthy JJ, Simmons ZR, Brandon JA, Zhou Z, Zeller J, Young LEA, Sun RC, Pauly JR, Aziz NM, Hodges BL, McKnight TR, Armstrong DD, Gentry MS. Targeting Pathogenic Lafora Bodies in Lafora Disease Using an Antibody-Enzyme Fusion. Cell Metab 2019; 30:689-705.e6. [PMID: 31353261 PMCID: PMC6774808 DOI: 10.1016/j.cmet.2019.07.002] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 05/28/2019] [Accepted: 07/03/2019] [Indexed: 12/15/2022]
Abstract
Lafora disease (LD) is a fatal childhood epilepsy caused by recessive mutations in either the EPM2A or EPM2B gene. A hallmark of LD is the intracellular accumulation of insoluble polysaccharide deposits known as Lafora bodies (LBs) in the brain and other tissues. In LD mouse models, genetic reduction of glycogen synthesis eliminates LB formation and rescues the neurological phenotype. Therefore, LBs have become a therapeutic target for ameliorating LD. Herein, we demonstrate that human pancreatic α-amylase degrades LBs. We fused this amylase to a cell-penetrating antibody fragment, and this antibody-enzyme fusion (VAL-0417) degrades LBs in vitro and dramatically reduces LB loads in vivo in Epm2a-/- mice. Using metabolomics and multivariate analysis, we demonstrate that VAL-0417 treatment of Epm2a-/- mice reverses the metabolic phenotype to a wild-type profile. VAL-0417 is a promising drug for the treatment of LD and a putative precision therapy platform for intractable epilepsy.
Collapse
Affiliation(s)
- M Kathryn Brewer
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Annette Uittenbogaard
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Grant L Austin
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Dyann M Segvich
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Anna DePaoli-Roach
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Lafora Epilepsy Cure Initiative, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Peter J Roach
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Lafora Epilepsy Cure Initiative, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - John J McCarthy
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Zoe R Simmons
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Jason A Brandon
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Zhengqiu Zhou
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Jill Zeller
- Northern Biomedical Research, Spring Lake, MI 49456, USA
| | - Lyndsay E A Young
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Ramon C Sun
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - James R Pauly
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA
| | | | | | | | | | - Matthew S Gentry
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY 40536, USA; Lafora Epilepsy Cure Initiative, University of Kentucky College of Medicine, Lexington, KY 40536, USA; University of Kentucky Epilepsy & Brain Metabolism Alliance, University of Kentucky College of Medicine, Lexington, KY 40536, USA.
| |
Collapse
|
30
|
Abstract
Lafora disease is a severe, autosomal recessive, progressive myoclonus epilepsy. The disease usually manifests in previously healthy adolescents, and death commonly occurs within 10 years of symptom onset. Lafora disease is caused by loss-of-function mutations in EPM2A or NHLRC1, which encode laforin and malin, respectively. The absence of either protein results in poorly branched, hyperphosphorylated glycogen, which precipitates, aggregates and accumulates into Lafora bodies. Evidence from Lafora disease genetic mouse models indicates that these intracellular inclusions are a principal driver of neurodegeneration and neurological disease. The integration of current knowledge on the function of laforin-malin as an interacting complex suggests that laforin recruits malin to parts of glycogen molecules where overly long glucose chains are forming, so as to counteract further chain extension. In the absence of either laforin or malin function, long glucose chains in specific glycogen molecules extrude water, form double helices and drive precipitation of those molecules, which over time accumulate into Lafora bodies. In this article, we review the genetic, clinical, pathological and molecular aspects of Lafora disease. We also discuss traditional antiseizure treatments for this condition, as well as exciting therapeutic advances based on the downregulation of brain glycogen synthesis and disease gene replacement.
Collapse
|
31
|
Brewer MK, Gentry MS. Brain Glycogen Structure and Its Associated Proteins: Past, Present and Future. ADVANCES IN NEUROBIOLOGY 2019; 23:17-81. [PMID: 31667805 PMCID: PMC7239500 DOI: 10.1007/978-3-030-27480-1_2] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This chapter reviews the history of glycogen-related research and discusses in detail the structure, regulation, chemical properties and subcellular distribution of glycogen and its associated proteins, with particular focus on these aspects in brain tissue.
Collapse
Affiliation(s)
- M Kathryn Brewer
- Department of Molecular and Cellular Biochemistry, Epilepsy and Brain Metabolism Center, Lafora Epilepsy Cure Initiative, and Center for Structural Biology, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Matthew S Gentry
- Department of Molecular and Cellular Biochemistry, Epilepsy and Brain Metabolism Center, Lafora Epilepsy Cure Initiative, and Center for Structural Biology, University of Kentucky College of Medicine, Lexington, KY, USA.
| |
Collapse
|
32
|
Abstract
Lafora's disease is a neurodegenerative disorder caused by recessive loss-of-function mutations in the EPM2A (laforin glycogen phosphatase) or EPM2B (malin E3 ubiquitin ligase) genes. Neuropathology is characterized by malformed precipitated glycogen aggregates termed Lafora bodies. Asymptomatic until adolescence, patients undergo first insidious then rapid progressive myoclonus epilepsy toward a vegetative state and death within a decade. Laforin and malin interact to regulate glycogen phosphorylation and chain length pattern, the latter critical to glycogen's solubility. Significant gaps remain in precise mechanistic understanding. However, demonstration that partial reduction in brain glycogen synthesis near-completely prevents the disease in its genetic animal models opens a direct present path to therapy.
Collapse
Affiliation(s)
- Brandy Verhalen
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Susan Arnold
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Berge A. Minassian
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, United States,Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| |
Collapse
|
33
|
Goren A, Ashlock D, Tetlow IJ. Starch formation inside plastids of higher plants. PROTOPLASMA 2018; 255:1855-1876. [PMID: 29774409 DOI: 10.1007/s00709-018-1259-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 05/03/2018] [Indexed: 05/09/2023]
Abstract
Starch is a water-insoluble polyglucan synthesized inside the plastid stroma within plant cells, serving a crucial role in the carbon budget of the whole plant by acting as a short-term and long-term store of energy. The highly complex, hierarchical structure of the starch granule arises from the actions of a large suite of enzyme activities, in addition to physicochemical self-assembly mechanisms. This review outlines current knowledge of the starch biosynthetic pathway operating in plant cells in relation to the micro- and macro-structures of the starch granule. We highlight the gaps in our knowledge, in particular, the relationship between enzyme function and operation at the molecular level and the formation of the final, macroscopic architecture of the granule.
Collapse
Affiliation(s)
- Asena Goren
- Department of Mathematics and Statistics, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Daniel Ashlock
- Department of Mathematics and Statistics, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Ian J Tetlow
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of Guelph, Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
34
|
Garcia-Gimeno MA, Rodilla-Ramirez PN, Viana R, Salas-Puig X, Brewer MK, Gentry MS, Sanz P. A novel EPM2A mutation yields a slow progression form of Lafora disease. Epilepsy Res 2018; 145:169-177. [PMID: 30041081 DOI: 10.1016/j.eplepsyres.2018.07.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 07/11/2018] [Accepted: 07/13/2018] [Indexed: 12/19/2022]
Abstract
Lafora disease (LD, OMIM 254780) is a rare disorder characterized by epilepsy and neurodegeneration leading patients to a vegetative state and death, usually within the first decade from the onset of the first symptoms. In the vast majority of cases LD is related to mutations in either the EPM2A gene (encoding the glucan phosphatase laforin) or the EPM2B gene (encoding the E3-ubiquitin ligase malin). In this work, we characterize the mutations present in the EPM2A gene in a patient displaying a slow progression form of the disease. The patient is compound heterozygous with Y112X and N163D mutations in the corresponding alleles. In primary fibroblasts obtained from the patient, we analyzed the expression of the mutated alleles by quantitative real time PCR and found slightly lower levels of expression of the EPM2A gene respect to control cells. However, by Western blotting we were unable to detect endogenous levels of the protein in crude extracts from patient fibroblasts. The Y112X mutation would render a truncated protein lacking the phosphatase domain and likely degraded. Since minute amounts of laforin-N163D might still play a role in cell physiology, we analyzed the biochemical characteristics of the N163D mutation. We found that recombinant laforin N163D protein was as stable as wild type and exhibited near wild type phosphatase activity towards biologically relevant substrates. On the contrary, it showed a severe impairment in the interaction profile with previously identified laforin binding partners. These results lead us to conclude that the slow progression of the disease present in this patient could be either due to the specific biochemical properties of laforin N163D or to the presence of alternative genetic modifying factors separate from pathogenicity.
Collapse
Affiliation(s)
| | | | - Rosa Viana
- IBV-CSIC. Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - Xavier Salas-Puig
- Epilepsy Unit, Neurology Dept., Hospital Vall Hebron, Barcelona, Spain
| | - M Kathryn Brewer
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, USA
| | - Matthew S Gentry
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, USA; Lafora Epilepsy Cure Initiative, USA
| | - Pascual Sanz
- IBV-CSIC. Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas, Valencia, Spain; CIBERER. Centro de Investigación Biomédica en Red de Enfermedades Raras, Valencia, Spain; Lafora Epilepsy Cure Initiative, USA.
| |
Collapse
|
35
|
Ahonen S, Seath I, Rusbridge C, Holt S, Key G, Wang T, Wang P, Minassian BA. Nationwide genetic testing towards eliminating Lafora disease from Miniature Wirehaired Dachshunds in the United Kingdom. Canine Genet Epidemiol 2018; 5:2. [PMID: 29610669 PMCID: PMC5869781 DOI: 10.1186/s40575-018-0058-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 03/19/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Canine DNA-testing has become an important tool in purebred dog breeding and many breeders use genetic testing results when planning their breeding strategies. In addition, information obtained from testing of hundreds dogs in one breed gives valuable information about the breed-wide genotype frequency of disease associated allele. Lafora disease is a late onset, recessively inherited genetic disease which is diagnosed in Miniature Wirehaired Dachshunds (MWHD). It is one of the most severe forms of canine epilepsy leading to neurodegeneration and, frequently euthanasia within a few years of diagnosis. Canine Lafora disease is caused by a dodecamer repeat expansion mutation in the NHLRC1 gene and a DNA test is available to identify homozygous dogs at risk, carriers and dogs free of the mutation. RESULTS Blood samples were collected from 733 MWHDs worldwide, mostly of UK origin, for canine Lafora disease testing. Among the tested MWHD population 7.0% were homozygous for the mutation and at risk for Lafora disease. In addition, 234 dogs were heterozygous, indicating a carrier frequency of 31.9% in the tested population. Among the tested MWHDs, the mutant allele frequency was 0.2. In addition, data from the tested dogs over 6 years (2012-2017) indicated that the frequency of the homozygous and carrier dogs has decreased from 10.4% to 2.7% and 41.5% to 25.7%, respectively among MWHDs tested. As a consequence, the frequency of dogs free of the mutation has increased from 48.1% to 71.6%. CONCLUSIONS This study provides valuable data for the MWHD community and shows that the DNA test is a useful tool for the breeders to prevent occurrence of Lafora disease in MWHDs. DNA testing has, over 6 years, helped to decrease the frequency of carriers and dogs at risk. Additionally, the DNA test can continue to be used to slowly eradicate the disease-causing mutation in the breed. However, this should be done carefully, over time, to avoid further compromising the genetic diversity of the breed. The DNA test also provides a diagnostic tool for veterinarians if they are presented with a dog that shows clinical signs associated with canine Lafora disease.
Collapse
Affiliation(s)
- Saija Ahonen
- Program in Genetics and Genome Biology, The Hospital for Sick Children, 555 University Avenue, Toronto, ON M5G 1X8 Canada
| | - Ian Seath
- Dachshund Breed Council, Wrington, North Somerset, UK
| | - Clare Rusbridge
- Fitzpatrick Referrals Orthopedics and Neurology, Halfway Lane, Eashing, Godalming, Surrey UK
- School of Veterinary Medicine, Faculty of Health & Medical Sciences, University of Surrey, Guildford, Surrey UK
| | - Susan Holt
- Dachshund Breed Council, Wrington, North Somerset, UK
| | - Gill Key
- Dachshund Breed Council, Wrington, North Somerset, UK
| | - Travis Wang
- Program in Genetics and Genome Biology, The Hospital for Sick Children, 555 University Avenue, Toronto, ON M5G 1X8 Canada
| | - Peixiang Wang
- Program in Genetics and Genome Biology, The Hospital for Sick Children, 555 University Avenue, Toronto, ON M5G 1X8 Canada
| | - Berge A. Minassian
- Program in Genetics and Genome Biology, The Hospital for Sick Children, 555 University Avenue, Toronto, ON M5G 1X8 Canada
- Department of Pediatrics, University of Texas Southwestern, 5323 Harry Blvd, Dallas, TX 75390-9063 USA
| |
Collapse
|
36
|
Nitschke F, Sullivan MA, Wang P, Zhao X, Chown EE, Perri AM, Israelian L, Juana-López L, Bovolenta P, Rodríguez de Córdoba S, Steup M, Minassian BA. Abnormal glycogen chain length pattern, not hyperphosphorylation, is critical in Lafora disease. EMBO Mol Med 2018; 9:906-917. [PMID: 28536304 PMCID: PMC5494504 DOI: 10.15252/emmm.201707608] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Lafora disease (LD) is a fatal progressive epilepsy essentially caused by loss-of-function mutations in the glycogen phosphatase laforin or the ubiquitin E3 ligase malin. Glycogen in LD is hyperphosphorylated and poorly hydrosoluble. It precipitates and accumulates into neurotoxic Lafora bodies (LBs). The leading LD hypothesis that hyperphosphorylation causes the insolubility was recently challenged by the observation that phosphatase-inactive laforin rescues the laforin-deficient LD mouse model, apparently through correction of a general autophagy impairment. We were for the first time able to quantify brain glycogen phosphate. We also measured glycogen content and chain lengths, LBs, and autophagy markers in several laforin- or malin-deficient mouse lines expressing phosphatase-inactive laforin. We find that: (i) in laforin-deficient mice, phosphatase-inactive laforin corrects glycogen chain lengths, and not hyperphosphorylation, which leads to correction of glycogen amounts and prevention of LBs; (ii) in malin-deficient mice, phosphatase-inactive laforin confers no correction; (iii) general impairment of autophagy is not necessary in LD We conclude that laforin's principle function is to control glycogen chain lengths, in a malin-dependent fashion, and that loss of this control underlies LD.
Collapse
Affiliation(s)
- Felix Nitschke
- Program in Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, ON, Canada
| | - Mitchell A Sullivan
- Program in Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, ON, Canada.,Glycation and Diabetes, Mater Research Institute, Translational Research Institute, The University of Queensland, Brisbane, Qld, Australia
| | - Peixiang Wang
- Program in Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, ON, Canada
| | - Xiaochu Zhao
- Program in Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, ON, Canada
| | - Erin E Chown
- Program in Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Ami M Perri
- Program in Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, ON, Canada
| | - Lori Israelian
- Program in Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Lucia Juana-López
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas and Ciber de Enfermedades Raras, Madrid, Spain
| | - Paola Bovolenta
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM and Ciber de Enfermedades Raras, Universidad Autónoma de Madrid, Madrid, Spain
| | - Santiago Rodríguez de Córdoba
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas and Ciber de Enfermedades Raras, Madrid, Spain
| | - Martin Steup
- Program in Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, ON, Canada
| | - Berge A Minassian
- Program in Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, ON, Canada .,Institute of Medical Science, University of Toronto, Toronto, ON, Canada.,Division of Neurology, Department of Pediatrics, University of Texas Southwestern, Dallas, TX, USA
| |
Collapse
|
37
|
Gentry MS, Guinovart JJ, Minassian BA, Roach PJ, Serratosa JM. Lafora disease offers a unique window into neuronal glycogen metabolism. J Biol Chem 2018; 293:7117-7125. [PMID: 29483193 DOI: 10.1074/jbc.r117.803064] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Lafora disease (LD) is a fatal, autosomal recessive, glycogen-storage disorder that manifests as severe epilepsy. LD results from mutations in the gene encoding either the glycogen phosphatase laforin or the E3 ubiquitin ligase malin. Individuals with LD develop cytoplasmic, aberrant glycogen inclusions in nearly all tissues that more closely resemble plant starch than human glycogen. This Minireview discusses the unique window into glycogen metabolism that LD research offers. It also highlights recent discoveries, including that glycogen contains covalently bound phosphate and that neurons synthesize glycogen and express both glycogen synthase and glycogen phosphorylase.
Collapse
Affiliation(s)
- Matthew S Gentry
- Lafora Epilepsy Cure Initiative, Lexington, Kentucky 40503; Department of Biochemistry and Molecular Biology, Lexington, Kentucky 40503; University of Kentucky Epilepsy Research Center (EpiC), University of Kentucky, Lexington, Kentucky 40503.
| | - Joan J Guinovart
- Lafora Epilepsy Cure Initiative, Lexington, Kentucky 40503; Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology, 08028 Barcelona, Spain; Biomedical Research Networking Center in Diabetes and Associated Metabolic Disorders (CIBERDEM), 28029 Madrid, Spain; Department of Biochemistry and Molecular Biomedicine, University of Barcelona, 08028 Barcelona, Spain
| | - Berge A Minassian
- Lafora Epilepsy Cure Initiative, Lexington, Kentucky 40503; Department of Pediatrics and Dallas Children's Medical Center, University of Texas Southwestern, Dallas, Texas 75390-9063; Department of Pediatrics, The Hospital for Sick Children Research Institute, University of Toronto, Toronto, Ontario M5G 0A4, Canada
| | - Peter J Roach
- Lafora Epilepsy Cure Initiative, Lexington, Kentucky 40503; Department of Biochemistry and Molecular Biology, Center for Diabetes and Metabolic Diseases and Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Jose M Serratosa
- Lafora Epilepsy Cure Initiative, Lexington, Kentucky 40503; Laboratory of Neurology, IIS-Jimenez Diaz Foundation, UAM, 28045 Madrid, Spain; Biomedical Research Networking Center on Rare Diseases (CIBERER), 28029 Madrid, Spain
| |
Collapse
|
38
|
Kuchtová A, Gentry MS, Janeček Š. The unique evolution of the carbohydrate-binding module CBM20 in laforin. FEBS Lett 2018; 592:586-598. [PMID: 29389008 DOI: 10.1002/1873-3468.12994] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 01/20/2018] [Accepted: 01/23/2018] [Indexed: 12/30/2022]
Abstract
Laforin catalyses glycogen dephosphorylation. Mutations in its gene result in Lafora disease, a fatal progressive myoclonus epilepsy, the hallmark being water-insoluble, hyperphosphorylated carbohydrate inclusions called Lafora bodies. Human laforin consists of an N-terminal carbohydrate-binding module (CBM) from family CBM20 and a C-terminal dual-specificity phosphatase domain. Laforin is conserved in all vertebrates, some basal metazoans and a small group of protozoans. The present in silico study defines the evolutionary relationships among the CBM20s of laforin with an emphasis on newly identified laforin orthologues. The study reveals putative laforin orthologues in Trichinella, a parasitic nematode, and identifies two sequence inserts in the CBM20 of laforin from parasitic coccidia. Finally, we identify that the putative laforin orthologues from some protozoa and algae possess more than one CBM20.
Collapse
Affiliation(s)
- Andrea Kuchtová
- Laboratory of Protein Evolution, Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava, Slovakia.,Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA
| | - Matthew S Gentry
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA
| | - Štefan Janeček
- Laboratory of Protein Evolution, Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava, Slovakia.,Department of Biology, Faculty of Natural Sciences, University of SS. Cyril and Methodius, Trnava, Slovakia
| |
Collapse
|
39
|
Pathogenesis of Lafora Disease: Transition of Soluble Glycogen to Insoluble Polyglucosan. Int J Mol Sci 2017; 18:ijms18081743. [PMID: 28800070 PMCID: PMC5578133 DOI: 10.3390/ijms18081743] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 08/04/2017] [Accepted: 08/06/2017] [Indexed: 02/07/2023] Open
Abstract
Lafora disease (LD, OMIM #254780) is a rare, recessively inherited neurodegenerative disease with adolescent onset, resulting in progressive myoclonus epilepsy which is fatal usually within ten years of symptom onset. The disease is caused by loss-of-function mutations in either of the two genes EPM2A (laforin) or EPM2B (malin). It characteristically involves the accumulation of insoluble glycogen-derived particles, named Lafora bodies (LBs), which are considered neurotoxic and causative of the disease. The pathogenesis of LD is therefore centred on the question of how insoluble LBs emerge from soluble glycogen. Recent data clearly show that an abnormal glycogen chain length distribution, but neither hyperphosphorylation nor impairment of general autophagy, strictly correlates with glycogen accumulation and the presence of LBs. This review summarizes results obtained with patients, mouse models, and cell lines and consolidates apparent paradoxes in the LD literature. Based on the growing body of evidence, it proposes that LD is predominantly caused by an impairment in chain-length regulation affecting only a small proportion of the cellular glycogen. A better grasp of LD pathogenesis will further develop our understanding of glycogen metabolism and structure. It will also facilitate the development of clinical interventions that appropriately target the underlying cause of LD.
Collapse
|
40
|
Swain L, Key G, Tauro A, Ahonen S, Wang P, Ackerley C, Minassian BA, Rusbridge C. Lafora disease in miniature Wirehaired Dachshunds. PLoS One 2017; 12:e0182024. [PMID: 28767715 PMCID: PMC5540395 DOI: 10.1371/journal.pone.0182024] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 07/11/2017] [Indexed: 12/13/2022] Open
Abstract
Lafora disease (LD) is an autosomal recessive late onset, progressive myoclonic epilepsy with a high prevalence in the miniature Wirehaired Dachshund. The disease is due to a mutation in the Epm2b gene which results in intracellular accumulation of abnormal glycogen (Lafora bodies). Recent breed-wide testing suggests that the carrier plus affected rate may be as high as 20%. A characteristic feature of the disease is spontaneous and reflex myoclonus; however clinical signs and disease progression are not well described. A survey was submitted to owners of MWHD which were homozygous for Epm2b mutation (breed club testing program) or had late onset reflex myoclonus and clinical diagnosis of LD. There were 27 dogs (11 male; 16 female) for analysis after young mutation-positive dogs that had yet to develop disease were excluded. Average age of onset of clinical signs was 6.94 years (3.5–12). The most common initial presenting sign was reflex and spontaneous myoclonus (77.8%). Other presenting signs included hypnic myoclonus (51.9%) and generalized seizures (40.7%). Less common presenting signs include focal seizures, “jaw smacking”, “fly catching”, “panic attacks”, impaired vision, aggression and urinary incontinence. All these clinical signs may appear, and then increase in frequency and intensity over time. The myoclonus in particular becomes more severe and more refractory to treatment. Signs that developed later in the disease include dementia (51.9%), blindness (48.1%), aggression to people (25.9%) and dogs (33.3%), deafness (29.6%) and fecal (29.6%) and urinary (37.0%) incontinence as a result of loss of house training (disinhibited type behavior). Further prospective study is needed to further characterize the canine disease and to allow more specific therapeutic strategies and to tailor therapy as the disease progresses.
Collapse
Affiliation(s)
- Lindsay Swain
- Fitzpatrick Referrals Orthopedics and Neurology, Halfway Lane, Eashing, Godalming, Surrey, United Kingdom
| | - Gill Key
- Dachshund Breed Council, Wrington, North Somerset, United Kingdom
| | - Anna Tauro
- Fitzpatrick Referrals Orthopedics and Neurology, Halfway Lane, Eashing, Godalming, Surrey, United Kingdom
| | - Saija Ahonen
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada
| | - Peixiang Wang
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada
| | - Cameron Ackerley
- Department of Pathology and Laboratory Medicine, The Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - Berge A. Minassian
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada
- Department of Pediatrics (Neurology), The Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - Clare Rusbridge
- Fitzpatrick Referrals Orthopedics and Neurology, Halfway Lane, Eashing, Godalming, Surrey, United Kingdom
- School of Veterinary Medicine, Faculty of Health & Medical Sciences, University of Surrey, Guildford, Surrey, United Kingdom
- * E-mail:
| |
Collapse
|
41
|
Krag TO, Ruiz-Ruiz C, Vissing J. Glycogen Synthesis in Glycogenin 1-Deficient Patients: A Role for Glycogenin 2 in Muscle. J Clin Endocrinol Metab 2017; 102:2690-2700. [PMID: 28453664 DOI: 10.1210/jc.2017-00399] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Accepted: 04/21/2017] [Indexed: 02/13/2023]
Abstract
CONTEXT Glycogen storage disease (GSD) type XV is a rare disease caused by mutations in the GYG1 gene that codes for the core molecule of muscle glycogen, glycogenin 1. Nonetheless, glycogen is present in muscles of glycogenin 1-deficient patients, suggesting an alternative for glycogen buildup. A likely candidate is glycogenin 2, an isoform expressed in the liver and heart but not in healthy skeletal muscle. OBJECTIVE We wanted to investigate the formation of glycogen and changes in glycogen metabolism in patients with GSD type XV. DESIGN, SETTING, AND PATIENTS Two patients with mutations in the GYG1 gene were investigated for histopathology, ultrastructure, and expression of proteins involved in glycogen synthesis and metabolism. RESULTS Apart from occurrence of polyglucosan (PG) bodies in few fibers, glycogen appeared normal in most cells, and the concentration was normal in patients with GSD type XV. We found that glycogenin 1 was absent, but glycogenin 2 was present in the patients, whereas the opposite was the case in healthy controls. Electron microscopy revealed that glycogen was present between and not inside myofibrils in type II fibers, compromising the ultrastructure of these fibers, and only type I fibers contained PG bodies. We also found significant changes to the expression levels of several enzymes directly involved in glycogen and glucose metabolism. CONCLUSIONS To our knowledge, this is the first report demonstrating expression of glycogenin 2 in glycogenin 1-deficient patients, suggesting that glycogenin 2 rescues the formation of glycogen in patients with glycogenin 1 deficiency.
Collapse
Affiliation(s)
- Thomas O Krag
- Copenhagen Neuromuscular Center, Department of Neurology, Rigshospitalet, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Cristina Ruiz-Ruiz
- Copenhagen Neuromuscular Center, Department of Neurology, Rigshospitalet, University of Copenhagen, 2100 Copenhagen, Denmark
| | - John Vissing
- Copenhagen Neuromuscular Center, Department of Neurology, Rigshospitalet, University of Copenhagen, 2100 Copenhagen, Denmark
| |
Collapse
|
42
|
Abstract
Lafora disease (LD) is an autosomal recessive progressive myoclonus epilepsy due to mutations in the EPM2A (laforin) and EPM2B (malin) genes, with no substantial genotype-phenotype differences between the two. Founder effects and recurrent mutations are common, and mostly isolated to specific ethnic groups and/or geographical locations. Pathologically, LD is characterized by distinctive polyglucosans, which are formations of abnormal glycogen. Polyglucosans, or Lafora bodies (LB) are typically found in the brain, periportal hepatocytes of the liver, skeletal and cardiac myocytes, and in the eccrine duct and apocrine myoepithelial cells of sweat glands. Mouse models of the disease and other naturally occurring animal models have similar pathology and phenotype. Hypotheses of LB formation remain controversial, with compelling evidence and caveats for each hypothesis. However, it is clear that the laforin and malin functions regulating glycogen structure are key. With the exception of a few missense mutations LD is clinically homogeneous, with onset in adolescence. Symptoms begin with seizures, and neurological decline follows soon after. The disease course is progressive and fatal, with death occurring within 10 years of onset. Antiepileptic drugs are mostly non-effective, with none having a major influence on the progression of cognitive and behavioral symptoms. Diagnosis and genetic counseling are important aspects of LD, and social support is essential in disease management. Future therapeutics for LD will revolve around the pathogenesics of the disease. Currently, efforts at identifying compounds or approaches to reduce brain glycogen synthesis appear to be highly promising.
Collapse
|
43
|
Gentry MS, Brewer MK, Vander Kooi CW. Structural biology of glucan phosphatases from humans to plants. Curr Opin Struct Biol 2016; 40:62-69. [PMID: 27498086 PMCID: PMC5161650 DOI: 10.1016/j.sbi.2016.07.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Revised: 07/11/2016] [Accepted: 07/21/2016] [Indexed: 02/07/2023]
Abstract
Glucan phosphatases are functionally conserved at the enzymatic level, dephosphorylating glycogen in animals and starch in plants. The human glucan phosphatase laforin is the founding member of the family and it is comprised of a carbohydrate binding module (CBM) domain followed by a dual specificity phosphatase (DSP) domain. Plants encode two glucan phosphatases: Starch EXcess4 (SEX4) and Like Sex Four2 (LSF2). SEX4 contains a DSP domain followed by a CBM domain, while LSF2 contains a DSP domain and lacks a CBM. This review demonstrates how glucan phosphatase function is conserved and highlights how each family member employs a unique mechanism to bind and dephosphorylate glucan substrates.
Collapse
Affiliation(s)
- Matthew S Gentry
- Department of Molecular and Cellular Biochemistry and Center for Structural Biology, University of Kentucky, Lexington, KY 40536, United States.
| | - M Kathryn Brewer
- Department of Molecular and Cellular Biochemistry and Center for Structural Biology, University of Kentucky, Lexington, KY 40536, United States
| | - Craig W Vander Kooi
- Department of Molecular and Cellular Biochemistry and Center for Structural Biology, University of Kentucky, Lexington, KY 40536, United States.
| |
Collapse
|
44
|
Emanuelle S, Brewer MK, Meekins DA, Gentry MS. Unique carbohydrate binding platforms employed by the glucan phosphatases. Cell Mol Life Sci 2016; 73:2765-2778. [PMID: 27147465 PMCID: PMC4920694 DOI: 10.1007/s00018-016-2249-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 04/22/2016] [Indexed: 12/19/2022]
Abstract
Glucan phosphatases are a family of enzymes that are functionally conserved at the enzymatic level in animals and plants. These enzymes bind and dephosphorylate glycogen in animals and starch in plants. While the enzymatic function is conserved, the glucan phosphatases employ distinct mechanisms to bind and dephosphorylate glycogen or starch. The founding member of the family is a bimodular human protein called laforin that is comprised of a carbohydrate binding module 20 (CBM20) followed by a dual specificity phosphatase domain. Plants contain two glucan phosphatases: Starch EXcess4 (SEX4) and Like Sex Four2 (LSF2). SEX4 contains a chloroplast targeting peptide, dual specificity phosphatase (DSP) domain, a CBM45, and a carboxy-terminal motif. LSF2 is comprised of simply a chloroplast targeting peptide, DSP domain, and carboxy-terminal motif. SEX4 employs an integrated DSP-CBM glucan-binding platform to engage and dephosphorylate starch. LSF2 lacks a CBM and instead utilizes two surface binding sites to bind and dephosphorylate starch. Laforin is a dimeric protein in solution and it utilizes a tetramodular architecture and cooperativity to bind and dephosphorylate glycogen. This chapter describes the biological role of glucan phosphatases in glycogen and starch metabolism and compares and contrasts their ability to bind and dephosphorylate glucans.
Collapse
Affiliation(s)
- Shane Emanuelle
- Department of Molecular and Cellular Biochemistry and Center for Structural Biology, University of Kentucky, Lexington, KY 40536 USA
| | - M. Kathryn Brewer
- Department of Molecular and Cellular Biochemistry and Center for Structural Biology, University of Kentucky, Lexington, KY 40536 USA
| | - David A. Meekins
- Division of Biology, Kansas State University, Manhattan, KS 66506 USA
| | - Matthew S. Gentry
- Department of Molecular and Cellular Biochemistry and Center for Structural Biology, University of Kentucky, Lexington, KY 40536 USA
| |
Collapse
|
45
|
Contreras CJ, Segvich DM, Mahalingan K, Chikwana VM, Kirley TL, Hurley TD, DePaoli-Roach AA, Roach PJ. Incorporation of phosphate into glycogen by glycogen synthase. Arch Biochem Biophys 2016; 597:21-9. [PMID: 27036853 DOI: 10.1016/j.abb.2016.03.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 03/23/2016] [Indexed: 01/27/2023]
Abstract
The storage polymer glycogen normally contains small amounts of covalently attached phosphate as phosphomonoesters at C2, C3 and C6 atoms of glucose residues. In the absence of the laforin phosphatase, as in the rare childhood epilepsy Lafora disease, the phosphorylation level is elevated and is associated with abnormal glycogen structure that contributes to the pathology. Laforin therefore likely functions in vivo as a glycogen phosphatase. The mechanism of glycogen phosphorylation is less well-understood. We have reported that glycogen synthase incorporates phosphate into glycogen via a rare side reaction in which glucose-phosphate rather than glucose is transferred to a growing polyglucose chain (Tagliabracci et al. (2011) Cell Metab13, 274-282). We proposed a mechanism to account for phosphorylation at C2 and possibly at C3. Our results have since been challenged (Nitschke et al. (2013) Cell Metab17, 756-767). Here we extend the evidence supporting our conclusion, validating the assay used for the detection of glycogen phosphorylation, measurement of the transfer of (32)P from [β-(32)P]UDP-glucose to glycogen by glycogen synthase. The (32)P associated with the glycogen fraction was stable to ethanol precipitation, SDS-PAGE and gel filtration on Sephadex G50. The (32)P-signal was not affected by inclusion of excess unlabeled UDP before analysis or by treatment with a UDPase, arguing against the signal being due to contaminating [β-(32)P]UDP generated in the reaction. Furthermore, [(32)P]UDP did not bind non-covalently to glycogen. The (32)P associated with glycogen was released by laforin treatment, suggesting that it was present as a phosphomonoester. The conclusion is that glycogen synthase can mediate the introduction of phosphate into glycogen, thereby providing a possible mechanism for C2, and perhaps C3, phosphorylation.
Collapse
Affiliation(s)
- Christopher J Contreras
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202, USA
| | - Dyann M Segvich
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202, USA
| | - Krishna Mahalingan
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202, USA
| | - Vimbai M Chikwana
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202, USA; Dow AgroSciences LLC, 9630 Zionsville Road, Indianapolis, IN 46268, USA
| | - Terence L Kirley
- Department of Pharmacology and Cell Biophysics, College of Medicine, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH 45267, USA
| | - Thomas D Hurley
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202, USA
| | - Anna A DePaoli-Roach
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202, USA
| | - Peter J Roach
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202, USA.
| |
Collapse
|
46
|
Liu F, Zhao Q, Mano N, Ahmed Z, Nitschke F, Cai Y, Chapman KD, Steup M, Tetlow IJ, Emes MJ. Modification of starch metabolism in transgenic Arabidopsis thaliana increases plant biomass and triples oilseed production. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:976-85. [PMID: 26285603 PMCID: PMC11389044 DOI: 10.1111/pbi.12453] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 05/25/2015] [Accepted: 06/27/2015] [Indexed: 06/04/2023]
Abstract
We have identified a novel means to achieve substantially increased vegetative biomass and oilseed production in the model plant Arabidopsis thaliana. Endogenous isoforms of starch branching enzyme (SBE) were substituted by either one of the endosperm-expressed maize (Zea mays L.) branching isozymes, ZmSBEI or ZmSBEIIb. Transformants were compared with the starch-free background and with the wild-type plants. Each of the maize-derived SBEs restored starch biosynthesis but both morphology and structure of starch particles were altered. Altered starch metabolism in the transformants is associated with enhanced biomass formation and more-than-trebled oilseed production while maintaining seed oil quality. Enhanced oilseed production is primarily due to an increased number of siliques per plant whereas oil content and seed number per silique are essentially unchanged or even modestly decreased. Introduction of cereal starch branching isozymes into oilseed plants represents a potentially useful strategy to increase biomass and oilseed production in related crops and manipulate the structure and properties of leaf starch.
Collapse
Affiliation(s)
- Fushan Liu
- Department of Molecular and Cellular Biology, Summerlee Science Complex, University of Guelph, Guelph, ON, Canada
| | - Qianru Zhao
- Department of Molecular and Cellular Biology, Summerlee Science Complex, University of Guelph, Guelph, ON, Canada
| | - Noel Mano
- Department of Molecular and Cellular Biology, Summerlee Science Complex, University of Guelph, Guelph, ON, Canada
| | - Zaheer Ahmed
- Department of Molecular and Cellular Biology, Summerlee Science Complex, University of Guelph, Guelph, ON, Canada
| | - Felix Nitschke
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Yinqqi Cai
- Department of Biological Sciences, Center for Plant Lipid Research, University of North Texas, Denton, TX, USA
| | - Kent D Chapman
- Department of Biological Sciences, Center for Plant Lipid Research, University of North Texas, Denton, TX, USA
| | - Martin Steup
- Department of Molecular and Cellular Biology, Summerlee Science Complex, University of Guelph, Guelph, ON, Canada
| | - Ian J Tetlow
- Department of Molecular and Cellular Biology, Summerlee Science Complex, University of Guelph, Guelph, ON, Canada
| | - Michael J Emes
- Department of Molecular and Cellular Biology, Summerlee Science Complex, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
47
|
Liver glycogen in type 2 diabetic mice is randomly branched as enlarged aggregates with blunted glucose release. Glycoconj J 2015; 33:41-51. [PMID: 26521055 DOI: 10.1007/s10719-015-9631-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 10/15/2015] [Accepted: 10/16/2015] [Indexed: 12/28/2022]
Abstract
Glycogen is a vital highly branched polymer of glucose that is essential for blood glucose homeostasis. In this article, the structure of liver glycogen from mice is investigated with respect to size distributions, degradation kinetics, and branching structure, complemented by a comparison of normal and diabetic liver glycogen. This is done to screen for differences that may result from disease. Glycogen α-particle (diameter ∼ 150 nm) and β-particle (diameter ∼ 25 nm) size distributions are reported, along with in vitro γ-amylase degradation experiments, and a small angle X-ray scattering analysis of mouse β-particles. Type 2 diabetic liver glycogen upon extraction was found to be present as large loosely bound, aggregates, not present in normal livers. Liver glycogen was found to aggregate in vitro over a period of 20 h, and particle size is shown to be related to rate of glucose release, allowing a structure-function relationship to be inferred for the tissue specific distribution of particle types. Application of branching theories to small angle X-ray scattering data for mouse β-particles revealed these particles to be randomly branched polymers, not fractal polymers. Together, this article shows that type 2 diabetic liver glycogen is present as large aggregates in mice, which may contribute to the inflexibility of interconversion between glucose and glycogen in type 2 diabetes, and further that glycogen particles are randomly branched with a size that is related to the rate of glucose release.
Collapse
|
48
|
|
49
|
Roach PJ. Glycogen phosphorylation and Lafora disease. Mol Aspects Med 2015; 46:78-84. [PMID: 26278984 DOI: 10.1016/j.mam.2015.08.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 08/04/2015] [Indexed: 01/21/2023]
Abstract
Covalent phosphorylation of glycogen, first described 35 years ago, was put on firm ground through the work of the Whelan laboratory in the 1990s. But glycogen phosphorylation lay fallow until interest was rekindled in the mid 2000s by the finding that it could be removed by a glycogen-binding phosphatase, laforin, and that mutations in laforin cause a fatal teenage-onset epilepsy, called Lafora disease. Glycogen phosphorylation is due to phosphomonoesters at C2, C3 and C6 of glucose residues. Phosphate is rare, ranging from 1:500 to 1:5000 phosphates/glucose depending on the glycogen source. The mechanisms of glycogen phosphorylation remain under investigation but one hypothesis to explain C2 and perhaps C3 phosphate is that it results from a rare side reaction of the normal synthetic enzyme glycogen synthase. Lafora disease is likely caused by over-accumulation of abnormal glycogen in insoluble deposits termed Lafora bodies in neurons. The abnormality in the glycogen correlates with elevated phosphorylation (at C2, C3 and C6), reduced branching, insolubility and an enhanced tendency to aggregate and become insoluble. Hyperphosphorylation of glycogen is emerging as an important feature of this deadly childhood disease.
Collapse
Affiliation(s)
- Peter J Roach
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 635 Barnhill Drive, IN 46202, USA.
| |
Collapse
|
50
|
Meekins DA, Raththagala M, Auger KD, Turner BD, Santelia D, Kötting O, Gentry MS, Vander Kooi CW. Mechanistic Insights into Glucan Phosphatase Activity against Polyglucan Substrates. J Biol Chem 2015; 290:23361-70. [PMID: 26231210 DOI: 10.1074/jbc.m115.658203] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Indexed: 01/11/2023] Open
Abstract
Glucan phosphatases are central to the regulation of starch and glycogen metabolism. Plants contain two known glucan phosphatases, Starch EXcess4 (SEX4) and Like Sex Four2 (LSF2), which dephosphorylate starch. Starch is water-insoluble and reversible phosphorylation solubilizes its outer surface allowing processive degradation. Vertebrates contain a single known glucan phosphatase, laforin, that dephosphorylates glycogen. In the absence of laforin, water-soluble glycogen becomes insoluble, leading to the neurodegenerative disorder Lafora Disease. Because of their essential role in starch and glycogen metabolism glucan phosphatases are of significant interest, yet a comparative analysis of their activities against diverse glucan substrates has not been established. We identify active site residues required for specific glucan dephosphorylation, defining a glucan phosphatase signature motif (CζAGΨGR) in the active site loop. We further explore the basis for phosphate position-specific activity of these enzymes and determine that their diverse phosphate position-specific activity is governed by the phosphatase domain. In addition, we find key differences in glucan phosphatase activity toward soluble and insoluble polyglucan substrates, resulting from the participation of ancillary glucan-binding domains. Together, these data provide fundamental insights into the specific activity of glucan phosphatases against diverse polyglucan substrates.
Collapse
Affiliation(s)
- David A Meekins
- From the Department of Molecular and Cellular Biochemistry and Center for Structural Biology, University of Kentucky, Lexington, Kentucky 40536
| | - Madushi Raththagala
- From the Department of Molecular and Cellular Biochemistry and Center for Structural Biology, University of Kentucky, Lexington, Kentucky 40536
| | - Kyle D Auger
- From the Department of Molecular and Cellular Biochemistry and Center for Structural Biology, University of Kentucky, Lexington, Kentucky 40536
| | - Benjamin D Turner
- From the Department of Molecular and Cellular Biochemistry and Center for Structural Biology, University of Kentucky, Lexington, Kentucky 40536
| | - Diana Santelia
- Institute of Plant Biology, University of Zürich, CH-8008, Zürich, Switzerland, and
| | - Oliver Kötting
- Institute of Agricultural Sciences, Eidgenössische Technische Hochschule (ETH) Zürich, CH-8092, Zürich, Switzerland
| | - Matthew S Gentry
- From the Department of Molecular and Cellular Biochemistry and Center for Structural Biology, University of Kentucky, Lexington, Kentucky 40536,
| | - Craig W Vander Kooi
- From the Department of Molecular and Cellular Biochemistry and Center for Structural Biology, University of Kentucky, Lexington, Kentucky 40536,
| |
Collapse
|