1
|
Che W, Guo S, Wang Y, Wan X, Tan B, Li H, Alifu J, Zhu M, Chen Z, Li P, Zhang L, Zhang Z, Wang Y, Huang X, Wang X, Zhu J, Pan X, Zhang F, Wang P, Sui SF, Zhao J, Xu Y, Liu Z. SARS-CoV-2 damages cardiomyocyte mitochondria and implicates long COVID-associated cardiovascular manifestations. J Adv Res 2025:S2090-1232(25)00306-6. [PMID: 40354933 DOI: 10.1016/j.jare.2025.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 05/04/2025] [Accepted: 05/08/2025] [Indexed: 05/14/2025] Open
Abstract
INTRODUCTION With the COVID-19 pandemic becoming endemic, vigilance for Long COVID-related cardiovascular issues remains essential, though their specific pathophysiology is largely unexplored. OBJECTIVES Our study investigates the persistent cardiovascular symptoms observed in individuals long after contracting SARS-CoV-2, a condition commonly referred to as "Long COVID", which has significantly affected millions globally. METHODS We meticulously describe the cardiovascular outcomes in five patients, encompassing a range of severe conditions such as sudden cardiac death during exercise, coronary atherosclerotic heart disease, palpitation, chest tightness, and acute myocarditis. RESULTS All five patients were diagnosed with myocarditis, confirmed through endomyocardial biopsy and histochemical staining, which identified inflammatory cell infiltration in their heart tissue. Crucially, electron microscopy revealed widespread mitochondrial vacuolations and the presence of myofilament degradation within the cardiomyocytes of these patients. These findings were mirrored in SARS-CoV-2-infected mice, suggesting a potential underlying cellular mechanism for the cardiac effects associated with Long COVID. CONCLUSION Our findings demonstrate a profound impact of SARS-CoV-2 on mitochondrial integrity, shedding light on the cardiovascular implications of Long COVID.
Collapse
Affiliation(s)
- Wenliang Che
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shuai Guo
- Cryo-electron Microscopy Center, Southern University of Science and Technology, Shenzhen, China; School of Life Science, Southern University of Science and Technology, Shenzhen, China
| | - Yanqun Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiaohua Wan
- School of Medical Technology, Beijing Institute of Technology, Beijing, China
| | - Bingyu Tan
- Shanghai NanoPort, Thermo Fisher Scientific Inc., Shanghai, China
| | - Hailing Li
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jiasuer Alifu
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Mengyun Zhu
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zesong Chen
- Cryo-electron Microscopy Center, Southern University of Science and Technology, Shenzhen, China
| | - Peiyao Li
- Cryo-electron Microscopy Center, Southern University of Science and Technology, Shenzhen, China
| | - Lei Zhang
- Cryo-electron Microscopy Center, Southern University of Science and Technology, Shenzhen, China
| | - Zhaoyong Zhang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yiliang Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiaohan Huang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xinsheng Wang
- School of Medical Technology, Beijing Institute of Technology, Beijing, China
| | - Jian Zhu
- Cryo-electron Microscopy Center, Southern University of Science and Technology, Shenzhen, China
| | - Xijiang Pan
- Shanghai NanoPort, Thermo Fisher Scientific Inc., Shanghai, China
| | - Fa Zhang
- School of Medical Technology, Beijing Institute of Technology, Beijing, China
| | - Peiyi Wang
- Cryo-electron Microscopy Center, Southern University of Science and Technology, Shenzhen, China
| | - Sen-Fang Sui
- Cryo-electron Microscopy Center, Southern University of Science and Technology, Shenzhen, China; School of Life Science, Southern University of Science and Technology, Shenzhen, China.
| | - Jincun Zhao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; Guangzhou National Laboratory, Bio-Island, Guangzhou, China.
| | - Yawei Xu
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Zheng Liu
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China; Cryo-electron Microscopy Center, Southern University of Science and Technology, Shenzhen, China.
| |
Collapse
|
2
|
Mróz D, Jagłowska J, Wevers RA, Ziętkiewicz S. CLPB Deficiency, a Mitochondrial Chaperonopathy With Neutropenia and Neurological Presentation. J Inherit Metab Dis 2025; 48:e70025. [PMID: 40194906 PMCID: PMC11975511 DOI: 10.1002/jimd.70025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 03/04/2025] [Accepted: 03/10/2025] [Indexed: 04/09/2025]
Affiliation(s)
- D. Mróz
- Intercollegiate Faculty of BiotechnologyUniversity of GdanskGdanskPoland
| | - J. Jagłowska
- Department of Pediatrics, Hematology and OncologyMedical University of GdanskGdanskPoland
| | - R. A. Wevers
- Department of Human GeneticsRadboud University Medical CenterNijmegenthe Netherlands
| | - S. Ziętkiewicz
- Intercollegiate Faculty of BiotechnologyUniversity of GdanskGdanskPoland
| |
Collapse
|
3
|
Vázquez-Carrada M, Vilchis-Landeros MM, Vázquez-Meza H, Uribe-Ramírez D, Matuz-Mares D. A New Perspective on the Role of Alterations in Mitochondrial Proteins Involved in ATP Synthesis and Mobilization in Cardiomyopathies. Int J Mol Sci 2025; 26:2768. [PMID: 40141413 PMCID: PMC11943459 DOI: 10.3390/ijms26062768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 03/16/2025] [Accepted: 03/17/2025] [Indexed: 03/28/2025] Open
Abstract
The heart requires a continuous energy supply to sustain its unceasing contraction-relaxation cycle. Mitochondria, a double-membrane organelle, generate approximately 90% of cellular energy as adenosine triphosphate (ATP) through oxidative phosphorylation, utilizing the electrochemical gradient established by the respiratory chain. Mitochondrial function is compromised by damage to mitochondrial DNA, including point mutations, deletions, duplications, or inversions. Additionally, disruptions to proteins associated with mitochondrial membranes regulating metabolic homeostasis can impair the respiratory chain's efficiency. This results in diminished ATP production and increased generation of reactive oxygen species. This review provides an overview of mutations affecting mitochondrial transporters and proteins involved in mitochondrial energy synthesis, particularly those involved in ATP synthesis and mobilization, and it examines their role in the pathogenesis of specific cardiomyopathies.
Collapse
Affiliation(s)
- Melissa Vázquez-Carrada
- Institute of Microbiology, Cluster of Excellence on Plant Sciences, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany;
| | - María Magdalena Vilchis-Landeros
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Cd. Universitaria, Coyoacán, Ciudad de México C.P. 04510, Mexico; (M.M.V.-L.); (H.V.-M.)
| | - Héctor Vázquez-Meza
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Cd. Universitaria, Coyoacán, Ciudad de México C.P. 04510, Mexico; (M.M.V.-L.); (H.V.-M.)
| | - Daniel Uribe-Ramírez
- Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional. Av, Wilfrido Massieu 399, Nueva Industrial Vallejo, Gustavo A. Madero, Ciudad de México C.P. 07738, Mexico;
| | - Deyamira Matuz-Mares
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Cd. Universitaria, Coyoacán, Ciudad de México C.P. 04510, Mexico; (M.M.V.-L.); (H.V.-M.)
| |
Collapse
|
4
|
Joshi A, Stanfield RA, Spletter AT, Gohil VM. Proteolytic regulation of mitochondrial magnesium channel by m-AAA protease and prohibitin complex. Genetics 2025; 229:iyae203. [PMID: 39657011 PMCID: PMC11796461 DOI: 10.1093/genetics/iyae203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 11/18/2024] [Indexed: 12/17/2024] Open
Abstract
Mitochondrial membrane phospholipid cardiolipin is essential for the stability of several inner mitochondrial membrane protein complexes. We recently showed that the abundance of mitochondrial magnesium channel MRS2 is reduced in models of Barth syndrome, an X-linked genetic disorder caused by a remodeling defect in cardiolipin. However, the mechanism underlying the reduced abundance of MRS2 in cardiolipin-depleted mitochondria remained unknown. In this study, we utilized yeast mutants of mitochondrial proteases to identify an evolutionarily conserved m-AAA protease, Yta10/Yta12, responsible for degrading Mrs2. The activity of m-AAA protease is regulated by the inner mitochondrial membrane scaffolding complex prohibitin, and consistent with this role, we find that Mrs2 turnover is increased in yeast prohibitin mutants. Importantly, we find that deleting Yta10 in cardiolipin-deficient yeast cells restores the steady-state levels of Mrs2 to the wild-type cells, and the knockdown of AFG3L2, a mammalian homolog of Yta12, increases the abundance of MRS2 in a murine muscle cell line. Thus, our work has identified the m-AAA protease/prohibitin complex as an evolutionarily conserved regulator of Mrs2 that can be targeted to restore Mrs2 abundance in cardiolipin-depleted cells.
Collapse
Affiliation(s)
- Alaumy Joshi
- Department of Biochemistry and Biophysics, Texas A&M University, 301 Old Main Drive, MS 3474, College Station, TX 77843, USA
| | - Rachel A Stanfield
- Department of Biochemistry and Biophysics, Texas A&M University, 301 Old Main Drive, MS 3474, College Station, TX 77843, USA
| | - Andrew T Spletter
- Department of Biochemistry and Biophysics, Texas A&M University, 301 Old Main Drive, MS 3474, College Station, TX 77843, USA
| | - Vishal M Gohil
- Department of Biochemistry and Biophysics, Texas A&M University, 301 Old Main Drive, MS 3474, College Station, TX 77843, USA
| |
Collapse
|
5
|
Alhasan KA, King MA, Pattar BSB, Lewis IA, Lopaschuk GD, Greenway SC. Anaplerotic filling in heart failure: a review of mechanism and potential therapeutics. Cardiovasc Res 2024; 120:2166-2178. [PMID: 39570879 PMCID: PMC11687400 DOI: 10.1093/cvr/cvae248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/08/2024] [Accepted: 11/12/2024] [Indexed: 01/01/2025] Open
Abstract
Heart failure (HF) is a complex syndrome and a leading cause of mortality worldwide. While current medical treatment is based on known pathophysiology and is effective for many patients, the underlying cellular mechanisms are poorly understood. Energy deficiency is a characteristic of HF, marked by complex alterations in metabolism. Within the tricarboxylic acid cycle, anaplerosis emerges as an essential metabolic process responsible for replenishing lost intermediates, thereby playing a crucial role in sustaining energy metabolism and consequently cardiac function. Alterations in cardiac anaplerosis are commonly observed in HF, demonstrating potential for therapeutic intervention. This review discusses recent advances in understanding the anaplerotic adaptations that occur in HF. We also explore therapeutics that can directly modulate anaplerosis or are likely to confer cardioprotective effects through anaplerosis, which could potentially be implemented to rescue the failing heart.
Collapse
Affiliation(s)
- Karm A Alhasan
- Department of Cardiac Sciences and Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada T2N 4N1
- Department of Pediatrics and Alberta Children’s Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada T2N 1N4
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada T2N 4N1
| | - Melissa A King
- Department of Cardiac Sciences and Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada T2N 4N1
- Alberta Centre for Advanced Diagnostics, Department of Biological Sciences, University of Calgary, Calgary, AB, Canada T2N 1N4
| | - Badal S B Pattar
- Department of Cardiac Sciences and Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada T2N 4N1
| | - Ian A Lewis
- Alberta Centre for Advanced Diagnostics, Department of Biological Sciences, University of Calgary, Calgary, AB, Canada T2N 1N4
| | - Gary D Lopaschuk
- Cardiovascular Research Centre, University of Alberta, Edmonton, AB, Canada T6G 2S2
| | - Steven C Greenway
- Department of Cardiac Sciences and Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada T2N 4N1
- Department of Pediatrics and Alberta Children’s Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada T2N 1N4
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada T2N 4N1
| |
Collapse
|
6
|
Elancheliyan P, Maruszczak KK, Serwa RA, Stephan T, Gulgec AS, Borrero-Landazabal MA, Ngati S, Gosk A, Jakobs S, Wasilewski M, Chacinska A. OCIAD1 and prohibitins regulate the stability of the TIM23 protein translocase. Cell Rep 2024; 43:115038. [PMID: 39630581 PMCID: PMC11672691 DOI: 10.1016/j.celrep.2024.115038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 09/27/2024] [Accepted: 11/15/2024] [Indexed: 12/07/2024] Open
Abstract
Mitochondrial proteins are transported and sorted to the matrix or inner mitochondrial membrane by the presequence translocase TIM23. In yeast, this essential and highly conserved machinery is composed of the core subunits Tim23 and Tim17. The architecture, assembly, and regulation of the human TIM23 complex are poorly characterized. The human genome encodes two paralogs, TIMM17A and TIMM17B. Here, we describe an unexpected role of the ovarian cancer immunoreactive antigen domain-containing protein 1 (OCIAD1) and the prohibitin complex in the biogenesis of human TIM23. Prohibitins were required to stabilize both the TIMM17A- and TIMM17B-containing variants of the translocase. Interestingly, OCIAD1 assembled with the prohibitin complex to protect the TIMM17A variant from degradation by the YME1L protease. The expression of OCIAD1 was in turn regulated by the status of the TIM23 complex. We postulate that OCIAD1 together with prohibitins constitute a regulatory axis that differentially regulates variants of human TIM23.
Collapse
Affiliation(s)
- Praveenraj Elancheliyan
- IMol Polish Academy of Sciences, 02-247 Warsaw, Poland; ReMedy International Research Agenda Unit, IMol Polish Academy of Sciences, 02-247 Warsaw, Poland
| | | | | | - Till Stephan
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany; Department of Neurology, University Medical Center Göttingen, 37075 Göttingen, Germany; Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt am Main, Frankfurt am Main 60438, Germany
| | | | | | - Sonia Ngati
- IMol Polish Academy of Sciences, 02-247 Warsaw, Poland
| | - Aleksandra Gosk
- Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland
| | - Stefan Jakobs
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany; Department of Neurology, University Medical Center Göttingen, 37075 Göttingen, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Translational Neuroinflammation and Automated Microscopy TNM, 37075 Göttingen, Germany
| | | | - Agnieszka Chacinska
- IMol Polish Academy of Sciences, 02-247 Warsaw, Poland; ReMedy International Research Agenda Unit, IMol Polish Academy of Sciences, 02-247 Warsaw, Poland.
| |
Collapse
|
7
|
El Fissi N, Rosenberger FA, Chang K, Wilhalm A, Barton-Owen T, Hansen FM, Golder Z, Alsina D, Wedell A, Mann M, Chinnery PF, Freyer C, Wredenberg A. Preventing excessive autophagy protects from the pathology of mtDNA mutations in Drosophila melanogaster. Nat Commun 2024; 15:10719. [PMID: 39715749 PMCID: PMC11666730 DOI: 10.1038/s41467-024-55559-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 12/16/2024] [Indexed: 12/25/2024] Open
Abstract
Aberration of mitochondrial function is a shared feature of many human pathologies, characterised by changes in metabolic flux, cellular energetics, morphology, composition, and dynamics of the mitochondrial network. While some of these changes serve as compensatory mechanisms to maintain cellular homeostasis, their chronic activation can permanently affect cellular metabolism and signalling, ultimately impairing cell function. Here, we use a Drosophila melanogaster model expressing a proofreading-deficient mtDNA polymerase (POLγexo-) in a genetic screen to find genes that mitigate the harmful accumulation of mtDNA mutations. We identify critical pathways associated with nutrient sensing, insulin signalling, mitochondrial protein import, and autophagy that can rescue the lethal phenotype of the POLγexo- flies. Rescued flies, hemizygous for dilp1, atg2, tim14 or melted, normalise their autophagic flux and proteasome function and adapt their metabolism. Mutation frequencies remain high with the exception of melted-rescued flies, suggesting that melted may act early in development. Treating POLγexo- larvae with the autophagy activator rapamycin aggravates their lethal phenotype, highlighting that excessive autophagy can significantly contribute to the pathophysiology of mitochondrial diseases. Moreover, we show that the nucleation process of autophagy is a critical target for intervention.
Collapse
Affiliation(s)
- Najla El Fissi
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 65, Stockholm, Sweden
| | - Florian A Rosenberger
- Proteomics and Signal Transduction, Max-Planck Institute of Biochemistry, Martinsried, 82152, Germany
| | - Kai Chang
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 65, Stockholm, Sweden
| | - Alissa Wilhalm
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 65, Stockholm, Sweden
| | - Tom Barton-Owen
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- Medical Research Council Mitochondrial Biology Unit, Cambridge Biomedical Campus, Cambridge, UK
| | - Fynn M Hansen
- Proteomics and Signal Transduction, Max-Planck Institute of Biochemistry, Martinsried, 82152, Germany
| | - Zoe Golder
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- Medical Research Council Mitochondrial Biology Unit, Cambridge Biomedical Campus, Cambridge, UK
| | - David Alsina
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 65, Stockholm, Sweden
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, 171 76, Stockholm, Sweden
| | - Anna Wedell
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, 171 76, Stockholm, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 171 65, Stockholm, Sweden
| | - Matthias Mann
- Proteomics and Signal Transduction, Max-Planck Institute of Biochemistry, Martinsried, 82152, Germany
- Faculty of Health Sciences, NNF Centre for Protein Research, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Patrick F Chinnery
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- Medical Research Council Mitochondrial Biology Unit, Cambridge Biomedical Campus, Cambridge, UK
| | - Christoph Freyer
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 65, Stockholm, Sweden.
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, 171 76, Stockholm, Sweden.
| | - Anna Wredenberg
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 65, Stockholm, Sweden.
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, 171 76, Stockholm, Sweden.
| |
Collapse
|
8
|
Ambrose A, Bahl S, Sharma S, Zhang D, Hung C, Jain-Ghai S, Chan A, Mercimek-Andrews S. Genetic landscape of primary mitochondrial diseases in children and adults using molecular genetics and genomic investigations of mitochondrial and nuclear genome. Orphanet J Rare Dis 2024; 19:424. [PMID: 39533303 PMCID: PMC11555972 DOI: 10.1186/s13023-024-03437-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Primary mitochondrial diseases (PMD) are one of the most common metabolic genetic disorders. They are due to pathogenic variants in the mitochondrial genome (mtDNA) or nuclear genome (nDNA) that impair mitochondrial function and/or structure. We hypothesize that there is overlap between PMD and other genetic diseases that are mimicking PMD. For this reason, we performed a retrospective cohort study. METHODS All individuals with suspected PMD that underwent molecular genetic and genomic investigations were included. Individuals were grouped for comparison: (1) individuals with mtDNA-PMD; (2) individuals with nDNA-PMD; (3) individuals with other genetic diseases mimicking PMD (non-PMD); (4) individuals without a confirmed genetic diagnosis. RESULTS 297 individuals fulfilled inclusion criteria. The diagnostic yield of molecular genetics and genomic investigations was 31.3%, including 37% for clinical exome sequencing and 15.8% for mitochondrial genome sequencing. We identified 71 individuals with PMD (mtDNA n = 41, nDNA n = 30) and 22 individuals with non-PMD. Adults had higher percentage of mtDNA-PMD compared to children (p-value = 0.00123). There is a statistically significant phenotypic difference between children and adults with PMD. CONCLUSION We report a large cohort of individuals with PMD and the diagnostic yield of urine mitochondrial genome sequencing (16.1%). We think liver phenotype might be progressive and should be studied further in PMD. We showed a relationship between non-PMD genes and their indirect effects on mitochondrial machinery. Differentiation of PMD from non-PMD can be achieved using specific phenotypes as there was a statistically significant difference for muscular, cardiac, and ophthalmologic phenotypes, seizures, hearing loss, peripheral neuropathy in PMD group compared to non-PMD group.
Collapse
Affiliation(s)
- Anastasia Ambrose
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, 8-39 Medical Sciences Building, 8613 114 Street, Edmonton, AB, T6G 2H7, Canada
| | - Shalini Bahl
- Princess Margaret Cancer Centre, 101 College Street, Toronto, ON, M5G 1L7, Canada
- Department of Medical Biophysics, University of Toronto, 101 College Street, Toronto, ON, M5G 1L7, Canada
| | - Saloni Sharma
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, 8-39 Medical Sciences Building, 8613 114 Street, Edmonton, AB, T6G 2H7, Canada
| | - Dan Zhang
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, 8-39 Medical Sciences Building, 8613 114 Street, Edmonton, AB, T6G 2H7, Canada
| | - Clara Hung
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, 8-39 Medical Sciences Building, 8613 114 Street, Edmonton, AB, T6G 2H7, Canada
| | - Shailly Jain-Ghai
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, 8-39 Medical Sciences Building, 8613 114 Street, Edmonton, AB, T6G 2H7, Canada
| | - Alicia Chan
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, 8-39 Medical Sciences Building, 8613 114 Street, Edmonton, AB, T6G 2H7, Canada
| | - Saadet Mercimek-Andrews
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, 8-39 Medical Sciences Building, 8613 114 Street, Edmonton, AB, T6G 2H7, Canada.
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada.
- Women and Children's Health Research Institute, University of Alberta, Edmonton, AB, Canada.
- Alberta Health Services, Edmonton Zone, AB, Canada.
| |
Collapse
|
9
|
Xie R, Xie H, Gao H, Xie C, Yuan H, Feng Z. Mitochondrial proteins as therapeutic targets in diabetic ketoacidosis: evidence from Mendelian randomization analysis. Front Pharmacol 2024; 15:1448505. [PMID: 39469619 PMCID: PMC11513349 DOI: 10.3389/fphar.2024.1448505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 09/30/2024] [Indexed: 10/30/2024] Open
Abstract
Introduction Diabetic ketoacidosis (DKA) is a severe and potentially fatal acute complication in diabetic patients, commonly occurring in type 1 diabetes (T1D) but also seen in type 2 diabetes (T2D). The pathogenesis of DKA involves complex physiological processes that are not fully understood, especially the role of mitochondria. Mitochondria, known as the powerhouse of cells, plays a crucial role in oxidative phosphorylation and ATP production, which is vital in various metabolic diseases, including diabetes. However, the exact causal relationship between mitochondrial dysfunction and DKA remains unclear. Methods This study employed Mendelian randomization (MR) analysis and protein-protein interaction (PPI) networks to systematically explore the causal relationships between mitochondrial DNA copy number (mtDNA-CN) and specific mitochondrial proteins with DKA. We used bidirectional MR analysis and genome-wide association study (GWAS) data from openGWAS database to investigate the causal effects of mtDNA-CN and 64 mitochondrial-related proteins on DKA and its subtypes (T1DKA, T2DKA, unspecified-DKA). Results The study revealed that increased mtDNA-CN significantly reduces the risk of DKA, whereas the effect of DKA on mtDNA-CN was not significant. Mitochondrial-related proteins such as MRPL32, MRPL33, COX5B, DNAJC19, and NDUFB8 showed a negative causal relationship with DKA, indicating their potential protective roles. Conversely, ATP5F1B and COX4I2 have a positive causal relationship with DKA, indicating that excessive ATP production in diabetic patients may be detrimental to health and increase the risk of severe complications such as DKA. Discussion The results emphasize the necessity of protecting mitochondrial function in order to reduce the risk of DKA. The study offers novel perspectives on the molecular pathways involved in DKA, emphasizing the critical functions of mt-DNA and distinct proteins. These evidences not only enhance our comprehension of the implications of mitochondrial dysfunction in diabetes-related complications but also identify potential therapeutic targets for individualized treatment approaches, thereby making a substantial contribution to clinical care and public health initiatives.
Collapse
Affiliation(s)
- Ruiqiang Xie
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Hongyan Xie
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Hong Gao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Chunguang Xie
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Haipo Yuan
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Zhijun Feng
- Jiangmen Central Hospital Postdoctoral Innovation Practice Base, Southern Medical University, Jiangmen, Guangdong, China
| |
Collapse
|
10
|
Kaur H, Carrillo O, Garcia I, Ramos I, St Vallier S, De La Torre P, Lopez A, Keniry M, Bazan D, Elizondo J, Grishma KC, Ann MacMillan-Crow L, Gilkerson R. Differentiation activates mitochondrial OPA1 processing in myoblast cell lines. Mitochondrion 2024; 78:101933. [PMID: 38986925 PMCID: PMC11390305 DOI: 10.1016/j.mito.2024.101933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 07/03/2024] [Accepted: 07/07/2024] [Indexed: 07/12/2024]
Abstract
Mitochondrial optic atrophy-1 (OPA1) plays key roles in adapting mitochondrial structure to bioenergetic function. When transmembrane potential across the inner membrane (Δψm) is intact, long (L-OPA1) isoforms shape the inner membrane through membrane fusion and the formation of cristal junctions. When Δψm is lost, however, OPA1 is cleaved to short, inactive S-OPA1 isoforms by the OMA1 metalloprotease, disrupting mitochondrial structure and priming cellular stress responses such as apoptosis. Previously, we demonstrated that L-OPA1 of H9c2 cardiomyoblasts is insensitive to loss of Δψm via challenge with the protonophore carbonyl cyanide chlorophenyl hydrazone (CCCP), but that CCCP-induced OPA1 processing is activated upon differentiation in media with low serum supplemented with all-trans retinoic acid (ATRA). Here, we show that this developmental induction of OPA1 processing in H9c2 cells is independent of ATRA; moreover, pretreatment of undifferentiated H9c2s with chloramphenicol (CAP), an inhibitor of mitochondrial protein synthesis, recapitulates the Δψm-sensitive OPA1 processing observed in differentiated H9c2s. L6.C11 and C2C12 myoblast lines display the same developmental and CAP-sensitive induction of OPA1 processing, demonstrating a general mechanism of OPA1 regulation in mammalian myoblast cell settings. Restoration of CCCP-induced OPA1 processing correlates with increased apoptotic sensitivity. Moreover, OPA1 knockdown indicates that intact OPA1 is necessary for effective myoblast differentiation. Taken together, our results indicate that a novel developmental mechanism acts to regulate OMA1-mediated OPA1 processing in myoblast cell lines, in which differentiation engages mitochondrial stress sensing.
Collapse
Affiliation(s)
- Harpreet Kaur
- School of Integrative Biological & Chemical Sciences, The University of Texas Rio Grande Valley, United States
| | - Omar Carrillo
- School of Integrative Biological & Chemical Sciences, The University of Texas Rio Grande Valley, United States
| | - Iraselia Garcia
- School of Integrative Biological & Chemical Sciences, The University of Texas Rio Grande Valley, United States; Department of Biology, South Texas College, United States
| | - Isaiah Ramos
- School of Integrative Biological & Chemical Sciences, The University of Texas Rio Grande Valley, United States
| | - Shaynah St Vallier
- School of Integrative Biological & Chemical Sciences, The University of Texas Rio Grande Valley, United States
| | - Patrick De La Torre
- School of Integrative Biological & Chemical Sciences, The University of Texas Rio Grande Valley, United States
| | - Alma Lopez
- School of Integrative Biological & Chemical Sciences, The University of Texas Rio Grande Valley, United States
| | - Megan Keniry
- School of Integrative Biological & Chemical Sciences, The University of Texas Rio Grande Valley, United States
| | - Daniel Bazan
- School of Integrative Biological & Chemical Sciences, The University of Texas Rio Grande Valley, United States
| | - Jorge Elizondo
- School of Integrative Biological & Chemical Sciences, The University of Texas Rio Grande Valley, United States
| | - K C Grishma
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, United States
| | - Lee Ann MacMillan-Crow
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, United States
| | - Robert Gilkerson
- School of Integrative Biological & Chemical Sciences, The University of Texas Rio Grande Valley, United States; Medical Laboratory Sciences/Health & Biomedical Sciences, The University of Texas Rio Grande Valley, United States.
| |
Collapse
|
11
|
Hazu M, Guna A, Stevens TA, Voorhees RM. Monitoring alpha-helical membrane protein insertion into the outer mitochondrial membrane in mammalian cells. Methods Enzymol 2024; 707:63-99. [PMID: 39488394 DOI: 10.1016/bs.mie.2024.07.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2024]
Abstract
Mitochondrial function is dependent on the correct localization and insertion of membrane proteins into the outer mitochondrial membrane (OM). In mammals, the OM contains ∼150 proteins, the majority of which contain α-helical transmembrane domains. This family of α-helical proteins has significantly expanded in metazoans and has evolved to mediate critical signaling and regulatory processes including mitochondrial fusion and fission, mitophagy, apoptosis and aspects of the innate immune response. Recently, the conserved OM protein MTCH2 has been identified as an insertase for α-helical proteins in human mitochondria. However, our understanding of the targeting, insertion, folding and quality control of α-helical OM proteins remains incomplete. Here we highlight three methods to monitor α-helical protein insertion both in human cells and in vitro. First, we describe a versatile split fluorescent reporter system that can be used to monitor the insertion of α-helical proteins into the OM in human cells. Second, we delineate a streamlined approach to isolating functional, insertion competent mitochondria from human cells that are compatible with in vitro import assays. Finally, we explain in detail how to reconstitute the insertion of α-helical proteins in a minimal system, by creating functional proteoliposomes containing purified MTCH2. Together these tools represent an integrated platform to enable the detailed mechanistic analysis of biogenesis of the diverse and physiologically essential α-helical OM proteome.
Collapse
Affiliation(s)
- Masami Hazu
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Alina Guna
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Taylor A Stevens
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Rebecca M Voorhees
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States; Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA, United States.
| |
Collapse
|
12
|
den Brave F, Schulte U, Fakler B, Pfanner N, Becker T. Mitochondrial complexome and import network. Trends Cell Biol 2024; 34:578-594. [PMID: 37914576 DOI: 10.1016/j.tcb.2023.10.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/02/2023] [Accepted: 10/04/2023] [Indexed: 11/03/2023]
Abstract
Mitochondria perform crucial functions in cellular metabolism, protein and lipid biogenesis, quality control, and signaling. The systematic analysis of protein complexes and interaction networks provided exciting insights into the structural and functional organization of mitochondria. Most mitochondrial proteins do not act as independent units, but are interconnected by stable or dynamic protein-protein interactions. Protein translocases are responsible for importing precursor proteins into mitochondria and form central elements of several protein interaction networks. These networks include molecular chaperones and quality control factors, metabolite channels and respiratory chain complexes, and membrane and organellar contact sites. Protein translocases link the distinct networks into an overarching network, the mitochondrial import network (MitimNet), to coordinate biogenesis, membrane organization and function of mitochondria.
Collapse
Affiliation(s)
- Fabian den Brave
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, University of Bonn, 53115 Bonn, Germany
| | - Uwe Schulte
- Institute of Physiology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Bernd Fakler
- Institute of Physiology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Nikolaus Pfanner
- CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany; Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany.
| | - Thomas Becker
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, University of Bonn, 53115 Bonn, Germany.
| |
Collapse
|
13
|
Todosenko N, Yurova K, Vulf M, Khaziakhmatova O, Litvinova L. Prohibitions in the meta-inflammatory response: a review. Front Mol Biosci 2024; 11:1322687. [PMID: 38813101 PMCID: PMC11133639 DOI: 10.3389/fmolb.2024.1322687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 05/01/2024] [Indexed: 05/31/2024] Open
Abstract
Prohibitins are the central regulatory element of cellular homeostasis, especially by modulating the response at different levels: Nucleus, mitochondria and membranes. Their localization and interaction with various proteins, homons, transcription and nuclear factors, and mtDNA indicate the globality and complexity of their pleiotropic properties, which remain to be investigated. A more detailed deciphering of cellular metabolism in relation to prohibitins under normal conditions and in various metabolic diseases will allow us to understand the precise role of prohibitins in the signaling cascades of PI3K/Akt, Raf/MAP/ERK, STAT3, p53, and others and to fathom their mutual influence. A valuable research perspective is to investigate the role of prohibitins in the molecular and cellular interactions between the two major players in the pathogenesis of obesity-adipocytes and macrophages - that form the basis of the meta-inflammatory response. Investigating the subtle intercellular communication and molecular cascades triggered in these cells will allow us to propose new therapeutic strategies to eliminate persistent inflammation, taking into account novel molecular genetic approaches to activate/inactivate prohibitins.
Collapse
Affiliation(s)
- Natalia Todosenko
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - Kristina Yurova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - Maria Vulf
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - Olga Khaziakhmatova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - Larisa Litvinova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
- Laboratory of Cellular and Microfluidic Technologies, Siberian State Medical University, Tomsk, Russia
| |
Collapse
|
14
|
Fuentes JM, Morcillo P. The Role of Cardiolipin in Mitochondrial Function and Neurodegenerative Diseases. Cells 2024; 13:609. [PMID: 38607048 PMCID: PMC11012098 DOI: 10.3390/cells13070609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/28/2024] [Accepted: 03/29/2024] [Indexed: 04/13/2024] Open
Abstract
Cardiolipin (CL) is a mitochondria-exclusive phospholipid synthesized in the inner mitochondrial membrane. CL plays a key role in mitochondrial membranes, impacting a plethora of functions this organelle performs. Consequently, it is conceivable that abnormalities in the CL content, composition, and level of oxidation may negatively impact mitochondrial function and dynamics, with important implications in a variety of diseases. This review concentrates on papers published in recent years, combined with basic and underexplored research in CL. We capture new findings on its biological functions in the mitochondria, as well as its association with neurodegenerative diseases such as Alzheimer's disease or Parkinson's disease. Lastly, we explore the potential applications of CL as a biomarker and pharmacological target to mitigate mitochondrial dysfunction.
Collapse
Affiliation(s)
- José M. Fuentes
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Enfermería y Terapia Ocupacional, Universidad de Extremadura, 10003 Cáceres, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, Instituto de Salud Carlos III (CIBER-CIBERNED-ISCIII), 28029 Madrid, Spain
- Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), 10003 Cáceres, Spain
| | - Patricia Morcillo
- Departmentof Neurology, Columbia University, New York, NY 10032, USA
| |
Collapse
|
15
|
Wang S, Zhang M, Sun H, Li T, Hao J, Fang M, Dong J, Xu H. Multi-omics analysis of TLCD1 as a promising biomarker in pan-cancer. Front Cell Dev Biol 2024; 11:1305906. [PMID: 38559424 PMCID: PMC10978584 DOI: 10.3389/fcell.2023.1305906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/31/2023] [Indexed: 04/04/2024] Open
Abstract
Background: The TLC Domain Containing 1 (TLCD1) protein, a key regulator of phosphatidylethanolamine (PE) composition, is distributed across several cellular membranes, including mitochondrial plasma membranes. Existing research has revealed the impact of TLCD1 on the development of non-alcoholic fatty liver disease. However, there remains a gap in comprehensive pan-cancer analyses of TLCD1, and the precise role of TLCD1 in cancer patient prognosis and immunological responses remains elusive. This study aims to provide a comprehensive visualization of the prognostic landscape associated with TLCD1 across a spectrum of cancers, while shedding light on the potential links between TLCD1 expression within the tumor microenvironment and immune infiltration characteristics. Methods: TLCD1 expression data were obtained from GTEx, TCGA, and HPA data repositories. Multiple databases including TIMER, HPA, TISIDB, cBioPortal, GEPIA2, STRING, KEGG, GO, and CancerSEA were used to investigate the expression pattern, diagnostic and prognostic significance, mutation status, functional analysis, and functional status of TLCD1. In addition, we evaluated the relationship between TLCD1 expression and immune infiltration, tumor mutational burden (TMB), microsatellite instability (MSI), and immune-related genes in pan-cancer. Furthermore, the association of TLCD1 with drug sensitivity was analyzed using the CellMiner database. Results: We found that TLCD1 is generally highly expressed in pan-cancers and is significantly associated with the staging and prognosis of various cancers. Furthermore, our results also showed that TLCD1 was significantly associated with immune cell infiltration and immune regulatory factor expression. Using CellMiner database analysis, we then found a strong correlation between TLCD1 expression and sensitivity to anticancer drugs, indicating its potential as a therapeutic target. The most exciting finding is that high TLCD1 expression is associated with worse survival and prognosis in GBM and SKCM patients receiving anti-PD1 therapy. These findings highlight the potential of TLCD1 as a predictive biomarker for response to immunotherapy. Conclusion: TLCD1 plays a role in the regulation of immune infiltration and affects the prognosis of patients with various cancers. It serves as both a prognostic and immunologic biomarker in human cancer.
Collapse
Affiliation(s)
- Shengli Wang
- Zhuhai Institute of Translational Medicine, Zhuhai People’s Hospital Affiliated With Jinan University, Jinan University, Zhuhai, Guangdong, China
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, Guangdong, China
| | - Mingyue Zhang
- Zhuhai Institute of Translational Medicine, Zhuhai People’s Hospital Affiliated With Jinan University, Jinan University, Zhuhai, Guangdong, China
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, Guangdong, China
| | - Hongyan Sun
- Zhuhai Institute of Translational Medicine, Zhuhai People’s Hospital Affiliated With Jinan University, Jinan University, Zhuhai, Guangdong, China
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, Guangdong, China
| | - Tao Li
- Zhuhai Institute of Translational Medicine, Zhuhai People’s Hospital Affiliated With Jinan University, Jinan University, Zhuhai, Guangdong, China
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, Guangdong, China
| | - Jianlei Hao
- Zhuhai Institute of Translational Medicine, Zhuhai People’s Hospital Affiliated With Jinan University, Jinan University, Zhuhai, Guangdong, China
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, Guangdong, China
| | - Meixia Fang
- Department of Laboratory Animal, Institute of Laboratory Animal Science, Jinan University, Guangzhou, Guangdong, China
| | - Jie Dong
- Department of Clinical Laboratory, Guangzhou Twelfth People’s Hospital, Guangzhou, Guangdong, China
| | - Hongbiao Xu
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
16
|
Basei FL, e Silva IR, Dias PRF, Ferezin CC, Peres de Oliveira A, Issayama LK, Moura LAR, da Silva FR, Kobarg J. The Mitochondrial Connection: The Nek Kinases' New Functional Axis in Mitochondrial Homeostasis. Cells 2024; 13:473. [PMID: 38534317 PMCID: PMC10969439 DOI: 10.3390/cells13060473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 03/28/2024] Open
Abstract
Mitochondria provide energy for all cellular processes, including reactions associated with cell cycle progression, DNA damage repair, and cilia formation. Moreover, mitochondria participate in cell fate decisions between death and survival. Nek family members have already been implicated in DNA damage response, cilia formation, cell death, and cell cycle control. Here, we discuss the role of several Nek family members, namely Nek1, Nek4, Nek5, Nek6, and Nek10, which are not exclusively dedicated to cell cycle-related functions, in controlling mitochondrial functions. Specifically, we review the function of these Neks in mitochondrial respiration and dynamics, mtDNA maintenance, stress response, and cell death. Finally, we discuss the interplay of other cell cycle kinases in mitochondrial function and vice versa. Nek1, Nek5, and Nek6 are connected to the stress response, including ROS control, mtDNA repair, autophagy, and apoptosis. Nek4, in turn, seems to be related to mitochondrial dynamics, while Nek10 is involved with mitochondrial metabolism. Here, we propose that the participation of Neks in mitochondrial roles is a new functional axis for the Nek family.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Jörg Kobarg
- Faculty of Pharmaceutical Sciences, University of Campinas, Campinas 13083-871, Brazil; (F.L.B.); (P.R.F.D.)
| |
Collapse
|
17
|
Ahola S, Langer T. Ferroptosis in mitochondrial cardiomyopathy. Trends Cell Biol 2024; 34:150-160. [PMID: 37419738 DOI: 10.1016/j.tcb.2023.06.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/05/2023] [Accepted: 06/12/2023] [Indexed: 07/09/2023]
Abstract
Ferroptosis is a form of necrotic cell death characterized by iron-dependent lipid peroxidation culminating in membrane rupture. Accumulating evidence links ferroptosis to multiple cardiac diseases and identifies mitochondria as important regulators of ferroptosis. Mitochondria are not only a major source of reactive oxygen species (ROS) but also counteract ferroptosis by preserving cellular redox balance and oxidative defense. Recent evidence has revealed that the mitochondrial integrated stress response limits oxidative stress and ferroptosis in oxidative phosphorylation (OXPHOS)-deficient cardiomyocytes and protects against mitochondrial cardiomyopathy. We summarize the multiple ways in which mitochondria modulate the susceptibility of cells to ferroptosis, and discuss the implications of ferroptosis for cardiomyopathies in mitochondrial disease.
Collapse
Affiliation(s)
- Sofia Ahola
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Thomas Langer
- Max Planck Institute for Biology of Ageing, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.
| |
Collapse
|
18
|
Zhang B, Li W, Cao J, Zhou Y, Yuan X. Prohibitin 2: A key regulator of cell function. Life Sci 2024; 338:122371. [PMID: 38142736 DOI: 10.1016/j.lfs.2023.122371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/16/2023] [Accepted: 12/18/2023] [Indexed: 12/26/2023]
Abstract
The PHB2 gene is located on chromosome 12p13 and encodes prohibitin 2, a highly conserved protein of 37 kDa. PHB2 is a dimer with antiparallel coils, possessing a unique negatively charged region crucial for its mitochondrial molecular chaperone functions. Thus, PHB2 plays a significant role in cell life activities such as mitosis, mitochondrial autophagy, signal transduction, and cell death. This review discusses how PHB2 inhibits transcription factors or nuclear receptors to maintain normal cell functions; how PHB2 in the cytoplasm or membrane ensures normal cell mitosis and regulates cell differentiation; how PHB2 affects mitochondrial structure, function, and cell apoptosis through mitochondrial intimal integrity and mitochondrial autophagy; how PHB2 affects mitochondrial stress and inhibits cell apoptosis by regulating cytochrome c migration and other pathways; how PHB2 affects cell growth, proliferation, and metastasis through a mitochondrial independent mechanism; and how PHB2 could be applied in disease treatment. We provide a theoretical basis and an innovative perspective for a comprehensive understanding of the role and mechanism of PHB2 in cell function regulation.
Collapse
Affiliation(s)
- Bingjie Zhang
- Gastroenterology and Urology Department II, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China; Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, Hunan 410011, China
| | - Wentao Li
- Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, Hunan 410011, China
| | - Jiaying Cao
- Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, Hunan 410011, China
| | - Yanhong Zhou
- Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, Hunan 410011, China.
| | - Xia Yuan
- Gastroenterology and Urology Department II, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China.
| |
Collapse
|
19
|
Janz A, Walz K, Cirnu A, Surjanto J, Urlaub D, Leskien M, Kohlhaas M, Nickel A, Brand T, Nose N, Wörsdörfer P, Wagner N, Higuchi T, Maack C, Dudek J, Lorenz K, Klopocki E, Ergün S, Duff HJ, Gerull B. Mutations in DNAJC19 cause altered mitochondrial structure and increased mitochondrial respiration in human iPSC-derived cardiomyocytes. Mol Metab 2024; 79:101859. [PMID: 38142971 PMCID: PMC10792641 DOI: 10.1016/j.molmet.2023.101859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 12/06/2023] [Accepted: 12/20/2023] [Indexed: 12/26/2023] Open
Abstract
BACKGROUND Dilated cardiomyopathy with ataxia (DCMA) is an autosomal recessive disorder arising from truncating mutations in DNAJC19, which encodes an inner mitochondrial membrane protein. Clinical features include an early onset, often life-threatening, cardiomyopathy associated with other metabolic features. Here, we aim to understand the metabolic and pathophysiological mechanisms of mutant DNAJC19 for the development of cardiomyopathy. METHODS We generated induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) of two affected siblings with DCMA and a gene-edited truncation variant (tv) of DNAJC19 which all lack the conserved DnaJ interaction domain. The mutant iPSC-CMs and their respective control cells were subjected to various analyses, including assessments of morphology, metabolic function, and physiological consequences such as Ca2+ kinetics, contractility, and arrhythmic potential. Validation of respiration analysis was done in a gene-edited HeLa cell line (DNAJC19tvHeLa). RESULTS Structural analyses revealed mitochondrial fragmentation and abnormal cristae formation associated with an overall reduced mitochondrial protein expression in mutant iPSC-CMs. Morphological alterations were associated with higher oxygen consumption rates (OCRs) in all three mutant iPSC-CMs, indicating higher electron transport chain activity to meet cellular ATP demands. Additionally, increased extracellular acidification rates suggested an increase in overall metabolic flux, while radioactive tracer uptake studies revealed decreased fatty acid uptake and utilization of glucose. Mutant iPSC-CMs also showed increased reactive oxygen species (ROS) and an elevated mitochondrial membrane potential. Increased mitochondrial respiration with pyruvate and malate as substrates was observed in mutant DNAJC19tv HeLa cells in addition to an upregulation of respiratory chain complexes, while cellular ATP-levels remain the same. Moreover, mitochondrial alterations were associated with increased beating frequencies, elevated diastolic Ca2+ concentrations, reduced sarcomere shortening and an increased beat-to-beat rate variability in mutant cell lines in response to β-adrenergic stimulation. CONCLUSIONS Loss of the DnaJ domain disturbs cardiac mitochondrial structure with abnormal cristae formation and leads to mitochondrial dysfunction, suggesting that DNAJC19 plays an essential role in mitochondrial morphogenesis and biogenesis. Moreover, increased mitochondrial respiration, altered substrate utilization, increased ROS production and abnormal Ca2+ kinetics provide insights into the pathogenesis of DCMA-related cardiomyopathy.
Collapse
Affiliation(s)
- Anna Janz
- Comprehensive Heart Failure Center, Department of Cardiovascular Genetics, University Hospital Würzburg, Würzburg, Germany
| | - Katharina Walz
- Comprehensive Heart Failure Center, Department of Cardiovascular Genetics, University Hospital Würzburg, Würzburg, Germany
| | - Alexandra Cirnu
- Comprehensive Heart Failure Center, Department of Cardiovascular Genetics, University Hospital Würzburg, Würzburg, Germany
| | - Jessica Surjanto
- Comprehensive Heart Failure Center, Department of Cardiovascular Genetics, University Hospital Würzburg, Würzburg, Germany
| | - Daniela Urlaub
- Comprehensive Heart Failure Center, Department of Cardiovascular Genetics, University Hospital Würzburg, Würzburg, Germany
| | - Miriam Leskien
- Comprehensive Heart Failure Center, Department of Cardiovascular Genetics, University Hospital Würzburg, Würzburg, Germany
| | - Michael Kohlhaas
- Comprehensive Heart Failure Center, Department of Translational Research, University Hospital Würzburg, Würzburg, Germany
| | - Alexander Nickel
- Comprehensive Heart Failure Center, Department of Translational Research, University Hospital Würzburg, Würzburg, Germany
| | - Theresa Brand
- Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany
| | - Naoko Nose
- Comprehensive Heart Failure Center, Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Philipp Wörsdörfer
- Institute of Anatomy and Cell Biology, University of Würzburg, Würzburg, Germany
| | - Nicole Wagner
- Institute of Anatomy and Cell Biology, University of Würzburg, Würzburg, Germany
| | - Takahiro Higuchi
- Comprehensive Heart Failure Center, Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Christoph Maack
- Comprehensive Heart Failure Center, Department of Translational Research, University Hospital Würzburg, Würzburg, Germany; Department of Medicine I, University Hospital Würzburg, Würzburg, Germany
| | - Jan Dudek
- Comprehensive Heart Failure Center, Department of Translational Research, University Hospital Würzburg, Würzburg, Germany
| | - Kristina Lorenz
- Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany; Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Dortmund, Germany
| | - Eva Klopocki
- Institute for Human Genetics, Biocenter, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Süleyman Ergün
- Institute of Anatomy and Cell Biology, University of Würzburg, Würzburg, Germany
| | - Henry J Duff
- Department of Cardiac Sciences and Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Brenda Gerull
- Comprehensive Heart Failure Center, Department of Cardiovascular Genetics, University Hospital Würzburg, Würzburg, Germany; Department of Medicine I, University Hospital Würzburg, Würzburg, Germany; Department of Cardiac Sciences and Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, Canada.
| |
Collapse
|
20
|
Caron C, Bertolin G. Cristae shaping and dynamics in mitochondrial function. J Cell Sci 2024; 137:jcs260986. [PMID: 38197774 DOI: 10.1242/jcs.260986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024] Open
Abstract
Mitochondria are multifunctional organelles of key importance for cell homeostasis. The outer mitochondrial membrane (OMM) envelops the organelle, and the inner mitochondrial membrane (IMM) is folded into invaginations called cristae. As cristae composition and functions depend on the cell type and stress conditions, they recently started to be considered as a dynamic compartment. A number of proteins are known to play a role in cristae architecture, such as OPA1, MIC60, LETM1, the prohibitin (PHB) complex and the F1FO ATP synthase. Furthermore, phospholipids are involved in the maintenance of cristae ultrastructure and dynamics. The use of new technologies, including super-resolution microscopy to visualize cristae dynamics with superior spatiotemporal resolution, as well as high-content techniques and datasets have not only allowed the identification of new cristae proteins but also helped to explore cristae plasticity. However, a number of open questions remain in the field, such as whether cristae-resident proteins are capable of changing localization within mitochondria, or whether mitochondrial proteins can exit mitochondria through export. In this Review, we present the current view on cristae morphology, stability and composition, and address important outstanding issues that might pave the way to future discoveries.
Collapse
Affiliation(s)
- Claire Caron
- Univ. Rennes, CNRS, IGDR (Institute of Genetics and Development of Rennes), UMR 6290, F-35000 Rennes, France
| | - Giulia Bertolin
- Univ. Rennes, CNRS, IGDR (Institute of Genetics and Development of Rennes), UMR 6290, F-35000 Rennes, France
| |
Collapse
|
21
|
Sun H, Zhang J, Ye Q, Jiang T, Liu X, Zhang X, Zeng F, Li J, Zheng Y, Han X, Su C, Shi Y. LPGAT1 controls MEGDEL syndrome by coupling phosphatidylglycerol remodeling with mitochondrial transport. Cell Rep 2023; 42:113214. [PMID: 37917582 PMCID: PMC10729602 DOI: 10.1016/j.celrep.2023.113214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/21/2023] [Accepted: 09/19/2023] [Indexed: 11/04/2023] Open
Abstract
Phosphatidylglycerol (PG) is a mitochondrial phospholipid required for mitochondrial cristae structure and cardiolipin synthesis. PG must be remodeled to its mature form at the endoplasmic reticulum (ER) after mitochondrial biosynthesis to achieve its biological functions. Defective PG remodeling causes MEGDEL (non-alcohol fatty liver disease and 3-methylglutaconic aciduria with deafness, encephalopathy, and Leigh-like) syndrome through poorly defined mechanisms. Here, we identify LPGAT1, an acyltransferase that catalyzes PG remodeling, as a candidate gene for MEGDEL syndrome. We show that PG remodeling by LPGAT1 at the ER is closely coordinated with mitochondrial transport through interaction with the prohibitin/TIMM14 mitochondrial import motor. Accordingly, ablation of LPGAT1 or TIMM14 not only causes aberrant fatty acyl compositions but also ER retention of newly remodeled PG, leading to profound loss in mitochondrial crista structure and respiration. Consequently, genetic deletion of the LPGAT1 in mice leads to cardinal features of MEGDEL syndrome, including 3-methylglutaconic aciduria, deafness, dilated cardiomyopathy, and premature death, which are highly reminiscent of those caused by TIMM14 mutations in humans.
Collapse
Affiliation(s)
- Haoran Sun
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 101 Longmian Avenue, Nanjing, Jiangsu Province 211166, China
| | - Jun Zhang
- Sam and Ann Barshop Institute for Longevity and Aging Studies, Department of Pharmacology, University of Texas Health Science Center at San Antonio, 4939 Charles Katz Drive, San Antonio, TX 78229, USA
| | - Qianqian Ye
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 101 Longmian Avenue, Nanjing, Jiangsu Province 211166, China; Sam and Ann Barshop Institute for Longevity and Aging Studies, Department of Pharmacology, University of Texas Health Science Center at San Antonio, 4939 Charles Katz Drive, San Antonio, TX 78229, USA
| | - Ting Jiang
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 101 Longmian Avenue, Nanjing, Jiangsu Province 211166, China
| | - Xueling Liu
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 101 Longmian Avenue, Nanjing, Jiangsu Province 211166, China
| | - Xiaoyang Zhang
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 101 Longmian Avenue, Nanjing, Jiangsu Province 211166, China
| | - Fanyu Zeng
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 101 Longmian Avenue, Nanjing, Jiangsu Province 211166, China; Sam and Ann Barshop Institute for Longevity and Aging Studies, Department of Pharmacology, University of Texas Health Science Center at San Antonio, 4939 Charles Katz Drive, San Antonio, TX 78229, USA
| | - Jie Li
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 101 Longmian Avenue, Nanjing, Jiangsu Province 211166, China
| | - Yue Zheng
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 101 Longmian Avenue, Nanjing, Jiangsu Province 211166, China
| | - Xianlin Han
- Sam and Ann Barshop Institute for Longevity and Aging Studies, Department of Pharmacology, University of Texas Health Science Center at San Antonio, 4939 Charles Katz Drive, San Antonio, TX 78229, USA
| | - Chuan Su
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 101 Longmian Avenue, Nanjing, Jiangsu Province 211166, China
| | - Yuguang Shi
- Sam and Ann Barshop Institute for Longevity and Aging Studies, Department of Pharmacology, University of Texas Health Science Center at San Antonio, 4939 Charles Katz Drive, San Antonio, TX 78229, USA.
| |
Collapse
|
22
|
Monteiro-Cardoso VF, Giordano F. New roles of LPGAT1: From mitochondrial import of phosphatidylglycerol to MEGDEL disease. Cell Rep 2023; 42:113376. [PMID: 37917588 DOI: 10.1016/j.celrep.2023.113376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 11/04/2023] Open
Abstract
Dysregulation of mitochondrial lipidome is associated with several human pathologies. Sun et al.1 show that LPGAT1 cooperates with TIMM14 to regulate phosphatidylglycerol transport from the endoplasmic reticulum to the mitochondria, and uncover the involvement of LPGAT1 deficiency in MEGDEL syndrome.
Collapse
Affiliation(s)
- Vera Filipa Monteiro-Cardoso
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette cedex 91198, France; Inserm U1280, Gif-sur-Yvette cedex 91198, France
| | - Francesca Giordano
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette cedex 91198, France; Inserm U1280, Gif-sur-Yvette cedex 91198, France.
| |
Collapse
|
23
|
Reed AL, Mitchell W, Alexandrescu AT, Alder NN. Interactions of amyloidogenic proteins with mitochondrial protein import machinery in aging-related neurodegenerative diseases. Front Physiol 2023; 14:1263420. [PMID: 38028797 PMCID: PMC10652799 DOI: 10.3389/fphys.2023.1263420] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/02/2023] [Indexed: 12/01/2023] Open
Abstract
Most mitochondrial proteins are targeted to the organelle by N-terminal mitochondrial targeting sequences (MTSs, or "presequences") that are recognized by the import machinery and subsequently cleaved to yield the mature protein. MTSs do not have conserved amino acid compositions, but share common physicochemical properties, including the ability to form amphipathic α-helical structures enriched with basic and hydrophobic residues on alternating faces. The lack of strict sequence conservation implies that some polypeptides can be mistargeted to mitochondria, especially under cellular stress. The pathogenic accumulation of proteins within mitochondria is implicated in many aging-related neurodegenerative diseases, including Alzheimer's, Parkinson's, and Huntington's diseases. Mechanistically, these diseases may originate in part from mitochondrial interactions with amyloid-β precursor protein (APP) or its cleavage product amyloid-β (Aβ), α-synuclein (α-syn), and mutant forms of huntingtin (mHtt), respectively, that are mediated in part through their associations with the mitochondrial protein import machinery. Emerging evidence suggests that these amyloidogenic proteins may present cryptic targeting signals that act as MTS mimetics and can be recognized by mitochondrial import receptors and transported into different mitochondrial compartments. Accumulation of these mistargeted proteins could overwhelm the import machinery and its associated quality control mechanisms, thereby contributing to neurological disease progression. Alternatively, the uptake of amyloidogenic proteins into mitochondria may be part of a protein quality control mechanism for clearance of cytotoxic proteins. Here we review the pathomechanisms of these diseases as they relate to mitochondrial protein import and effects on mitochondrial function, what features of APP/Aβ, α-syn and mHtt make them suitable substrates for the import machinery, and how this information can be leveraged for the development of therapeutic interventions.
Collapse
Affiliation(s)
- Ashley L. Reed
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, United States
| | - Wayne Mitchell
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Andrei T. Alexandrescu
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, United States
| | - Nathan N. Alder
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, United States
| |
Collapse
|
24
|
Kohler A, Carlström A, Nolte H, Kohler V, Jung SJ, Sridhara S, Tatsuta T, Berndtsson J, Langer T, Ott M. Early fate decision for mitochondrially encoded proteins by a molecular triage. Mol Cell 2023; 83:3470-3484.e8. [PMID: 37751741 DOI: 10.1016/j.molcel.2023.09.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 07/12/2023] [Accepted: 09/05/2023] [Indexed: 09/28/2023]
Abstract
Folding of newly synthesized proteins poses challenges for a functional proteome. Dedicated protein quality control (PQC) systems either promote the folding of nascent polypeptides at ribosomes or, if this fails, ensure their degradation. Although well studied for cytosolic protein biogenesis, it is not understood how these processes work for mitochondrially encoded proteins, key subunits of the oxidative phosphorylation (OXPHOS) system. Here, we identify dedicated hubs in proximity to mitoribosomal tunnel exits coordinating mitochondrial protein biogenesis and quality control. Conserved prohibitin (PHB)/m-AAA protease supercomplexes and the availability of assembly chaperones determine the fate of newly synthesized proteins by molecular triaging. The localization of these competing activities in the vicinity of the mitoribosomal tunnel exit allows for a prompt decision on whether newly synthesized proteins are fed into OXPHOS assembly or are degraded.
Collapse
Affiliation(s)
- Andreas Kohler
- Department of Biochemistry and Biophysics, Stockholm University, 106 91 Stockholm, Sweden; Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
| | - Andreas Carlström
- Department of Biochemistry and Biophysics, Stockholm University, 106 91 Stockholm, Sweden
| | - Hendrik Nolte
- Max Planck Institute for Biology of Ageing, 50931 Cologne, Germany
| | - Verena Kohler
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria; Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 106 91 Stockholm, Sweden
| | - Sung-Jun Jung
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Sagar Sridhara
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Takashi Tatsuta
- Max Planck Institute for Biology of Ageing, 50931 Cologne, Germany
| | - Jens Berndtsson
- Department of Biochemistry and Biophysics, Stockholm University, 106 91 Stockholm, Sweden
| | - Thomas Langer
- Max Planck Institute for Biology of Ageing, 50931 Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany.
| | - Martin Ott
- Department of Biochemistry and Biophysics, Stockholm University, 106 91 Stockholm, Sweden; Department of Medical Biochemistry and Cell Biology, University of Gothenburg, 405 30 Gothenburg, Sweden.
| |
Collapse
|
25
|
Olivar-Villanueva M, Ren M, Schlame M, Phoon CK. The critical role of cardiolipin in metazoan differentiation, development, and maturation. Dev Dyn 2023; 252:691-712. [PMID: 36692477 PMCID: PMC10238668 DOI: 10.1002/dvdy.567] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 12/27/2022] [Accepted: 01/13/2023] [Indexed: 01/25/2023] Open
Abstract
Cardiolipins are phospholipids that are central to proper mitochondrial functioning. Because mitochondria play crucial roles in differentiation, development, and maturation, we would also expect cardiolipin to play major roles in these processes. Indeed, cardiolipin has been implicated in the mechanism of three human diseases that affect young infants, implying developmental abnormalities. In this review, we will: (1) Review the biology of cardiolipin; (2) Outline the evidence for essential roles of cardiolipin during organismal development, including embryogenesis and cell maturation in vertebrate organisms; (3) Place the role(s) of cardiolipin during embryogenesis within the larger context of the roles of mitochondria in development; and (4) Suggest avenues for future research.
Collapse
Affiliation(s)
| | - Mindong Ren
- Department of Anesthesiology, New York University Grossman School of Medicine, New York, New York, USA
- Department of Cell Biology, New York University Grossman School of Medicine, New York, New York, USA
| | - Michael Schlame
- Department of Anesthesiology, New York University Grossman School of Medicine, New York, New York, USA
- Department of Cell Biology, New York University Grossman School of Medicine, New York, New York, USA
| | - Colin K.L. Phoon
- Department of Pediatrics, New York University Grossman School of Medicine, New York, New York, USA
| |
Collapse
|
26
|
An B, Zhang Y, Yan B, Cai J. RNA interference of PHB1 enhances virulence of Vip3Aa to Sf9 cells and Spodoptera frugiperda larvae. PEST MANAGEMENT SCIENCE 2023. [PMID: 36964944 DOI: 10.1002/ps.7469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/17/2023] [Accepted: 03/24/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND In our previous work, we demonstrated that prohibitin 2 (PHB2) on the membrane of Sf9 cells was a receptor for Vip3Aa, and PHB2 in mitochondria contributed to the mitochondrial stability to reduce Vip3Aa toxicity. Prohibitin 1 (PHB1), another prohibitin family member, forms heterodimers with PHB2 to maintain the structure and stability of mitochondria. To explore whether PHB1 impacts the action process of Vip3Aa, we examined the correlation between PHB1 and Vip3Aa virulence. RESULTS We revealed that PHB1 did not colocalize with Vip3Aa in Sf9 cells. The pulldown and CoIP experiments confirmed that PHB1 interacted with neither Vip3Aa nor scavenger receptor-C (another Vip3Aa receptor). Downregulating phb1 expression in Sf9 cells did not affect the internalization of Vip3Aa but increased Vip3Aa toxicity. Further exploration revealed that the decrease of phb1 expression affected mitochondrial function, leading to increased ROS levels and mitochondrial membrane permeability and decreased mitochondrial membrane potential. The increase of mitochondrial cytochrome c release, caspase-3 activity and genomic DNA fragmentation implied that the apoptotic process was also affected. Finally, we applied RNAi to inhibit phb1 expression in Spodoptera frugiperda larvae. As a result, it significantly increased Vip3Aa virulence. CONCLUSION We found that PHB1 was not a receptor for Vip3Aa but played an essential role in mitochondria. The downregulation of phb1 expression in Sf9 cells caused instability of mitochondria, and the cells were more prone to apoptosis when challenged with Vip3Aa. The combined use of Vip3Aa and phb1 RNAi showed a synergistic effect against S. frugiperda larvae. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Baoju An
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Yizhuo Zhang
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Bing Yan
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Jun Cai
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, China
- Colllege of Life Science, Nankai University, Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin, China
| |
Collapse
|
27
|
Guo J, Zheng W, Liu Y, Zhou M, Shi Y, Lei M, Zhang C, Liu Z. Long non-coding RNA DLX6-AS1 is the key mediator of glomerular podocyte injury and albuminuria in diabetic nephropathy by targeting the miR-346/GSK-3β signaling pathway. Cell Death Dis 2023; 14:172. [PMID: 36854759 PMCID: PMC9975222 DOI: 10.1038/s41419-023-05695-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/15/2023] [Accepted: 02/17/2023] [Indexed: 03/02/2023]
Abstract
Progressive albuminuria is the primary clinical symptom of diabetic nephropathy (DN), leading to a gradual decline in kidney function. DLX6-AS1 was the first reported long non-coding RNA (lncRNA) to participate in organogenesis and play crucial roles in the brain or neural cell development. Herein, we investigated the DLX6-AS1 (Dlx6-os1 in mice) role in DN pathogenesis. We found that DLX6-AS1 expression in DN patients correlated with the extent of albuminuria. Dlx6-os1 overexpression induced cellular damage and inflammatory responses in cultured podocytes through miR-346-mediated regulation of the GSK-3β pathway. In various established diabetic and newly developed knockout mouse models, Dlx6-os1 knockdown/knockout significantly reduced podocyte injury and albuminuria. The Dlx6-os1 effects were remarkably modulated by miR-346 mimics or mutants and significantly diminished in podocyte-specific GSK-3β-knockout mice. Thus, DLX6-AS1 (Dlx6-os1) promotes DN development by accelerating podocyte injury and inflammation through the upregulation of the GSK-3β pathway, providing a novel molecular target for DN therapy.
Collapse
Affiliation(s)
- Jia Guo
- Nephrology Research Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China.
- Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, P. R. China.
- Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, P. R. China.
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, P. R. China.
| | - Wen Zheng
- Nephrology Research Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China
- Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, P. R. China
- Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, P. R. China
| | - Yong Liu
- Nephrology Research Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China
- Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, P. R. China
- Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, P. R. China
| | - Mengwen Zhou
- Nephrology Research Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China
- Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, P. R. China
- Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, P. R. China
| | - Yan Shi
- Nephrology Research Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China
- Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, P. R. China
- Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, P. R. China
| | - Min Lei
- Nephrology Research Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China
- Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, P. R. China
- Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, P. R. China
| | - Chaojie Zhang
- Nephrology Research Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China
- Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, P. R. China
- Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, P. R. China
| | - Zhangsuo Liu
- Nephrology Research Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China.
- Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, P. R. China.
- Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, P. R. China.
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, P. R. China.
| |
Collapse
|
28
|
Schulte U, den Brave F, Haupt A, Gupta A, Song J, Müller CS, Engelke J, Mishra S, Mårtensson C, Ellenrieder L, Priesnitz C, Straub SP, Doan KN, Kulawiak B, Bildl W, Rampelt H, Wiedemann N, Pfanner N, Fakler B, Becker T. Mitochondrial complexome reveals quality-control pathways of protein import. Nature 2023; 614:153-159. [PMID: 36697829 PMCID: PMC9892010 DOI: 10.1038/s41586-022-05641-w] [Citation(s) in RCA: 79] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 12/09/2022] [Indexed: 01/26/2023]
Abstract
Mitochondria have crucial roles in cellular energetics, metabolism, signalling and quality control1-4. They contain around 1,000 different proteins that often assemble into complexes and supercomplexes such as respiratory complexes and preprotein translocases1,3-7. The composition of the mitochondrial proteome has been characterized1,3,5,6; however, the organization of mitochondrial proteins into stable and dynamic assemblies is poorly understood for major parts of the proteome1,4,7. Here we report quantitative mapping of mitochondrial protein assemblies using high-resolution complexome profiling of more than 90% of the yeast mitochondrial proteome, termed MitCOM. An analysis of the MitCOM dataset resolves >5,200 protein peaks with an average of six peaks per protein and demonstrates a notable complexity of mitochondrial protein assemblies with distinct appearance for respiration, metabolism, biogenesis, dynamics, regulation and redox processes. We detect interactors of the mitochondrial receptor for cytosolic ribosomes, of prohibitin scaffolds and of respiratory complexes. The identification of quality-control factors operating at the mitochondrial protein entry gate reveals pathways for preprotein ubiquitylation, deubiquitylation and degradation. Interactions between the peptidyl-tRNA hydrolase Pth2 and the entry gate led to the elucidation of a constitutive pathway for the removal of preproteins. The MitCOM dataset-which is accessible through an interactive profile viewer-is a comprehensive resource for the identification, organization and interaction of mitochondrial machineries and pathways.
Collapse
Affiliation(s)
- Uwe Schulte
- Institute of Physiology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Fabian den Brave
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, University of Bonn, Bonn, Germany
| | - Alexander Haupt
- Institute of Physiology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Arushi Gupta
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, University of Bonn, Bonn, Germany
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jiyao Song
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, University of Bonn, Bonn, Germany
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Catrin S Müller
- Institute of Physiology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jeannine Engelke
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, University of Bonn, Bonn, Germany
| | - Swadha Mishra
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, University of Bonn, Bonn, Germany
| | - Christoph Mårtensson
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- MTIP, Basel, Switzerland
| | - Lars Ellenrieder
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Novartis, Basel, Switzerland
| | - Chantal Priesnitz
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sebastian P Straub
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Sanofi-Aventis (Suisse), Vernier, Switzerland
| | - Kim Nguyen Doan
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Bogusz Kulawiak
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Wolfgang Bildl
- Institute of Physiology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Heike Rampelt
- CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Nils Wiedemann
- CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Nikolaus Pfanner
- CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany.
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany.
| | - Bernd Fakler
- Institute of Physiology, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
- CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany.
- Center for Basics in NeuroModulation, Freiburg, Germany.
| | - Thomas Becker
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, University of Bonn, Bonn, Germany
| |
Collapse
|
29
|
Abstract
PURPOSE OF REVIEW We review pathophysiology and clinical features of mitochondrial disorders manifesting with cardiomyopathy. RECENT FINDINGS Mechanistic studies have shed light into the underpinnings of mitochondrial disorders, providing novel insights into mitochondrial physiology and identifying new therapeutic targets. Mitochondrial disorders are a group of rare genetic diseases that are caused by mutations in mitochondrial DNA (mtDNA) or in nuclear genes that are essential to mitochondrial function. The clinical picture is extremely heterogeneous, the onset can occur at any age, and virtually, any organ or tissue can be involved. Since the heart relies primarily on mitochondrial oxidative metabolism to fuel contraction and relaxation, cardiac involvement is common in mitochondrial disorders and often represents a major determinant of their prognosis.
Collapse
Affiliation(s)
- Tudor-Alexandru Popoiu
- Department of Translational Research, Comprehensive Heart Failure Center, University Clinic Würzburg, Wurzburg, Germany
- "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania
| | - Jan Dudek
- Department of Translational Research, Comprehensive Heart Failure Center, University Clinic Würzburg, Wurzburg, Germany
| | - Christoph Maack
- Department of Translational Research, Comprehensive Heart Failure Center, University Clinic Würzburg, Wurzburg, Germany
| | - Edoardo Bertero
- Department of Translational Research, Comprehensive Heart Failure Center, University Clinic Würzburg, Wurzburg, Germany.
- Department of Internal Medicine and Specialties (Di.M.I.), University of Genoa, Genoa, Italy.
| |
Collapse
|
30
|
Ren L, Meng L, Gao J, Lu M, Guo C, Li Y, Rong Z, Ye Y. PHB2 promotes colorectal cancer cell proliferation and tumorigenesis through NDUFS1-mediated oxidative phosphorylation. Cell Death Dis 2023; 14:44. [PMID: 36658121 PMCID: PMC9852476 DOI: 10.1038/s41419-023-05575-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 01/03/2023] [Accepted: 01/09/2023] [Indexed: 01/21/2023]
Abstract
The alteration of cellular energy metabolism is a hallmark of colorectal cancer (CRC). Accumulating evidence has suggested oxidative phosphorylation (OXPHOS) is upregulated to meet the demand for energy in tumor initiation and development. However, the role of OXPHOS and its regulatory mechanism in CRC tumorigenesis and progression remain unclear. Here, we reveal that Prohibitin 2 (PHB2) expression is elevated in precancerous adenomas and CRC, which promotes cell proliferation and tumorigenesis of CRC. Additionally, knockdown of PHB2 significantly reduces mitochondrial OXPHOS levels in CRC cells. Meanwhile, NADH:ubiquinone oxidoreductase core subunit S1 (NDUFS1), as a PHB2 binding partner, is screened and identified by co-immunoprecipitation and mass spectrometry. Furthermore, PHB2 directly interacts with NDUFS1 and they co-localize in mitochondria, which facilitates NDUFS1 binding to NADH:ubiquinone oxidoreductase core subunit V1 (NDUFV1), regulating the activity of complex I. Consistently, partial inhibition of complex I activity also abrogates the increased cell proliferation induced by overexpression of PHB2 in normal human intestinal epithelial cells and CRC cells. Collectively, these results indicate that increased PHB2 directly interacts with NDUFS1 to stabilize mitochondrial complex I and enhance its activity, leading to upregulated OXPHOS levels, thereby promoting cell proliferation and tumorigenesis of CRC. Our findings provide a new perspective for understanding CRC energy metabolism, as well as novel intervention strategies for CRC therapeutics.
Collapse
Affiliation(s)
- Lin Ren
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- Department of Blood Transfusion, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of Blood Transfusion, Anhui Public Health Clinical Center, Hefei, China
| | - Li Meng
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Jing Gao
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Mingdian Lu
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Chengyu Guo
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Yunyun Li
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Ziye Rong
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.
| | - Yan Ye
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.
| |
Collapse
|
31
|
Marszalek J, Craig EA, Tomiczek B. J-Domain Proteins Orchestrate the Multifunctionality of Hsp70s in Mitochondria: Insights from Mechanistic and Evolutionary Analyses. Subcell Biochem 2023; 101:293-318. [PMID: 36520311 DOI: 10.1007/978-3-031-14740-1_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Mitochondrial J-domain protein (JDP) co-chaperones orchestrate the function of their Hsp70 chaperone partner(s) in critical organellar processes that are essential for cell function. These include folding, refolding, and import of mitochondrial proteins, maintenance of mitochondrial DNA, and biogenesis of iron-sulfur cluster(s) (FeS), prosthetic groups needed for function of mitochondrial and cytosolic proteins. Consistent with the organelle's endosymbiotic origin, mitochondrial Hsp70 and the JDPs' functioning in protein folding and FeS biogenesis clearly descended from bacteria, while the origin of the JDP involved in protein import is less evident. Regardless of their origin, all mitochondrial JDP/Hsp70 systems evolved unique features that allowed them to perform mitochondria-specific functions. Their modes of functional diversification and specialization illustrate the versatility of JDP/Hsp70 systems and inform our understanding of system functioning in other cellular compartments.
Collapse
Affiliation(s)
- Jaroslaw Marszalek
- Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk, Poland.
| | - Elizabeth A Craig
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA.
| | - Bartlomiej Tomiczek
- Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk, Poland
| |
Collapse
|
32
|
Oyang L, Li J, Jiang X, Lin J, Xia L, Yang L, Tan S, Wu N, Han Y, Yang Y, Luo X, Li J, Liao Q, Shi Y, Zhou Y. The function of prohibitins in mitochondria and the clinical potentials. Cancer Cell Int 2022; 22:343. [DOI: 10.1186/s12935-022-02765-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 10/20/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractProhibitins (PHBs) are a class of highly evolutionarily conserved proteins that widely distribute in prokaryotes and eukaryotes. PHBs function in cell growth and proliferation or differentiation, regulating metabolism and signaling pathways. PHBs have different subcellular localization in eukaryotes, but they are mainly located in mitochondria. In the mitochondria, PHBs stabilize the structure of the mitochondrial membrane and regulate mitochondrial autophagy, mitochondrial dynamics, mitochondrial biogenesis and quality control, and mitochondrial unfolded protein response. PHBs has shown to be associated with many diseases, such as mitochondria diseases, cancers, infectious diseases, and so on. Some molecule targets of PHBs can interfere with the occurrence and development of diseases. Therefore, this review clarifies the functions of PHBs in mitochondria, and provides a summary of the potential values in clinics.
Collapse
|
33
|
Fernandez-Abascal J, Artal-Sanz M. Prohibitins in neurodegeneration and mitochondrial homeostasis. FRONTIERS IN AGING 2022; 3:1043300. [PMID: 36404989 PMCID: PMC9674034 DOI: 10.3389/fragi.2022.1043300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022]
Abstract
The incidence of age-related neurodegenerative disorders has risen with the increase of life expectancy. Unfortunately, the diagnosis of such disorders is in most cases only possible when the neurodegeneration status is already advanced, and symptoms are evident. Although age-related neurodegeneration is a common phenomenon in living animals, the cellular and molecular mechanisms behind remain poorly understood. Pathways leading to neurodegeneration usually diverge from a common starting point, mitochondrial stress, which can serve as a potential target for early diagnosis and treatments. Interestingly, the evolutionarily conserved mitochondrial prohibitin (PHB) complex is a key regulator of ageing and metabolism that has been associated with neurodegenerative diseases. However, its role in neurodegeneration is still not well characterized. The PHB complex shows protective or toxic effects in different genetic and physiological contexts, while mitochondrial and cellular stress promote both up and downregulation of PHB expression. With this review we aim to shed light into the complex world of PHB’s function in neurodegeneration by putting together the latest advances in neurodegeneration and mitochondrial homeostasis associated with PHB. A better understanding of the role of PHB in neurodegeneration will add knowledge to neuron deterioration during ageing and help to identify early molecular markers of mitochondrial stress. This review will deepen our understanding of age-related neurodegeneration and provide questions to be addressed, relevant to human health and to improve the life quality of the elderly.
Collapse
Affiliation(s)
- Jesus Fernandez-Abascal
- Andalusian Centre for Developmental Biology (CABD), CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Sevilla, Spain
- Department of Molecular Biology and Biochemical Engineering, Universidad Pablo de Olavide, Seville, Spain
- *Correspondence: Jesus Fernandez-Abascal, ; Marta Artal-Sanz,
| | - Marta Artal-Sanz
- Andalusian Centre for Developmental Biology (CABD), CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Sevilla, Spain
- Department of Molecular Biology and Biochemical Engineering, Universidad Pablo de Olavide, Seville, Spain
- *Correspondence: Jesus Fernandez-Abascal, ; Marta Artal-Sanz,
| |
Collapse
|
34
|
Guna A, Stevens TA, Inglis AJ, Replogle JM, Esantsi TK, Muthukumar G, Shaffer KCL, Wang ML, Pogson AN, Jones JJ, Lomenick B, Chou TF, Weissman JS, Voorhees RM. MTCH2 is a mitochondrial outer membrane protein insertase. Science 2022; 378:317-322. [PMID: 36264797 PMCID: PMC9674023 DOI: 10.1126/science.add1856] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In the mitochondrial outer membrane, α-helical transmembrane proteins play critical roles in cytoplasmic-mitochondrial communication. Using genome-wide CRISPR screens, we identified MTCH2, and its paralog MTCH1, and showed that it is required for insertion of biophysically diverse tail-anchored (TA), signal-anchored, and multipass proteins, but not outer membrane β-barrel proteins. Purified MTCH2 was sufficient to mediate insertion into reconstituted proteoliposomes. Functional and mutational studies suggested that MTCH2 has evolved from a solute carrier transporter. MTCH2 uses membrane-embedded hydrophilic residues to function as a gatekeeper for the outer membrane, controlling mislocalization of TAs into the endoplasmic reticulum and modulating the sensitivity of leukemia cells to apoptosis. Our identification of MTCH2 as an insertase provided a mechanistic explanation for the diverse phenotypes and disease states associated with MTCH2 dysfunction. We showed that MTCH2 was both necessary and sufficient for insertion of diverse α-helical proteins into the mitochondrial outer membrane, and was the defining member of a family of insertases that have co-opted the SLC25 transporter fold.
Collapse
Affiliation(s)
- Alina Guna
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Taylor A Stevens
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 East California Avenue, Pasadena, CA 91125, USA
| | - Alison J Inglis
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 East California Avenue, Pasadena, CA 91125, USA
| | - Joseph M Replogle
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.,Medical Scientist Training Program, University of California, San Francisco, San Francisco, CA 94158, USA.,Tetrad Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA.,Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Theodore K Esantsi
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.,Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Gayathri Muthukumar
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Kelly C L Shaffer
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 East California Avenue, Pasadena, CA 91125, USA
| | - Maxine L Wang
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.,Division of Biology and Biological Engineering, California Institute of Technology, 1200 East California Avenue, Pasadena, CA 91125, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Angela N Pogson
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.,Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Jeff J Jones
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 East California Avenue, Pasadena, CA 91125, USA
| | - Brett Lomenick
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 East California Avenue, Pasadena, CA 91125, USA
| | - Tsui-Fen Chou
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 East California Avenue, Pasadena, CA 91125, USA
| | - Jonathan S Weissman
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.,Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.,David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Rebecca M Voorhees
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 East California Avenue, Pasadena, CA 91125, USA
| |
Collapse
|
35
|
Jiang Z, Shen T, Huynh H, Fang X, Han Z, Ouyang K. Cardiolipin Regulates Mitochondrial Ultrastructure and Function in Mammalian Cells. Genes (Basel) 2022; 13:genes13101889. [PMID: 36292774 PMCID: PMC9601307 DOI: 10.3390/genes13101889] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 12/01/2022] Open
Abstract
Cardiolipin (CL) is a unique, tetra-acylated diphosphatidylglycerol lipid that mainly localizes in the inner mitochondria membrane (IMM) in mammalian cells and plays a central role in regulating mitochondrial architecture and functioning. A deficiency of CL biosynthesis and remodeling perturbs mitochondrial functioning and ultrastructure. Clinical and experimental studies on human patients and animal models have also provided compelling evidence that an abnormal CL content, acyl chain composition, localization, and level of oxidation may be directly linked to multiple diseases, including cardiomyopathy, neuronal dysfunction, immune cell defects, and metabolic disorders. The central role of CL in regulating the pathogenesis and progression of these diseases has attracted increasing attention in recent years. In this review, we focus on the advances in our understanding of the physiological roles of CL biosynthesis and remodeling from human patients and mouse models, and we provide an overview of the potential mechanism by which CL regulates the mitochondrial architecture and functioning.
Collapse
Affiliation(s)
- Zhitong Jiang
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen 518055, China
| | - Tao Shen
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen 518055, China
| | - Helen Huynh
- Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, San Diego, CA 92093, USA
| | - Xi Fang
- Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, San Diego, CA 92093, USA
| | - Zhen Han
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen 518055, China
- Correspondence: (Z.H.); (K.O.)
| | - Kunfu Ouyang
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen 518055, China
- Correspondence: (Z.H.); (K.O.)
| |
Collapse
|
36
|
Petkevicius K, Palmgren H, Glover MS, Ahnmark A, Andréasson AC, Madeyski-Bengtson K, Kawana H, Allman EL, Kaper D, Uhrbom M, Andersson L, Aasehaug L, Forsström J, Wallin S, Ahlstedt I, Leke R, Karlsson D, González-King H, Löfgren L, Nilsson R, Pellegrini G, Kono N, Aoki J, Hess S, Sienski G, Pilon M, Bohlooly-Y M, Maresca M, Peng XR. TLCD1 and TLCD2 regulate cellular phosphatidylethanolamine composition and promote the progression of non-alcoholic steatohepatitis. Nat Commun 2022; 13:6020. [PMID: 36241646 PMCID: PMC9568529 DOI: 10.1038/s41467-022-33735-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 09/29/2022] [Indexed: 11/29/2022] Open
Abstract
The fatty acid composition of phosphatidylethanolamine (PE) determines cellular metabolism, oxidative stress, and inflammation. However, our understanding of how cells regulate PE composition is limited. Here, we identify a genetic locus on mouse chromosome 11, containing two poorly characterized genes Tlcd1 and Tlcd2, that strongly influences PE composition. We generated Tlcd1/2 double-knockout (DKO) mice and found that they have reduced levels of hepatic monounsaturated fatty acid (MUFA)-containing PE species. Mechanistically, TLCD1/2 proteins act cell intrinsically to promote the incorporation of MUFAs into PEs. Furthermore, TLCD1/2 interact with the mitochondria in an evolutionarily conserved manner and regulate mitochondrial PE composition. Lastly, we demonstrate the biological relevance of our findings in dietary models of metabolic disease, where Tlcd1/2 DKO mice display attenuated development of non-alcoholic steatohepatitis compared to controls. Overall, we identify TLCD1/2 proteins as key regulators of cellular PE composition, with our findings having broad implications in understanding and treating disease. The regulation of cellular phosphatidylethanolamine (PE) acyl chain composition is poorly understood. Here, the authors show that TLCD1 and TLCD2 proteins mediate the formation of monounsaturated fatty acid-containing PE species and promote the progression of non-alcoholic steatohepatitis.
Collapse
Affiliation(s)
- Kasparas Petkevicius
- Bioscience Metabolism, Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden. .,Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden.
| | - Henrik Palmgren
- Bioscience Metabolism, Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden.,Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Matthew S Glover
- Dynamic Omics, Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Andrea Ahnmark
- Bioscience Metabolism, Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Anne-Christine Andréasson
- Bioscience Cardiovascular, Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | | | - Hiroki Kawana
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan.,Advanced Research & Development Programs for Medical Innovation (AMED-LEAP), Tokyo, Japan
| | - Erik L Allman
- Dynamic Omics, Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Delaney Kaper
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Martin Uhrbom
- Bioscience Metabolism, Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Liselotte Andersson
- Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Leif Aasehaug
- Bioscience Cardiovascular, Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Johan Forsström
- Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Simonetta Wallin
- Bioscience Metabolism, Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Ingela Ahlstedt
- Bioscience Metabolism, Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Renata Leke
- Bioscience Metabolism, Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Daniel Karlsson
- Bioscience Metabolism, Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Hernán González-King
- Bioscience Cardiovascular, Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Lars Löfgren
- Translational Science and Experimental Medicine, Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Ralf Nilsson
- Translational Science and Experimental Medicine, Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Giovanni Pellegrini
- Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Nozomu Kono
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Junken Aoki
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan.,Advanced Research & Development Programs for Medical Innovation (AMED-LEAP), Tokyo, Japan
| | - Sonja Hess
- Dynamic Omics, Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Grzegorz Sienski
- Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Marc Pilon
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | | | - Marcello Maresca
- Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Xiao-Rong Peng
- Bioscience Metabolism, Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| |
Collapse
|
37
|
Guérin A, Angebault C, Kinet S, Cazevieille C, Rojo M, Fauconnier J, Lacampagne A, Mourier A, Taylor N, de Santa Barbara P, Faure S. LIX1-mediated changes in mitochondrial metabolism control the fate of digestive mesenchyme-derived cells. Redox Biol 2022; 56:102431. [PMID: 35988446 PMCID: PMC9420520 DOI: 10.1016/j.redox.2022.102431] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/03/2022] [Indexed: 11/06/2022] Open
Abstract
YAP1 and TAZ are transcriptional co-activator proteins that play fundamental roles in many biological processes, from cell proliferation and cell lineage fate determination to tumorigenesis. We previously demonstrated that Limb Expression 1 (LIX1) regulates YAP1 and TAZ activity and controls digestive mesenchymal progenitor proliferation. However, LIX1 mode of action remains elusive. Here, we found that endogenous LIX1 is localized in mitochondria and is anchored to the outer mitochondrial membrane through S-palmitoylation of cysteine 84, a residue conserved in all LIX1 orthologs. LIX1 downregulation altered the mitochondrial ultrastructure, resulting in a significantly decreased respiration and attenuated production of mitochondrial reactive oxygen species (mtROS). Mechanistically, LIX1 knock-down impaired the stability of the mitochondrial proteins PHB2 and OPA1 that are found in complexes with mitochondrial-specific phospholipids and are required for cristae organization. Supplementation with unsaturated fatty acids counteracted the effects of LIX1 knock-down on mitochondrial morphology and ultrastructure and restored YAP1/TAZ signaling. Collectively, our data demonstrate that LIX1 is a key regulator of cristae organization, modulating mtROS level and subsequently regulating the signaling cascades that control fate commitment of digestive mesenchyme-derived cells. LIX1 is tightly anchored to the outer membrane of mitochondria. LIX1 mitochondrial localization is mediated by S-palmitoylation on cysteine 84. LIX1 knock-down reduces the stability of the mitochondrial proteins PHB2 and OPA1 and impairs cristae organization. Redox signaling modulations regulate YAP1/TAZ activity and control fate commitment of digestive mesenchyme-derived cells.
Collapse
Affiliation(s)
- Amandine Guérin
- PhyMedExp, University of Montpellier, INSERM, CNRS, Montpellier, France
| | - Claire Angebault
- PhyMedExp, University of Montpellier, INSERM, CNRS, Montpellier, France
| | - Sandrina Kinet
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - Chantal Cazevieille
- Institut de Neurosciences de Montpellier, University of Montpellier, INSERM, Montpellier, France
| | - Manuel Rojo
- Centre National de la Recherche Scientifique, Université de Bordeaux, IBGC UMR, 5095, Bordeaux, France
| | - Jérémy Fauconnier
- PhyMedExp, University of Montpellier, INSERM, CNRS, Montpellier, France
| | - Alain Lacampagne
- PhyMedExp, University of Montpellier, INSERM, CNRS, Montpellier, France
| | - Arnaud Mourier
- Centre National de la Recherche Scientifique, Université de Bordeaux, IBGC UMR, 5095, Bordeaux, France
| | - Naomi Taylor
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | | | - Sandrine Faure
- PhyMedExp, University of Montpellier, INSERM, CNRS, Montpellier, France.
| |
Collapse
|
38
|
Caudal A, Ren L, Tu C, Wu JC. Human Induced Pluripotent Stem Cells for Studying Mitochondrial Diseases in the Heart. FEBS Lett 2022; 596:1735-1745. [PMID: 35788991 DOI: 10.1002/1873-3468.14444] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/11/2022] [Accepted: 06/28/2022] [Indexed: 11/09/2022]
Abstract
Mitochondrial dysfunction is known to contribute to a range of diseases, and primary mitochondrial defects strongly impact high-energy organs such as the heart. Platforms for high-throughput and human-relevant assessment of mitochondrial diseases are currently lacking, hindering the development of targeted therapies. In the past decade, human induced pluripotent stem cells (iPSCs) have become a promising technology for drug discovery in basic and clinical research. In particular, human iPSC-derived cardiomyocytes (iPSC-CMs) offer a unique tool to study a wide range of mitochondrial functions and possess the potential to become a key translational asset for mitochondrial drug development. This review summarizes mitochondrial functions and recent therapeutic discoveries, advancements, and limitations of using iPSC-CMs to study mitochondrial diseases of the heart with an emphasis on cardiac applications.
Collapse
Affiliation(s)
- Arianne Caudal
- Stanford Cardiovascular Institute.,Institute for Stem Cell Biology and Regenerative Medicine, Stanford.,Division of Cardiology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Lu Ren
- Stanford Cardiovascular Institute.,Institute for Stem Cell Biology and Regenerative Medicine, Stanford.,Division of Cardiology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Chengyi Tu
- Stanford Cardiovascular Institute.,Institute for Stem Cell Biology and Regenerative Medicine, Stanford.,Division of Cardiology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Joseph C Wu
- Stanford Cardiovascular Institute.,Institute for Stem Cell Biology and Regenerative Medicine, Stanford.,Division of Cardiology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| |
Collapse
|
39
|
Al Tuwaijri A, Alyafee Y, Alharbi M, Ballow M, Aldrees M, Alam Q, Sleiman RA, Umair M, Alfadhel M. Novel homozygous pathogenic mitochondrial DNAJC19 variant in a patient with dilated cardiomyopathy and global developmental delay. Mol Genet Genomic Med 2022; 10:e1969. [PMID: 35611801 PMCID: PMC9356550 DOI: 10.1002/mgg3.1969] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/03/2022] [Accepted: 05/03/2022] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Dilated cardiomyopathy with ataxia syndrome (DCMA) or 3-methylglutaconic aciduria type V is a rare global autosomal recessive mitochondrial syndrome that is clinically and genetically heterogeneous. It is characterized by early-onset dilated cardiomyopathy and increased urinary excretion of 3-methylglutaconic acid. As a result, some patients die due to cardiac failure, while others manifest with growth retardation, microcytic anemia, mild ataxia, and mild muscle weakness. DCMA is caused by variants in the DnaJ heat shock protein family (Hsp40) member C19 gene (DNAJC19), which plays an important role in mitochondrial protein import machinery in the inner mitochondrial membrane. METHODS We describe a single affected family member who presented with cardiomyopathy, global developmental delay, chest infection, seizures, elevated excretion of 3-methylglutaconic acid, and 3-methylglutaric acid in the urine. RESULTS Whole-exome sequencing followed by Sanger sequencing revealed a homozygous frameshift variant in the reading frame starting at codon 54 in exon 4 in the DNAJC19 gene (c.159del [Phe54Leufs*5]), which results in a stop codon four positions downstream. Quantitative gene expression analysis revealed that DNAJC19 mRNA expression in this patient was substantially reduced compared to the control. CONCLUSIONS We present a novel variant in the DNAJC19 gene that causes rare autosomal recessive mitochondrial 3-methylglutaconic aciduria type V. By comparing the current case with previously reported ones, we conclude that the disease is extremely heterogeneous for reasons that are still unknown.
Collapse
Affiliation(s)
- Abeer Al Tuwaijri
- Medical Genomics Research Department, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, King AbdulAziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Kingdom of Saudi Arabia
| | - Yusra Alyafee
- Medical Genomics Research Department, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, King AbdulAziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Kingdom of Saudi Arabia
| | - Mashael Alharbi
- Medical Genomics Research Department, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, King AbdulAziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Kingdom of Saudi Arabia
| | - Maryam Ballow
- Medical Genomics Research Department, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, King AbdulAziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Kingdom of Saudi Arabia
| | - Mohammed Aldrees
- Medical Genomics Research Department, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, King AbdulAziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Kingdom of Saudi Arabia
| | - Qamre Alam
- Medical Genomics Research Department, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, King AbdulAziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Kingdom of Saudi Arabia
| | - Rola A Sleiman
- Dr. Sulaiman Al-Habib Group, Al-Rayan Hospital, Riyadh, Saudi Arabia
| | - Muhammad Umair
- Medical Genomics Research Department, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, King AbdulAziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Kingdom of Saudi Arabia
| | - Majid Alfadhel
- Medical Genomics Research Department, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, King AbdulAziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Kingdom of Saudi Arabia.,Genetics and Precision Medicine Department (GPM), King Abdullah Specialized Children's Hospital, King Saud Bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Ministry of National Guard Health Affairs (MNG-HA), Riyadh, Saudi Arabia
| |
Collapse
|
40
|
da Rosa-Junior NT, Parmeggiani B, Glänzel NM, de Moura Alvorcem L, Brondani M, Britto R, Grings M, Ortiz VD, Turck P, da Rosa Araujo AS, Wajner M, Leipnitz G. Antioxidant system disturbances and mitochondrial dysfunction induced by 3-methyglutaric acid in rat heart are prevented by bezafibrate. Eur J Pharmacol 2022; 924:174950. [DOI: 10.1016/j.ejphar.2022.174950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 03/25/2022] [Accepted: 04/05/2022] [Indexed: 11/30/2022]
|
41
|
CARD19 Interacts with Mitochondrial Contact Site and Cristae Organizing System Constituent Proteins and Regulates Cristae Morphology. Cells 2022; 11:cells11071175. [PMID: 35406738 PMCID: PMC8997538 DOI: 10.3390/cells11071175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 01/25/2023] Open
Abstract
CARD19 is a mitochondrial protein of unknown function. While CARD19 was originally reported to regulate TCR-dependent NF-κB activation via interaction with BCL10, this function is not recapitulated ex vivo in primary murine CD8+ T cells. Here, we employ a combination of SIM, TEM, and confocal microscopy, along with proteinase K protection assays and proteomics approaches, to identify interacting partners of CARD19 in macrophages. Our data show that CARD19 is specifically localized to the outer mitochondrial membrane. Through deletion of functional domains, we demonstrate that both the distal C-terminus and transmembrane domain are required for mitochondrial targeting, whereas the CARD is not. Importantly, mass spectrometry analysis of 3×Myc-CARD19 immunoprecipitates reveals that CARD19 interacts with the components of the mitochondrial intermembrane bridge (MIB), consisting of mitochondrial contact site and cristae organizing system (MICOS) components MIC19, MIC25, and MIC60, and MICOS-interacting proteins SAMM50 and MTX2. These CARD19 interactions are in part dependent on a properly folded CARD. Consistent with previously reported phenotypes upon siRNA silencing of MICOS subunits, absence of CARD19 correlates with irregular cristae morphology. Based on these data, we propose that CARD19 is a previously unknown interacting partner of the MIB and the MIC19–MIC25–MIC60 MICOS subcomplex that regulates cristae morphology.
Collapse
|
42
|
Wachoski-Dark E, Zhao T, Khan A, Shutt TE, Greenway SC. Mitochondrial Protein Homeostasis and Cardiomyopathy. Int J Mol Sci 2022; 23:3353. [PMID: 35328774 PMCID: PMC8953902 DOI: 10.3390/ijms23063353] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/15/2022] [Accepted: 03/17/2022] [Indexed: 12/06/2022] Open
Abstract
Human mitochondrial disorders impact tissues with high energetic demands and can be associated with cardiac muscle disease (cardiomyopathy) and early mortality. However, the mechanistic link between mitochondrial disease and the development of cardiomyopathy is frequently unclear. In addition, there is often marked phenotypic heterogeneity between patients, even between those with the same genetic variant, which is also not well understood. Several of the mitochondrial cardiomyopathies are related to defects in the maintenance of mitochondrial protein homeostasis, or proteostasis. This essential process involves the importing, sorting, folding and degradation of preproteins into fully functional mature structures inside mitochondria. Disrupted mitochondrial proteostasis interferes with mitochondrial energetics and ATP production, which can directly impact cardiac function. An inability to maintain proteostasis can result in mitochondrial dysfunction and subsequent mitophagy or even apoptosis. We review the known mitochondrial diseases that have been associated with cardiomyopathy and which arise from mutations in genes that are important for mitochondrial proteostasis. Genes discussed include DnaJ heat shock protein family member C19 (DNAJC19), mitochondrial import inner membrane translocase subunit TIM16 (MAGMAS), translocase of the inner mitochondrial membrane 50 (TIMM50), mitochondrial intermediate peptidase (MIPEP), X-prolyl-aminopeptidase 3 (XPNPEP3), HtraA serine peptidase 2 (HTRA2), caseinolytic mitochondrial peptidase chaperone subunit B (CLPB) and heat shock 60-kD protein 1 (HSPD1). The identification and description of disorders with a shared mechanism of disease may provide further insights into the disease process and assist with the identification of potential therapeutics.
Collapse
Affiliation(s)
- Emily Wachoski-Dark
- Department of Cardiac Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada;
- Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Tian Zhao
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada;
| | - Aneal Khan
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada;
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
- M.A.G.I.C. Inc., Calgary, AB T2E 7Z4, Canada
| | - Timothy E. Shutt
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada;
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Steven C. Greenway
- Department of Cardiac Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada;
- Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada;
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada;
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| |
Collapse
|
43
|
Machiraju P, Degtiarev V, Patel D, Hazari H, Lowry RB, Bedard T, Sinasac D, Brundler MA, Greenway SC, Khan A. Phenotype and pathology of the dilated cardiomyopathy with ataxia syndrome in children. J Inherit Metab Dis 2022; 45:366-376. [PMID: 34580891 DOI: 10.1002/jimd.12441] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/26/2021] [Accepted: 09/27/2021] [Indexed: 11/06/2022]
Abstract
The dilated cardiomyopathy with ataxia syndrome (DCMA) is an autosomal recessive mitochondrial disease caused by mutations in the DnaJ heat shock protein family (Hsp40) member C19 (DNAJC19) gene. DCMA or 3-methylglutaconic aciduria type V is globally rare, but the largest number of patients in the world is found in the Hutterite population of southern Alberta in Canada. We provide an update on phenotypic findings, natural history, pathological findings, and our clinical experience. We analyzed all available records for 43 patients diagnosed with DCMA between 2005 and 2015 at the Alberta Children's Hospital. All patients studied were Hutterite and homozygous for the causative DNAJC19 variant (c.130-1G>C, IVS3-1G>C) and had elevated levels of 3-methyglutaconic acid. We calculated a birth prevalence of 1.54 cases per 1000 total births in the Hutterite community. Children were small for gestational age at birth and frequently required supplemental nutrition (63%) or surgical placement of a gastrostomy tube (35%). Early mortality in this cohort was high (40%) at a median age of 13 months (range 4-294 months). Congenital anomalies were common as was dilated cardiomyopathy (50%), QT interval prolongation (83%), and developmental delay (95%). Tissue pathology was analyzed in a limited number of patients and demonstrated subendocardial fibrosis in the heart, macrovesicular steatosis and fibrosis in the liver, and structural abnormalities in mitochondria. This report provides clinical details for a cohort of children with DCMA and the first presentation of tissue pathology for this disorder. Despite sharing common genetic etiology and environment, the disease is highly heterogeneous for reasons that are not understood. DCMA is a clinically heterogeneous systemic mitochondrial disease with significant morbidity and mortality that is common in the Hutterite population of southern Alberta.
Collapse
Affiliation(s)
- Pranav Machiraju
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Cardiac Sciences and Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Vlad Degtiarev
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Cardiac Sciences and Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Dhwani Patel
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Hassan Hazari
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - R Brian Lowry
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Alberta Congenital Anomalies Surveillance System, Calgary, Alberta, Canada
| | - Tanya Bedard
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Alberta Congenital Anomalies Surveillance System, Calgary, Alberta, Canada
| | - David Sinasac
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Alberta Precision Laboratories, Calgary, Alberta, Canada
| | - Marie-Anne Brundler
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Alberta Precision Laboratories, Calgary, Alberta, Canada
- Department of Pathology & Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Steven C Greenway
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Cardiac Sciences and Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Aneal Khan
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Metabolics and Genetics in Calgary (M.A.G.I.C.) Clinic Ltd., Calgary, Alberta, Canada
| |
Collapse
|
44
|
Qualitative and Quantitative Effects of Fatty Acids Involved in Heart Diseases. Metabolites 2022; 12:metabo12030210. [PMID: 35323653 PMCID: PMC8950543 DOI: 10.3390/metabo12030210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 12/13/2022] Open
Abstract
Fatty acids (FAs) have structural and functional diversity. FAs in the heart are closely associated with cardiac function, and their qualitative or quantitative abnormalities lead to the onset and progression of cardiac disease. FAs are important as an energy substrate for the heart, but when in excess, they exhibit cardio-lipotoxicity that causes cardiac dysfunction or heart failure with preserved ejection fraction. FAs also play a role as part of phospholipids that compose cell membranes, and the changes in mitochondrial phospholipid cardiolipin and the FA composition of plasma membrane phospholipids affect cardiomyocyte survival. In addition, FA metabolites exert a wide variety of bioactivities in the heart as lipid mediators. Recent advances in measurement using mass spectrometry have identified trace amounts of n-3 polyunsaturated fatty acids (PUFAs)-derived bioactive metabolites associated with heart disease. n-3 PUFAs have a variety of cardioprotective effects and have been shown in clinical trials to be effective in cardiovascular diseases, including heart failure. This review outlines the contributions of FAs to cardiac function and pathogenesis of heart diseases from the perspective of three major roles and proposes therapeutic applications and new medical perspectives of FAs represented by n-3 PUFAs.
Collapse
|
45
|
Dudek J, Maack C. Mechano-energetic aspects of Barth syndrome. J Inherit Metab Dis 2022; 45:82-98. [PMID: 34423473 DOI: 10.1002/jimd.12427] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/28/2021] [Accepted: 08/19/2021] [Indexed: 12/22/2022]
Abstract
Energy-demanding organs like the heart are strongly dependent on oxidative phosphorylation in mitochondria. Oxidative phosphorylation is governed by the respiratory chain located in the inner mitochondrial membrane. The inner mitochondrial membrane is the only cellular membrane with significant amounts of the phospholipid cardiolipin, and cardiolipin was found to directly interact with a number of essential protein complexes, including respiratory chain complexes I to V. An inherited defect in the biogenesis of cardiolipin causes Barth syndrome, which is associated with cardiomyopathy, skeletal myopathy, neutropenia and growth retardation. Energy conversion is dependent on reducing equivalents, which are replenished by oxidative metabolism in the Krebs cycle. Cardiolipin deficiency in Barth syndrome also affects Krebs cycle activity, metabolite transport and mitochondrial morphology. During excitation-contraction coupling, calcium (Ca2+ ) released from the sarcoplasmic reticulum drives sarcomeric contraction. At the same time, Ca2+ influx into mitochondria drives the activation of Krebs cycle dehydrogenases and the regeneration of reducing equivalents. Reducing equivalents are essential not only for energy conversion, but also for maintaining a redox buffer, which is required to detoxify reactive oxygen species (ROS). Defects in CL may also affect Ca2+ uptake into mitochondria and thereby hamper energy supply and demand matching, but also detoxification of ROS. Here, we review the impact of cardiolipin deficiency on mitochondrial function in Barth syndrome and discuss potential therapeutic strategies.
Collapse
Affiliation(s)
- Jan Dudek
- Comprehensive Heart Failure Center (CHFC), University Clinic Würzburg, Würzburg, Germany
| | - Christoph Maack
- Comprehensive Heart Failure Center (CHFC), University Clinic Würzburg, Würzburg, Germany
| |
Collapse
|
46
|
Morgenstern M, Peikert CD, Lübbert P, Suppanz I, Klemm C, Alka O, Steiert C, Naumenko N, Schendzielorz A, Melchionda L, Mühlhäuser WWD, Knapp B, Busch JD, Stiller SB, Dannenmaier S, Lindau C, Licheva M, Eickhorst C, Galbusera R, Zerbes RM, Ryan MT, Kraft C, Kozjak-Pavlovic V, Drepper F, Dennerlein S, Oeljeklaus S, Pfanner N, Wiedemann N, Warscheid B. Quantitative high-confidence human mitochondrial proteome and its dynamics in cellular context. Cell Metab 2021; 33:2464-2483.e18. [PMID: 34800366 PMCID: PMC8664129 DOI: 10.1016/j.cmet.2021.11.001] [Citation(s) in RCA: 166] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 09/01/2021] [Accepted: 11/01/2021] [Indexed: 12/18/2022]
Abstract
Mitochondria are key organelles for cellular energetics, metabolism, signaling, and quality control and have been linked to various diseases. Different views exist on the composition of the human mitochondrial proteome. We classified >8,000 proteins in mitochondrial preparations of human cells and defined a mitochondrial high-confidence proteome of >1,100 proteins (MitoCoP). We identified interactors of translocases, respiratory chain, and ATP synthase assembly factors. The abundance of MitoCoP proteins covers six orders of magnitude and amounts to 7% of the cellular proteome with the chaperones HSP60-HSP10 being the most abundant mitochondrial proteins. MitoCoP dynamics spans three orders of magnitudes, with half-lives from hours to months, and suggests a rapid regulation of biosynthesis and assembly processes. 460 MitoCoP genes are linked to human diseases with a strong prevalence for the central nervous system and metabolism. MitoCoP will provide a high-confidence resource for placing dynamics, functions, and dysfunctions of mitochondria into the cellular context.
Collapse
Affiliation(s)
- Marcel Morgenstern
- Institute of Biology II, Biochemistry and Functional Proteomics, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Christian D Peikert
- Institute of Biology II, Biochemistry and Functional Proteomics, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Philipp Lübbert
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Ida Suppanz
- Institute of Biology II, Biochemistry and Functional Proteomics, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Cinzia Klemm
- Institute of Biology II, Biochemistry and Functional Proteomics, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Oliver Alka
- Institute of Biology II, Biochemistry and Functional Proteomics, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Conny Steiert
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Nataliia Naumenko
- Department of Cellular Biochemistry, University Medical Center Göttingen, 37073 Göttingen, Germany
| | - Alexander Schendzielorz
- Institute of Biology II, Biochemistry and Functional Proteomics, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Laura Melchionda
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Wignand W D Mühlhäuser
- Institute of Biology II, Biochemistry and Functional Proteomics, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Bettina Knapp
- Institute of Biology II, Biochemistry and Functional Proteomics, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Jakob D Busch
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Sebastian B Stiller
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Stefan Dannenmaier
- Institute of Biology II, Biochemistry and Functional Proteomics, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Caroline Lindau
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Mariya Licheva
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Christopher Eickhorst
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany; Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
| | - Riccardo Galbusera
- Neurologic Clinic and Policlinic, Departments of Medicine, Clinical Research and Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Ralf M Zerbes
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Michael T Ryan
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, 3800 Melbourne, VIC, Australia
| | - Claudine Kraft
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Vera Kozjak-Pavlovic
- Department of Microbiology, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | - Friedel Drepper
- Institute of Biology II, Biochemistry and Functional Proteomics, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Sven Dennerlein
- Department of Cellular Biochemistry, University Medical Center Göttingen, 37073 Göttingen, Germany
| | - Silke Oeljeklaus
- Institute of Biology II, Biochemistry and Functional Proteomics, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Nikolaus Pfanner
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Nils Wiedemann
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany.
| | - Bettina Warscheid
- Institute of Biology II, Biochemistry and Functional Proteomics, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany; CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany.
| |
Collapse
|
47
|
Fox CA, Lethcoe K, Ryan RO. Calcium-induced release of cytochrome c from cardiolipin nanodisks: Implications for apoptosis. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2021; 1863:183722. [PMID: 34400138 PMCID: PMC8464532 DOI: 10.1016/j.bbamem.2021.183722] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/19/2021] [Accepted: 07/29/2021] [Indexed: 06/13/2023]
Abstract
Miniature bilayer membranes comprised of phospholipid and an apolipoprotein scaffold, termed nanodisks (ND), have been used in binding studies. When ND formulated with cardiolipin (CL), but not phosphatidylcholine, were incubated with cytochrome c, FPLC gel filtration chromatography provided evidence of a stable binding interaction. Incubation of CL ND with CaCl2 resulted in a concentration-dependent increase in sample turbidity caused by ND particle disruption. Prior incubation of CL ND with cytochrome c increased CL ND sensitivity to CaCl2-induced effects. Centrifugation of CaCl2-treated CL ND samples yielded pellet and supernatant fractions. Whereas the ND scaffold protein, apolipophorin III, was recovered in the pellet fraction along with CL, the majority of the cytochrome c pool was in the supernatant fraction. Moreover, when cytochrome c CL ND were incubated with CaCl2 at concentrations below the threshold to induce ND particle disruption, FPLC analysis showed that cytochrome c was released. Pre-incubation of CL ND with CaCl2 under conditions that do not disrupt ND particle integrity prevented cytochrome c binding to CL ND. Thus, competition between Ca2+ and cytochrome c for a common binding site on CL modulates cytochrome c binding and likely plays a role in its dissociation from CL-rich cristae membranes in response to apoptotic stimuli.
Collapse
Affiliation(s)
- Colin A Fox
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Reno, NV 89557, United States of America
| | - Kyle Lethcoe
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Reno, NV 89557, United States of America
| | - Robert O Ryan
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Reno, NV 89557, United States of America.
| |
Collapse
|
48
|
Guerrero‐Castillo S, van Strien J, Brandt U, Arnold S. Ablation of mitochondrial DNA results in widespread remodeling of the mitochondrial complexome. EMBO J 2021; 40:e108648. [PMID: 34542926 PMCID: PMC8561636 DOI: 10.15252/embj.2021108648] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 08/26/2021] [Accepted: 09/01/2021] [Indexed: 11/16/2022] Open
Abstract
So-called ρ0 cells lack mitochondrial DNA and are therefore incapable of aerobic ATP synthesis. How cells adapt to survive ablation of oxidative phosphorylation remains poorly understood. Complexome profiling analysis of ρ0 cells covered 1,002 mitochondrial proteins and revealed changes in abundance and organization of numerous multiprotein complexes including previously not described assemblies. Beyond multiple subassemblies of complexes that would normally contain components encoded by mitochondrial DNA, we observed widespread reorganization of the complexome. This included distinct changes in the expression pattern of adenine nucleotide carrier isoforms, other mitochondrial transporters, and components of the protein import machinery. Remarkably, ablation of mitochondrial DNA hardly affected the complexes organizing cristae junctions indicating that the altered cristae morphology in ρ0 mitochondria predominantly resulted from the loss of complex V dimers required to impose narrow curvatures to the inner membrane. Our data provide a comprehensive resource for in-depth analysis of remodeling of the mitochondrial complexome in response to respiratory deficiency.
Collapse
Affiliation(s)
- Sergio Guerrero‐Castillo
- Radboud Institute for Molecular Life SciencesRadboud University Medical CenterNijmegenThe Netherlands
- University Children's Research@Kinder‐UKEUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Joeri van Strien
- Radboud Institute for Molecular Life SciencesRadboud University Medical CenterNijmegenThe Netherlands
- Center for Molecular and Biomolecular InformaticsRadboud University Medical CenterNijmegenThe Netherlands
| | - Ulrich Brandt
- Radboud Institute for Molecular Life SciencesRadboud University Medical CenterNijmegenThe Netherlands
- Cologne Excellence Cluster on Cellular Stress Responses in Aging‐Associated Diseases (CECAD)University of CologneCologneGermany
| | - Susanne Arnold
- Radboud Institute for Molecular Life SciencesRadboud University Medical CenterNijmegenThe Netherlands
- Cologne Excellence Cluster on Cellular Stress Responses in Aging‐Associated Diseases (CECAD)University of CologneCologneGermany
| |
Collapse
|
49
|
Houston R, Sekine Y, Larsen MB, Murakami K, Mullett SJ, Wendell SG, Narendra DP, Chen BB, Sekine S. Discovery of bactericides as an acute mitochondrial membrane damage inducer. Mol Biol Cell 2021; 32:ar32. [PMID: 34495738 PMCID: PMC8693957 DOI: 10.1091/mbc.e21-04-0191] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 08/02/2021] [Accepted: 08/30/2021] [Indexed: 11/23/2022] Open
Abstract
Mitochondria evolved from endosymbiotic bacteria to become essential organelles of eukaryotic cells. The unique lipid composition and structure of mitochondrial membranes are critical for the proper functioning of mitochondria. However, stress responses that help maintain the mitochondrial membrane integrity are not well understood. One reason for this lack of insight is the absence of efficient tools to specifically damage mitochondrial membranes. Here, through a compound screen, we found that two bis-biguanide compounds, chlorhexidine and alexidine, modified the activity of the inner mitochondrial membrane (IMM)-resident protease OMA1 by altering the integrity of the IMM. These compounds are well-known bactericides whose mechanism of action has centered on their damage-inducing activity on bacterial membranes. We found alexidine binds to the IMM likely through the electrostatic interaction driven by the membrane potential as well as an affinity for anionic phospholipids. Electron microscopic analysis revealed that alexidine severely perturbated the cristae structure. Notably, alexidine evoked a specific transcriptional/proteostasis signature that was not induced by other typical mitochondrial stressors, highlighting the unique property of alexidine as a novel mitochondrial membrane stressor. Our findings provide a chemical-biological tool that should enable the delineation of mitochondrial stress-signaling pathways required to maintain the mitochondrial membrane homeostasis.
Collapse
Affiliation(s)
- Ryan Houston
- Aging Institute, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15219
| | - Yusuke Sekine
- Aging Institute, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15219
- Division of Endocrinology and Metabolism, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15219
| | - Mads B Larsen
- Aging Institute, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15219
| | - Kei Murakami
- Department of Chemistry, School of Science, Kwansei Gakuin University, Sanda, Hyogo, Japan
| | - Steven J. Mullett
- Department of Pharmacology and Chemical Biology, the Health Sciences Metabolomics and Lipidomics Core, University of Pittsburgh, Pittsburgh, PA 15261
| | - Stacy G. Wendell
- Department of Pharmacology and Chemical Biology, the Health Sciences Metabolomics and Lipidomics Core, University of Pittsburgh, Pittsburgh, PA 15261
| | - Derek P. Narendra
- Inherited Movement Disorders Unit, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Bill B. Chen
- Aging Institute, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15219
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213
- Vascular Medicine Institute, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261
| | - Shiori Sekine
- Aging Institute, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15219
- Division of Cardiology, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261
| |
Collapse
|
50
|
Jones DE, Klacking E, Ryan RO. Inborn errors of metabolism associated with 3-methylglutaconic aciduria. Clin Chim Acta 2021; 522:96-104. [PMID: 34411555 PMCID: PMC8464523 DOI: 10.1016/j.cca.2021.08.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/11/2021] [Accepted: 08/13/2021] [Indexed: 11/22/2022]
Abstract
A growing number of inborn errors of metabolism (IEM) associated with compromised mitochondrial energy metabolism manifest an unusual phenotypic feature: 3-methylglutaconic (3MGC) aciduria. Two major categories of 3MGC aciduria, primary and secondary, have been described. In primary 3MGC aciduria, IEMs in 3MGC CoA hydratase (AUH) or HMG CoA lyase block leucine catabolism, resulting in a buildup of pathway intermediates, including 3MGC CoA. Subsequent thioester hydrolysis yields 3MGC acid, which is excreted in urine. In secondary 3MGC aciduria, no deficiencies in leucine catabolism enzymes exist and 3MGC CoA is formed de novo from acetyl CoA. In the "acetyl CoA diversion pathway", when IEMs directly, or indirectly, interfere with TCA cycle activity, acetyl CoA accumulates in the matrix space. This leads to condensation of two acetyl CoA to form acetoacetyl CoA, followed by another condensation between acetyl CoA and acetoacetyl CoA to form 3-hydroxy, 3-methylglutaryl (HMG) CoA. Once formed, HMG CoA serves as a substrate for AUH, producing trans-3MGC CoA. Non enzymatic isomerization of trans-3MGC CoA to cis-3MGC CoA precedes intramolecular cyclization to cis-3MGC anhydride plus CoA. Subsequent hydrolysis of cis-3MGC anhydride gives rise to cis-3MGC acid, which is excreted in urine. In reviewing 20 discrete IEMs that manifest secondary 3MGC aciduria, evidence supporting the acetyl CoA diversion pathway was obtained. This biochemical pathway serves as an "overflow valve" in muscle / brain tissue to redirect acetyl CoA to 3MGC CoA when entry to the TCA cycle is impeded.
Collapse
Affiliation(s)
- Dylan E Jones
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Reno, NV 89557, United States
| | - Emma Klacking
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Reno, NV 89557, United States
| | - Robert O Ryan
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Reno, NV 89557, United States.
| |
Collapse
|