1
|
Ma J, Lin H, Wang Y, Zhang Y, Zhou C, Tang D, Kagawa Y, Hou D, Jiang G. The unique role of cuproptosis in the prognosis and treatment of rectum adenocarcinoma. J Gastrointest Oncol 2025; 16:367-385. [PMID: 40386594 PMCID: PMC12078815 DOI: 10.21037/jgo-2025-105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Accepted: 03/21/2025] [Indexed: 05/20/2025] Open
Abstract
Background The incidence of digestive system cancers has increased significantly in recent years. Among these, rectum adenocarcinoma (READ), which exhibits distinct features compared to colon adenocarcinoma, has emerged as a unique subtype. Cuproptosis, a recently identified form of non-apoptotic programmed cell death, plays a pivotal role in tumorigenesis; however, its relationship with READ and its potential effect on prognosis remains poorly understood. This study innovatively explores the role of cuproptosis related genes (CRGs) in READ development and identifies potential therapeutic targets. Methods This study used consensus clustering to classify READ samples into three distinct clusters based on their survival status and enriched biological pathways. A cuproptosis-related score (CRS) was developed to examine the association between cuproptosis subtypes and patient prognosis. Immune infiltration was analyzed using multiple deconvolution algorithms to explore the immune landscape across different cuproptosis subtypes. A principal component analysis (PCA) was conducted to construct a prognostic score that reflects the clinical significance of cuproptosis in READ. Further investigations focused on lipoic acid synthetase (LIAS) as a key gene with prognostic implications for READ patients. Results Consensus clustering of the READ samples revealed three clusters with varying survival outcomes and distinct biological pathways. The CRS successfully predicted patient prognosis, and was found to be correlated with overall survival (OS) and tumor characteristics. The immune infiltration analysis revealed significant differences in immune profiles across the subtypes, with certain subtypes exhibiting immunosuppressive characteristics. LIAS was identified as a favorable prognostic marker for READ patients, and thus could serve as a potential therapeutic target. Conclusions CRGs play a critical role in the development and prognosis of READ. The established CRS could serve as a valuable tool for predicting patient outcomes. Further, LIAS emerged as a potential therapeutic target. Our findings may provide new avenues for targeted cancer treatment in READ.
Collapse
Affiliation(s)
- Jun Ma
- Department of Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Department of General Surgery, Anqing Municipal Hospital, Anqing, China
| | - Huangwei Lin
- Department of Surgery, First Hospital of Quanzhou Affiliated to Fujian Medical University, Quanzhou, China
| | - Ying Wang
- Department of General Surgery, Affiliated Hospital of Yangzhou University, Yangzhou, China
| | - Yaming Zhang
- Department of General Surgery, Anqing Municipal Hospital, Anqing, China
| | - Chaoping Zhou
- Department of General Surgery, Anqing Municipal Hospital, Anqing, China
| | - Daibin Tang
- Department of General Surgery, Anqing Municipal Hospital, Anqing, China
| | - Yoshinori Kagawa
- Department of Gastroenterological Surgery, Osaka International Cancer Institute, Osaka, Japan
| | - Daorong Hou
- Key Laboratory of Model Animal Research, Animal Core Facility of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Guoqin Jiang
- Department of Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
2
|
Gozdecka M, Dudek M, Wen S, Gu M, Stopforth RJ, Rak J, Damaskou A, Grice GL, McLoughlin MA, Bond L, Wilson R, Giotopoulos G, Shanmugiah VM, Bakar RB, Yankova E, Cooper JL, Narayan N, Horton SJ, Asby R, Pask DC, Mupo A, Duddy G, Marando L, Georgomanolis T, Carter P, Ramesh AP, Dunn WG, Barcena C, Gallipoli P, Yusa K, Petrovski S, Wright P, Quiros PM, Frezza C, Nathan JA, Kaser A, Kar S, Tzelepis K, Mitchell J, Fabre MA, Huntly BJP, Vassiliou GS. Mitochondrial metabolism sustains DNMT3A-R882-mutant clonal haematopoiesis. Nature 2025:10.1038/s41586-025-08980-6. [PMID: 40239706 DOI: 10.1038/s41586-025-08980-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 04/04/2025] [Indexed: 04/18/2025]
Abstract
Somatic DNMT3A-R882 codon mutations drive the most common form of clonal haematopoiesis (CH) and are associated with increased acute myeloid leukaemia (AML) risk1,2. Preventing expansion of DNMT3A-R882-mutant haematopoietic stem/progenitor cells (HSPCs) may therefore avert progression to AML. To identify DNMT3A-R882-mutant-specific vulnerabilities, we conducted a genome-wide CRISPR screen on primary mouse Dnmt3aR882H/+ HSPCs. Among the 640 vulnerability genes identified, many were involved in mitochondrial metabolism, and metabolic flux analysis confirmed enhanced oxidative phosphorylation use in Dnmt3aR882H/+ versus Dnmt3a+/+ (WT) HSPCs. We selected citrate/malate transporter Slc25a1 and complex I component Ndufb11, for which pharmacological inhibitors are available, for downstream studies. In vivo administration of SLC25A1 inhibitor CTPI2 and complex I inhibitors IACS-010759 and metformin suppressed post-transplantation clonal expansion of Dnmt3aR882H/+, but not WT, long-term haematopoietic stem cells. The effect of metformin was recapitulated using a primary human DNMT3A-R882 CH sample. Notably, analysis of 412,234 UK Biobank participants showed that individuals taking metformin had a markedly lower prevalence of DNMT3A-R882-mutant CH, after controlling for potential confounders including glycated haemoglobin, diabetes and body mass index. Collectively, our data propose modulation of mitochondrial metabolism as a therapeutic strategy for prevention of DNMT3A-R882-mutant AML.
Collapse
Affiliation(s)
- Malgorzata Gozdecka
- Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK.
- Department of Haematology, University of Cambridge, Cambridge, UK.
| | - Monika Dudek
- Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Sean Wen
- Department of Haematology, University of Cambridge, Cambridge, UK
- Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals Research and Development, AstraZeneca, Cambridge, UK
| | - Muxin Gu
- Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Richard J Stopforth
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
| | - Justyna Rak
- Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Aristi Damaskou
- Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Guinevere L Grice
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
| | - Matthew A McLoughlin
- Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Laura Bond
- Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Rachael Wilson
- Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - George Giotopoulos
- Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Vijaya Mahalingam Shanmugiah
- Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Rula Bany Bakar
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
| | - Eliza Yankova
- Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
- Milner Therapeutics Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
| | - Jonathan L Cooper
- Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Nisha Narayan
- Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Sarah J Horton
- Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Ryan Asby
- Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Dean C Pask
- Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | | | | | - Ludovica Marando
- Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Theodoros Georgomanolis
- Cluster of Excellence Cellular Stress Responses in Aging-associated Diseases (CECAD), University Hospital Cologne, Cologne, Germany
| | - Paul Carter
- Section of Cardiovascular Medicine, The Victor Phillip Dahdalleh Heart and Lung Research Institute, The University of Cambridge, Papworth Road, Cambridge Biomedical Campus, Cambridge, UK
| | - Amirtha Priya Ramesh
- Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - William G Dunn
- Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Clea Barcena
- Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo, Oviedo, Spain
| | - Paolo Gallipoli
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Kosuke Yusa
- Stem Cell Genetics, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Slavé Petrovski
- Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals Research and Development, AstraZeneca, Cambridge, UK
| | - Penny Wright
- Department of Anatomic Pathology, Canterbury Health Laboratories, Christchurch, New Zealand
| | - Pedro M Quiros
- Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo, Oviedo, Spain
| | - Christian Frezza
- Cluster of Excellence Cellular Stress Responses in Aging-associated Diseases (CECAD), University Hospital Cologne, Cologne, Germany
- Institute of Genetics, Faculty of Mathematics and Natural Sciences, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - James A Nathan
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
| | - Arthur Kaser
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - Siddhartha Kar
- Early Cancer Institute, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Konstantinos Tzelepis
- Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
- Milner Therapeutics Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
| | - Jonathan Mitchell
- Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals Research and Development, AstraZeneca, Cambridge, UK
| | - Margarete A Fabre
- Department of Haematology, University of Cambridge, Cambridge, UK
- Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals Research and Development, AstraZeneca, Cambridge, UK
- Department of Haematology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Brian J P Huntly
- Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK.
- Department of Haematology, University of Cambridge, Cambridge, UK.
- Department of Haematology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK.
| | - George S Vassiliou
- Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK.
- Department of Haematology, University of Cambridge, Cambridge, UK.
- Department of Haematology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK.
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK.
| |
Collapse
|
3
|
Habibi M, Ferguson D, Eichler SJ, Chan MM, Fu C, Pietka TA, Bredemeyer AL, LaPoint A, Shew TM, He M, Liss KHH, Lutkewitte AJ, Cho K, Schilling JD, Patti GJ, Finck BN. A Critical Role for the Mitochondrial Pyruvate Carrier in Hepatic Stellate Cell Activation. Cell Mol Gastroenterol Hepatol 2025:101517. [PMID: 40239806 DOI: 10.1016/j.jcmgh.2025.101517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 04/04/2025] [Accepted: 04/08/2025] [Indexed: 04/18/2025]
Abstract
BACKGROUND & AIMS Hepatic stellate cells (HSCs) are non-parenchymal cells of the liver that produce the extracellular matrix that forms fibrotic lesions in chronic liver disease, including metabolic dysfunction-associated steatohepatitis (MASH). The mitochondrial pyruvate carrier (MPC) catalyzes the transport of pyruvate from the cytosol into the mitochondrial matrix, which is a critical step in pyruvate metabolism. An MPC inhibitor has shown promise as a novel therapeutic for MASH and HSC activation, but a mechanistic understanding of the direct effects of MPC inhibition on HSC activation is lacking. METHODS Stable lines of LX2 cells expressing short hairpin RNA against MPC2 were established and examined in a series of studies to assess HSC metabolism and activation. Mice with conditional, HSC-specific MPC2 deletion were generated and their phenotypes assessed in the context of diets that cause hepatic steatosis, injury, and early-stage fibrosis. RESULTS Genetic suppression of MPC activity markedly decreased expression of markers of HSC activation in vitro. MPC knockdown reduced the abundance of several intermediates of the tricarboxylic acid cycle and attenuated HSC activation by suppressing hypoxia inducible factor-1α signaling. Supplementing alpha-ketoglutarate to replenish the tricarboxylic acid cycle intermediates was sufficient to overcome the effects of MPC inhibition on hypoxia inducible factor-1α and HSC activation. On high-fat diets, mice with HSC-specific MPC deletion exhibited reduced circulating transaminases, numbers of HSCs, and hepatic expression of markers of HSC activation and inflammation compared with wild-type mice. CONCLUSIONS These data suggest that MPC inhibition modulates HSC metabolism to attenuate activation and illuminate mechanisms by which MPC inhibitors could prove therapeutically beneficial for treating MASH.
Collapse
Affiliation(s)
- Mohammad Habibi
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Daniel Ferguson
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Sophie J Eichler
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Mandy M Chan
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri; Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri
| | - Christina Fu
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri; Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri
| | - Terri A Pietka
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Andrea L Bredemeyer
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Andrew LaPoint
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Trevor M Shew
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Mai He
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri
| | - Kim H H Liss
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri; (4)Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Andrew J Lutkewitte
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Kevin Cho
- Department of Chemistry, Washington University, St. Louis, Missouri
| | - Joel D Schilling
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri; Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri
| | - Gary J Patti
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri; Department of Chemistry, Washington University, St. Louis, Missouri
| | - Brian N Finck
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri.
| |
Collapse
|
4
|
Spiller PF, Morgan HJN, Navegantes LCC, Machado BH, da Silva MP, Moraes DJA. Short-term sustained hypoxia distinctly affects subpopulations of carotid body glomus cells from rats. Am J Physiol Cell Physiol 2025; 328:C1346-C1365. [PMID: 40094217 DOI: 10.1152/ajpcell.00967.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 12/30/2024] [Accepted: 03/06/2025] [Indexed: 03/19/2025]
Abstract
The main O2 arterial chemoreceptors are the carotid bodies (CBs), which mediate hyperventilation in response to short-term sustained hypoxia (SH). CBs contain glomus cells expressing K+ channels, which are inhibited by hypoxia, leading to neurotransmitter release. ATP released by CBs and type II cells has been considered essential for chemosensory processing under physiological and pathophysiological conditions. Although the systemic effects of chronic activation of CBs by SH are well known, the early (first 24 h) cellular and molecular mechanisms in CBs as well as the effects of short-term SH on populations of glomus cells are still poorly understood. Here, we show that SH (10% O2 for 24 h) depolarizes the membrane potential of one population of glomus cells, mediated by increases in inward current, but does not affect the ATP release by CBs. In addition, SH promotes a reduction in their maximum outward current, mediated by voltage-gated K+ channels. SH also affected sensitivity to acute hypoxia in one glomus cell subpopulation. As for the content of mitochondrial proteins, we observed increases in the citrate synthase, Tom-20, and succinate dehydrogenase (mitochondrial complex II) per cell of CBs after SH. Our results demonstrate important cellular and molecular mechanisms of plasticity in CBs from rats after only 24 h of SH, which may contribute to the generation of cardiovascular and ventilatory adjustments observed in this experimental model.NEW & NOTEWORTHY Our study revealed two subpopulations of glomus cells of carotid bodies (CBs) with specific electrophysiological properties, which were differentially affected by short-term sustained hypoxia (SH; 10% O2 for 24 h). Our experiments showed that SH also affected the sensitivity to acute hypoxia of these glomus cell subpopulations differently. Our molecular analyses allowed us to identify important adaptations in the content of CB mitochondrial proteins that participate in the Krebs cycle and form the electron transport chain.
Collapse
Affiliation(s)
- Pedro F Spiller
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Henrique J N Morgan
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Luiz C C Navegantes
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Benedito H Machado
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Melina P da Silva
- Department of Biophysics, Paulista School of Medicine, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Davi J A Moraes
- Department of Physiology and Biophysics, Biomedical Sciences Institute, University of São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
5
|
Jenkins BJ, Jenkins YR, Ponce-Garcia FM, Moscrop C, Perry IA, Hitchings MD, Uribe AH, Bernuzzi F, Eastham S, Cronin JG, Berisha A, Howell A, Davies J, Blagih J, Veale DJ, Davies LC, Niphakis M, Finlay DK, Sinclair LV, Cravatt BF, Hogan AE, Nathan JA, Fearon U, Sumpton D, Vande Voorde J, Dias do Vale G, McDonald JG, Jones GW, Pearson JA, Vincent EE, Jones N. ABHD11 inhibition drives sterol metabolism to modulate T cell effector function and alleviate autoimmunity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.19.643996. [PMID: 40166327 PMCID: PMC11957007 DOI: 10.1101/2025.03.19.643996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Chronic inflammation in autoimmunity is driven by T cell hyperactivation. This unregulated response to self is fuelled by heightened metabolic programmes, which offers a promising new direction to uncover novel treatment strategies. α/β-hydrolase domain-containing protein 11 (ABHD11) is a mitochondrial hydrolase that maintains the catalytic function of α-ketoglutarate dehydrogenase (α-KGDH), and its expression in CD4+ T cells has been linked to remission status in rheumatoid arthritis (RA). However, the importance of ABHD11 in regulating T cell metabolism and function - and thus, the downstream implication for autoimmunity - is yet to be explored. Here, we show that pharmacological inhibition of ABHD11 dampens cytokine production by human and mouse T cells. Mechanistically, the anti-inflammatory effects of ABHD11 inhibition are attributed to increased 24,25-epoxycholesterol (24,25-EC) biosynthesis and subsequent liver X receptor (LXR) activation, which arise from a compromised TCA cycle. The impaired cytokine profile established by ABHD11 inhibition is extended to two patient cohorts of autoimmunity. Importantly, using a murine model of accelerated type 1 diabetes (T1D), we show that targeting ABHD11 suppresses cytokine production in antigen-specific T cells and delays the onset of diabetes in vivo. Collectively, our work provides pre-clinical evidence that ABHD11 is an encouraging drug target in T cell-mediated autoimmunity.
Collapse
Affiliation(s)
- Benjamin J. Jenkins
- Institute of Life Science, Swansea University Medical School, Swansea University, SA2 8PP, UK
| | - Yasmin R. Jenkins
- Institute of Life Science, Swansea University Medical School, Swansea University, SA2 8PP, UK
| | | | - Chloe Moscrop
- Cellular and Molecular Medicine, University of Bristol, Biomedical Sciences Building, Bristol, BS8 1TD, UK
| | - Iain A. Perry
- Institute of Life Science, Swansea University Medical School, Swansea University, SA2 8PP, UK
| | - Matthew D. Hitchings
- Institute of Life Science, Swansea University Medical School, Swansea University, SA2 8PP, UK
| | - Alejandro H. Uribe
- Cancer Research UK Scotland Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - Federico Bernuzzi
- Cancer Research UK Scotland Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - Simon Eastham
- Cellular and Molecular Medicine, University of Bristol, Biomedical Sciences Building, Bristol, BS8 1TD, UK
| | - James G. Cronin
- Institute of Life Science, Swansea University Medical School, Swansea University, SA2 8PP, UK
| | - Ardena Berisha
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Alexandra Howell
- Diabetes Research Group, Division of Infection and Immunity, School of Medicine, Cardiff University, CF14 4XN, UK
| | - Joanne Davies
- Diabetes Research Group, Division of Infection and Immunity, School of Medicine, Cardiff University, CF14 4XN, UK
| | - Julianna Blagih
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- University of Montreal, Maisonneuve-Rosemont Hospital Research Centre, Montreal, 5414 Assomption Blvd, H1T 2M4, Canada
| | - Douglas J. Veale
- EULAR Centre of Excellence, Centre for Arthritis and Rheumatic Diseases, St Vincent’s University Hospital, Dublin, Ireland
| | - Luke C. Davies
- Institute of Life Science, Swansea University Medical School, Swansea University, SA2 8PP, UK
| | - Micah Niphakis
- Department of Chemistry, Scripps Research, La Jolla, California 92037, United States
| | - David K. Finlay
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearce Street, Dublin, Ireland
| | - Linda V. Sinclair
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, UK
| | - Benjamin F. Cravatt
- Department of Chemistry, Scripps Research, La Jolla, California 92037, United States
| | - Andrew E. Hogan
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - James A. Nathan
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, Department of Medicine, University of Cambridge, Cambridge, CB2 0AW, UK
| | - Ursula Fearon
- Molecular Rheumatology, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearce Street, Dublin, Ireland
| | - David Sumpton
- Cancer Research UK Scotland Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - Johan Vande Voorde
- Cancer Research UK Scotland Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
- School of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, G61 1QH, UK
| | - Goncalo Dias do Vale
- Center for Human Nutrition, Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, United States
| | - Jeffrey G. McDonald
- Center for Human Nutrition, Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, United States
| | - Gareth W. Jones
- Cellular and Molecular Medicine, University of Bristol, Biomedical Sciences Building, Bristol, BS8 1TD, UK
| | - James A. Pearson
- Diabetes Research Group, Division of Infection and Immunity, School of Medicine, Cardiff University, CF14 4XN, UK
| | - Emma E. Vincent
- School of Translational Health Sciences, Dorothy Hodgkin Building, University of Bristol, Bristol, BS1 3NY, UK
- Integrative Epidemiology Unit, School of Population Health Science, University of Bristol, Bristol, BS8 2BN, UK
| | - Nicholas Jones
- Institute of Life Science, Swansea University Medical School, Swansea University, SA2 8PP, UK
| |
Collapse
|
6
|
Zhang H, Lv B, Liu K, Du J, Jin H, Huang Y. Sulfur dioxide controls M1 macrophage polarization by sulphenylation of prolyl hydroxylase 2 at cysteine 260. Free Radic Biol Med 2025; 230:33-47. [PMID: 39892500 DOI: 10.1016/j.freeradbiomed.2025.01.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 01/28/2025] [Accepted: 01/29/2025] [Indexed: 02/03/2025]
Abstract
M1 macrophage polarization plays a pivotal role in inflammation-related diseases. However, the endogenous regulatory factors and mechanisms underlying M1 macrophage polarization have not been entirely clarified. This study aimed to explore whether endogenous sulfur dioxide (SO2) is involved in M1 macrophage polarization and its mechanism. In the study, we found that the endogenous SO2/aspartate aminotransferase1 (AAT1) pathway was downregulated during M1 polarization of macrophages induced by lipopolysaccharide (LPS) stimulation, and supplementation with SO2 donors or AAT1 overexpression restored SO2 content, suppressed protein expression of inducible nitric oxide synthase, restrained mRNA level of M1 phenotype-related genes tumor necrosis factor α, interleukin-1β and interleukin-12β and decreased the CD86 expression. In addition, AAT1-knockdowned macrophages exhibited reduced level of hypoxia-inducible factor-1α (HIF-1α) hydroxylation, elevated HIF-1α protein level, and polarization into M1-type, while supplementation with SO2 reversed the above effects. Mechanistically, SO2 maintained prolyl hydroxylase (PHD) activity in a thiol-dependent manner. SO2 maintained PHD2 activity by sulphenylating PHD2 at Cys260, thereby reducing HIF-1α protein levels and subsequently inhibiting M1 macrophage polarization. Besides, SO2 enhanced PHD2 sulphenylation, inhibited M1 macrophage polarization, and alleviated lung damage in a mouse model of LPS-induced acute lung injury. These results suggested that downregulation of the endogenous SO2/AAT1 pathway was a pivotal mechanism for M1 macrophage polarization. SO2 maintained PHD2 activity via sulphenylation of Cys260, and promoted HIF-1α hydroxylation and degradation, thereby impeding M1 macrophage polarization.
Collapse
Affiliation(s)
- Han Zhang
- Department of Pediatrics, Children's Medical Center, Peking University First Hospital, 100034, Beijing, China
| | - Boyang Lv
- Department of Pediatrics, Children's Medical Center, Peking University First Hospital, 100034, Beijing, China
| | - Keyu Liu
- Department of Pediatrics, Children's Medical Center, Peking University First Hospital, 100034, Beijing, China
| | - Junbao Du
- Department of Pediatrics, Children's Medical Center, Peking University First Hospital, 100034, Beijing, China
| | - Hongfang Jin
- Department of Pediatrics, Children's Medical Center, Peking University First Hospital, 100034, Beijing, China; State Key Laboratory of Vascular Homeostasis and Remodeling, 100191, Peking University, Beijing, China.
| | - Yaqian Huang
- Department of Pediatrics, Children's Medical Center, Peking University First Hospital, 100034, Beijing, China; State Key Laboratory of Vascular Homeostasis and Remodeling, 100191, Peking University, Beijing, China.
| |
Collapse
|
7
|
Jiahui W, Xiang Y, Youhuan Z, Xiaomin M, Yuanzhu G, Dejian Z, Jie W, Yinkun F, Shi F, Juncheng S, Masha H, Marcia H, Peiyi W, Yingjie X, Wen Y. The mitochondrial DNAJC co-chaperone TCAIM reduces α-ketoglutarate dehydrogenase protein levels to regulate metabolism. Mol Cell 2025; 85:638-651.e9. [PMID: 39889707 DOI: 10.1016/j.molcel.2025.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 06/01/2024] [Accepted: 01/08/2025] [Indexed: 02/03/2025]
Abstract
Mitochondrial heat shock proteins and co-chaperones play crucial roles in maintaining proteostasis by regulating unfolded proteins, usually without specific target preferences. In this study, we identify a DNAJC-type co-chaperone: T cell activation inhibitor, mitochondria (TCAIM), and demonstrate its specific binding to α-ketoglutarate dehydrogenase (OGDH), a key rate-limiting enzyme in mitochondrial metabolism. This interaction suppresses OGDH function and subsequently reduces carbohydrate catabolism in both cultured cells and murine models. Using cryoelectron microscopy (cryo-EM), we resolve the human OGDH-TCAIM complex and reveal that TCAIM binds to OGDH without altering its apo structure. Most importantly, we discover that TCAIM facilitates the reduction of functional OGDH through its interaction, which depends on HSPA9 and LONP1. Our findings unveil a role of the mitochondrial proteostasis system in regulating a critical metabolic enzyme and introduce a previously unrecognized post-translational regulatory mechanism.
Collapse
Affiliation(s)
- Wang Jiahui
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yu Xiang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Zhong Youhuan
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ma Xiaomin
- Cryo-EM Center, Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China
| | - Gao Yuanzhu
- Cryo-EM Center, Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zhou Dejian
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Physiology and Biophysics, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Wang Jie
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Fu Yinkun
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Fan Shi
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Su Juncheng
- Department of Gastrointestinal Surgery, Renji Hospital Affiliated, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Huang Masha
- Department of Gastrointestinal Surgery, Renji Hospital Affiliated, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Haigis Marcia
- Department of Cell Biology at Harvard Medical School, Boston, MA 02115, USA
| | - Wang Peiyi
- Cryo-EM Center, Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xu Yingjie
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Yang Wen
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; State Key Laboratory of Oncogenes and Related Genes, Shanghai, China.
| |
Collapse
|
8
|
Tan W, Dai F, Ci Q, Deng Z, Liu H, Cheng Y. Characterization of tumor prognosis and sensitive chemotherapy drugs based on cuproptosis-related gene signature in ovarian cancer. BMC Womens Health 2025; 25:37. [PMID: 39849417 PMCID: PMC11761216 DOI: 10.1186/s12905-024-03519-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 12/17/2024] [Indexed: 01/25/2025] Open
Abstract
BACKGROUND Cuproptosis is a novel form of cell death, acting on the tricarboxylic acid cycle in mitochondrial respiration and mediated by protein lipoylation. Other cancer cell death processes, such as necroptosis, pyroptosis, and ferroptosis, have been shown to play crucial roles in the therapy and prognosis of ovarian cancer. However, the role of cuproptosis in ovarian cancer remains unclear. METHODS The expression profiles of 10 cuproptosis-related genes were extracted from GSE140082. Kaplan-Meier survival and Cox proportional hazards regression were used to identify prognostic genes for constructing risk models. Following this, Least Absolute Shrinkage and Selection Operator regression was employed to construct a risk score model. Next, a nomogram was constructed to predict overall survival in ovarian cancer. Ultimately, our analysis compared the two groups across various dimensions, including clinical characteristics, tumor progression, metabolism-related pathways, immune landscape, and drug sensitivity. RESULTS MTF1 and LIAS were identified as protective factors in ovarian cancer, with patients in the higher risk group being significantly associated with poorer survival. Furthermore, integrating the risk score with clinical characteristics in the nomogram demonstrated high specificity and sensitivity in predicting survival. A higher propotion of M2 macrophages, follicular helper T cells, and resting mast cells was observed in the high-risk group. Additionally, the IC50 values of Dasatinib, Bortezomib, Parthenolide, and Imatinib were significantly lower in the high-risk group. CONCLUSIONS The study highlights the prognostic significance of cuproptosis-related genes and provides new insights into developing pharmacological therapeutic strategies targeting cuproptosis for the prevention and treatment of ovarian cancer.
Collapse
Affiliation(s)
- Wei Tan
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Fangfang Dai
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Qinyu Ci
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Zhimin Deng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Hua Liu
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| | - Yanxiang Cheng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
9
|
Dakal TC, Kakde GS, Maurya PK. Genomic, epigenomic and transcriptomic landscape of glioblastoma. Metab Brain Dis 2024; 39:1591-1611. [PMID: 39180605 DOI: 10.1007/s11011-024-01414-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/13/2024] [Indexed: 08/26/2024]
Abstract
The mostly aggressive and extremely malignant type of central nervous system is Glioblastoma (GBM), which is characterized by an extremely short average survival time of lesser than 16 months. The primary cause of this phenomenon can be attributed to the extensively altered genome of GBM, which is characterized by the dysregulation of numerous critical signaling pathways and epigenetics regulations associated with proliferation, cellular growth, survival, and apoptosis. In light of this, different genetic alterations in critical signaling pathways and various epigenetics regulation mechanisms are associated with GBM and identified as distinguishing markers. Such GBM prognostic alterations are identified in PI3K/AKT, p53, RTK, RAS, RB, STAT3 and ZIP4 signaling pathways, metabolic pathway (IDH1/2), as well as alterations in epigenetic regulation genes (MGMT, CDKN2A-p16INK4aCDKN2B-p15INK4b). The exploration of innovative diagnostic and therapeutic approaches that specifically target these pathways is utmost importance to enhance the future medication for GBM. This study provides a comprehensive overview of dysregulated epigenetic mechanisms and signaling pathways due to mutations, methylation, and copy number alterations of in critical genes in GBM with prevalence and emphasizing their significance.
Collapse
Affiliation(s)
- Tikam Chand Dakal
- Genome and Computational Biology Lab, Mohanlal Sukhadia, University, Udaipur, Rajasthan, 313001, India.
| | - Ganesh S Kakde
- Department of Biochemistry, Central University of Haryana, Mahendergarh, 123031, Haryana, India
| | - Pawan Kumar Maurya
- Department of Biochemistry, Central University of Haryana, Mahendergarh, 123031, Haryana, India.
| |
Collapse
|
10
|
Hao J, Huang Z, Zhang S, Song K, Wang J, Gao C, Fang Z, Zhang N. Deciphering the multifaceted roles and clinical implications of 2-hydroxyglutarate in cancer. Pharmacol Res 2024; 209:107437. [PMID: 39349213 DOI: 10.1016/j.phrs.2024.107437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/13/2024] [Accepted: 09/24/2024] [Indexed: 10/02/2024]
Abstract
Increasing evidence indicates that 2-hydroxyglutarate (2HG) is an oncometabolite that drives tumour formation and progression. Due to mutations in isocitrate dehydrogenase (IDH) and the dysregulation of other enzymes, 2HG accumulates significantly in tumour cells. Due to its structural similarity to α-ketoglutarate (αKG), accumulated 2HG leads to the competitive inhibition of αKG-dependent dioxygenases (αKGDs), such as KDMs, TETs, and EGLNs. This inhibition results in epigenetic alterations in both tumour cells and the tumour microenvironment. This review comprehensively discusses the metabolic pathways of 2HG and the subsequent pathways influenced by elevated 2HG levels. We will delve into the molecular mechanisms by which 2HG exerts its oncogenic effects, particularly focusing on epigenetic modifications. This review will also explore the various methods available for the detection of 2HG, emphasising both current techniques and emerging technologies. Furthermore, 2HG shows promise as a biomarker for clinical diagnosis and treatment. By integrating these perspectives, this review aims to provide a comprehensive overview of the current understanding of 2HG in cancer biology, highlight the importance of ongoing research, and discuss future directions for translating these findings into clinical applications.
Collapse
Affiliation(s)
- Jie Hao
- Department of Breast Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Ziyi Huang
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Siyue Zhang
- Department of Breast Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Kefan Song
- Department of Urology, Qilu Hospital of Shandong University, Jinan, China
| | - Juncheng Wang
- Advanced Medical Research Institute, Shandong University, Jinan, China
| | - Chao Gao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Zhiqing Fang
- Department of Urology, Qilu Hospital of Shandong University, Jinan, China
| | - Ning Zhang
- Department of Breast Surgery, Qilu Hospital of Shandong University, Jinan, China.
| |
Collapse
|
11
|
Boreel DF, Beerkens AP, Heskamp S, Boswinkel M, Peters JP, Adema GJ, Span PN, Bussink J. Inhibition of OXPHOS induces metabolic rewiring and reduces hypoxia in murine tumor models. Clin Transl Radiat Oncol 2024; 49:100875. [PMID: 39469146 PMCID: PMC11513494 DOI: 10.1016/j.ctro.2024.100875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 10/08/2024] [Indexed: 10/30/2024] Open
Abstract
Introduction Tumor hypoxia is a feature of many solid malignancies and is known to cause radio resistance. In recent years it has become clear that hypoxic tumor regions also foster an immunosuppressive phenotype and are involved in immunotherapy resistance. It has been proposed that reducing the tumors' oxygen consumption will result in an increased oxygen concentration in the tissue and improve radio- and immunotherapy efficacy. The aim of this study is to investigate the metabolic rewiring of cancer cells by pharmacological attenuation of oxidative phosphorylation (OXPHOS) and subsequently reduce tumor hypoxia. Material and methods The metabolic effects of three OXPHOS inhibitors IACS-010759, atovaquone and metformin were explored by measuring oxygen consumption rate, extra cellular acidification rate, and [18F]FDG uptake in 2D and 3D cell culture. Tumor cell growth in 2D cell culture and hypoxia in 3D cell culture were analyzed by live cell imaging. Tumor hypoxia and [18F]FDG uptake in vivo following treatment with IACS-010759 was determined by immunohistochemistry and ex vivo biodistribution respectively. Results In vitro experiments show that tumor cell metabolism is heterogeneous between different models. Upon OXPHOS inhibition, metabolism shifts from oxygen consumption through OXPHOS towards glycolysis, indicated by increased acidification and glucose uptake. Inhibition of OXPHOS by IACS-010759 treatment reduced diffusion limited tumor hypoxia in both 3D cell culture and in vivo. Although immune cell presence was lower in hypoxic areas compared with normoxic areas, it is not altered following short term OXPHOS inhibition. Discussion These results show that inhibition of OXPHOS causes a metabolic shift from OXPHOS towards increased glycolysis in 2D and 3D cell culture. Moreover, inhibition of OXPHOS reduces diffusion limited hypoxia in 3D cell culture and murine tumor models. Reduced hypoxia by OXPHOS inhibition might enhance therapy efficacy in future studies. However, caution is warranted as systemic metabolic rewiring can cause adverse effects.
Collapse
Affiliation(s)
- Daan F. Boreel
- Radiotherapy and OncoImmunology Laboratory, Department of Radiation Oncology, Radboudumc, Nijmegen, the Netherlands
- Department of Medical Imaging, Radboudumc, Nijmegen, the Netherlands
| | - Anne P.M. Beerkens
- Radiotherapy and OncoImmunology Laboratory, Department of Radiation Oncology, Radboudumc, Nijmegen, the Netherlands
- Department of Medical Imaging, Radboudumc, Nijmegen, the Netherlands
| | - Sandra Heskamp
- Department of Medical Imaging, Radboudumc, Nijmegen, the Netherlands
| | - Milou Boswinkel
- Department of Medical Imaging, Radboudumc, Nijmegen, the Netherlands
| | - Johannes P.W. Peters
- Radiotherapy and OncoImmunology Laboratory, Department of Radiation Oncology, Radboudumc, Nijmegen, the Netherlands
| | - Gosse J. Adema
- Radiotherapy and OncoImmunology Laboratory, Department of Radiation Oncology, Radboudumc, Nijmegen, the Netherlands
| | - Paul N. Span
- Radiotherapy and OncoImmunology Laboratory, Department of Radiation Oncology, Radboudumc, Nijmegen, the Netherlands
| | - Johan Bussink
- Radiotherapy and OncoImmunology Laboratory, Department of Radiation Oncology, Radboudumc, Nijmegen, the Netherlands
| |
Collapse
|
12
|
Zhang M, Liu Y, Lu X, Du L, He N, Song H, Wang J, Gu Y, Yang M, Xu C, Wang Y, Ji K, Liu Q. l-2-Hydroxyglutarate contributes to tumor radioresistance through regulating the hypoxia-inducible factor-1α signaling pathway. J Cell Physiol 2024; 239:e31384. [PMID: 39012048 DOI: 10.1002/jcp.31384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/12/2024] [Accepted: 07/05/2024] [Indexed: 07/17/2024]
Abstract
l-2-Hydroxyglutarate (l-2-HG) has been regarded as a tumor metabolite, and it plays a crucial role in adaptation of tumor cells to hypoxic conditions. However, the role of l-2-HG in tumor radioresistance and the underlying mechanism have not yet been revealed. Here, we found that l-2-HG exhibited to have radioresistance effect on U87 human glioblastoma cells, which could reduce DNA damage and apoptosis caused by irradiation, promote cell proliferation and migration, and impair G2/M phase arrest. Mechanistically, l-2-HG upregulated the protein level of hypoxia-inducible factor-1α (HIF-1α) and the expression levels of HIF-1α downstream target genes. The knockdown of l-2-hydroxyglutarate dehydrogenase (L2HGDH) gene promoted the tumor growth and proliferation of U87 cells in nude mice by increasing HIF-1α expression level in vivo. In addition, the low expression level of L2HGDH gene was correlated with the short survival of patients with glioma or kidney cancer. In conclusion, our study revealed the role and mechanism of l-2-HG in tumor radioresistance and may provide a new perspective for overcoming tumor radioresistance and broaden our comprehension of the role of metabolites in tumor microenvironment.
Collapse
Affiliation(s)
- Manman Zhang
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin, China
| | - Yingshuang Liu
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin, China
| | - Xinran Lu
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin, China
| | - Liqing Du
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin, China
| | - Ningning He
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin, China
| | - Huijuan Song
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin, China
| | - Jinhan Wang
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin, China
| | - Yeqing Gu
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin, China
| | - Mengmeng Yang
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin, China
| | - Chang Xu
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin, China
| | - Yan Wang
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin, China
| | - Kaihua Ji
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin, China
| | - Qiang Liu
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin, China
| |
Collapse
|
13
|
Xu X, Qi J, Wang H, Zhang Z, Pan T, Li X, Yang J, Han H, Guo M, Zhou M, Cai C, Tang Y, Hou Q, Chen S, Wu D, Han Y. Genome-wide CRISPR/Cas9 library screening identified OGDH as a regulator of disease progress and resistance to decitabine in myelodysplastic neoplasm by reprogramming glutamine metabolism. Leukemia 2024; 38:2505-2509. [PMID: 39227691 DOI: 10.1038/s41375-024-02377-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 08/06/2024] [Accepted: 08/08/2024] [Indexed: 09/05/2024]
Affiliation(s)
- Xiaoyan Xu
- National clinical research center for hematologic diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
- Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, China
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
| | - Jiaqian Qi
- National clinical research center for hematologic diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
- Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, China
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
| | - Hong Wang
- National clinical research center for hematologic diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
- Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, China
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
| | - Ziyan Zhang
- National clinical research center for hematologic diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Tingting Pan
- National clinical research center for hematologic diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
- Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, China
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
| | - Xueqian Li
- National clinical research center for hematologic diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Jingyi Yang
- National clinical research center for hematologic diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Haohao Han
- National clinical research center for hematologic diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Mengting Guo
- National clinical research center for hematologic diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Meng Zhou
- National clinical research center for hematologic diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
- Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, China
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
| | - Chengsen Cai
- National clinical research center for hematologic diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
- Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, China
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
| | - Yaqiong Tang
- National clinical research center for hematologic diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
- Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, China
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
| | - Qixiu Hou
- National clinical research center for hematologic diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Suning Chen
- National clinical research center for hematologic diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
- Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, China
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
| | - Depei Wu
- National clinical research center for hematologic diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China.
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China.
- Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, China.
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China.
| | - Yue Han
- National clinical research center for hematologic diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China.
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China.
- Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, China.
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China.
| |
Collapse
|
14
|
Xiao W, Lee LY, Loscalzo J. Metabolic Responses to Redox Stress in Vascular Cells. Antioxid Redox Signal 2024; 41:793-817. [PMID: 38985660 PMCID: PMC11876825 DOI: 10.1089/ars.2023.0476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 11/11/2023] [Indexed: 07/12/2024]
Abstract
Significance: Redox stress underlies numerous vascular disease mechanisms. Metabolic adaptability is essential for vascular cells to preserve energy and redox homeostasis. Recent Advances: Single-cell technologies and multiomic studies demonstrate significant metabolic heterogeneity among vascular cells in health and disease. Increasing evidence shows that reductive or oxidative stress can induce metabolic reprogramming of vascular cells. A recent example is intracellular L-2-hydroxyglutarate accumulation in response to hypoxic reductive stress, which attenuates the glucose flux through glycolysis and mitochondrial respiration in pulmonary vascular cells and provides protection against further reductive stress. Critical Issues: Regulation of cellular redox homeostasis is highly compartmentalized and complex. Vascular cells rely on multiple metabolic pathways, but the precise connectivity among these pathways and their regulatory mechanisms is only partially defined. There is also a critical need to understand better the cross-regulatory mechanisms between the redox system and metabolic pathways as perturbations in either systems or their cross talk can be detrimental. Future Directions: Future studies are needed to define further how multiple metabolic pathways are wired in vascular cells individually and as a network of closely intertwined processes given that a perturbation in one metabolic compartment often affects others. There also needs to be a comprehensive understanding of how different types of redox perturbations are sensed by and regulate different cellular metabolic pathways with specific attention to subcellular compartmentalization. Lastly, integration of dynamic changes occurring in multiple metabolic pathways and their cross talk with the redox system is an important goal in this multiomics era. Antioxid. Redox Signal. 41,793-817.
Collapse
Affiliation(s)
- Wusheng Xiao
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Department of Toxicology, School of Public Health, Peking University, Beijing, China
| | - Laurel Y. Lee
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Joseph Loscalzo
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
15
|
Xiao W, Shrimali N, Vigder N, Oldham WM, Clish CB, He H, Wong SJ, Wertheim BM, Arons E, Haigis MC, Leopold JA, Loscalzo J. Branched-chain α-ketoacids aerobically activate HIF1α signalling in vascular cells. Nat Metab 2024; 6:2138-2156. [PMID: 39472756 PMCID: PMC11786732 DOI: 10.1038/s42255-024-01150-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 09/25/2024] [Indexed: 11/06/2024]
Abstract
Hypoxia-inducible factor 1α (HIF1α) is a master regulator of biological processes in hypoxia. Yet, the mechanisms and biological consequences of aerobic HIF1α activation by intrinsic factors, particularly in normal (primary) cells, remain elusive. Here we show that HIF1α signalling is activated in several human primary vascular cells in normoxia and in vascular smooth muscle cells of normal human lungs. Mechanistically, aerobic HIF1α activation is mediated by paracrine secretion of three branched-chain α-ketoacids (BCKAs), which suppress PHD2 activity via direct inhibition and via LDHA-mediated generation of L-2-hydroxyglutarate. BCKA-mediated HIF1α signalling activation stimulated glycolytic activity and governed a phenotypic switch of pulmonary artery smooth muscle cells, which correlated with BCKA metabolic dysregulation and pathophenotypic changes in pulmonary arterial hypertension patients and male rat models. We thus identify BCKAs as previously unrecognized signalling metabolites that aerobically activate HIF1α and that the BCKA-HIF1α pathway modulates vascular smooth muscle cell function, an effect that may be relevant to pulmonary vascular pathobiology.
Collapse
Affiliation(s)
- Wusheng Xiao
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Toxicology, School of Public Health, Peking University, Beijing, China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University, Beijing, China
- Key Laboratory of State Administration of Traditional Chinese Medicine for Compatibility Toxicology, School of Public Health, Peking University, Beijing, China
| | - Nishith Shrimali
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Niv Vigder
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, NSW, Australia
| | - William M Oldham
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Clary B Clish
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
| | - Huamei He
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Samantha J Wong
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Bradley M Wertheim
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Elena Arons
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Marcia C Haigis
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Jane A Leopold
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Joseph Loscalzo
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
16
|
Feng D, Gao J, Liu R, Liu W, Gao T, Yang Y, Zhang D, Yang T, Yin X, Yu H, Huang W, Wang Y. CARM1 drives triple-negative breast cancer progression by coordinating with HIF1A. Protein Cell 2024; 15:744-765. [PMID: 38476024 PMCID: PMC11443453 DOI: 10.1093/procel/pwae010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 01/15/2024] [Indexed: 03/14/2024] Open
Abstract
Coactivator-associated arginine methyltransferase 1 (CARM1) promotes the development and metastasis of estrogen receptor alpha (ERα)-positive breast cancer. The function of CARM1 in triple-negative breast cancer (TNBC) is still unclear and requires further exploration. Here, we report that CARM1 promotes proliferation, epithelial-mesenchymal transition, and stemness in TNBC. CARM1 is upregulated in multiple cancers and its expression correlates with breast cancer progression. Genome-wide analysis of CARM1 showed that CARM1 is recruited by hypoxia-inducible factor-1 subunit alpha (HIF1A) and occupy the promoters of CDK4, Cyclin D1, β-Catenin, HIF1A, MALAT1, and SIX1 critically involved in cell cycle, HIF-1 signaling pathway, Wnt signaling pathway, VEGF signaling pathway, thereby modulating the proliferation and invasion of TNBC cells. We demonstrated that CARM1 is physically associated with and directly interacts with HIF1A. Moreover, we found that ellagic acid, an inhibitor of CARM1, can suppress the proliferation and invasion of TNBC by directly inhibiting CDK4 expression. Our research has determined the molecular basis of CARM1 carcinogenesis in TNBC and its effective natural inhibitor, which may provide new ideas and drugs for cancer therapy.
Collapse
Affiliation(s)
- Dandan Feng
- Key Laboratory of Cancer and Microbiome, State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Jie Gao
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan 250033, China
| | - Ruiqiong Liu
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan 250033, China
- Department of Cancer Center, The Second Hospital of Shandong University, Jinan 250033, China
| | - Wei Liu
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Tianyang Gao
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Yunkai Yang
- Key Laboratory of Cancer and Microbiome, State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Die Zhang
- Key Laboratory of Cancer and Microbiome, State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Tianshu Yang
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Xin Yin
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Hefen Yu
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Wei Huang
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Yan Wang
- Key Laboratory of Cancer and Microbiome, State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| |
Collapse
|
17
|
Pauzaite T, Wit N, Seear RV, Nathan JA. Deubiquitinating enzyme mutagenesis screens identify a USP43-dependent HIF-1 transcriptional response. EMBO J 2024; 43:3677-3709. [PMID: 39009674 PMCID: PMC11377827 DOI: 10.1038/s44318-024-00166-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 05/13/2024] [Accepted: 06/24/2024] [Indexed: 07/17/2024] Open
Abstract
The ubiquitination and proteasome-mediated degradation of Hypoxia Inducible Factors (HIFs) is central to metazoan oxygen-sensing, but the involvement of deubiquitinating enzymes (DUBs) in HIF signalling is less clear. Here, using a bespoke DUBs sgRNA library we conduct CRISPR/Cas9 mutagenesis screens to determine how DUBs are involved in HIF signalling. Alongside defining DUBs involved in HIF activation or suppression, we identify USP43 as a DUB required for efficient activation of a HIF response. USP43 is hypoxia regulated and selectively associates with the HIF-1α isoform, and while USP43 does not alter HIF-1α stability, it facilitates HIF-1 nuclear accumulation and binding to its target genes. Mechanistically, USP43 associates with 14-3-3 proteins in a hypoxia and phosphorylation dependent manner to increase the nuclear pool of HIF-1. Together, our results highlight the multifunctionality of DUBs, illustrating that they can provide important signalling functions alongside their catalytic roles.
Collapse
Affiliation(s)
- Tekle Pauzaite
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, Department of Medicine, University of Cambridge, Cambridge, CB2 0AW, United Kingdom
| | - Niek Wit
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, Department of Medicine, University of Cambridge, Cambridge, CB2 0AW, United Kingdom
| | - Rachel V Seear
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, Department of Medicine, University of Cambridge, Cambridge, CB2 0AW, United Kingdom
| | - James A Nathan
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, Department of Medicine, University of Cambridge, Cambridge, CB2 0AW, United Kingdom.
| |
Collapse
|
18
|
He J, Wang A, Zhao Q, Zou Y, Zhang Z, Sha N, Hou G, Zhou B, Yang Y, Chen T, Zhao Y, Jiang Y. RNAi screens identify HES4 as a regulator of redox balance supporting pyrimidine synthesis and tumor growth. Nat Struct Mol Biol 2024; 31:1413-1425. [PMID: 38769389 DOI: 10.1038/s41594-024-01309-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 04/08/2024] [Indexed: 05/22/2024]
Abstract
NADH/NAD+ redox balance is pivotal for cellular metabolism. Systematic identification of NAD(H) redox regulators, although currently lacking, would help uncover unknown effectors critically implicated in the coordination of growth metabolism. In this study, we performed a genome-scale RNA interference (RNAi) screen to globally survey the genes involved in redox modulation and identified the HES family bHLH transcription factor HES4 as a negative regulator of NADH/NAD+ ratio. Functionally, HES4 is shown to be crucial for maintaining mitochondrial electron transport chain (ETC) activity and pyrimidine synthesis. More specifically, HES4 directly represses transcription of SLC44A2 and SDS, thereby inhibiting mitochondrial choline oxidation and cytosolic serine deamination, respectively, which, in turn, ensures coenzyme Q reduction capacity for DHODH-mediated UMP synthesis and serine-derived dTMP production. Accordingly, inhibition of choline oxidation preserves mitochondrial serine catabolism and ETC-coupled redox balance. Furthermore, HES4 protein stability is enhanced under EGFR activation, and increased HES4 levels facilitate EGFR-driven tumor growth and predict poor prognosis of lung adenocarcinoma. These findings illustrate an unidentified mechanism, underlying pyrimidine biosynthesis in the intersection between serine and choline catabolism, and underscore the physiological importance of HES4 in tumor metabolism.
Collapse
Affiliation(s)
- Jing He
- Department of Liver Surgery and Shanghai Cancer Institute, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Aoxue Wang
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai, China
- Research Unit of New Techniques for Live-Cell Metabolic Imaging, Chinese Academy of Medical Sciences, Beijing, China
| | - Qin Zhao
- Department of Liver Surgery and Shanghai Cancer Institute, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yejun Zou
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai, China
- Research Unit of New Techniques for Live-Cell Metabolic Imaging, Chinese Academy of Medical Sciences, Beijing, China
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhuo Zhang
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai, China
- Research Unit of New Techniques for Live-Cell Metabolic Imaging, Chinese Academy of Medical Sciences, Beijing, China
| | - Nannan Sha
- Department of Liver Surgery and Shanghai Cancer Institute, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guofang Hou
- Department of Liver Surgery and Shanghai Cancer Institute, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bei Zhou
- Department of Liver Surgery and Shanghai Cancer Institute, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi Yang
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Tao Chen
- Endoscopy Center, Department of Gastroenterology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yuzheng Zhao
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai, China.
- Research Unit of New Techniques for Live-Cell Metabolic Imaging, Chinese Academy of Medical Sciences, Beijing, China.
| | - Yuhui Jiang
- Department of Liver Surgery and Shanghai Cancer Institute, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
19
|
Lin CH, Chin Y, Zhou M, Sobol RW, Hung MC, Tan M. Protein lipoylation: mitochondria, cuproptosis, and beyond. Trends Biochem Sci 2024; 49:729-744. [PMID: 38714376 DOI: 10.1016/j.tibs.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 05/09/2024]
Abstract
Protein lipoylation, a crucial post-translational modification (PTM), plays a pivotal role in mitochondrial function and emerges as a key player in cell death through cuproptosis. This novel copper-driven cell death pathway is activated by excessive copper ions binding to lipoylated mitochondrial proteins, disrupting energy production and causing lethal protein aggregation and cell death. The intricate relationship among protein lipoylation, cellular energy metabolism, and cuproptosis offers a promising avenue for regulating essential cellular functions. This review focuses on the mechanisms of lipoylation and its significant impact on cell metabolism and cuproptosis, emphasizing the key genes involved and their implications for human diseases. It offers valuable insights into targeting dysregulated cellular metabolism for therapeutic purposes.
Collapse
Affiliation(s)
- Cheng-Han Lin
- Institute of Biochemistry and Molecular Biology, China Medical University, Taichung, Taiwan; Cancer Biology and Precision Therapeutics Center, China Medical University, Taichung, Taiwan; Graduate Institute of Biomedical Sciences and Research Center for Cancer Biology, China Medical University, Taichung, Taiwan
| | - Yeh Chin
- Institute of Biochemistry and Molecular Biology, China Medical University, Taichung, Taiwan; Cancer Biology and Precision Therapeutics Center, China Medical University, Taichung, Taiwan; Graduate Institute of Biomedical Sciences and Research Center for Cancer Biology, China Medical University, Taichung, Taiwan
| | - Ming Zhou
- Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, China
| | - Robert W Sobol
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School and Legorreta Cancer Center, Brown University, Providence, RI 02912, USA
| | - Mien-Chie Hung
- Institute of Biochemistry and Molecular Biology, China Medical University, Taichung, Taiwan; Cancer Biology and Precision Therapeutics Center, China Medical University, Taichung, Taiwan; Graduate Institute of Biomedical Sciences and Research Center for Cancer Biology, China Medical University, Taichung, Taiwan.
| | - Ming Tan
- Institute of Biochemistry and Molecular Biology, China Medical University, Taichung, Taiwan; Cancer Biology and Precision Therapeutics Center, China Medical University, Taichung, Taiwan; Graduate Institute of Biomedical Sciences and Research Center for Cancer Biology, China Medical University, Taichung, Taiwan.
| |
Collapse
|
20
|
Chen B, Liu J. Mechanisms associated with cuproptosis and implications for ovarian cancer. J Inorg Biochem 2024; 257:112578. [PMID: 38797108 DOI: 10.1016/j.jinorgbio.2024.112578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/08/2024] [Accepted: 04/23/2024] [Indexed: 05/29/2024]
Abstract
Ovarian cancer, a profoundly fatal gynecologic neoplasm, exerts a substantial economic strain on nations globally. The formidable challenge of its frequent relapse necessitates the exploration of novel cytotoxic agents, efficacious antineoplastic medications with minimal adverse effects, and strategies to surmount resistance to primary chemotherapeutic agents. These endeavors aim to supplement extant pharmacological interventions and elucidate molecular mechanisms underlying induced cytotoxicity, distinct from conventional therapeutic modalities. Recent scientific research has unveiled a novel form of cellular demise, known as copper-death, which is contingent upon the intracellular concentration of copper. Diverging from conventional mechanisms of cellular demise, copper-death exhibits a pronounced reliance on mitochondrial respiration, particularly the tricarboxylic acid (TCA) cycle. Tumor cells manifest distinctive metabolic profiles and elevated copper levels in comparison to their normal counterparts. The advent of copper-death presents alluring possibilities for targeted therapeutic interventions within the realm of cancer treatment. Hence, the primary objective of this review is to present an overview of the proteins and intricate mechanisms associated with copper-induced cell death, while providing a comprehensive summary of the knowledge acquired regarding potential therapeutic approaches for ovarian cancer. These findings will serve as valuable references to facilitate the advancement of customized therapeutic interventions for ovarian cancer.
Collapse
Affiliation(s)
- Biqing Chen
- The Second Hospital of Jilin University, Changchun, China
| | - Jiaqi Liu
- The Second Hospital of Jilin University, Changchun, China.
| |
Collapse
|
21
|
Yan S, Lu J, Chen B, Yuan L, Chen L, Ju L, Cai W, Wu J. The Multifaceted Role of Alpha-Lipoic Acid in Cancer Prevention, Occurrence, and Treatment. Antioxidants (Basel) 2024; 13:897. [PMID: 39199143 PMCID: PMC11351715 DOI: 10.3390/antiox13080897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/19/2024] [Accepted: 07/23/2024] [Indexed: 09/01/2024] Open
Abstract
Alpha-lipoic acid (ALA) is a naturally occurring compound synthesized by mitochondria and widely distributed in both animal and plant tissues. It primarily influences cellular metabolism and oxidative stress networks through its antioxidant properties and is an important drug for treating metabolic diseases associated with oxidative damage. Nevertheless, research indicates that the mechanism by which ALA affects cancer cells is distinct from that observed in normal cells, exhibiting pro-oxidative properties. Therefore, this review aims to describe the main chemical and biological functions of ALA in the cancer environment, including its mechanisms and effects in tumor prevention and anticancer activity, as well as its role as an adjunctive drug in cancer therapy. We specifically focus on the interactions between ALA and various carcinogenic and anti-carcinogenic pathways and discuss ALA's pro-oxidative capabilities in the unique redox environment of cancer cells. Additionally, we elaborate on ALA's roles in nanomedicine, hypoxia-inducible factors, and cancer stem cell research, proposing hypotheses and potential explanations for currently unresolved issues.
Collapse
Affiliation(s)
- Shuai Yan
- Medical School, Nantong University, Nantong 226300, China; (S.Y.); (J.L.); (B.C.)
| | - Jiajie Lu
- Medical School, Nantong University, Nantong 226300, China; (S.Y.); (J.L.); (B.C.)
| | - Bingqing Chen
- Medical School, Nantong University, Nantong 226300, China; (S.Y.); (J.L.); (B.C.)
| | - Liuxia Yuan
- Institute of Liver Diseases, Affiliated Nantong Hospital 3 of Nantong University, Nantong 226300, China; (L.Y.); (L.C.); (L.J.)
| | - Lin Chen
- Institute of Liver Diseases, Affiliated Nantong Hospital 3 of Nantong University, Nantong 226300, China; (L.Y.); (L.C.); (L.J.)
| | - Linglin Ju
- Institute of Liver Diseases, Affiliated Nantong Hospital 3 of Nantong University, Nantong 226300, China; (L.Y.); (L.C.); (L.J.)
| | - Weihua Cai
- Department of Hepatobiliary Surgery, Affiliated Nantong Hospital 3 of Nantong University, Nantong 226300, China;
| | - Jinzhu Wu
- Medical School, Nantong University, Nantong 226300, China; (S.Y.); (J.L.); (B.C.)
- Department of Hepatobiliary Surgery, Affiliated Nantong Hospital 3 of Nantong University, Nantong 226300, China;
| |
Collapse
|
22
|
Gegner HM, Naake T, Aljakouch K, Dugourd A, Kliewer G, Müller T, Schilling D, Schneider MA, Kunze-Rohrbach N, Grünewald TGP, Hell R, Saez-Rodriguez J, Huber W, Poschet G, Krijgsveld J. A single-sample workflow for joint metabolomic and proteomic analysis of clinical specimens. Clin Proteomics 2024; 21:49. [PMID: 38969985 PMCID: PMC11225228 DOI: 10.1186/s12014-024-09501-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 06/26/2024] [Indexed: 07/07/2024] Open
Abstract
Understanding the interplay of the proteome and the metabolome helps to understand cellular regulation and response. To enable robust inferences from such multi-omics analyses, we introduced and evaluated a workflow for combined proteome and metabolome analysis starting from a single sample. Specifically, we integrated established and individually optimized protocols for metabolomic and proteomic profiling (EtOH/MTBE and autoSP3, respectively) into a unified workflow (termed MTBE-SP3), and took advantage of the fact that the protein residue of the metabolomic sample can be used as a direct input for proteome analysis. We particularly evaluated the performance of proteome analysis in MTBE-SP3, and demonstrated equivalence of proteome profiles irrespective of prior metabolite extraction. In addition, MTBE-SP3 combines the advantages of EtOH/MTBE and autoSP3 for semi-automated metabolite extraction and fully automated proteome sample preparation, respectively, thus advancing standardization and scalability for large-scale studies. We showed that MTBE-SP3 can be applied to various biological matrices (FFPE tissue, fresh-frozen tissue, plasma, serum and cells) to enable implementation in a variety of clinical settings. To demonstrate applicability, we applied MTBE-SP3 and autoSP3 to a lung adenocarcinoma cohort showing consistent proteomic alterations between tumour and non-tumour adjacent tissue independent of the method used. Integration with metabolomic data obtained from the same samples revealed mitochondrial dysfunction in tumour tissue through deregulation of OGDH, SDH family enzymes and PKM. In summary, MTBE-SP3 enables the facile and reliable parallel measurement of proteins and metabolites obtained from the same sample, benefiting from reduced sample variation and input amount. This workflow is particularly applicable for studies with limited sample availability and offers the potential to enhance the integration of metabolomic and proteomic datasets.
Collapse
Affiliation(s)
- Hagen M Gegner
- Centre for Organismal Studies (COS), Metabolomics Core Technology Platform, Heidelberg University, Im Neuenheimer Feld 360, 69120, Heidelberg, Germany
| | - Thomas Naake
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstr. 1, 69117, Heidelberg, Germany
| | - Karim Aljakouch
- Faculty of Medicine, Heidelberg University, 69120, Heidelberg, Germany
- Division Proteomics of Stem Cells and Cancer, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, 69120, Heidelberg, Germany
| | - Aurelien Dugourd
- Institute for Computational Biomedicine, Bioquant, Faculty of Medicine, Heidelberg University and Heidelberg University Hospital, Im Neuenheimer Feld 130, 69120, Heidelberg, Germany
| | - Georg Kliewer
- Faculty of Medicine, Heidelberg University, 69120, Heidelberg, Germany
- Division Proteomics of Stem Cells and Cancer, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, 69120, Heidelberg, Germany
| | - Torsten Müller
- Faculty of Medicine, Heidelberg University, 69120, Heidelberg, Germany
- Division Proteomics of Stem Cells and Cancer, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, 69120, Heidelberg, Germany
| | - Dustin Schilling
- Institute for Computational Biomedicine, Bioquant, Faculty of Medicine, Heidelberg University and Heidelberg University Hospital, Im Neuenheimer Feld 130, 69120, Heidelberg, Germany
| | - Marc A Schneider
- Translational Research Unit, Thoraxklinik at Heidelberg University Hospital, Röntgenstraße 1, 69126, Heidelberg, Germany
- Translational Research Center Heidelberg (TLRC), Member of The German Center for Lung Research (DZL), Im Neuenheimer Feld 156, 69120, Heidelberg, Germany
| | - Nina Kunze-Rohrbach
- Centre for Organismal Studies (COS), Metabolomics Core Technology Platform, Heidelberg University, Im Neuenheimer Feld 360, 69120, Heidelberg, Germany
| | - Thomas G P Grünewald
- Division of Translational Pediatric Sarcoma Research, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- Hopp-Children's Cancer Center (KiTZ), Heidelberg, Germany
- Institute of Pathology, Heidelberg University Hospital, Im Neuenheimer Feld 224, 69120, Heidelberg, Germany
- National Center for Tumor Diseases (NCT), NCT Heidelberg, DKFZ and Heidelberg University Hospital, Heidelberg, Germany
| | - Rüdiger Hell
- Centre for Organismal Studies (COS), Metabolomics Core Technology Platform, Heidelberg University, Im Neuenheimer Feld 360, 69120, Heidelberg, Germany
| | - Julio Saez-Rodriguez
- Institute for Computational Biomedicine, Bioquant, Faculty of Medicine, Heidelberg University and Heidelberg University Hospital, Im Neuenheimer Feld 130, 69120, Heidelberg, Germany
| | - Wolfgang Huber
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstr. 1, 69117, Heidelberg, Germany
| | - Gernot Poschet
- Centre for Organismal Studies (COS), Metabolomics Core Technology Platform, Heidelberg University, Im Neuenheimer Feld 360, 69120, Heidelberg, Germany.
| | - Jeroen Krijgsveld
- Faculty of Medicine, Heidelberg University, 69120, Heidelberg, Germany.
- Division Proteomics of Stem Cells and Cancer, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, 69120, Heidelberg, Germany.
| |
Collapse
|
23
|
Zheng Y, Lin S, Chen M, Xu L, Huang H. Regulation of N 6-methyladenosine modification in erythropoiesis and thalassemia. Clin Genet 2024; 106:3-12. [PMID: 38488342 DOI: 10.1111/cge.14518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/21/2024] [Accepted: 02/23/2024] [Indexed: 06/04/2024]
Abstract
In eukaryotic RNA, N6-methyladenosine (m6A) is a prevalent form of methylation modification. The m6A modification process is reversible and dynamic, written by m6A methyltransferase complex, erased by m6A demethylase, and recognized by m6A binding proteins. Through mediating RNA stability, decay, alternative splicing, and translation processes, m6A modification regulates gene expression at the post-transcriptional level. Erythropoiesis is the process of hematopoietic stem cells undergoing proliferation, a series of differentiation and maturation to form red blood cells (RBCs). Thalassemia is a common monogenic disease characterized by excessive production of ineffective RBCs in the peripheral circulation, resulting in hemolytic anemia. Increasing evidence suggests that m6A modification plays a crucial role in erythropoiesis. In this review, we comprehensively summarize the function of m6A modification in erythropoiesis and further generalize the mechanism of m6A modification regulating ineffective erythropoiesis and fetal hemoglobin expression. The purpose is to improve the understanding of the pathogenesis of erythroid dysplasia and offer new perspectives for the diagnosis and treatment of thalassemia.
Collapse
Affiliation(s)
- Yanping Zheng
- Medical Genetic Diagnosis and Therapy Center of Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Provincial Key Laboratory of Prenatal Diagnosis and Birth Defect, Fujian Medical University, Fuzhou, China
| | - Siyang Lin
- Medical Genetic Diagnosis and Therapy Center of Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Provincial Key Laboratory of Prenatal Diagnosis and Birth Defect, Fujian Medical University, Fuzhou, China
- The School of Medical Technology and Engineering, Fujian Medical University, Fuzhou, China
| | - Meihuan Chen
- Medical Genetic Diagnosis and Therapy Center of Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Provincial Key Laboratory of Prenatal Diagnosis and Birth Defect, Fujian Medical University, Fuzhou, China
- The School of Medical Technology and Engineering, Fujian Medical University, Fuzhou, China
- Fujian Clinical Research Center for Maternal-Fetal Medicine, Fuzhou, China
- National Key Obstetric Clinical Specialty Construction Institution of China, Fuzhou, China
| | - Liangpu Xu
- Medical Genetic Diagnosis and Therapy Center of Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Provincial Key Laboratory of Prenatal Diagnosis and Birth Defect, Fujian Medical University, Fuzhou, China
- The School of Medical Technology and Engineering, Fujian Medical University, Fuzhou, China
- Fujian Clinical Research Center for Maternal-Fetal Medicine, Fuzhou, China
- National Key Obstetric Clinical Specialty Construction Institution of China, Fuzhou, China
| | - Hailong Huang
- Medical Genetic Diagnosis and Therapy Center of Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Provincial Key Laboratory of Prenatal Diagnosis and Birth Defect, Fujian Medical University, Fuzhou, China
- The School of Medical Technology and Engineering, Fujian Medical University, Fuzhou, China
- Fujian Clinical Research Center for Maternal-Fetal Medicine, Fuzhou, China
- National Key Obstetric Clinical Specialty Construction Institution of China, Fuzhou, China
| |
Collapse
|
24
|
Ortmann BM, Taylor CT, Rocha S. Hypoxia research, where to now? Trends Biochem Sci 2024; 49:573-582. [PMID: 38599898 DOI: 10.1016/j.tibs.2024.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/01/2024] [Accepted: 03/18/2024] [Indexed: 04/12/2024]
Abstract
Investigating how cells and organisms sense and respond to O2 levels is essential to our understanding of physiology and pathology. This field has advanced considerably since the discovery of the major transcription factor family, hypoxia-inducible factor (HIF), and the enzymes that control its levels: prolyl hydroxylases (PHDs). However, with its expansion, new complexities have emerged. Herein we highlight three main areas where, in our opinion, the research community could direct some of their attention. These include non-transcriptional roles of HIFs, specificity and O2 sensitivity of 2-oxoglutarate-dependent dioxygenases (2-OGDDs), and new tools and methods to detect O2 concentrations in cells and organs. A greater understanding of these areas would answer big questions and help drive our knowledge of cellular responses to hypoxia forward.
Collapse
Affiliation(s)
- Brian M Ortmann
- Wolfson Childhood Cancer Research Centre, Newcastle University, Newcastle upon Tyne, UK.
| | - Cormac T Taylor
- School of Medicine and Medical Sciences, University College Dublin, Dublin, Ireland.
| | - Sonia Rocha
- Institute of Systems Molecular and Integrative Biology, University of Liverpool, Liverpool, UK.
| |
Collapse
|
25
|
Xiao W, Shrimali N, Oldham WM, Clish CB, He H, Wong SJ, Wertheim BM, Arons E, Haigis MC, Leopold JA, Loscalzo J. Branched chain α-ketoacids aerobically activate HIF1α signaling in vascular cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.29.595538. [PMID: 38853866 PMCID: PMC11160772 DOI: 10.1101/2024.05.29.595538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Hypoxia-inducible factor 1α (HIF1α) is a master regulator of numerous biological processes under low oxygen tensions. Yet, the mechanisms and biological consequences of aerobic HIF1α activation by intrinsic factors, particularly in primary cells remain elusive. Here, we show that HIF1α signaling is activated in several human primary vascular cells under ambient oxygen tensions, and in vascular smooth muscle cells (VSMCs) of normal human lung tissue, which contributed to a relative resistance to further enhancement of glycolytic activity in hypoxia. Mechanistically, aerobic HIFα activation is mediated by paracrine secretion of three branched chain α-ketoacids (BCKAs), which suppress prolyl hydroxylase domain-containing protein 2 (PHD2) activity via direct inhibition and via lactate dehydrogenase A (LDHA)-mediated generation of L-2-hydroxyglutarate (L2HG). Metabolic dysfunction induced by BCKAs was observed in the lungs of rats with pulmonary arterial hypertension (PAH) and in pulmonary artery smooth muscle cells (PASMCs) from idiopathic PAH patients. BCKA supplementation stimulated glycolytic activity and promoted a phenotypic switch to the synthetic phenotype in PASMCs of normal and PAH subjects. In summary, we identify BCKAs as novel signaling metabolites that activate HIF1α signaling in normoxia and that the BCKA-HIF1α pathway modulates VSMC function and may be relevant to pulmonary vascular pathobiology.
Collapse
Affiliation(s)
- Wusheng Xiao
- Divisions of Cardiovascular Medicine and Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University, Beijing 100191, China
- Key Laboratory of State Administration of Traditional Chinese Medicine for Compatibility Toxicology, School of Public Health, Peking University, Beijing 100191, China
| | - Nishith Shrimali
- Divisions of Cardiovascular Medicine and Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - William M. Oldham
- Divisions of Cardiovascular Medicine and Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Clary B. Clish
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02142, USA
| | - Huamei He
- Divisions of Cardiovascular Medicine and Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Samantha J. Wong
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Bradley M. Wertheim
- Divisions of Cardiovascular Medicine and Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Elena Arons
- Divisions of Cardiovascular Medicine and Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Marcia C. Haigis
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Jane A. Leopold
- Divisions of Cardiovascular Medicine and Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Joseph Loscalzo
- Divisions of Cardiovascular Medicine and Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
26
|
Beerkens APM, Boreel DF, Nathan JA, Neuzil J, Cheng G, Kalyanaraman B, Hardy M, Adema GJ, Heskamp S, Span PN, Bussink J. Characterizing OXPHOS inhibitor-mediated alleviation of hypoxia using high-throughput live cell-imaging. Cancer Metab 2024; 12:13. [PMID: 38702787 PMCID: PMC11067257 DOI: 10.1186/s40170-024-00342-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/25/2024] [Indexed: 05/06/2024] Open
Abstract
BACKGROUND Hypoxia is a common feature of many solid tumors and causes radiotherapy and immunotherapy resistance. Pharmacological inhibition of oxidative phosphorylation (OXPHOS) has emerged as a therapeutic strategy to reduce hypoxia. However, the OXPHOS inhibitors tested in clinical trials caused only moderate responses in hypoxia alleviation or trials were terminated due to dose-limiting toxicities. To improve the therapeutic benefit, FDA approved OXPHOS inhibitors (e.g. atovaquone) were conjugated to triphenylphosphonium (TPP+) to preferentially target cancer cell's mitochondria. In this study, we evaluated the hypoxia reducing effects of several mitochondria-targeted OXPHOS inhibitors and compared them to non-mitochondria-targeted OXPHOS inhibitors using newly developed spheroid models for diffusion-limited hypoxia. METHODS B16OVA murine melanoma cells and MC38 murine colon cancer cells expressing a HIF-Responsive Element (HRE)-induced Green Fluorescent Protein (GFP) with an oxygen-dependent degradation domain (HRE-eGFP-ODD) were generated to assess diffusion-limited hypoxia dynamics in spheroids. Spheroids were treated with IACS-010759, atovaquone, metformin, tamoxifen or with mitochondria-targeted atovaquone (Mito-ATO), PEGylated mitochondria-targeted atovaquone (Mito-PEG-ATO) or mitochondria-targeted tamoxifen (MitoTam). Hypoxia dynamics were followed and quantified over time using the IncuCyte Zoom Live Cell-Imaging system. RESULTS Hypoxic cores developed in B16OVA.HRE and MC38.HRE spheroids within 24 h hours after seeding. Treatment with IACS-010759, metformin, atovaquone, Mito-PEG-ATO and MitoTam showed a dose-dependent reduction of hypoxia in both B16OVA.HRE and MC38.HRE spheroids. Mito-ATO only alleviated hypoxia in MC38.HRE spheroids while tamoxifen was not able to reduce hypoxia in any of the spheroid models. The mitochondria-targeted OXPHOS inhibitors demonstrated stronger anti-hypoxic effects compared to the non-mito-targeted OXPHOS inhibitors. CONCLUSIONS We successfully developed a high-throughput spheroid model in which hypoxia dynamics can be quantified over time. Using this model, we showed that the mitochondria-targeted OXPHOS inhibitors Mito-ATO, Mito-PEG-ATO and MitoTam reduce hypoxia in tumor cells in a dose-dependent manner, potentially sensitizing hypoxic tumor cells for radiotherapy.
Collapse
Affiliation(s)
- Anne P M Beerkens
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, 6525GA, The Netherlands.
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, 6525GA, The Netherlands.
| | - Daan F Boreel
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, 6525GA, The Netherlands
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, 6525GA, The Netherlands
| | - James A Nathan
- Department of Medicine, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, CB2 0XY, UK
| | - Jiri Neuzil
- School of Pharmacy and Medical Science, Griffith University, Southport Qld, 4222, Australia
- Institute of Biotechnology, Czech Academy of Sciences, Prague-West, 252 50, Czech Republic
| | - Gang Cheng
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Balaraman Kalyanaraman
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Micael Hardy
- Aix Marseille University, CNRS, ICR, UMR 7273, Marseille, 13013, France
| | - Gosse J Adema
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, 6525GA, The Netherlands
| | - Sandra Heskamp
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, 6525GA, The Netherlands
| | - Paul N Span
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, 6525GA, The Netherlands
| | - Johan Bussink
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, 6525GA, The Netherlands
| |
Collapse
|
27
|
Kitagawa Y, Kobayashi A, Cahill DP, Wakimoto H, Tanaka S. Molecular biology and novel therapeutics for IDH mutant gliomas: The new era of IDH inhibitors. Biochim Biophys Acta Rev Cancer 2024; 1879:189102. [PMID: 38653436 DOI: 10.1016/j.bbcan.2024.189102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/25/2024] [Accepted: 04/16/2024] [Indexed: 04/25/2024]
Abstract
Gliomas with Isocitrate dehydrogenase (IDH) mutation represent a discrete category of primary brain tumors with distinct and unique characteristics, behaviors, and clinical disease outcomes. IDH mutations lead to aberrant high-level production of the oncometabolite D-2-hydroxyglutarate (D-2HG), which act as a competitive inhibitor of enzymes regulating epigenetics, signaling pathways, metabolism, and various other processes. This review summarizes the significance of IDH mutations, resulting upregulation of D-2HG and the associated molecular pathways in gliomagenesis. With the recent finding of clinically effective IDH inhibitors in these gliomas, this article offers a comprehensive overview of the new era of innovative therapeutic approaches based on mechanistic rationales, encompassing both completed and ongoing clinical trials targeting gliomas with IDH mutations.
Collapse
Affiliation(s)
- Yosuke Kitagawa
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, 02114 Boston, MA, USA; Translational Neuro-Oncology Laboratory, Massachusetts General Hospital, Harvard Medical School, 02114 Boston, MA, USA; Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo, 1138655 Bunkyo-ku, Tokyo, Japan
| | - Ami Kobayashi
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, 02115 Boston, MA, USA
| | - Daniel P Cahill
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, 02114 Boston, MA, USA; Translational Neuro-Oncology Laboratory, Massachusetts General Hospital, Harvard Medical School, 02114 Boston, MA, USA
| | - Hiroaki Wakimoto
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, 02114 Boston, MA, USA; Translational Neuro-Oncology Laboratory, Massachusetts General Hospital, Harvard Medical School, 02114 Boston, MA, USA.
| | - Shota Tanaka
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 7008558, Okayama, Japan
| |
Collapse
|
28
|
Rumin S, Han X, Zeng C, Lv F, Fang R, Gong R, Tian X, Ding X. Systematic analysis of cuproptosis abnormalities and functional significance in cancer. PLoS One 2024; 19:e0300626. [PMID: 38573998 PMCID: PMC10994309 DOI: 10.1371/journal.pone.0300626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 03/02/2024] [Indexed: 04/06/2024] Open
Abstract
BACKGROUND Cuproptosis is a recently discovered type of cell death, but the role and behavior of cuproptosis-related genes (CuRGs) in cancers remain unclear. This paper aims to address these issues by analyzing the multi-omics characteristics of cancer-related genes (CuRGs) across various types of cancer. METHOD To investigate the impact of somatic copy number alterations (SCNA) and DNA methylation on CRG expression, we will analyze the correlation between these factors. We developed a cuproptosis index (CPI) model to measure the level of cuproptosis and investigate its functional roles. Using this model, we assessed the clinical prognosis of colorectal cancer patients and analyzed genetic changes and immune infiltration features in different CPI levels. RESULTS The study's findings indicate that the majority of cancer-related genes (CuRGs) were suppressed in tumors and had a positive correlation with somatic copy number alterations (SCNA), while having a negative correlation with DNA methylation. This suggests that both SCNA and DNA methylation have an impact on the expression of CuRGs. The CPI model is a reliable predictor of survival outcomes in patients with colorectal cancer and can serve as an independent prognostic factor. Patients with a higher CPI have a worse prognosis. We conducted a deeper analysis of the genetic alterations and immune infiltration patterns in both CPI positive and negative groups. Our findings revealed significant differences, indicating that CuRGs may play a crucial role in tumor immunity mechanisms. Additionally, we have noticed a positive correlation between CuRGs and various crucial pathways that are linked to the occurrence, progression, and metastasis of tumors. CONCLUSIONS Overall, our study systematically analyzes cuproptosis and its regulatory genes, emphasizing the potential of using cuproptosis as a basis for cancer therapy.
Collapse
Affiliation(s)
- Shang Rumin
- Department of Gastroenterology, Wuhan Pu’ai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Xiangming Han
- Department of Oncology, Nanjing Drum Tower Hospital, Nanjing, 210008, China
| | - Cui Zeng
- Department of Gastroenterology, Wuhan Fourth Hospital, Wuhan, 430000, China
| | - Fei Lv
- Department of Gastroenterology, Wuhan Fourth Hospital, Wuhan, 430000, China
| | - Rong Fang
- Department of Gastroenterology, Wuhan Fourth Hospital, Wuhan, 430000, China
| | - Rongrong Gong
- Department of Gastroenterology, Wuhan Fourth Hospital, Wuhan, 430000, China
| | - Xiaochang Tian
- Department of Gastroenterology, Wuhan Fourth Hospital, Wuhan, 430000, China
| | - Xiangwu Ding
- Department of Gastroenterology, Wuhan Fourth Hospital, Wuhan, 430000, China
| |
Collapse
|
29
|
Zhao Y, Yang Y, Yang R, Sun C, Gao X, Gu X, Yuan Y, Nie Y, Xu S, Han R, Zhang L, Li J, Hu P, Wang Y, Chen H, Cao X, Wu J, Wang Z, Gu Y, Ye J. IDH1 mutation inhibits differentiation of astrocytes and glioma cells with low oxoglutarate dehydrogenase expression by disturbing α-ketoglutarate-related metabolism and epigenetic modification. LIFE METABOLISM 2024; 3:loae002. [PMID: 39872214 PMCID: PMC11749698 DOI: 10.1093/lifemeta/loae002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 01/03/2024] [Accepted: 01/13/2024] [Indexed: 01/30/2025]
Abstract
Isocitrate dehydrogenase (IDH) mutations frequently occur in lower-grade gliomas and secondary glioblastomas. Mutant IDHs exhibit a gain-of-function activity, leading to the production of D-2-hydroxyglutarate (D-2HG) by reducing α-ketoglutarate (α-KG), a central player in metabolism and epigenetic modifications. However, the role of α-KG homeostasis in IDH-mutated gliomagenesis remains elusive. In this study, we found that low expression of oxoglutarate dehydrogenase (OGDH) was a common feature in IDH-mutated gliomas, as well as in astrocytes. This low expression of OGDH resulted in the accumulation of α-KG and promoted astrocyte maturation. However, IDH1 mutation significantly reduced α-KG levels and increased glutaminolysis and DNA/histone methylation in astrocytes. These metabolic and epigenetic alterations inhibited astrocyte maturation and led to cortical dysplasia in mice. Moreover, our results also indicated that reduced OGDH expression can promote the differentiation of glioma cells, while IDH1 mutations impeded the differentiation of glioma cells with low OGDH by reducing the accumulation of α-KG and increasing glutaminolysis. Finally, we found that l-glutamine increased α-KG levels and augmented the differentiation-promoting effects of AGI5198, an IDH1-mutant inhibitor, in IDH1-mutant glioma cells. Collectively, this study reveals that low OGDH expression is a crucial metabolic characteristic of IDH-mutant gliomas, providing a potential strategy for the treatment of IDH-mutant gliomas by targeting α-KG homeostasis.
Collapse
Affiliation(s)
- Yuanlin Zhao
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi’an, Shaanxi 710032, China
| | - Ying Yang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi’an, Shaanxi 710032, China
| | - Risheng Yang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi’an, Shaanxi 710032, China
- Department of Pathology, Air Force Hospital of Southern Theater Command, Guangzhou, Guangdong 510000, China
| | - Chao Sun
- Department of Neurology, Tangdu Hospital, Fourth Military Medical University, Xi’an, Shaanxi 710038, China
| | - Xing Gao
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi’an, Shaanxi 710032, China
| | - Xiwen Gu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi’an, Shaanxi 710032, China
| | - Yuan Yuan
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi’an, Shaanxi 710032, China
| | - Yating Nie
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi’an, Shaanxi 710032, China
| | - Shenhui Xu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi’an, Shaanxi 710032, China
| | - Ruili Han
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi’an, Shaanxi 710032, China
| | - Lijun Zhang
- Department of Clinical Diagnosis, Tangdu Hospital, Fourth Military Medical University, Xi’an, Shaanxi 710038, China
| | - Jing Li
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi’an, Shaanxi 710032, China
| | - Peizhen Hu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi’an, Shaanxi 710032, China
| | - Yingmei Wang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi’an, Shaanxi 710032, China
| | - Huangtao Chen
- Department of Neurosurgery, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710004, China
| | - Xiangmei Cao
- Department of Pathology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Jing Wu
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, China
| | - Zhe Wang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi’an, Shaanxi 710032, China
| | - Yu Gu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi’an, Shaanxi 710032, China
| | - Jing Ye
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi’an, Shaanxi 710032, China
| |
Collapse
|
30
|
Granat L, Knorr DY, Ranson DC, Chakrabarty RP, Chandel NS, Bateman JM. A Drosophila model of mitochondrial disease phenotypic heterogeneity. Biol Open 2024; 13:bio060278. [PMID: 38304969 PMCID: PMC10924217 DOI: 10.1242/bio.060278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 01/22/2024] [Indexed: 02/03/2024] Open
Abstract
Mutations in genes that affect mitochondrial function cause primary mitochondrial diseases. Mitochondrial diseases are highly heterogeneous and even patients with the same mitochondrial disease can exhibit broad phenotypic heterogeneity, which is poorly understood. Mutations in subunits of mitochondrial respiratory complex I cause complex I deficiency, which can result in severe neurological symptoms and death in infancy. However, some complex I deficiency patients present with much milder symptoms. The most common nuclear gene mutated in complex I deficiency is the highly conserved core subunit NDUFS1. To model the phenotypic heterogeneity in complex I deficiency, we used RNAi lines targeting the Drosophila NDUFS1 homolog ND-75 with different efficiencies. Strong knockdown of ND-75 in Drosophila neurons resulted in severe behavioural phenotypes, reduced lifespan, altered mitochondrial morphology, reduced endoplasmic reticulum (ER)-mitochondria contacts and activation of the unfolded protein response (UPR). By contrast, weak ND-75 knockdown caused much milder behavioural phenotypes and changes in mitochondrial morphology. Moreover, weak ND-75 did not alter ER-mitochondria contacts or activate the UPR. Weak and strong ND-75 knockdown resulted in overlapping but distinct transcriptional responses in the brain, with weak knockdown specifically affecting proteosome activity and immune response genes. Metabolism was also differentially affected by weak and strong ND-75 knockdown including gamma-aminobutyric acid (GABA) levels, which may contribute to neuronal dysfunction in ND-75 knockdown flies. Several metabolic processes were only affected by strong ND-75 knockdown including the pentose phosphate pathway and the metabolite 2-hydroxyglutarate (2-HG), suggesting 2-HG as a candidate biomarker of severe neurological mitochondrial disease. Thus, our Drosophila model provides the means to dissect the mechanisms underlying phenotypic heterogeneity in mitochondrial disease.
Collapse
Affiliation(s)
- Lucy Granat
- Maurice Wohl Clinical Neuroscience Institute, King's College London, 5 Cutcombe Road, London SE5 9RX, UK
| | - Debbra Y. Knorr
- Maurice Wohl Clinical Neuroscience Institute, King's College London, 5 Cutcombe Road, London SE5 9RX, UK
| | - Daniel C. Ranson
- Maurice Wohl Clinical Neuroscience Institute, King's College London, 5 Cutcombe Road, London SE5 9RX, UK
| | - Ram Prosad Chakrabarty
- Department of Medicine, Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Navdeep S. Chandel
- Department of Medicine, Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Joseph M. Bateman
- Maurice Wohl Clinical Neuroscience Institute, King's College London, 5 Cutcombe Road, London SE5 9RX, UK
| |
Collapse
|
31
|
Ortmann BM. Hypoxia-inducible factor in cancer: from pathway regulation to therapeutic opportunity. BMJ ONCOLOGY 2024; 3:e000154. [PMID: 39886164 PMCID: PMC11203102 DOI: 10.1136/bmjonc-2023-000154] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/03/2024] [Indexed: 02/01/2025]
Abstract
Cancer remains one of the most formidable challenges in modern medicine, due to its complex and dynamic nature, which demands innovative therapeutic approaches. One major challenge to cancer treatment is the tumour microenvironment and in particular tumour hypoxia (low oxygen levels), which contributes to tumour progression and immune evasion. At the cellular level, this is primarily governed by hypoxia-inducible factor (HIF). HIF is a transcription factor that orchestrates cellular responses to low oxygen levels, driving angiogenesis, metabolic adaptation and immune regulation. HIF's dysregulation is frequently observed in various cancer types and correlates with increased aggressiveness, metastasis, resistance to therapy and poor patient prognosis. Consequently, understanding the cellular mechanisms underlying HIF activation and its downstream effects has become crucial to developing targeted cancer therapies for improving cancer patient outcomes and represents a key step towards precision medicine. Recent advancements in drug development have led to the emergence of HIF inhibitors, which aim to disrupt HIF-driven processes in cancer providing therapeutic benefit. Here, we provide a review of the molecular mechanisms through which HIF promotes tumour growth and resistance, emphasising the potential clinical benefits of HIF-targeted therapies. This review will discuss the challenges and opportunities associated with translating HIF inhibition into clinical practice, including ongoing clinical trials and future directions in the development of HIF-based cancer treatments.
Collapse
Affiliation(s)
- Brian M Ortmann
- Biosciences Institute, Newcastle University, Newcastle Upon Tyne, UK
| |
Collapse
|
32
|
Liu WQ, Lin WR, Yan L, Xu WH, Yang J. Copper homeostasis and cuproptosis in cancer immunity and therapy. Immunol Rev 2024; 321:211-227. [PMID: 37715546 DOI: 10.1111/imr.13276] [Citation(s) in RCA: 37] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/29/2023] [Accepted: 08/31/2023] [Indexed: 09/17/2023]
Abstract
Copper is an essential nutrient for maintaining enzyme activity and transcription factor function. Excess copper results in the aggregation of lipoylated dihydrolipoamide S-acetyltransferase (DLAT), which correlates to the mitochondrial tricarboxylic acid (TCA) cycle, resulting in proteotoxic stress and eliciting a novel cell death modality: cuproptosis. Cuproptosis exerts an indispensable role in cancer progression, which is considered a promising strategy for cancer therapy. Cancer immunotherapy has gained extensive attention owing to breakthroughs in immune checkpoint blockade; furthermore, cuproptosis is strongly connected to the modulation of antitumor immunity. Thus, a thorough recognition concerning the mechanisms involved in the modulation of copper metabolism and cuproptosis may facilitate improvement in cancer management. This review outlines the cellular and molecular mechanisms and characteristics of cuproptosis and the links of the novel regulated cell death modality with human cancers. We also review the current knowledge on the complex effects of cuproptosis on antitumor immunity and immune response. Furthermore, potential agents that elicit cuproptosis pathways are summarized. Lastly, we discuss the influence of cuproptosis induction on the tumor microenvironment as well as the challenges of adding cuproptosis regulators to therapeutic strategies beyond traditional therapy.
Collapse
Affiliation(s)
- Wei-Qing Liu
- Department of Internal Medicine-Oncology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Wan-Rong Lin
- Department of Surgical Oncology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Li Yan
- Department of Internal Medicine-Oncology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Wen-Hao Xu
- Department of Internal Medicine-Oncology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jun Yang
- Department of Surgical Oncology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
33
|
Boothby M, Cho SH. Hypoxia and the Hypoxia-Inducible Factors in Lymphocyte Differentiation and Function. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1459:115-141. [PMID: 39017842 DOI: 10.1007/978-3-031-62731-6_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Molecular oxygen doubles as a biomolecular building block and an element required for energy generation and metabolism in aerobic organisms. A variety of systems in mammalian cells sense the concentration of oxygen to which they are exposed and are tuned to the range present in our blood and tissues. The ability to respond to insufficient O2 in tissues is central to regulation of erythroid lineage cells, but challenges also are posed for immune cells by a need to adjust to very different oxygen concentrations. Hypoxia-inducible factors (HIFs) provide a major means of making such adjustments. For adaptive immunity, lymphoid lineages are initially defined in bone marrow niches; T lineage cells arise in the thymus, and B cells complete maturation in the spleen. Lymphocytes move from these first stops into microenvironments (bloodstream, lymphatics, and tissues) with distinct oxygenation in each. Herein, evidence pertaining to functions of the HIF transcription factors (TFs) in lymphocyte differentiation and function is reviewed. For the CD4+ and CD8+ subsets of T cells, the case is very strong that hypoxia and HIFs regulate important differentiation events and functions after the naïve lymphocytes emerge from the thymus. In the B lineage, the data indicate that HIF1 contributes to a balanced regulation of B-cell fates after antigen (Ag) activation during immunity. A model synthesized from the aggregate literature is that HIF in lymphocytes generally serves to modulate function in a manner dependent on the molecular context framed by other TFs and signals.
Collapse
Affiliation(s)
- Mark Boothby
- Departments of Pathology, Microbiology, Immunology (Molecular Pathogenesis Division), Vanderbilt University Medical Center, Nashville, TN, USA.
- Medicine (Rheumatology and Immunology Division), Vanderbilt University Medical Center, Nashville, TN, USA.
- Vanderbilt Institute for Infection, Inflammation, Immunity (VI4), Nashville, TN, USA.
| | - Sung Hoon Cho
- Departments of Pathology, Microbiology, Immunology (Molecular Pathogenesis Division), Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Institute for Infection, Inflammation, Immunity (VI4), Nashville, TN, USA
| |
Collapse
|
34
|
Szabo E, Nagy B, Czajlik A, Komlodi T, Ozohanics O, Tretter L, Ambrus A. Mitochondrial Alpha-Keto Acid Dehydrogenase Complexes: Recent Developments on Structure and Function in Health and Disease. Subcell Biochem 2024; 104:295-381. [PMID: 38963492 DOI: 10.1007/978-3-031-58843-3_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
The present work delves into the enigmatic world of mitochondrial alpha-keto acid dehydrogenase complexes discussing their metabolic significance, enzymatic operation, moonlighting activities, and pathological relevance with links to underlying structural features. This ubiquitous family of related but diverse multienzyme complexes is involved in carbohydrate metabolism (pyruvate dehydrogenase complex), the citric acid cycle (α-ketoglutarate dehydrogenase complex), and amino acid catabolism (branched-chain α-keto acid dehydrogenase complex, α-ketoadipate dehydrogenase complex); the complexes all function at strategic points and also participate in regulation in these metabolic pathways. These systems are among the largest multienzyme complexes with at times more than 100 protein chains and weights ranging up to ~10 million Daltons. Our chapter offers a wealth of up-to-date information on these multienzyme complexes for a comprehensive understanding of their significance in health and disease.
Collapse
Affiliation(s)
- Eszter Szabo
- Department of Biochemistry, Semmelweis University, Budapest, Hungary
| | - Balint Nagy
- Department of Biochemistry, Semmelweis University, Budapest, Hungary
| | - Andras Czajlik
- Department of Biochemistry, Semmelweis University, Budapest, Hungary
| | - Timea Komlodi
- Department of Biochemistry, Semmelweis University, Budapest, Hungary
| | - Oliver Ozohanics
- Department of Biochemistry, Semmelweis University, Budapest, Hungary
| | - Laszlo Tretter
- Department of Biochemistry, Semmelweis University, Budapest, Hungary
| | - Attila Ambrus
- Department of Biochemistry, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
35
|
Zhao L, Hao Y, Tang S, Han X, Li R, Zhou X. Energy metabolic reprogramming regulates programmed cell death of renal tubular epithelial cells and might serve as a new therapeutic target for acute kidney injury. Front Cell Dev Biol 2023; 11:1276217. [PMID: 38054182 PMCID: PMC10694365 DOI: 10.3389/fcell.2023.1276217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 11/08/2023] [Indexed: 12/07/2023] Open
Abstract
Acute kidney injury (AKI) induces significant energy metabolic reprogramming in renal tubular epithelial cells (TECs), thereby altering lipid, glucose, and amino acid metabolism. The changes in lipid metabolism encompass not only the downregulation of fatty acid oxidation (FAO) but also changes in cell membrane lipids and triglycerides metabolism. Regarding glucose metabolism, AKI leads to increased glycolysis, activation of the pentose phosphate pathway (PPP), inhibition of gluconeogenesis, and upregulation of the polyol pathway. Research indicates that inhibiting glycolysis, promoting the PPP, and blocking the polyol pathway exhibit a protective effect on AKI-affected kidneys. Additionally, changes in amino acid metabolism, including branched-chain amino acids, glutamine, arginine, and tryptophan, play an important role in AKI progression. These metabolic changes are closely related to the programmed cell death of renal TECs, involving autophagy, apoptosis, necroptosis, pyroptosis, and ferroptosis. Notably, abnormal intracellular lipid accumulation can impede autophagic clearance, further exacerbating lipid accumulation and compromising autophagic function, forming a vicious cycle. Recent studies have demonstrated the potential of ameliorating AKI-induced kidney damage through calorie and dietary restriction. Consequently, modifying the energy metabolism of renal TECs and dietary patterns may be an effective strategy for AKI treatment.
Collapse
Affiliation(s)
- Limei Zhao
- The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yajie Hao
- The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Shuqin Tang
- The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiutao Han
- The Third Clinical College, Shanxi University of Chinese Medicine, Jinzhong, Shanxi, China
| | - Rongshan Li
- Department of Nephrology, Shanxi Provincial People’s Hospital, The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiaoshuang Zhou
- Department of Nephrology, Shanxi Provincial People’s Hospital, The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|
36
|
Ran XM, Xiao H, Tang YX, Jin X, Tang X, Zhang J, Li H, Li YK, Tang ZZ. The effect of cuproptosis-relevant genes on the immune infiltration and metabolism of gynecological oncology by multiply analysis and experiments validation. Sci Rep 2023; 13:19474. [PMID: 37945610 PMCID: PMC10636103 DOI: 10.1038/s41598-023-45076-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/16/2023] [Indexed: 11/12/2023] Open
Abstract
Gynecological cancers are a leading cause of mortality for women, including ovarian cancer (OC), cervical squamous cell carcinoma (CESC), and uterine corpus endometrial carcinoma (UCEC). Nevertheless, these gynecological cancer types have not elucidated the role of cuproptosis and the correlated tumor microenvironment (TME) infiltration features. CRGs had important potential molecular functions and prognostic significance in gynecological cancers, especially in UCEC. Hub CRG, FDX1, was correlated with the CD8+ T cell immune infiltration in UCEC and CESC. FDX1 OE could significantly repress the proliferation ability in UCEC cells by MTT, EdU, and clone formation. High levels of FDX1 could repress ATP and lactic acid but enhance ROS and glucose levels by metabolism assay. The xenograft tumor model indicated that FDX1 OE significantly inhibited the growth of UCEC and attenuated the PCNA, HK2, PKM2, and Ki-67 expression. These CRGs are significant roles that could be potential markers and treatment targets to optimize the TME immune cell infiltration features for gynecological cancer types. FDX1 is a hub CRGs in UCEC to promote immune infiltration and attenuate proliferation and metabolism.
Collapse
Affiliation(s)
- Xiao-Min Ran
- Department of Gynecologic Oncology Ward5, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Hui Xiao
- Department of Gynecologic Oncology Ward1, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Yan-Xiang Tang
- Department of Gynecologic Oncology Ward1, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Xia Jin
- Department of Pathology, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Xing Tang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of the University of South China, Hengyang, Hunan, China
| | - Juan Zhang
- Department of Assisted Reproductive Centre, Zhuzhou Central Hospital, Xiangya Hospital, Zhuzhou Central South University, Central South University, Zhuzhou, Hunan, China
| | - Hui Li
- Department of Assisted Reproductive Centre, Zhuzhou Central Hospital, Xiangya Hospital, Zhuzhou Central South University, Central South University, Zhuzhou, Hunan, China
| | - Yu-Kun Li
- Department of Assisted Reproductive Centre, Zhuzhou Central Hospital, Xiangya Hospital, Zhuzhou Central South University, Central South University, Zhuzhou, Hunan, China
| | - Zhen-Zi Tang
- Department of Gynecologic Oncology Ward1, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.
| |
Collapse
|
37
|
Gao Y, Zimmer JT, Vasic R, Liu C, Gbyli R, Zheng SJ, Patel A, Liu W, Qi Z, Li Y, Nelakanti R, Song Y, Biancon G, Xiao AZ, Slavoff S, Kibbey RG, Flavell RA, Simon MD, Tebaldi T, Li HB, Halene S. ALKBH5 modulates hematopoietic stem and progenitor cell energy metabolism through m 6A modification-mediated RNA stability control. Cell Rep 2023; 42:113163. [PMID: 37742191 PMCID: PMC10636609 DOI: 10.1016/j.celrep.2023.113163] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 08/01/2023] [Accepted: 09/08/2023] [Indexed: 09/26/2023] Open
Abstract
N6-methyladenosine (m6A) RNA modification controls numerous cellular processes. To what extent these post-transcriptional regulatory mechanisms play a role in hematopoiesis has not been fully elucidated. We here show that the m6A demethylase alkB homolog 5 (ALKBH5) controls mitochondrial ATP production and modulates hematopoietic stem and progenitor cell (HSPC) fitness in an m6A-dependent manner. Loss of ALKBH5 results in increased RNA methylation and instability of oxoglutarate-dehydrogenase (Ogdh) messenger RNA and reduction of OGDH protein levels. Limited OGDH availability slows the tricarboxylic acid (TCA) cycle with accumulation of α-ketoglutarate (α-KG) and conversion of α-KG into L-2-hydroxyglutarate (L-2-HG). L-2-HG inhibits energy production in both murine and human hematopoietic cells in vitro. Impaired mitochondrial energy production confers competitive disadvantage to HSPCs and limits clonogenicity of Mll-AF9-induced leukemia. Our study uncovers a mechanism whereby the RNA m6A demethylase ALKBH5 regulates the stability of metabolic enzyme transcripts, thereby controlling energy metabolism in hematopoiesis and leukemia.
Collapse
Affiliation(s)
- Yimeng Gao
- Section of Hematology, Department of Internal Medicine, Yale Cancer Center, and Yale Center for RNA Science and Medicine, Yale University School of Medicine, New Haven, CT 06520, USA; Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT 06520, USA.
| | - Joshua T Zimmer
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06511, USA; Institute for Biomolecular Design and Discovery, Yale University, West Haven, CT 06516, USA
| | - Radovan Vasic
- Section of Hematology, Department of Internal Medicine, Yale Cancer Center, and Yale Center for RNA Science and Medicine, Yale University School of Medicine, New Haven, CT 06520, USA; Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Medicine, University of Toronto, Toronto, ON M5S3H2, Canada
| | - Chengyang Liu
- Section of Hematology, Department of Internal Medicine, Yale Cancer Center, and Yale Center for RNA Science and Medicine, Yale University School of Medicine, New Haven, CT 06520, USA; Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Rana Gbyli
- Section of Hematology, Department of Internal Medicine, Yale Cancer Center, and Yale Center for RNA Science and Medicine, Yale University School of Medicine, New Haven, CT 06520, USA; Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Genetics and Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06520, USA
| | - Shu-Jian Zheng
- Institute for Biomolecular Design and Discovery, Yale University, West Haven, CT 06516, USA; Department of Chemistry, Yale University, New Haven, CT 06520, USA
| | - Amisha Patel
- Section of Hematology, Department of Internal Medicine, Yale Cancer Center, and Yale Center for RNA Science and Medicine, Yale University School of Medicine, New Haven, CT 06520, USA; Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Wei Liu
- Section of Hematology, Department of Internal Medicine, Yale Cancer Center, and Yale Center for RNA Science and Medicine, Yale University School of Medicine, New Haven, CT 06520, USA; Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Zhihong Qi
- Section of Hematology, Department of Internal Medicine, Yale Cancer Center, and Yale Center for RNA Science and Medicine, Yale University School of Medicine, New Haven, CT 06520, USA; Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Yaping Li
- Section of Hematology, Department of Internal Medicine, Yale Cancer Center, and Yale Center for RNA Science and Medicine, Yale University School of Medicine, New Haven, CT 06520, USA; Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Raman Nelakanti
- Department of Genetics and Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06520, USA
| | - Yuanbin Song
- Section of Hematology, Department of Internal Medicine, Yale Cancer Center, and Yale Center for RNA Science and Medicine, Yale University School of Medicine, New Haven, CT 06520, USA; Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Hematologic Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Giulia Biancon
- Section of Hematology, Department of Internal Medicine, Yale Cancer Center, and Yale Center for RNA Science and Medicine, Yale University School of Medicine, New Haven, CT 06520, USA; Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Andrew Z Xiao
- Department of Genetics and Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06520, USA
| | - Sarah Slavoff
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06511, USA; Institute for Biomolecular Design and Discovery, Yale University, West Haven, CT 06516, USA; Department of Chemistry, Yale University, New Haven, CT 06520, USA
| | - Richard G Kibbey
- Department of Internal Medicine, Yale University, New Haven, CT 06520, USA; Department of Cellular & Molecular Physiology, Yale University, New Haven, CT 06520, USA
| | - Richard A Flavell
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Matthew D Simon
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06511, USA; Institute for Biomolecular Design and Discovery, Yale University, West Haven, CT 06516, USA
| | - Toma Tebaldi
- Section of Hematology, Department of Internal Medicine, Yale Cancer Center, and Yale Center for RNA Science and Medicine, Yale University School of Medicine, New Haven, CT 06520, USA; Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38123 Trento, Italy
| | - Hua-Bing Li
- Shanghai Institute of Immunology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Stephanie Halene
- Section of Hematology, Department of Internal Medicine, Yale Cancer Center, and Yale Center for RNA Science and Medicine, Yale University School of Medicine, New Haven, CT 06520, USA; Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Pathology, Yale University School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
38
|
Luo H, Wang Q, Yang F, Liu R, Gao Q, Cheng B, Lin X, Huang L, Chen C, Xiang J, Wang K, Qin B, Tang N. Signaling metabolite succinylacetone activates HIF-1α and promotes angiogenesis in GSTZ1-deficient hepatocellular carcinoma. JCI Insight 2023; 8:e164968. [PMID: 37906252 PMCID: PMC10896004 DOI: 10.1172/jci.insight.164968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/25/2023] [Indexed: 11/02/2023] Open
Abstract
Aberrant angiogenesis in hepatocellular carcinoma (HCC) is associated with tumor growth, progression, and local or distant metastasis. Hypoxia-inducible factor 1α (HIF-1α) is a transcription factor that plays a major role in regulating angiogenesis during adaptation of tumor cells to nutrient-deprived microenvironments. Genetic defects in Krebs cycle enzymes, such as succinate dehydrogenase and fumarate hydratase, result in elevation of oncometabolites succinate and fumarate, thereby increasing HIF-1α stability and activating the HIF-1α signaling pathway. However, whether other metabolites regulate HIF-1α stability remains unclear. Here, we reported that deficiency of the enzyme in phenylalanine/tyrosine catabolism, glutathione S-transferase zeta 1 (GSTZ1), led to accumulation of succinylacetone, which was structurally similar to α-ketoglutarate. Succinylacetone competed with α-ketoglutarate for prolyl hydroxylase domain 2 (PHD2) binding and inhibited PHD2 activity, preventing hydroxylation of HIF-1α, thus resulting in its stabilization and consequent expression of vascular endothelial growth factor (VEGF). Our findings suggest that GSTZ1 may serve as an important tumor suppressor owing to its ability to inhibit the HIF-1α/VEGFA axis in HCC. Moreover, we explored the therapeutic potential of HIF-1α inhibitor combined with anti-programmed cell death ligand 1 therapy to effectively prevent HCC angiogenesis and tumorigenesis in Gstz1-knockout mice, suggesting a potentially actionable strategy for HCC treatment.
Collapse
Affiliation(s)
- Huating Luo
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital
- Department of Geriatrics, The First Affiliated Hospital
| | - Qiujie Wang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital
| | - Fan Yang
- Department of Infectious Diseases, The First Affiliated Hospital
| | - Rui Liu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital; and
| | - Qingzhu Gao
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital
| | - Bin Cheng
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital
| | - Xue Lin
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital
| | - Luyi Huang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital
| | - Chang Chen
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Jin Xiang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital
| | - Kai Wang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital
| | - Bo Qin
- Department of Infectious Diseases, The First Affiliated Hospital
| | - Ni Tang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital
| |
Collapse
|
39
|
Wang J, Luo LZ, Liang DM, Guo C, Huang ZH, Sun GY, Wen J. Progress in the research of cuproptosis and possible targets for cancer therapy. World J Clin Oncol 2023; 14:324-334. [PMID: 37771632 PMCID: PMC10523190 DOI: 10.5306/wjco.v14.i9.324] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/05/2023] [Accepted: 09/04/2023] [Indexed: 09/20/2023] Open
Abstract
Developing novel cancer therapies that exploit programmed cell death pathways holds promise for advancing cancer treatment. According to a recently published study in Science, copper death (cuproptosis) occurs when intracellular copper is overloaded, triggering aggregation of lipidated mitochondrial proteins and Fe-S cluster proteins. This intriguing phenomenon is triggered by the instability of copper ions. Understanding the molecular mechanisms behind cuproptosis and its associated genes, as identified by Tsvetkov, including ferredoxin 1, lipoic acid synthase, lipoyltransferase 1, dihydrolipid amide dehydrogenase, dihydrolipoamide transacetylase, pyruvate dehydrogenase α1, pyruvate dehydrogenase β, metallothionein, glutaminase, and cyclin-dependent kinase inhibitor 2A, may open new avenues for cancer therapy. Here, we provide a new understanding of the role of copper death and related genes in cancer.
Collapse
Affiliation(s)
- Jiang Wang
- Children Medical Center, Hunan Provincial People’s Hospital, the First Affiliated Hospital of Hunan Normal University, Changsha 410013, Hunan Province, China
| | - Lan-Zhu Luo
- Children Medical Center, Hunan Provincial People’s Hospital, the First Affiliated Hospital of Hunan Normal University, Changsha 410013, Hunan Province, China
| | - Dao-Miao Liang
- Department of Hepatobiliary Surgery, Hunan Provincial People’s Hospital, the First Affiliated Hospital of Hunan Normal University, Changsha 410013, Hunan Province, China
| | - Chao Guo
- Department of Hepatobiliary Surgery, Hunan Provincial People’s Hospital, the First Affiliated Hospital of Hunan Normal University, Changsha 410013, Hunan Province, China
| | - Zhi-Hong Huang
- Children Medical Center, Hunan Provincial People’s Hospital, the First Affiliated Hospital of Hunan Normal University, Changsha 410013, Hunan Province, China
| | - Guo-Ying Sun
- Department of Histology and Embryology, Hunan Normal University School of Medicine, Changsha 410013, Hunan Province, China
| | - Jie Wen
- Department of Pediatric Orthopedics, Hunan Provincial People’s Hospital, the First Affiliated Hospital of Hunan Normal University, Changsha 410013, Hunan Province, China
| |
Collapse
|
40
|
Burtscher J, Hohenauer E, Burtscher M, Millet GP, Egg M. Environmental and behavioral regulation of HIF-mitochondria crosstalk. Free Radic Biol Med 2023; 206:63-73. [PMID: 37385566 DOI: 10.1016/j.freeradbiomed.2023.06.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/05/2023] [Accepted: 06/19/2023] [Indexed: 07/01/2023]
Abstract
Reduced oxygen availability (hypoxia) can lead to cell and organ damage. Therefore, aerobic species depend on efficient mechanisms to counteract detrimental consequences of hypoxia. Hypoxia inducible factors (HIFs) and mitochondria are integral components of the cellular response to hypoxia and coordinate both distinct and highly intertwined adaptations. This leads to reduced dependence on oxygen, improved oxygen supply, maintained energy provision by metabolic remodeling and tapping into alternative pathways and increased resilience to hypoxic injuries. On one hand, many pathologies are associated with hypoxia and hypoxia can drive disease progression, for example in many cancer and neurological diseases. But on the other hand, controlled induction of hypoxia responses via HIFs and mitochondria can elicit profound health benefits and increase resilience. To tackle pathological hypoxia conditions or to apply health-promoting hypoxia exposures efficiently, cellular and systemic responses to hypoxia need to be well understood. Here we first summarize the well-established link between HIFs and mitochondria in orchestrating hypoxia-induced adaptations and then outline major environmental and behavioral modulators of their interaction that remain poorly understood.
Collapse
Affiliation(s)
- Johannes Burtscher
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland.
| | - Erich Hohenauer
- Rehabilitation and Exercise Science Laboratory (RES Lab), Department of Business Economics, Health and Social Care, University of Applied Sciences and Arts of Southern Switzerland, Landquart, Switzerland; International University of Applied Sciences THIM, Landquart, Switzerland; Department of Neurosciences and Movement Science, University of Fribourg, Fribourg, Switzerland; Department of Movement and Sport Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Martin Burtscher
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| | - Grégoire P Millet
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Margit Egg
- Institute of Zoology, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
41
|
Liu N, Yan M, Tao Q, Wu J, Chen J, Chen X, Peng C. Inhibition of TCA cycle improves the anti-PD-1 immunotherapy efficacy in melanoma cells via ATF3-mediated PD-L1 expression and glycolysis. J Immunother Cancer 2023; 11:e007146. [PMID: 37678921 PMCID: PMC10496672 DOI: 10.1136/jitc-2023-007146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2023] [Indexed: 09/09/2023] Open
Abstract
BACKGROUND anti-Programmed Death-1 (anti-PD-1) immunotherapy has shown promising manifestation in improving the survival rate of patients with advanced melanoma, with its efficacy closely linked to Programmed cell death-Ligand 1 (PD-L1) expression. However, low clinical efficacy and drug resistance remain major challenges. Although the metabolic alterations from tricarboxylic acid (TCA) cycle to glycolysis is a hallmark in cancer cells, accumulating evidence demonstrating TCA cycle plays critical roles in both tumorigenesis and treatment. METHODS The plasma levels of metabolites in patients with melanoma were measured by nuclear magnetic resonance (NMR) spectroscopy. The effect of pyruvate dehydrogenase subunit 1 (PDHA1) and oxoglutarate dehydrogenase (OGDH) on immunotherapy was performed by B16F10 tumor-bearing mice. Flow cytometry analyzed the immune microenvironment. RNA sequencing analyzed the global transcriptome alterations in CPI613-treated melanoma cells. The regulation of PD-L1 and glycolysis by PDHA1/OGDH-ATF3 signaling were confirmed by Quantitative real-time polymerase chain reaction (qRT-PCR), western blotting, dual-luciferase reporter gene, Chromatin immunoprecipitation (ChIP)-quantitative PCR and Seahorse assay. The relationship between PDHA1/OGDH-ATF3-glycolysis and the efficacy of melanoma anti-PD-1 immunotherapy was verified in the clinical database and single-cell RNA-seq (ScRNA-Seq). RESULTS In our study, the results showed that significant alterations in metabolites associated with glycolysis and the TCA cycle in plasma of patients with melanoma through NMR technique, and then, PDHA1 and OGDH, key enzymes for regulation TCA cycle, were remarkable raised in melanoma and negatively related to anti-PD-1 efficacy through clinical database analysis as well as ScRNA-Seq. Inhibition of PDHA1 and OGDH by either shRNA or pharmacological inhibitor by CPI613 dramatically attenuated melanoma progression as well as improved the therapeutic efficacy of anti-PD-1 against melanoma. Most importantly, suppression of TCA cycle remarkably raises PD-L1 expression and glycolysis flux through AMPK-CREB-ATF3 signaling. CONCLUSIONS Taken together, our results demonstrated the role of TCA cycle in immune checkpoint blockade and provided a novel combination strategy for anti-PD-1 immunotherapy in melanoma treatment.
Collapse
Affiliation(s)
- Nian Liu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Furong Laboratory, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Human Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Mingjie Yan
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Furong Laboratory, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Human Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qian Tao
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Furong Laboratory, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Human Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jie Wu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Furong Laboratory, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Human Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jing Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Furong Laboratory, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Human Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Furong Laboratory, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Human Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Cong Peng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Furong Laboratory, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Human Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
42
|
Joshi PR, Sadre S, Guo XA, McCoy JG, Mootha VK. Lipoylation is dependent on the ferredoxin FDX1 and dispensable under hypoxia in human cells. J Biol Chem 2023; 299:105075. [PMID: 37481209 PMCID: PMC10470009 DOI: 10.1016/j.jbc.2023.105075] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 07/24/2023] Open
Abstract
Iron-sulfur clusters (ISC) are essential cofactors that participate in electron transfer, environmental sensing, and catalysis. Amongst the most ancient ISC-containing proteins are the ferredoxin (FDX) family of electron carriers. Humans have two FDXs- FDX1 and FDX2, both of which are localized to mitochondria, and the latter of which is itself important for ISC synthesis. We have previously shown that hypoxia can eliminate the requirement for some components of the ISC biosynthetic pathway, but FDXs were not included in that study. Here, we report that FDX1, but not FDX2, is dispensable under 1% O2 in cultured human cells. We find that FDX1 is essential for production of the lipoic acid cofactor, which is synthesized by the ISC-containing enzyme lipoyl synthase. While hypoxia can rescue the growth phenotype of either FDX1 or lipoyl synthase KO cells, lipoylation in these same cells is not rescued, arguing against an alternative biosynthetic route or salvage pathway for lipoate in hypoxia. Our work reveals the divergent roles of FDX1 and FDX2 in mitochondria, identifies a role for FDX1 in lipoate synthesis, and suggests that loss of lipoic acid can be tolerated under low oxygen tensions in cell culture.
Collapse
Affiliation(s)
- Pallavi R Joshi
- Broad Institute, Cambridge, Massachusetts, USA; Department of Molecular Biology, Howard Hughes Medical Institute, Massachusetts General Hospital, Boston, Massachusetts, USA; Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Shayan Sadre
- Broad Institute, Cambridge, Massachusetts, USA; Department of Molecular Biology, Howard Hughes Medical Institute, Massachusetts General Hospital, Boston, Massachusetts, USA; Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Xiaoyan A Guo
- Broad Institute, Cambridge, Massachusetts, USA; Department of Molecular Biology, Howard Hughes Medical Institute, Massachusetts General Hospital, Boston, Massachusetts, USA; Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Jason G McCoy
- Broad Institute, Cambridge, Massachusetts, USA; Department of Molecular Biology, Howard Hughes Medical Institute, Massachusetts General Hospital, Boston, Massachusetts, USA; Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Vamsi K Mootha
- Broad Institute, Cambridge, Massachusetts, USA; Department of Molecular Biology, Howard Hughes Medical Institute, Massachusetts General Hospital, Boston, Massachusetts, USA; Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
43
|
Dickson AS, Pauzaite T, Arnaiz E, Ortmann BM, West JA, Volkmar N, Martinelli AW, Li Z, Wit N, Vitkup D, Kaser A, Lehner PJ, Nathan JA. A HIF independent oxygen-sensitive pathway for controlling cholesterol synthesis. Nat Commun 2023; 14:4816. [PMID: 37558666 PMCID: PMC10412576 DOI: 10.1038/s41467-023-40541-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 07/30/2023] [Indexed: 08/11/2023] Open
Abstract
Cholesterol biosynthesis is a highly regulated, oxygen-dependent pathway, vital for cell membrane integrity and growth. In fungi, the dependency on oxygen for sterol production has resulted in a shared transcriptional response, resembling prolyl hydroxylation of Hypoxia Inducible Factors (HIFs) in metazoans. Whether an analogous metazoan pathway exists is unknown. Here, we identify Sterol Regulatory Element Binding Protein 2 (SREBP2), the key transcription factor driving sterol production in mammals, as an oxygen-sensitive regulator of cholesterol synthesis. SREBP2 degradation in hypoxia overrides the normal sterol-sensing response, and is HIF independent. We identify MARCHF6, through its NADPH-mediated activation in hypoxia, as the main ubiquitin ligase controlling SREBP2 stability. Hypoxia-mediated degradation of SREBP2 protects cells from statin-induced cell death by forcing cells to rely on exogenous cholesterol uptake, explaining why many solid organ tumours become auxotrophic for cholesterol. Our findings therefore uncover an oxygen-sensitive pathway for governing cholesterol synthesis through regulated SREBP2-dependent protein degradation.
Collapse
Affiliation(s)
- Anna S Dickson
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, Department of Medicine, University of Cambridge, Cambridge, CB2 0AW, UK
| | - Tekle Pauzaite
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, Department of Medicine, University of Cambridge, Cambridge, CB2 0AW, UK
| | - Esther Arnaiz
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, Department of Medicine, University of Cambridge, Cambridge, CB2 0AW, UK
- Ochre-Bio Ltd, Hayakawa Building, Oxford Science Park, Edmund Halley Road, Oxford, OX4 4GB, UK
| | - Brian M Ortmann
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, Department of Medicine, University of Cambridge, Cambridge, CB2 0AW, UK
- Biosciences Institute, Newcastle University, Herschel Building, Level 6, Brewery Lane, Newcastle upon Tyne, NE1 7RU, UK
| | - James A West
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, Department of Medicine, University of Cambridge, Cambridge, CB2 0AW, UK
| | - Norbert Volkmar
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, Department of Medicine, University of Cambridge, Cambridge, CB2 0AW, UK
- Institute for Molecular Systems Biology (IMSB), ETH Zürich, Zürich, Switzerland
- DISCO Pharmaceuticals Swiss GmbH, ETH Zürich, Zürich, Switzerland
| | - Anthony W Martinelli
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, Department of Medicine, University of Cambridge, Cambridge, CB2 0AW, UK
| | - Zhaoqi Li
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Tango Therapeutics, 201 Brookline Ave Suite 901, Boston, MA, USA
| | - Niek Wit
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, Department of Medicine, University of Cambridge, Cambridge, CB2 0AW, UK
| | - Dennis Vitkup
- Department of Systems Biology, Columbia University, New York, NY, USA
- Department of Biomedical Informatics, Columbia University, New York, NY, USA
| | - Arthur Kaser
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, Department of Medicine, University of Cambridge, Cambridge, CB2 0AW, UK
| | - Paul J Lehner
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, Department of Medicine, University of Cambridge, Cambridge, CB2 0AW, UK
| | - James A Nathan
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, Department of Medicine, University of Cambridge, Cambridge, CB2 0AW, UK.
| |
Collapse
|
44
|
Wang Z, Wang Y, Yan J, Wei Y, Zhang Y, Wang X, Leng X. Analysis of cuproptosis-related genes in Ulcerative colitis and immunological characterization based on machine learning. Front Med (Lausanne) 2023; 10:1115500. [PMID: 37529244 PMCID: PMC10389668 DOI: 10.3389/fmed.2023.1115500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 07/03/2023] [Indexed: 08/03/2023] Open
Abstract
Cuproptosis is a novel form of cell death, mediated by protein lipid acylation and highly associated with mitochondrial metabolism, which is regulated in the cell. Ulcerative colitis (UC) is a chronic inflammatory bowel disease that recurs frequently, and its incidence is increasing worldwide every year. Currently, a growing number of studies have shown that cuproptosis-related genes (CRGs) play a crucial role in the development and progression of a variety of tumors. However, the regulatory role of CRGs in UC has not been fully elucidated. Firstly, we identified differentially expressed genes in UC, Likewise, CRGs expression profiles and immunological profiles were evaluated. Using 75 UC samples, we typed UC based on the expression profiles of CRGs, followed by correlative immune cell infiltration analysis. Using the weighted gene co-expression network analysis (WGCNA) methodology, the cluster's differentially expressed genes (DEGs) were produced. Then, the performances of extreme gradient boosting models (XGB), support vector machine models (SVM), random forest models (RF), and generalized linear models (GLM) were constructed and predicted. Finally, the effectiveness of the best machine learning model was evaluated using five external datasets, receiver operating characteristic curve (ROC), the area under the curve of ROC (AUC), a calibration curve, a nomogram, and a decision curve analysis (DCA). A total of 13 CRGs were identified as significantly different in UC and control samples. Two subtypes were identified in UC based on CRGs expression profiles. Immune cell infiltration analysis of subtypes showed significant differences between immune cells of different subtypes. WGCNA results showed a total of 8 modules with significant differences between subtypes, with the turquoise module being the most specific. The machine learning results showed satisfactory performance of the XGB model (AUC = 0.981). Finally, the construction of the final 5-gene-based XGB model, validated by the calibration curve, nomogram, decision curve analysis, and five external datasets (GSE11223: AUC = 0.987; GSE38713: AUC = 0.815; GSE53306: AUC = 0.946; GSE94648: AUC = 0.809; GSE87466: AUC = 0.981), also proved to predict subtypes of UC with accuracy. Our research presents a trustworthy model that can predict the likelihood of developing UC and methodically outlines the complex relationship between CRGs and UC.
Collapse
Affiliation(s)
- Zhengyan Wang
- Changchun University of Chinese Medicine, Changchun, China
| | - Ying Wang
- The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Jing Yan
- Changchun University of Chinese Medicine, Changchun, China
| | - Yuchi Wei
- Changchun University of Chinese Medicine, Changchun, China
| | - Yinzhen Zhang
- Changchun University of Chinese Medicine, Changchun, China
| | - Xukai Wang
- Department of Orthopedics, The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Xiangyang Leng
- Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
45
|
Yan JN, Guo LH, Zhu DP, Ye GL, Shao YF, Zhou HX. Clinical significance and potential application of cuproptosis-related genes in gastric cancer. World J Gastrointest Oncol 2023; 15:1200-1214. [PMID: 37546553 PMCID: PMC10401470 DOI: 10.4251/wjgo.v15.i7.1200] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/28/2023] [Accepted: 05/06/2023] [Indexed: 07/12/2023] Open
Abstract
BACKGROUND Worldwide, gastric cancer (GC) is a common lethal solid malignancy with a poor prognosis. Cuproptosis is a novel type of cell death mediated by protein lipoylation and may be related to GC prognosis.
AIM To offer new insights to predict GC prognosis and provide multiple therapeutic targets related to cuproptosis-related genes (CRGs) for future therapy.
METHODS We collected data from several public data portals, systematically estimated the expression level and prognostic values of CRGs in GC samples, and investigated related mechanisms using public databases and bioinformatics.
RESULTS Our results revealed that FDX1, LIAS, and MTF1 were differentially expressed in GC samples and exhibited important prognostic significance in The Cancer Genome Atlas (TCGA) cohort. We constructed a nomogram model for overall survival and disease-specific survival prediction and validated it via calibration plots. Mecha-nistically, immune cell infiltration and DNA methylation prominently affected the survival time of GC patients. Moreover, protein-protein interaction network, KEGG pathway and gene ontology enrichment analyses demonstrated that FDX1, LIAS, MTF1 and related proteins play key roles in the tricarboxylic acid cycle and cuproptosis. Gene Expression Omnibus database validation showed that the expression levels of FDX1, LIAS, and MTF1 were consistent with those in the TCGA cohort. Top 10 perturbagens has been filtered by Connectivity Map.
CONCLUSION In conclusion, FDX1, LIAS, and MTF1 could serve as potential prognostic biomarkers for GC patients and provide novel targets for immunotarget therapy.
Collapse
Affiliation(s)
- Jia-Ning Yan
- Department of Gastroenterology, The First Affiliated Hospital of Ningbo University, Ningbo 315000, Zhejiang Province, China
| | - Li-Hua Guo
- Department of Gastroenterology, The First Affiliated Hospital of Ningbo University, Ningbo 315000, Zhejiang Province, China
| | - Dan-Ping Zhu
- Department of Gastroenterology, The First Affiliated Hospital of Ningbo University, Ningbo 315000, Zhejiang Province, China
| | - Guo-Liang Ye
- Department of Gastroenterology, The First Affiliated Hospital of Ningbo University, Ningbo 315000, Zhejiang Province, China
| | - Yong-Fu Shao
- Department of Gastroenterology, The First Affiliated Hospital of Ningbo University, Ningbo 315000, Zhejiang Province, China
| | - Han-Xuan Zhou
- Department of Pharmacy, Yinzhou Integrated TCM and Western Medicine Hospital, Ningbo 315000, Zhejiang Province, China
| |
Collapse
|
46
|
Granat L, Knorr DY, Ranson DC, Hamer EL, Chakrabarty RP, Mattedi F, Fort-Aznar L, Hirth F, Sweeney ST, Vagnoni A, Chandel NS, Bateman JM. Yeast NDI1 reconfigures neuronal metabolism and prevents the unfolded protein response in mitochondrial complex I deficiency. PLoS Genet 2023; 19:e1010793. [PMID: 37399212 PMCID: PMC10348588 DOI: 10.1371/journal.pgen.1010793] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 07/14/2023] [Accepted: 05/22/2023] [Indexed: 07/05/2023] Open
Abstract
Mutations in subunits of the mitochondrial NADH dehydrogenase cause mitochondrial complex I deficiency, a group of severe neurological diseases that can result in death in infancy. The pathogenesis of complex I deficiency remain poorly understood, and as a result there are currently no available treatments. To better understand the underlying mechanisms, we modelled complex I deficiency in Drosophila using knockdown of the mitochondrial complex I subunit ND-75 (NDUFS1) specifically in neurons. Neuronal complex I deficiency causes locomotor defects, seizures and reduced lifespan. At the cellular level, complex I deficiency does not affect ATP levels but leads to mitochondrial morphology defects, reduced endoplasmic reticulum-mitochondria contacts and activation of the endoplasmic reticulum unfolded protein response (UPR) in neurons. Multi-omic analysis shows that complex I deficiency dramatically perturbs mitochondrial metabolism in the brain. We find that expression of the yeast non-proton translocating NADH dehydrogenase NDI1, which reinstates mitochondrial NADH oxidation but not ATP production, restores levels of several key metabolites in the brain in complex I deficiency. Remarkably, NDI1 expression also reinstates endoplasmic reticulum-mitochondria contacts, prevents UPR activation and rescues the behavioural and lifespan phenotypes caused by complex I deficiency. Together, these data show that metabolic disruption due to loss of neuronal NADH dehydrogenase activity cause UPR activation and drive pathogenesis in complex I deficiency.
Collapse
Affiliation(s)
- Lucy Granat
- Maurice Wohl Clinical Neuroscience Institute, King’s College London, London, United Kingdom
| | - Debbra Y. Knorr
- Maurice Wohl Clinical Neuroscience Institute, King’s College London, London, United Kingdom
| | - Daniel C. Ranson
- Maurice Wohl Clinical Neuroscience Institute, King’s College London, London, United Kingdom
| | - Emma L. Hamer
- Maurice Wohl Clinical Neuroscience Institute, King’s College London, London, United Kingdom
| | - Ram Prosad Chakrabarty
- Department of Medicine and Biochemistry & Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Francesca Mattedi
- Maurice Wohl Clinical Neuroscience Institute, King’s College London, London, United Kingdom
| | - Laura Fort-Aznar
- Department of Biology and York Biomedical Research Institute, University of York, Heslington, York, United Kingdom
- Alzheimer’s disease and other cognitive disorders Unit, Hospital Clínic de Barcelona IDIBAPS, Universitat de Barcelona, Barcelona, Spain
| | - Frank Hirth
- Maurice Wohl Clinical Neuroscience Institute, King’s College London, London, United Kingdom
| | - Sean T. Sweeney
- Department of Biology and York Biomedical Research Institute, University of York, Heslington, York, United Kingdom
| | - Alessio Vagnoni
- Maurice Wohl Clinical Neuroscience Institute, King’s College London, London, United Kingdom
| | - Navdeep S. Chandel
- Department of Medicine and Biochemistry & Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Joseph M. Bateman
- Maurice Wohl Clinical Neuroscience Institute, King’s College London, London, United Kingdom
| |
Collapse
|
47
|
Li D, Gao Z, Li Q, Liu X, Liu H. Cuproptosis-a potential target for the treatment of osteoporosis. Front Endocrinol (Lausanne) 2023; 14:1135181. [PMID: 37214253 PMCID: PMC10196240 DOI: 10.3389/fendo.2023.1135181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 04/10/2023] [Indexed: 05/24/2023] Open
Abstract
Osteoporosis is an age-related disease of bone metabolism marked by reduced bone mineral density and impaired bone strength. The disease causes the bones to weaken and break more easily. Osteoclasts participate in bone resorption more than osteoblasts participate in bone formation, disrupting bone homeostasis and leading to osteoporosis. Currently, drug therapy for osteoporosis includes calcium supplements, vitamin D, parathyroid hormone, estrogen, calcitonin, bisphosphates, and other medications. These medications are effective in treating osteoporosis but have side effects. Copper is a necessary trace element in the human body, and studies have shown that it links to the development of osteoporosis. Cuproptosis is a recently proposed new type of cell death. Copper-induced cell death regulates by lipoylated components mediated via mitochondrial ferredoxin 1; that is, copper binds directly to the lipoylated components of the tricarboxylic acid cycle, resulting in lipoylated protein accumulation and subsequent loss of iron-sulfur cluster proteins, leading to proteotoxic stress and eventually cell death. Therapeutic options for tumor disorders include targeting the intracellular toxicity of copper and cuproptosis. The hypoxic environment in bone and the metabolic pathway of glycolysis to provide energy in cells can inhibit cuproptosis, which may promote the survival and proliferation of various cells, including osteoblasts, osteoclasts, effector T cells, and macrophages, thereby mediating the osteoporosis process. As a result, our group tried to explain the relationship between the role of cuproptosis and its essential regulatory genes, as well as the pathological mechanism of osteoporosis and its effects on various cells. This study intends to investigate a new treatment approach for the clinical treatment of osteoporosis that is beneficial to the treatment of osteoporosis.
Collapse
Affiliation(s)
- Dinglin Li
- Department of Integrated Traditional Chinese and Western Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhonghua Gao
- Department of Geriatrics, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Li
- Department of Integrated Traditional Chinese and Western Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiangjie Liu
- Department of Geriatrics, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hao Liu
- Department of Integrated Traditional Chinese and Western Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
48
|
Niu N, Ye J, Hu Z, Zhang J, Wang Y. Regulative Roles of Metabolic Plasticity Caused by Mitochondrial Oxidative Phosphorylation and Glycolysis on the Initiation and Progression of Tumorigenesis. Int J Mol Sci 2023; 24:ijms24087076. [PMID: 37108242 PMCID: PMC10139088 DOI: 10.3390/ijms24087076] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/23/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
One important feature of tumour development is the regulatory role of metabolic plasticity in maintaining the balance of mitochondrial oxidative phosphorylation and glycolysis in cancer cells. In recent years, the transition and/or function of metabolic phenotypes between mitochondrial oxidative phosphorylation and glycolysis in tumour cells have been extensively studied. In this review, we aimed to elucidate the characteristics of metabolic plasticity (emphasizing their effects, such as immune escape, angiogenesis migration, invasiveness, heterogeneity, adhesion, and phenotypic properties of cancers, among others) on tumour progression, including the initiation and progression phases. Thus, this article provides an overall understanding of the influence of abnormal metabolic remodeling on malignant proliferation and pathophysiological changes in carcinoma.
Collapse
Affiliation(s)
- Nan Niu
- Shenzhen Engineering Labortaory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Lihu Campus of Shenzhen University, Shenzhen 518055, China
- College of Physics and Optoelectronic Engineering, Canghai Campus of Shenzhen University, Shenzhen 518060, China
| | - Jinfeng Ye
- Shenzhen Engineering Labortaory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Lihu Campus of Shenzhen University, Shenzhen 518055, China
| | - Zhangli Hu
- Shenzhen Engineering Labortaory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Lihu Campus of Shenzhen University, Shenzhen 518055, China
| | - Junbin Zhang
- Shenzhen Engineering Labortaory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Lihu Campus of Shenzhen University, Shenzhen 518055, China
| | - Yun Wang
- Shenzhen Engineering Labortaory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Lihu Campus of Shenzhen University, Shenzhen 518055, China
| |
Collapse
|
49
|
Dai W, Li Y, Sun W, Ji M, Bao R, Chen J, Xu S, Dai Y, Chen Y, Liu W, Ge C, Sun W, Mo W, Guo C, Xu X. Silencing of OGDHL promotes liver cancer metastasis by enhancing hypoxia inducible factor 1 α protein stability. Cancer Sci 2023; 114:1309-1323. [PMID: 36000493 PMCID: PMC10067421 DOI: 10.1111/cas.15540] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 07/07/2022] [Accepted: 07/14/2022] [Indexed: 02/01/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignant diseases associated with a high rate of mortality. Frequent intrahepatic spread, extrahepatic metastasis, and tumor invasiveness are the main factors responsible for the poor prognosis of patients with HCC. Hypoxia-inducible factor 1 (HIF-1) has been verified to play a critical role in the metastasis of HCC. HIFs are also known to be modulated by small molecular metabolites, thus highlighting the need to understand the complexity of their cellular regulation in tumor metastasis. In this study, lower expression levels of oxoglutarate dehydrogenase-like (OGDHL) were strongly correlated with aggressive clinicopathologic characteristics, such as metastasis and invasion in three independent cohorts featuring a total of 281 postoperative HCC patients. The aberrant expression of OGDHL reduced cell invasiveness and migration in vitro and HCC metastasis in vivo, whereas the silencing of OGDHL promoted these processes in HCC cells. The pro-metastatic role of OGDHL downregulation is most likely attributed to its upregulation of HIF-1α transactivation activity and the protein stabilization by promoting the accumulation of L-2-HG to prevent the activity of HIF-1α prolyl hydroxylases, which subsequently causes an epithelial-mesenchymal transition process in HCC cells. These results demonstrate that OGDHL is a dominant factor that modulates the metastasis of HCC.
Collapse
Affiliation(s)
- Weiqi Dai
- Department of Gastroenterology, Shidong HospitalShidong Hospital Affiliated to University of Shanghai for Science and TechnologyShanghaiChina
| | - Yueyue Li
- Department of Gastroenterology, Shidong HospitalShidong Hospital Affiliated to University of Shanghai for Science and TechnologyShanghaiChina
| | - Weijie Sun
- Department of Infectious DiseasesThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
| | - Meng Ji
- Department of Gastroenterology, Shidong HospitalShidong Hospital Affiliated to University of Shanghai for Science and TechnologyShanghaiChina
| | - Renjun Bao
- Department of Gastroenterology, Shidong HospitalShidong Hospital Affiliated to University of Shanghai for Science and TechnologyShanghaiChina
- Suzhou Medical College of Soochow UniversitySuzhouChina
| | - Jianqing Chen
- Department of Gastroenterology, Shidong HospitalShidong Hospital Affiliated to University of Shanghai for Science and TechnologyShanghaiChina
| | - Shuqi Xu
- Department of Gastroenterology, Shidong HospitalShidong Hospital Affiliated to University of Shanghai for Science and TechnologyShanghaiChina
| | - Ying Dai
- Department of Gastroenterology, Shidong HospitalShidong Hospital Affiliated to University of Shanghai for Science and TechnologyShanghaiChina
| | - Yiming Chen
- Department of Gastroenterology, Shidong HospitalShidong Hospital Affiliated to University of Shanghai for Science and TechnologyShanghaiChina
| | - Wenjing Liu
- Department of Gastroenterology, Shidong HospitalShidong Hospital Affiliated to University of Shanghai for Science and TechnologyShanghaiChina
| | - Chao Ge
- Department of Gastroenterology, Shidong HospitalShidong Hospital Affiliated to University of Shanghai for Science and TechnologyShanghaiChina
| | - Wei Sun
- Department of Gastroenterology, Shidong HospitalShidong Hospital Affiliated to University of Shanghai for Science and TechnologyShanghaiChina
| | - Wenhui Mo
- Department of Gastroenterology, Shidong HospitalShidong Hospital Affiliated to University of Shanghai for Science and TechnologyShanghaiChina
| | - Chuanyong Guo
- Department of Gastroenterology, Shanghai Tenth People's HospitalTongji University School of MedicineShanghaiChina
| | - Xuanfu Xu
- Department of Gastroenterology, Shidong HospitalShidong Hospital Affiliated to University of Shanghai for Science and TechnologyShanghaiChina
| |
Collapse
|
50
|
Tabata S, Kojima Y, Sakamoto T, Igarashi K, Umetsu K, Ishikawa T, Hirayama A, Kajino-Sakamoto R, Sakamoto N, Yasumoto KI, Okano K, Suzuki Y, Yachida S, Aoki M, Soga T. L-2hydroxyglutaric acid rewires amino acid metabolism in colorectal cancer via the mTOR-ATF4 axis. Oncogene 2023; 42:1294-1307. [PMID: 36879117 PMCID: PMC10101855 DOI: 10.1038/s41388-023-02632-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 02/07/2023] [Accepted: 02/13/2023] [Indexed: 03/08/2023]
Abstract
Oncometabolites, such as D/L-2-hydroxyglutarate (2HG), have directly been implicated in carcinogenesis; however, the underlying molecular mechanisms remain poorly understood. Here, we showed that the levels of the L-enantiomer of 2HG (L2HG) were specifically increased in colorectal cancer (CRC) tissues and cell lines compared with the D-enantiomer of 2HG (D2HG). In addition, L2HG increased the expression of ATF4 and its target genes by activating the mTOR pathway, which subsequently provided amino acids and improved the survival of CRC cells under serum deprivation. Downregulating the expression of L-2-hydroxyglutarate dehydrogenase (L2HGDH) and oxoglutarate dehydrogenase (OGDH) increased L2HG levels in CRC, thereby activating mTOR-ATF4 signaling. Furthermore, L2HGDH overexpression reduced L2HG-mediated mTOR-ATF4 signaling under hypoxia, whereas L2HGDH knockdown promoted tumor growth and amino acid metabolism in vivo. Together, these results indicate that L2HG ameliorates nutritional stress by activating the mTOR-ATF4 axis and thus could be a potential therapeutic target for CRC.
Collapse
Affiliation(s)
- Sho Tabata
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, 997-0052, Japan. .,Institute for Protein Research, Osaka University, Suita, Osaka, 565-0871, Japan.
| | - Yasushi Kojima
- Division of Pathophysiology, Aichi Cancer Center Research Institute, Nagoya, Aichi, 464-8681, Japan
| | - Takeharu Sakamoto
- Department of Cancer Biology, Institute of Biomedical Science, Kansai Medical University, Hirakata, Osaka, 573-1010, Japan
| | - Kaori Igarashi
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, 997-0052, Japan
| | - Ko Umetsu
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, 997-0052, Japan
| | - Takamasa Ishikawa
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, 997-0052, Japan
| | - Akiyoshi Hirayama
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, 997-0052, Japan
| | - Rie Kajino-Sakamoto
- Division of Pathophysiology, Aichi Cancer Center Research Institute, Nagoya, Aichi, 464-8681, Japan
| | - Naoya Sakamoto
- Department of Molecular Pathology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, 734-8551, Japan
| | - Ken-Ichi Yasumoto
- Department of Molecular and Chemical Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, 980-8578, Japan
| | - Keiichi Okano
- Gastroenterological Surgery, Faculty of Medicine, Kagawa University, Miki-cho, Kagawa, 761-0793, Japan
| | - Yasuyuki Suzuki
- Hyogo Prefectural Awaji Medical Center, Sumoto, Hyogo, 656-0021, Japan
| | - Shinichi Yachida
- Department of Genomic Medicine, National Cancer Center Research Institute, Chuo-ku, Tokyo, 104-0045, Japan.,Department of Cancer Genome Informatics, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Masahiro Aoki
- Division of Pathophysiology, Aichi Cancer Center Research Institute, Nagoya, Aichi, 464-8681, Japan.,Department of Cancer Physiology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, 466-8550, Japan
| | - Tomoyoshi Soga
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, 997-0052, Japan.
| |
Collapse
|