1
|
Coupland C, Sun N, Khalil A, Karaoglu ÖE, Liskiewicz A, Liskiewicz D, Grandl G, Akindehin S, Maity G, Yang B, Finan B, Knerr P, Douros JD, Walch A, DiMarchi R, Tschöp MH, Müller TD, Novikoff A. Estrogenic activity of E2-conjugated GLP-1 is mediated by intracellular endolysosomal acidification and estrone metabolism. Mol Metab 2025; 96:102136. [PMID: 40204014 PMCID: PMC12032945 DOI: 10.1016/j.molmet.2025.102136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 03/28/2025] [Accepted: 03/29/2025] [Indexed: 04/11/2025] Open
Abstract
OBJECTIVE Recent modifications to glucagon-like peptide 1 (GLP-1), known for its insulinotropic and satiety-inducing effects, have focused on conjugating small molecules to enable selective delivery into GLP-1R+ tissues to achieve targeted synergy and improved metabolic outcomes. Despite continued advancements in GLP-1/small molecule conjugate strategies, the intracellular mechanisms facilitating concurrent GLP-1R signaling and small molecule cargo release remain poorly understood. METHODS We evaluate an estradiol (E2)-conjugated GLP-1 (GLP-1-CEX/E2) for relative differences in GLP-1R signaling and trafficking, and elucidate endolysosomal dynamics that lead to estrogenic activity using various live-cell, reporter, imaging, and mass-spectrometry techniques. RESULTS We find GLP-1-CEX/E2 does not differentially activate or traffic the GLP-1R relative to its unconjugated GLP-1 backbone (GLP-1-CEX), but uniquely internalizes the E2 moiety and stimulates estrogenic signaling. Endolysosomal pH-dependent proteolytic activity likely mediates E2 moiety liberation, as evidenced by clear amplification in estrogenic activity following co-administration with lysosomal VATPase activator EN6. The hypothesized liberated metabolite from GLP-1-CEX/E2, E2-3-ether, exhibits partial estrogenic efficacy through ERα, and is predisposed toward estrone-3-sulfate conversion. Finally, we identify relative increases in intracellular E2, estrone, and estrone-3-sulfate following GLP-1-CEX/E2 incubation in GLP-1R+ cells, demonstrating proof-of-principle for desired cargo release. CONCLUSION Together, our data suggest that GLP-1-CEX/E2 depends on GLP-1R trafficking and lysosome acidification for estrogenic efficacy, with a likely conversion of the liberated E2-3-ether metabolite into estrone-3-sulfate, resulting in a residual downstream flux into active estradiol. Our current findings aim to improve the understanding of small molecule targeting and the efficacy behind GLP-1/small molecule conjugates.
Collapse
Affiliation(s)
- Callum Coupland
- Institute for Diabetes and Obesity, Helmholtz Munich, Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Na Sun
- Analytical Pathology Unit, Helmholtz Munich, Neuherberg, Germany
| | - Ahmed Khalil
- Institute for Diabetes and Obesity, Helmholtz Munich, Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Özüm Ezgi Karaoglu
- Institute for Diabetes and Obesity, Helmholtz Munich, Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany; Department of Pharmacology, Experimental Therapy & Toxicology, Institute of Experimental & Clinical Pharmacology & Pharmacogenomics, Eberhard-Karls University Tübingen, Tübingen, Germany
| | - Arkadiusz Liskiewicz
- Institute for Diabetes and Obesity, Helmholtz Munich, Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany; Department of Physiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Daniela Liskiewicz
- Institute for Diabetes and Obesity, Helmholtz Munich, Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany; Institute of Physiotherapy and Health Sciences, Academy of Physical Education, Katowice, Poland
| | - Gerald Grandl
- Institute for Diabetes and Obesity, Helmholtz Munich, Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Seun Akindehin
- Institute for Diabetes and Obesity, Helmholtz Munich, Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Gandhari Maity
- Institute for Diabetes and Obesity, Helmholtz Munich, Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Bin Yang
- Novo Nordisk Research Center Indianapolis, Indianapolis, IN, USA; Dexatide LLC, Plainfield, IN, USA
| | - Brian Finan
- Novo Nordisk Research Center Indianapolis, Indianapolis, IN, USA; Eli Lilly and Company, Indianapolis, USA
| | - Patrick Knerr
- Novo Nordisk Research Center Indianapolis, Indianapolis, IN, USA; Indiana Biosciences Research Institute, Indianapolis, IN, USA
| | - Jonathan D Douros
- Novo Nordisk Research Center Indianapolis, Indianapolis, IN, USA; Indiana Biosciences Research Institute, Indianapolis, IN, USA
| | - Axel Walch
- Analytical Pathology Unit, Helmholtz Munich, Neuherberg, Germany
| | - Richard DiMarchi
- Department of Chemistry, Indiana University, Bloomington, IN, USA
| | - Matthias H Tschöp
- Technische Universität, München, Germany; Division of Metabolic Diseases, Department of Medicine, Technical University Munich, Munich, Helmholtz Munich, Neuherberg, Germany
| | - Timo D Müller
- Institute for Diabetes and Obesity, Helmholtz Munich, Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany; Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University Munich, Germany
| | - Aaron Novikoff
- Institute for Diabetes and Obesity, Helmholtz Munich, Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany.
| |
Collapse
|
2
|
Yang Y, Ma Y, Li M, Han Y, Liu L. Unraveling the causal pathway between phosphatidylinositol, metabolites, and metabolic syndrome: a Mendelian randomization study. Diabetol Metab Syndr 2025; 17:162. [PMID: 40394636 PMCID: PMC12090523 DOI: 10.1186/s13098-025-01731-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 05/06/2025] [Indexed: 05/22/2025] Open
Abstract
INTRODUCTION Observational studies have increasingly acknowledged the influence of Phosphatidylinositol (PI) on metabolic syndrome (MetS). Nevertheless, the causal association between PI and MetS remains unclear due to the presence of confounding factors and the potential for reverse causation in observational settings. This study seeks to clarify the causal link between PI and MetS while investigating the role of mediating metabolites. METHODS A two-sample Mendelian randomization (MR) analysis was performed to examine the association between PI and MetS, utilizing aggregated data from genome-wide association studies (GWAS). Additionally, a two-step MR approach was applied to quantify the mediation effect of metabolites on the PI-MetS relationship. The inverse variance weighted (IVW) method served as the primary analytical approach, complemented by various sensitivity analyses employing alternative techniques. RESULTS A significant positive association was found between genetically predicted PI and a 17% increased risk of MetS. Genetically predicted metabolites, including 4-cholesten-3-one (IVW: OR 1.264, 95% CI 1.076-1.483, p = 0.004), N-acetylalliin (IVW: OR 1.189, 95% CI 1.008-1.402, p = 0.040), and the Adenosine 5'-diphosphate to 5-oxoproline ratio (IVW: OR 1.191, 95% CI 1.045-1.357, p = 0.009), were each significantly associated with an increased risks of MetS, accounting for 14.50, 11.41%, 11.87% and % of the total effect, respectively. Notably, the Retinol to oleoyl-linoleoyl-glycerol ratio (IVW: OR 0.643, 95% CI 0.466-0.887, p = 0.007) mediated 62.6% of the effect, highlighting its pivotal role in the causal pathway linking PI to MetS. Moreover, 1-palmitoyl-2-dihomo-linolenoyl-GPC (IVW: OR 0.865, 95% CI 0.752-0.995, p = 0.042) and the Creatine to carnitine ratio (IVW: OR 0.853, 95% CI 0.740-0.983, p = 0.028) were associated with a reduced risk of MetS, demonstrating inhibitory effects within their respective pathways that accounted to 35.03% and 8.45% reductions in risk, respectively. CONCLUSIONS Our MR analysis demonstrated a positive association between PI and an increased risk of MetS. Furthermore, the metabolite-mediated PI significantly influenced MetS risk. These findings may offer valuable insights into the pathogenesis of MetS and inform future clinical research.
Collapse
Affiliation(s)
- YueGuang Yang
- Heilongjiang University of Chinese Medicine;, Heilongjiang, P.R. China
| | - YanLing Ma
- Heilongjiang University of Chinese Medicine;, Heilongjiang, P.R. China
| | - Ming Li
- Heilongjiang University of Chinese Medicine;, Heilongjiang, P.R. China
| | - YuBo Han
- The First Department of Cardiovascular, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, 26 Heping Road, Xiangfang, Harbin, Heilongjiang, 150040, P.R. China.
| | - Li Liu
- The First Department of Cardiovascular, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, 26 Heping Road, Xiangfang, Harbin, Heilongjiang, 150040, P.R. China.
| |
Collapse
|
3
|
Xiang F, Zhang Z, Xie J, Xiong S, Yang C, Liao D, Xia B, Lin L. Comprehensive review of the expanding roles of the carnitine pool in metabolic physiology: beyond fatty acid oxidation. J Transl Med 2025; 23:324. [PMID: 40087749 PMCID: PMC11907856 DOI: 10.1186/s12967-025-06341-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 03/01/2025] [Indexed: 03/17/2025] Open
Abstract
Traditionally, the carnitine pool is closely related to fatty acid metabolism. However, with increasing research, the pleiotropic effects of the carnitine pool have gradually emerged. The purpose of this review is to comprehensively investigate of the emerging understanding of the pleiotropic role of the carnitine pool, carnitine/acylcarnitines are not only auxiliaries or metabolites of fatty acid oxidation, but also play more complex and diverse roles, including energy metabolism, mitochondrial homeostasis, epigenetic regulation, regulation of inflammation and the immune system, tumor biology, signal transduction, and neuroprotection. This review provides an overview of the complex network of carnitine synthesis, transport, shuttle, and regulation, carnitine/acylcarnitines have the potential to be used as communication molecules, biomarkers and therapeutic targets for multiple diseases, with profound effects on intercellular communication, metabolic interactions between organs and overall metabolic health. The purpose of this review is to comprehensively summarize the multidimensional biological effects of the carnitine pool beyond its traditional role in fatty acid oxidation and to summarize the systemic effects mediated by carnitine/acylcarnitine to provide new perspectives for pharmacological research and treatment innovation and new strategies for the prevention and treatment of a variety of diseases.
Collapse
Affiliation(s)
- Feng Xiang
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Zhimin Zhang
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Jingchen Xie
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Suhui Xiong
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Chen Yang
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Duanfang Liao
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Bohou Xia
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China.
| | - Limei Lin
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China.
| |
Collapse
|
4
|
Sun N, Krauss T, Seeliger C, Kunzke T, Stöckl B, Feuchtinger A, Zhang C, Voss A, Heisz S, Prokopchuk O, Martignoni ME, Janssen KP, Claussnitzer M, Hauner H, Walch A. Inter-organ cross-talk in human cancer cachexia revealed by spatial metabolomics. Metabolism 2024; 161:156034. [PMID: 39299512 DOI: 10.1016/j.metabol.2024.156034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 09/22/2024]
Abstract
BACKGROUND Cancer cachexia (CCx) presents a multifaceted challenge characterized by negative protein and energy balance and systemic inflammatory response activation. While previous CCx studies predominantly focused on mouse models or human body fluids, there's an unmet need to elucidate the molecular inter-organ cross-talk underlying the pathophysiology of human CCx. METHODS Spatial metabolomics were conducted on liver, skeletal muscle, subcutaneous and visceral adipose tissue, and serum from cachectic and control cancer patients. Organ-wise comparisons were performed using component, pathway enrichment and correlation network analyses. Inter-organ correlations in CCx altered pathways were assessed using Circos. Machine learning on tissues and serum established classifiers as potential diagnostic biomarkers for CCx. RESULTS Distinct metabolic pathway alteration was detected in CCx, with adipose tissues and liver displaying the most significant (P ≤ 0.05) metabolic disturbances. CCx patients exhibited increased metabolic activity in visceral and subcutaneous adipose tissues and liver, contrasting with decreased activity in muscle and serum compared to control patients. Carbohydrate, lipid, amino acid, and vitamin metabolism emerged as highly interacting pathways across different organ systems in CCx. Muscle tissue showed decreased (P ≤ 0.001) energy charge in CCx patients, while liver and adipose tissues displayed increased energy charge (P ≤ 0.001). We stratified CCx patients by severity and metabolic changes, finding that visceral adipose tissue is most affected, especially in cases of severe cachexia. Morphometric analysis showed smaller (P ≤ 0.05) adipocyte size in visceral adipose tissue, indicating catabolic processes. We developed tissue-based classifiers for cancer cachexia specific to individual organs, facilitating the transfer of patient serum as minimally invasive diagnostic markers of CCx in the constitution of the organs. CONCLUSIONS These findings support the concept of CCx as a multi-organ syndrome with diverse metabolic alterations, providing insights into the pathophysiology and organ cross-talk of human CCx. This study pioneers spatial metabolomics for CCx, demonstrating the feasibility of distinguishing cachexia status at the organ level using serum.
Collapse
Affiliation(s)
- Na Sun
- Research Unit Analytical Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Tanja Krauss
- Else Kröner Fresenius Center for Nutritional Medicine, School of Life Sciences, Technical University of Munich, Freising-Weihenstephan, Germany
| | - Claudine Seeliger
- Else Kröner Fresenius Center for Nutritional Medicine, School of Life Sciences, Technical University of Munich, Freising-Weihenstephan, Germany; ZIEL Institute for Food and Health, Technical University of Munich, Freising-Weihenstephan, Germany
| | - Thomas Kunzke
- Research Unit Analytical Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Barbara Stöckl
- Research Unit Analytical Pathology, Helmholtz Zentrum München, Neuherberg, Germany; Else Kröner Fresenius Center for Nutritional Medicine, School of Life Sciences, Technical University of Munich, Freising-Weihenstephan, Germany
| | - Annette Feuchtinger
- Research Unit Analytical Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Chaoyang Zhang
- Research Unit Analytical Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Andreas Voss
- Research Unit Analytical Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Simone Heisz
- Else Kröner Fresenius Center for Nutritional Medicine, School of Life Sciences, Technical University of Munich, Freising-Weihenstephan, Germany
| | - Olga Prokopchuk
- Department of Surgery, Klinikum rechts der Isar, University Hospital of the Technical University of Munich, Munich, Germany
| | - Marc E Martignoni
- Department of Surgery, Klinikum rechts der Isar, University Hospital of the Technical University of Munich, Munich, Germany
| | - Klaus-Peter Janssen
- Department of Surgery, Klinikum rechts der Isar, University Hospital of the Technical University of Munich, Munich, Germany
| | - Melina Claussnitzer
- The Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Diabetes Unit and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Institute of Nutritional Science, University of Hohenheim, 70599 Stuttgart, Germany; Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Hans Hauner
- Else Kröner Fresenius Center for Nutritional Medicine, School of Life Sciences, Technical University of Munich, Freising-Weihenstephan, Germany; ZIEL Institute for Food and Health, Technical University of Munich, Freising-Weihenstephan, Germany; Institute of Nutritional Medicine, School of Medicine, Technical University of Munich, Munich, Germany.
| | - Axel Walch
- Research Unit Analytical Pathology, Helmholtz Zentrum München, Neuherberg, Germany.
| |
Collapse
|
5
|
Mannochio-Russo H, Charron-Lamoureux V, van Faassen M, Lamichhane S, Nunes WDG, Deleray V, Patan A, Vittali K, Rajkumar P, El Abiead Y, Zhao HN, Gomes PWP, Mohanty I, Lee C, Sund A, Sharma M, Liu Y, Pattynama D, Walker GT, Norton GJ, Khatib L, Andalibi MS, Wang CX, Ellis RJ, Moore DJ, Iudicello JE, Franklin D, Letendre S, Chin L, Walker C, Renwick S, Zemlin J, Meehan MJ, Song X, Kasper D, Burcham Z, Kim JJ, Kadakia S, Raffatellu M, Bode L, Zengler K, Wang M, Siegel D, Knight R, Dorrestein PC. The microbiome diversifies N-acyl lipid pools - including short-chain fatty acid-derived compounds. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.31.621412. [PMID: 39554097 PMCID: PMC11565975 DOI: 10.1101/2024.10.31.621412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
N-acyl lipids are important mediators of several biological processes including immune function and stress response. To enhance the detection of N-acyl lipids with untargeted mass spectrometry-based metabolomics, we created a reference spectral library retrieving N-acyl lipid patterns from 2,700 public datasets, identifying 851 N-acyl lipids that were detected 356,542 times. 777 are not documented in lipid structural databases, with 18% of these derived from short-chain fatty acids and found in the digestive tract and other organs. Their levels varied with diet, microbial colonization, and in people living with diabetes. We used the library to link microbial N-acyl lipids, including histamine and polyamine conjugates, to HIV status and cognitive impairment. This resource will enhance the annotation of these compounds in future studies to further the understanding of their roles in health and disease and highlight the value of large-scale untargeted metabolomics data for metabolite discovery.
Collapse
Affiliation(s)
- Helena Mannochio-Russo
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Vincent Charron-Lamoureux
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Martijn van Faassen
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, the Netherlands
| | - Santosh Lamichhane
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
- Turku Bioscience Center, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| | - Wilhan D Gonçalves Nunes
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Victoria Deleray
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Abubaker Patan
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Kyle Vittali
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Prajit Rajkumar
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Yasin El Abiead
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Haoqi Nina Zhao
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Paulo Wender Portal Gomes
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Ipsita Mohanty
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Carlynda Lee
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Aidan Sund
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Meera Sharma
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Yuanhao Liu
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - David Pattynama
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Gregory T Walker
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
| | - Grant J Norton
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
| | - Lora Khatib
- Department of Pediatrics, University of California San Diego, La Jolla, California, USA
- Neurosciences Graduate Program, University of California San Diego, La Jolla, California, USA
| | - Mohammadsobhan S Andalibi
- Department of Pediatrics, University of California San Diego, La Jolla, California, USA
- Department of Neurosciences, University of California San Diego, San Diego, CA 92093, USA
- Department of Psychiatry, University of California San Diego, San Diego, CA 92093, USA
- HIV Neurobehavioral Research Program, University of California San Diego, San Diego, CA 92093, USA
| | - Crystal X Wang
- Department of Psychiatry, University of California San Diego, San Diego, CA 92093, USA
- HIV Neurobehavioral Research Program, University of California San Diego, San Diego, CA 92093, USA
| | - Ronald J Ellis
- Department of Neurosciences, University of California San Diego, San Diego, CA 92093, USA
- HIV Neurobehavioral Research Program, University of California San Diego, San Diego, CA 92093, USA
| | - David J Moore
- Department of Psychiatry, University of California San Diego, San Diego, CA 92093, USA
- HIV Neurobehavioral Research Program, University of California San Diego, San Diego, CA 92093, USA
| | - Jennifer E Iudicello
- Department of Psychiatry, University of California San Diego, San Diego, CA 92093, USA
- HIV Neurobehavioral Research Program, University of California San Diego, San Diego, CA 92093, USA
| | - Donald Franklin
- Department of Psychiatry, University of California San Diego, San Diego, CA 92093, USA
- HIV Neurobehavioral Research Program, University of California San Diego, San Diego, CA 92093, USA
| | - Scott Letendre
- HIV Neurobehavioral Research Program, University of California San Diego, San Diego, CA 92093, USA
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Loryn Chin
- Department of Pediatrics, University of California San Diego, La Jolla, California, USA
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, 92093, USA
- Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Corinn Walker
- Department of Pediatrics, University of California San Diego, La Jolla, California, USA
| | - Simone Renwick
- Department of Pediatrics, University of California San Diego, La Jolla, California, USA
- Larsson-Rosenquist Foundation Mother-Milk-Infant Center of Research Excellence (MOMI CORE) and the Human Milk Institute (HMI), University of California San Diego, La Jolla, CA, 92093, USA
| | - Jasmine Zemlin
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
- Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Michael J Meehan
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Xinyang Song
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Dennis Kasper
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Zachary Burcham
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA
| | - Jane J Kim
- Department of Pediatrics, Division of Pediatric Endocrinology, University of California San Diego, California, USA
- Rady Children's Hospital San Diego, San Diego, California, USA
| | - Sejal Kadakia
- Division of Pediatric Endocrinology, Children's Hospital of Orange County, Orange, CA, USA
| | - Manuela Raffatellu
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
- Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA, 92093, USA
- Chiba University-UC San Diego Center for Mucosal Immunology, Allergy, and Vaccines, La Jolla, California 92093, USA
| | - Lars Bode
- Department of Pediatrics, University of California San Diego, La Jolla, California, USA
- Larsson-Rosenquist Foundation Mother-Milk-Infant Center of Research Excellence (MOMI CORE) and the Human Milk Institute (HMI), University of California San Diego, La Jolla, CA, 92093, USA
| | - Karsten Zengler
- Department of Pediatrics, University of California San Diego, La Jolla, California, USA
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, 92093, USA
- Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Mingxun Wang
- Department of Computer Science and Engineering, University of California Riverside, Riverside, CA, USA
| | - Dionicio Siegel
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Rob Knight
- Department of Pediatrics, University of California San Diego, La Jolla, California, USA
- Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA, 92093, USA
- Department of Computer Science and Engineering, University of California, San Diego, La Jolla, CA, USA
- Halıcıoğlu Data Science Institute, University of California, San Diego, La Jolla, CA, USA
- Shu Chien-Gene Lay Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Pieter C Dorrestein
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
- Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA, 92093, USA
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
- Department of Pharmacology, University of California San Diego, La Jolla, CA, 92093, USA
| |
Collapse
|
6
|
Zhao HN, Kvitne KE, Brungs C, Mohan S, Charron-Lamoureux V, Bittremieux W, Tang R, Schmid R, Lamichhane S, El Abiead Y, Andalibi MS, Mannochio-Russo H, Ambre M, Avalon NE, Bryant M, Caraballo-Rodríguez AM, Maya MC, Chin L, Ellis RJ, Franklin D, Girod S, Gomes PWP, Hansen L, Heaton R, Iudicello JE, Jarmusch AK, Khatib L, Letendre S, Magyari S, McDonald D, Mohanty I, Cumsille A, Moore DJ, Rajkumar P, Ross DH, Sapre H, Shahneh MRZ, Thomas SP, Tribelhorn C, Tubb HM, Walker C, Wang CX, Xing S, Zemlin J, Zuffa S, Wishart DS, Kaddurah-Daouk R, Wang M, Raffatellu M, Zengler K, Pluskal T, Xu L, Knight R, Tsunoda SM, Dorrestein PC. Empirically establishing drug exposure records directly from untargeted metabolomics data. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.07.617109. [PMID: 39416075 PMCID: PMC11482764 DOI: 10.1101/2024.10.07.617109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Despite extensive efforts, extracting information on medication exposure from clinical records remains challenging. To complement this approach, we developed the tandem mass spectrometry (MS/MS) based GNPS Drug Library. This resource integrates MS/MS data for drugs and their metabolites/analogs with controlled vocabularies on exposure sources, pharmacologic classes, therapeutic indications, and mechanisms of action. It enables direct analysis of drug exposure and metabolism from untargeted metabolomics data independent of clinical records. Our library facilitates stratification of individuals in clinical studies based on the empirically detected medications, exemplified by drug-dependent microbiota-derived N-acyl lipid changes in a cohort with human immunodeficiency virus. The GNPS Drug Library holds potential for broader applications in drug discovery and precision medicine.
Collapse
Affiliation(s)
- Haoqi Nina Zhao
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Kine Eide Kvitne
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
- Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Corinna Brungs
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Siddharth Mohan
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Vincent Charron-Lamoureux
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Wout Bittremieux
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
- Department of Computer Science, University of Antwerp, Antwerp, Belgium
| | - Runbang Tang
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Robin Schmid
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Santosh Lamichhane
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Tykistönkatu 6A, 20520 Turku, Finland
| | - Yasin El Abiead
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Mohammadsobhan S Andalibi
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- HIV Neurobehavioral Research Program, University of California San Diego, La Jolla, CA, USA
| | - Helena Mannochio-Russo
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Madison Ambre
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Nicole E Avalon
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - MacKenzie Bryant
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Andrés Mauricio Caraballo-Rodríguez
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Martin Casas Maya
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Loryn Chin
- Department of Bioengineering, University of California San Diego, La Jolla, California, USA
| | - Ronald J Ellis
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Donald Franklin
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Sagan Girod
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Paulo Wender P Gomes
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
- Faculty of Chemistry, Federal University of Para, Belem, PA, Brazil
| | - Lauren Hansen
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Robert Heaton
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | | | - Alan K Jarmusch
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
- Immunity, Inflammation, and Disease Laboratory, Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Lora Khatib
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Scott Letendre
- HIV Neurobehavioral Research Program, University of California San Diego, La Jolla, CA, USA
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Sarolt Magyari
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, Vladimir-Prelog-Weg 4, 8093 Zürich, Switzerland
| | - Daniel McDonald
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Ipsita Mohanty
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Andrés Cumsille
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
- Department of Microbiology and Cell Sciences, University of Florida, Museum Drive, Gainesville, FL, USA
| | - David J Moore
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- HIV Neurobehavioral Research Program, University of California San Diego, La Jolla, CA, USA
| | - Prajit Rajkumar
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Dylan H Ross
- Department of Medicinal Chemistry, University of Washington, Seattle, WA, USA
- Current address: Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Harshada Sapre
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | | | - Sydney P Thomas
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Caitlin Tribelhorn
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Helena M Tubb
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Corinn Walker
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Crystal X Wang
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- HIV Neurobehavioral Research Program, University of California San Diego, La Jolla, CA, USA
| | - Shipei Xing
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Jasmine Zemlin
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA
| | - Simone Zuffa
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - David S Wishart
- Department of Bioengineering, University of California San Diego, La Jolla, California, USA
- Department of Computing Science, University of Alberta, Edmonton, AB T6G 2E8, Canada
| | - Rima Kaddurah-Daouk
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, 27708, USA
- Duke Institute of Brain Sciences, Duke University, Durham, NC, USA
- Department of Medicine, Duke University, Durham, NC, USA
| | - Mingxun Wang
- Department of Computer Science and Engineering, University of California Riverside, Riverside, CA, USA
| | - Manuela Raffatellu
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA
- Chiba University, UC San Diego Center for Mucosal Immunology, Allergy, and Vaccines (CU-UCSD cMAV), La Jolla, CA, USA
| | - Karsten Zengler
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA
- Program in Materials Science and Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0418, USA
| | - Tomáš Pluskal
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Libin Xu
- Department of Medicinal Chemistry, University of Washington, Seattle, WA, USA
| | - Rob Knight
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA, USA
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
- Halicioğlu Data Science Institute, University of California San Diego, La Jolla, CA, USA
| | - Shirley M Tsunoda
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Pieter C Dorrestein
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
7
|
Bentley AR, Doumatey AP, Zhou J, Lei L, Meeks KAC, Heuston EF, Rotimi CN, Adeyemo AA. Lipidomics profiling and circulating triglyceride concentrations in sub-Saharan African individuals. Sci Rep 2024; 14:20834. [PMID: 39251667 PMCID: PMC11385232 DOI: 10.1038/s41598-024-71734-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 08/30/2024] [Indexed: 09/11/2024] Open
Abstract
Elevated triglycerides (TG) are a risk factor for cardiometabolic disorders. There are limited data on lipidomics profiles associated with serum triglycerides concentrations, although these could advance our understanding of the mechanisms underlying these associations. We conducted a lipidomics study of 308 Nigerians with replication in 199 Kenyans. Regression models were used to assess the association of TG with 480 lipid metabolites. Association and mediation analyses were conducted to determine the relationship among TG, metabolites, and several cardiometabolic traits. Ninety-nine metabolites were significantly associated with TG, and 91% of these associations replicated. Overrepresentation analysis identified enrichment of diacylglycerols, monoacylglycerols, diacylglycerophosphoethanolamines, monoacylglycerophosphocholines, ceramide phosphocholines, and diacylglycerophosphocholines. TG-cardiometabolic trait associations were largely mediated by TG-associated metabolites. Associations with type 2 diabetes, waist circumference, body mass index, total cholesterol, and low-density lipoprotein cholesterol concentration were independently mediated by metabolites in multiple subpathways. This lipidomics study in sub-Saharan Africans demonstrated that TG is associated with several non-TG lipids classes, including phosphatidylethanolamines, phosphatidylcholines, lysophospholipids, and plasmalogens, some of which may mediate the effect of TG as a risk factor for cardiometabolic disorders. The study identifies metabolites that are more proximal to cardiometabolic traits, which may be useful for understanding the underlying biology as well as differences in TG-trait associations across ancestries.
Collapse
Affiliation(s)
- Amy R Bentley
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, 12 South Drive, Building 12A Room 1025, Bethesda, MD, 20892-5635, USA.
| | - Ayo P Doumatey
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, 12 South Drive, Building 12A Room 1025, Bethesda, MD, 20892-5635, USA
| | - Jie Zhou
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, 12 South Drive, Building 12A Room 1025, Bethesda, MD, 20892-5635, USA
| | - Lin Lei
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, 12 South Drive, Building 12A Room 1025, Bethesda, MD, 20892-5635, USA
| | - Karlijn A C Meeks
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, 12 South Drive, Building 12A Room 1025, Bethesda, MD, 20892-5635, USA
| | - Elisabeth F Heuston
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, 12 South Drive, Building 12A Room 1025, Bethesda, MD, 20892-5635, USA
| | - Charles N Rotimi
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, 12 South Drive, Building 12A Room 1025, Bethesda, MD, 20892-5635, USA
| | - Adebowale A Adeyemo
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, 12 South Drive, Building 12A Room 1025, Bethesda, MD, 20892-5635, USA.
| |
Collapse
|
8
|
Wang Y, Xie K, Wang J, Chen F, Li X, Zhang L. Mendelian randomization demonstrates a causal link between peripheral circulating acylcarnitines and intracranial aneurysms. Neurotherapeutics 2024; 21:e00428. [PMID: 39098392 PMCID: PMC11579879 DOI: 10.1016/j.neurot.2024.e00428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 08/06/2024] Open
Abstract
Intracranial aneurysm (IA) is the most prevalent type of cerebral vascular disease causing life-threatening subarachnoid hemorrhages (SAH). A long-term vascular structure remodeling is considered as the main pathophysiological feature of IAs. However, the causal factors triggering the pathophysiological process are not clear. Recently, the abnormalities of peripheral circulating proteins and metabolites have been found in IAs patients and associated with the ruptures. We comprehensively investigated the potential causal relationship between blood metabolites and proteins and IAs using the mendelian randomization (MR) analysis. We applied two-sample MR to explore the potential causal association between peripheral circulating metabolites (191 blood metabolites) and proteins (1398 proteins) and IAs using data from the FinnGen study and the GWAS datasets published by Bakker et al. We identified palmitoylcarnitine, stearoylcarnitine and 2-tetradecenoylcarnitine as causal contributors of IAs and ruptures. Further two-step mediation MR analysis suggested that hypertension as one of the contributors of IAs and ruptures mediated the causal relationship between palmitoylcarnitine, stearoylcarnitine and 2-tetradecenoylcarnitine and IAs. Together, our study demonstrates that blood metabolic palmitoylcarnitine, stearoylcarnitine and 2-tetradecenoylcarnitine are causally linked to the formation and rupture of IAs. Hypertension partially mediates the causal effects.
Collapse
Affiliation(s)
- Ying Wang
- Department of Neurosurgery, National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Kang Xie
- Department of Neurosurgery, National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Junyu Wang
- Department of Neurosurgery, National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Fenghua Chen
- Department of Neurosurgery, National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China; Research Center for Cerebrovascular Disease, Central South University, Changsha, 410008, China.
| | - Xi Li
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, Hunan, 410008, China.
| | - Longbo Zhang
- Departments of Neurosurgery, Changde Hospital, Xiangya School of Medicine, Central South University, 818 Renmin Street, Wuling District, Changde, Hunan 415003, China; Department of Neurosurgery, National Clinical Research Center of Geriatric Disorders, Research Center for Cerebrovascular Disease, Xiangya Hospital, Central South University, Changsha, 410008, China.
| |
Collapse
|
9
|
Lee K, Kuang A, Bain JR, Hayes MG, Muehlbauer MJ, Ilkayeva OR, Newgard CB, Powe CE, Hivert MF, Scholtens DM, Lowe WL. Metabolomic and genetic architecture of gestational diabetes subtypes. Diabetologia 2024; 67:895-907. [PMID: 38367033 DOI: 10.1007/s00125-024-06110-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 01/12/2024] [Indexed: 02/19/2024]
Abstract
AIMS/HYPOTHESIS Physiological gestational diabetes mellitus (GDM) subtypes that may confer different risks for adverse pregnancy outcomes have been defined. The aim of this study was to characterise the metabolome and genetic architecture of GDM subtypes to address the hypothesis that they differ between GDM subtypes. METHODS This was a cross-sectional study of participants in the Hyperglycemia and Adverse Pregnancy Outcome (HAPO) study who underwent an OGTT at approximately 28 weeks' gestation. GDM was defined retrospectively using International Association of Diabetes and Pregnancy Study Groups/WHO criteria, and classified as insulin-deficient GDM (insulin secretion <25th percentile with preserved insulin sensitivity) or insulin-resistant GDM (insulin sensitivity <25th percentile with preserved insulin secretion). Metabolomic analyses were performed on fasting and 1 h serum samples in 3463 individuals (576 with GDM). Genome-wide genotype data were obtained for 8067 individuals (1323 with GDM). RESULTS Regression analyses demonstrated striking differences between the metabolomes for insulin-deficient or insulin-resistant GDM compared to those with normal glucose tolerance. After adjustment for covariates, 33 fasting metabolites, including 22 medium- and long-chain acylcarnitines, were uniquely associated with insulin-deficient GDM; 23 metabolites, including the branched-chain amino acids and their metabolites, were uniquely associated with insulin-resistant GDM; two metabolites (glycerol and 2-hydroxybutyrate) were associated with the same direction of association with both subtypes. Subtype differences were also observed 1 h after a glucose load. In genome-wide association studies, variants within MTNR1B (rs10830963, p=3.43×10-18, OR 1.55) and GCKR (rs1260326, p=5.17×10-13, OR 1.43) were associated with GDM. Variants in GCKR (rs1260326, p=1.36×10-13, OR 1.60) and MTNR1B (rs10830963, p=1.22×10-9, OR 1.49) demonstrated genome-wide significant association with insulin-resistant GDM; there were no significant associations with insulin-deficient GDM. The lead SNP in GCKR, rs1260326, was associated with the levels of eight of the 25 fasting metabolites that were associated with insulin-resistant GDM and ten of 41 1 h metabolites that were associated with insulin-resistant GDM. CONCLUSIONS/INTERPRETATION This study demonstrates that physiological GDM subtypes differ in their metabolome and genetic architecture. These findings require replication in additional cohorts, but suggest that these differences may contribute to subtype-related adverse pregnancy outcomes.
Collapse
Affiliation(s)
- Kristen Lee
- Department of Medicine, Northwestern University Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Alan Kuang
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - James R Bain
- Duke Molecular Physiology Institute, Durham, NC, USA
- Department of Medicine, Duke University School of Medicine, Duke University, Durham, NC, USA
| | - M Geoffrey Hayes
- Department of Medicine, Northwestern University Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | | | - Olga R Ilkayeva
- Duke Molecular Physiology Institute, Durham, NC, USA
- Department of Medicine, Duke University School of Medicine, Duke University, Durham, NC, USA
| | - Christopher B Newgard
- Duke Molecular Physiology Institute, Durham, NC, USA
- Department of Medicine, Duke University School of Medicine, Duke University, Durham, NC, USA
| | - Camille E Powe
- Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute of MIT and Harvard, Boston, MA, USA
| | - Marie-France Hivert
- Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Population Medicine, Harvard Pilgrim Health Care Institute, Harvard Medical School, Boston, MA, USA
- Department of Medicine, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
| | - Denise M Scholtens
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - William L Lowe
- Department of Medicine, Northwestern University Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
10
|
Kim B, Kim G, Jeon HP, Jung J. Lipidomics Analysis Unravels Aberrant Lipid Species and Pathways Induced by Zinc Oxide Nanoparticles in Kidney Cells. Int J Mol Sci 2024; 25:4285. [PMID: 38673870 PMCID: PMC11050686 DOI: 10.3390/ijms25084285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/02/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Zinc oxide nanoparticles (ZnO NPs) are widely used in versatile applications, from high technology to household products. While numerous studies have examined the toxic gene profile of ZnO NPs across various tissues, the specific lipid species associated with adverse effects and potential biomarkers remain elusive. In this study, we conducted a liquid chromatography-mass spectrometry based lipidomics analysis to uncover potential lipid biomarkers in human kidney cells following treatment with ZnO NPs. Furthermore, we employed lipid pathway enrichment analysis (LIPEA) to elucidate altered lipid-related signaling pathways. Our results demonstrate that ZnO NPs induce cytotoxicity in renal epithelial cells and modulate lipid species; we identified 64 lipids with a fold change (FC) > 2 and p < 0.01 with corrected p < 0.05 in HK2 cells post-treatment with ZnO NPs. Notably, the altered lipids between control HK2 cells and those treated with ZnO NPs were associated with the sphingolipid, autophagy, and glycerophospholipid pathways. This study unveils novel potential lipid biomarkers of ZnO NP nanotoxicity, representing the first lipidomic profiling of ZnO NPs in human renal epithelial cells.
Collapse
Affiliation(s)
- Boyun Kim
- Department of SmartBio, College of Life and Health Science, Kyungsung University, Busan 48434, Republic of Korea; (B.K.); (G.K.)
| | - Gaeun Kim
- Department of SmartBio, College of Life and Health Science, Kyungsung University, Busan 48434, Republic of Korea; (B.K.); (G.K.)
| | - Hyun Pyo Jeon
- Department of SmartBio, College of Life and Health Science, Kyungsung University, Busan 48434, Republic of Korea; (B.K.); (G.K.)
- Graduate School of Chemical Safety Management, Kyungsung University, Busan 48434, Republic of Korea
| | - Jewon Jung
- Department of SmartBio, College of Life and Health Science, Kyungsung University, Busan 48434, Republic of Korea; (B.K.); (G.K.)
| |
Collapse
|
11
|
Ahmad MS, Minaee N, Serrano-Contreras JI, Kaluarachchi M, Shen EYL, Boulange C, Ahmad S, Phetcharaburanin J, Holmes E, Wist J, Albaloshi AH, Alaama T, Damanhouri ZA, Lodge S. Exploring the Interactions between Obesity and Diabetes: Implications for Understanding Metabolic Dysregulation in a Saudi Arabian Adult Population. J Proteome Res 2024; 23:809-821. [PMID: 38230637 PMCID: PMC10846529 DOI: 10.1021/acs.jproteome.3c00717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/07/2023] [Accepted: 12/14/2023] [Indexed: 01/18/2024]
Abstract
The rising prevalence of obesity in Saudi Arabia is a major contributor to the nation's high levels of cardiometabolic diseases such as type 2 diabetes. To assess the impact of obesity on the diabetic metabolic phenotype presented in young Saudi Arabian adults, participants (n = 289, aged 18-40 years) were recruited and stratified into four groups: healthy weight (BMI 18.5-24.99 kg/m2) with (n = 57) and without diabetes (n = 58) or overweight/obese (BMI > 24.99 kg/m2) with (n = 102) and without diabetes (n = 72). Distinct plasma metabolic phenotypes associated with high BMI and diabetes were identified using nuclear magnetic resonance spectroscopy and ultraperformance liquid chromatography mass spectrometry. Increased plasma glucose and dysregulated lipoproteins were characteristics of obesity in individuals with and without diabetes, but the obesity-associated lipoprotein phenotype was partially masked in individuals with diabetes. Although there was little difference between diabetics and nondiabetics in the global plasma LDL cholesterol and phospholipid concentration, the distribution of lipoprotein particles was altered in diabetics with a shift toward denser and more atherogenic LDL5 and LDL6 particles, which was amplified in the presence of obesity. Further investigation is warranted in larger Middle Eastern populations to explore the dysregulation of metabolism driven by interactions between obesity and diabetes in young adults.
Collapse
Affiliation(s)
- Muhammad Saeed Ahmad
- Department
of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, U.K.
- Drug
Metabolism Unit, King Fahad Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Novia Minaee
- Health
Futures Institute, Murdoch University, Perth, WA 6150, Australia
| | | | - Manuja Kaluarachchi
- Department
of Metabolism, Digestion and Reproduction, Imperial College, London SW7 2AZ, U.K.
| | - Eric Yi-Liang Shen
- Department
of Metabolism, Digestion and Reproduction, Imperial College, London SW7 2AZ, U.K.
- Department
of Radiation Oncology, Chang Gung Memorial
Hospital and Chang Gung University, Taoyuan 333, Taiwan
| | - Claire Boulange
- Department
of Metabolism, Digestion and Reproduction, Imperial College, London SW7 2AZ, U.K.
| | - Sultan Ahmad
- Drug
Metabolism Unit, King Fahad Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Jutarop Phetcharaburanin
- Department
of Systems Biosciences and Computational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Elaine Holmes
- Health
Futures Institute, Murdoch University, Perth, WA 6150, Australia
- Department
of Metabolism, Digestion and Reproduction, Imperial College, London SW7 2AZ, U.K.
| | - Julien Wist
- Health
Futures Institute, Murdoch University, Perth, WA 6150, Australia
- Department
of Metabolism, Digestion and Reproduction, Imperial College, London SW7 2AZ, U.K.
- Chemistry
Department, Universidad del Valle, Cali 76001, Colombia
| | - Ahmed Hakem Albaloshi
- King
Abdulaziz Hospital and Endocrine and Diabetic Center, Jeddah 23436, Saudi Arabia
| | - Tareef Alaama
- Department
of Medicine, Faculty of Medicine, King Abdulaziz
University, Jeddah 21589, Saudi Arabia
| | - Zoheir Abdullah Damanhouri
- Drug
Metabolism Unit, King Fahad Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department
of Pharmacology, Faculty of Medicine, King
Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Samantha Lodge
- Health
Futures Institute, Murdoch University, Perth, WA 6150, Australia
| |
Collapse
|
12
|
Petrova NN. [Metabolic syndrome in clinical psychiatric practice]. Zh Nevrol Psikhiatr Im S S Korsakova 2024; 124:13-20. [PMID: 39269292 DOI: 10.17116/jnevro202412408113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
A literature review in PubMed and Google databases was performed. Inclusion criteria: randomized clinical trials, meta-analyses and systematic reviews, relevant full-text articles on metabolic syndrome (MS) in patients with schizophrenia. Exclusion criteria: articles of poor quality. The terminology of the article corresponds to that used in the publications included in the review. The review substantiates the relevance of the problem of MS, discloses the concept and discusses its criteria, provides data on the prevalence of MS in patients with schizophrenia, discusses the relationship between MS and schizophrenia, MS and cognitive impairment in schizophrenia, and describes metabolic changes in patients with a first episode of psychosis or early stage schizophrenia. Recommendations on therapeutic tactics in the development of metabolic syndrome in patients with schizophrenia are given.
Collapse
Affiliation(s)
- N N Petrova
- Saint Petersburg State University, St. Petersburg, Russia
| |
Collapse
|
13
|
Krestensen KK, Heeren RMA, Balluff B. State-of-the-art mass spectrometry imaging applications in biomedical research. Analyst 2023; 148:6161-6187. [PMID: 37947390 DOI: 10.1039/d3an01495a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Mass spectrometry imaging has advanced from a niche technique to a widely applied spatial biology tool operating at the forefront of numerous fields, most notably making a significant impact in biomedical pharmacological research. The growth of the field has gone hand in hand with an increase in publications and usage of the technique by new laboratories, and consequently this has led to a shift from general MSI reviews to topic-specific reviews. Given this development, we see the need to recapitulate the strengths of MSI by providing a more holistic overview of state-of-the-art MSI studies to provide the new generation of researchers with an up-to-date reference framework. Here we review scientific advances for the six largest biomedical fields of MSI application (oncology, pharmacology, neurology, cardiovascular diseases, endocrinology, and rheumatology). These publications thereby give examples for at least one of the following categories: they provide novel mechanistic insights, use an exceptionally large cohort size, establish a workflow that has the potential to become a high-impact methodology, or are highly cited in their field. We finally have a look into new emerging fields and trends in MSI (immunology, microbiology, infectious diseases, and aging), as applied MSI is continuously broadening as a result of technological breakthroughs.
Collapse
Affiliation(s)
- Kasper K Krestensen
- The Maastricht MultiModal Molecular Imaging (M4I) Institute, Maastricht University, 6229 ER Maastricht, The Netherlands.
| | - Ron M A Heeren
- The Maastricht MultiModal Molecular Imaging (M4I) Institute, Maastricht University, 6229 ER Maastricht, The Netherlands.
| | - Benjamin Balluff
- The Maastricht MultiModal Molecular Imaging (M4I) Institute, Maastricht University, 6229 ER Maastricht, The Netherlands.
| |
Collapse
|
14
|
Perrier J, Nawrot M, Madec AM, Chikh K, Chauvin MA, Damblon C, Sabatier J, Thivolet CH, Rieusset J, Rautureau GJP, Panthu B. Human Pancreatic Islets React to Glucolipotoxicity by Secreting Pyruvate and Citrate. Nutrients 2023; 15:4791. [PMID: 38004183 PMCID: PMC10674605 DOI: 10.3390/nu15224791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/07/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
Progressive decline in pancreatic beta-cell function is central to the pathogenesis of type 2 diabetes (T2D). Here, we explore the relationship between the beta cell and its nutritional environment, asking how an excess of energy substrate leads to altered energy production and subsequent insulin secretion. Alterations in intracellular metabolic homeostasis are key markers of islets with T2D, but changes in cellular metabolite exchanges with their environment remain unknown. We answered this question using nuclear magnetic resonance-based quantitative metabolomics and evaluated the consumption or secretion of 31 extracellular metabolites from healthy and T2D human islets. Islets were also cultured under high levels of glucose and/or palmitate to induce gluco-, lipo-, and glucolipotoxicity. Biochemical analyses revealed drastic alterations in the pyruvate and citrate pathways, which appear to be associated with mitochondrial oxoglutarate dehydrogenase (OGDH) downregulation. We repeated these manipulations on the rat insulinoma-derived beta-pancreatic cell line (INS-1E). Our results highlight an OGDH downregulation with a clear effect on the pyruvate and citrate pathways. However, citrate is directed to lipogenesis in the INS-1E cells instead of being secreted as in human islets. Our results demonstrate the ability of metabolomic approaches performed on culture media to easily discriminate T2D from healthy and functional islets.
Collapse
Affiliation(s)
- Johan Perrier
- Laboratoire CarMeN, UMR INSERM U1060/INRAE U1397, University of Lyon, Université Claude Bernard Lyon 1, 69310 Pierre-Bénite, France
| | - Margaux Nawrot
- Laboratoire CarMeN, UMR INSERM U1060/INRAE U1397, University of Lyon, Université Claude Bernard Lyon 1, 69310 Pierre-Bénite, France
| | - Anne-Marie Madec
- Laboratoire CarMeN, UMR INSERM U1060/INRAE U1397, University of Lyon, Université Claude Bernard Lyon 1, 69310 Pierre-Bénite, France
| | - Karim Chikh
- Laboratoire CarMeN, UMR INSERM U1060/INRAE U1397, University of Lyon, Université Claude Bernard Lyon 1, 69310 Pierre-Bénite, France
- Department of Endocrinology and Diabetes, Hospices Civils de Lyon, Hopital Lyon Sud, 69310 Pierre-Bénite, France
| | - Marie-Agnès Chauvin
- Laboratoire CarMeN, UMR INSERM U1060/INRAE U1397, University of Lyon, Université Claude Bernard Lyon 1, 69310 Pierre-Bénite, France
| | - Christian Damblon
- Unité de Recherche MolSys, Faculté des Sciences, Université de Liège, 99131 Liège, Belgium
| | - Julia Sabatier
- Laboratory of Cell Therapy for Diabetes (LTCD), PRIMS Facility, Institute for Regenerative Medicine and Biotherapy (IRMB), University Hospital of Montpellier, 34295 Montpellier, France
| | - Charles H. Thivolet
- Laboratoire CarMeN, UMR INSERM U1060/INRAE U1397, University of Lyon, Université Claude Bernard Lyon 1, 69310 Pierre-Bénite, France
- Department of Endocrinology and Diabetes, Hospices Civils de Lyon, Hopital Lyon Sud, 69310 Pierre-Bénite, France
| | - Jennifer Rieusset
- Laboratoire CarMeN, UMR INSERM U1060/INRAE U1397, University of Lyon, Université Claude Bernard Lyon 1, 69310 Pierre-Bénite, France
| | - Gilles J. P. Rautureau
- Centre de Résonance Magnétique Nucléaire à Très Hauts Champs, UMR 5082 CNRS, ENS Lyon, UCBL, Université de Lyon, 69100 Villeurbanne, France
| | - Baptiste Panthu
- Laboratoire CarMeN, UMR INSERM U1060/INRAE U1397, University of Lyon, Université Claude Bernard Lyon 1, 69310 Pierre-Bénite, France
| |
Collapse
|
15
|
Seeley EH, Liu Z, Yuan S, Stroope C, Cockerham E, Rashdan NA, Delgadillo L, Finney AC, Kumar D, Das S, Razani B, Liu W, Traylor J, Orr AW, Rom O, Pattillo CB, Yurdagul A. Spatially Resolved Metabolites in Stable and Unstable Human Atherosclerotic Plaques Identified by Mass Spectrometry Imaging. Arterioscler Thromb Vasc Biol 2023; 43:1626-1635. [PMID: 37381983 PMCID: PMC10527524 DOI: 10.1161/atvbaha.122.318684] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 06/14/2023] [Indexed: 06/30/2023]
Abstract
BACKGROUND Impairments in carbohydrate, lipid, and amino acid metabolism drive features of plaque instability. However, where these impairments occur within the atheroma remains largely unknown. Therefore, we sought to characterize the spatial distribution of metabolites within stable and unstable atherosclerosis in both the fibrous cap and necrotic core. METHODS Atherosclerotic tissue specimens from 9 unmatched individuals were scored based on the Stary classification scale and subdivided into stable and unstable atheromas. After performing mass spectrometry imaging on these samples, we identified over 850 metabolite-related peaks. Using MetaboScape, METASPACE, and Human Metabolome Database, we confidently annotated 170 of these metabolites and found over 60 of these were different between stable and unstable atheromas. We then integrated these results with an RNA-sequencing data set comparing stable and unstable human atherosclerosis. RESULTS Upon integrating our mass spectrometry imaging results with the RNA-sequencing data set, we discovered that pathways related to lipid metabolism and long-chain fatty acids were enriched in stable plaques, whereas reactive oxygen species, aromatic amino acid, and tryptophan metabolism were increased in unstable plaques. In addition, acylcarnitines and acylglycines were increased in stable plaques whereas tryptophan metabolites were enriched in unstable plaques. Evaluating spatial differences in stable plaques revealed lactic acid in the necrotic core, whereas pyruvic acid was elevated in the fibrous cap. In unstable plaques, 5-hydroxyindoleacetic acid was enriched in the fibrous cap. CONCLUSIONS Our work here represents the first step to defining an atlas of metabolic pathways involved in plaque destabilization in human atherosclerosis. We anticipate this will be a valuable resource and open new avenues of research in cardiovascular disease.
Collapse
Affiliation(s)
- Erin H. Seeley
- Department of Chemistry, University of Texas at Austin, TX, USA
| | - Zhipeng Liu
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, IN, USA
| | - Shuai Yuan
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, PA, USA
| | - Chad Stroope
- Department of Molecular and Cellular Physiology, LSU Health Sciences Center at Shreveport, LA, USA
| | - Elizabeth Cockerham
- Department of Pathology and Translational Pathobiology, LSU Health Sciences Center at Shreveport, LA, USA
| | - Nabil A Rashdan
- Department of Molecular and Cellular Physiology, LSU Health Sciences Center at Shreveport, LA, USA
| | - Luisa Delgadillo
- Department of Molecular and Cellular Physiology, LSU Health Sciences Center at Shreveport, LA, USA
| | - Alexandra C Finney
- Department of Pathology and Translational Pathobiology, LSU Health Sciences Center at Shreveport, LA, USA
| | - Dhananjay Kumar
- Department of Molecular and Cellular Physiology, LSU Health Sciences Center at Shreveport, LA, USA
| | - Sandeep Das
- Department of Pathology and Translational Pathobiology, LSU Health Sciences Center at Shreveport, LA, USA
| | - Babak Razani
- Cardiovascular Division, Department of Medicine and Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA
- John Cochran VA Medical Center, St. Louis, MO, USA
| | - Wanqing Liu
- Department of Pharmaceutical Sciences and Department of Pharmacology, Wayne State University, MI, USA
| | - James Traylor
- Department of Pathology and Translational Pathobiology, LSU Health Sciences Center at Shreveport, LA, USA
| | - A Wayne Orr
- Department of Molecular and Cellular Physiology, LSU Health Sciences Center at Shreveport, LA, USA
- Department of Pathology and Translational Pathobiology, LSU Health Sciences Center at Shreveport, LA, USA
| | - Oren Rom
- Department of Molecular and Cellular Physiology, LSU Health Sciences Center at Shreveport, LA, USA
- Department of Pathology and Translational Pathobiology, LSU Health Sciences Center at Shreveport, LA, USA
| | - Christopher B Pattillo
- Department of Molecular and Cellular Physiology, LSU Health Sciences Center at Shreveport, LA, USA
| | - Arif Yurdagul
- Department of Molecular and Cellular Physiology, LSU Health Sciences Center at Shreveport, LA, USA
- Department of Pathology and Translational Pathobiology, LSU Health Sciences Center at Shreveport, LA, USA
| |
Collapse
|
16
|
Deschênes T, Tohoundjona FWE, Plante PL, Di Marzo V, Raymond F. Gene-based microbiome representation enhances host phenotype classification. mSystems 2023; 8:e0053123. [PMID: 37404032 PMCID: PMC10469787 DOI: 10.1128/msystems.00531-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 07/06/2023] Open
Abstract
With the concomitant advances in both the microbiome and machine learning fields, the gut microbiome has become of great interest for the potential discovery of biomarkers to be used in the classification of the host health status. Shotgun metagenomics data derived from the human microbiome is composed of a high-dimensional set of microbial features. The use of such complex data for the modeling of host-microbiome interactions remains a challenge as retaining de novo content yields a highly granular set of microbial features. In this study, we compared the prediction performances of machine learning approaches according to different types of data representations derived from shotgun metagenomics. These representations include commonly used taxonomic and functional profiles and the more granular gene cluster approach. For the five case-control datasets used in this study (Type 2 diabetes, obesity, liver cirrhosis, colorectal cancer, and inflammatory bowel disease), gene-based approaches, whether used alone or in combination with reference-based data types, allowed improved or similar classification performances as the taxonomic and functional profiles. In addition, we show that using subsets of gene families from specific functional categories of genes highlight the importance of these functions on the host phenotype. This study demonstrates that both reference-free microbiome representations and curated metagenomic annotations can provide relevant representations for machine learning based on metagenomic data. IMPORTANCE Data representation is an essential part of machine learning performance when using metagenomic data. In this work, we show that different microbiome representations provide varied host phenotype classification performance depending on the dataset. In classification tasks, untargeted microbiome gene content can provide similar or improved classification compared to taxonomical profiling. Feature selection based on biological function also improves classification performance for some pathologies. Function-based feature selection combined with interpretable machine learning algorithms can generate new hypotheses that can potentially be assayed mechanistically. This work thus proposes new approaches to represent microbiome data for machine learning that can potentiate the findings associated with metagenomic data.
Collapse
Affiliation(s)
- Thomas Deschênes
- Centre Nutrition, Santé et Société (NUTRISS) – Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Université Laval, Québec, Canada
- Canada Research Excellence Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Quebec City, Quebec, Canada
- Institut Intelligence et Données, Université Laval, Québec, Canada
| | - Fred Wilfried Elom Tohoundjona
- Centre Nutrition, Santé et Société (NUTRISS) – Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Université Laval, Québec, Canada
- Canada Research Excellence Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Quebec City, Quebec, Canada
| | - Pier-Luc Plante
- Centre Nutrition, Santé et Société (NUTRISS) – Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Université Laval, Québec, Canada
- Canada Research Excellence Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Quebec City, Quebec, Canada
- Institut Intelligence et Données, Université Laval, Québec, Canada
| | - Vincenzo Di Marzo
- Centre Nutrition, Santé et Société (NUTRISS) – Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Université Laval, Québec, Canada
- Canada Research Excellence Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Quebec City, Quebec, Canada
- École de nutrition, Faculté des sciences de l’agriculture et de l’alimentation (FSAA), Université Laval, Québec, Canada
- Centre de recherche de l’Institut universitaire de cardiologie et de pneumologie de Québec (IUCPQ), Québec, Canada
- Département de médecine, Faculté de Médecine, Université Laval, Québec, Canada
- Joint International Unit on Chemical and Biomolecular Research on the Microbiome and its Impact on Metabolic Health and Nutrition (UMI-MicroMeNu), Quebec City, Canada
| | - Frédéric Raymond
- Centre Nutrition, Santé et Société (NUTRISS) – Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Université Laval, Québec, Canada
- Canada Research Excellence Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Quebec City, Quebec, Canada
- Institut Intelligence et Données, Université Laval, Québec, Canada
- École de nutrition, Faculté des sciences de l’agriculture et de l’alimentation (FSAA), Université Laval, Québec, Canada
| |
Collapse
|
17
|
Jackson MI, Jewell DE. Feeding of fish oil and medium-chain triglycerides to canines impacts circulating structural and energetic lipids, endocannabinoids, and non-lipid metabolite profiles. Front Vet Sci 2023; 10:1168703. [PMID: 37691632 PMCID: PMC10484482 DOI: 10.3389/fvets.2023.1168703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 07/26/2023] [Indexed: 09/12/2023] Open
Abstract
Introduction The effect of medium-chain fatty acid-containing triglycerides (MCT), long-chain polyunsaturated fatty acid-containing triglycerides from fish oil (FO), and their combination (FO+MCT) on the serum metabolome of dogs (Canis familiaris) was evaluated. Methods Dogs (N = 64) were randomized to either a control food, one with 7% MCT, one with FO (0.18% eicosapentaenoate and 1.3% docosahexaenoate), or one with FO+MCT for 28 days following a 14-day washout period on the control food. Serum metabolites were analyzed via chromatography followed by mass spectrometry. Results Additive effects of serum metabolites were observed for a number of metabolite classes, including fatty acids, phospholipids, acylated amines including endocannabinoids, alpha-oxidized fatty acids, and methyl donors. Some effects of the addition of FO+MCT were different when the oils were combined compared with when each oil was fed separately, namely for acylcarnitines, omega-oxidized dicarboxylic acids, and amino acids. Several potentially beneficial effects on health were observed, including decreased circulating triglycerides and total cholesterol with the addition of FO (with or without MCT) and decreases in N-acyl taurines with the addition of MCT, FO, or FO+MCT. Discussion Overall, the results of this study provide a phenotypic characterization of the serum lipidomic response to dietary supplementation of long-chain n3-polyunsaturated and medium-chain saturated fats in canines.
Collapse
Affiliation(s)
- Matthew I. Jackson
- Pet Nutrition Center, Hill's Pet Nutrition, Inc., Topeka, KS, United States
| | - Dennis E. Jewell
- Pet Nutrition Center, Hill's Pet Nutrition, Inc., Topeka, KS, United States
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS, United States
| |
Collapse
|
18
|
Mateska I, Witt A, Hagag E, Sinha A, Yilmaz C, Thanou E, Sun N, Kolliniati O, Patschin M, Abdelmegeed H, Henneicke H, Kanczkowski W, Wielockx B, Tsatsanis C, Dahl A, Walch AK, Li KW, Peitzsch M, Chavakis T, Alexaki VI. Succinate mediates inflammation-induced adrenocortical dysfunction. eLife 2023; 12:e83064. [PMID: 37449973 PMCID: PMC10374281 DOI: 10.7554/elife.83064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 07/13/2023] [Indexed: 07/18/2023] Open
Abstract
The hypothalamus-pituitary-adrenal (HPA) axis is activated in response to inflammation leading to increased production of anti-inflammatory glucocorticoids by the adrenal cortex, thereby representing an endogenous feedback loop. However, severe inflammation reduces the responsiveness of the adrenal gland to adrenocorticotropic hormone (ACTH), although the underlying mechanisms are poorly understood. Here, we show by transcriptomic, proteomic, and metabolomic analyses that LPS-induced systemic inflammation triggers profound metabolic changes in steroidogenic adrenocortical cells, including downregulation of the TCA cycle and oxidative phosphorylation, in mice. Inflammation disrupts the TCA cycle at the level of succinate dehydrogenase (SDH), leading to succinate accumulation and disturbed steroidogenesis. Mechanistically, IL-1β reduces SDHB expression through upregulation of DNA methyltransferase 1 (DNMT1) and methylation of the SDHB promoter. Consequently, increased succinate levels impair oxidative phosphorylation and ATP synthesis and enhance ROS production, leading to reduced steroidogenesis. Together, we demonstrate that the IL-1β-DNMT1-SDHB-succinate axis disrupts steroidogenesis. Our findings not only provide a mechanistic explanation for adrenal dysfunction in severe inflammation, but also offer a potential target for therapeutic intervention.
Collapse
Affiliation(s)
- Ivona Mateska
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital, Technische Universität DresdenDresdenGermany
| | - Anke Witt
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital, Technische Universität DresdenDresdenGermany
| | - Eman Hagag
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital, Technische Universität DresdenDresdenGermany
| | - Anupam Sinha
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital, Technische Universität DresdenDresdenGermany
| | - Canelif Yilmaz
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital, Technische Universität DresdenDresdenGermany
| | - Evangelia Thanou
- Center of Neurogenomics and Cognitive Research (CNCR), Department of Molecular and 10 Cellular Neurobiology, Vrije UniversiteitAmsterdamNetherlands
| | - Na Sun
- Research Unit Analytical Pathology, German Research Center for Environmental Health, Helmholtz Zentrum MünchenMunichGermany
| | - Ourania Kolliniati
- Department of Clinical Chemistry, Medical School, University of CreteHeraklionGreece
| | - Maria Patschin
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital, Technische Universität DresdenDresdenGermany
| | - Heba Abdelmegeed
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital, Technische Universität DresdenDresdenGermany
| | - Holger Henneicke
- Department of Medicine III & Center for Healthy Ageing, Technische Universität DresdenDresdenGermany
- Center for Regenerative Therapies, TU Dresden, Technische Universität DresdenDresdenGermany
| | - Waldemar Kanczkowski
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital, Technische Universität DresdenDresdenGermany
| | - Ben Wielockx
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital, Technische Universität DresdenDresdenGermany
| | - Christos Tsatsanis
- Department of Clinical Chemistry, Medical School, University of CreteHeraklionGreece
| | - Andreas Dahl
- DRESDEN-concept Genome Center, Center for Molecular and Cellular Bioengineering, Technische Universität DresdenDresdenGermany
| | - Axel Karl Walch
- Research Unit Analytical Pathology, German Research Center for Environmental Health, Helmholtz Zentrum MünchenMunichGermany
| | - Ka Wan Li
- Center of Neurogenomics and Cognitive Research (CNCR), Department of Molecular and 10 Cellular Neurobiology, Vrije UniversiteitAmsterdamNetherlands
| | - Mirko Peitzsch
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital, Technische Universität DresdenDresdenGermany
| | - Triantafyllos Chavakis
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital, Technische Universität DresdenDresdenGermany
| | - Vasileia Ismini Alexaki
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital, Technische Universität DresdenDresdenGermany
| |
Collapse
|
19
|
Balint L, Socaciu C, Socaciu AI, Vlad A, Gadalean F, Bob F, Milas O, Cretu OM, Suteanu-Simulescu A, Glavan M, Ienciu S, Mogos M, Jianu DC, Petrica L. Quantitative, Targeted Analysis of Gut Microbiota Derived Metabolites Provides Novel Biomarkers of Early Diabetic Kidney Disease in Type 2 Diabetes Mellitus Patients. Biomolecules 2023; 13:1086. [PMID: 37509122 PMCID: PMC10377254 DOI: 10.3390/biom13071086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/29/2023] [Accepted: 07/04/2023] [Indexed: 07/30/2023] Open
Abstract
Diabetic kidney disease (DKD) is one of the most debilitating complications of type 2 diabetes mellitus (T2DM), as it progresses silently to end-stage renal disease (ESRD). The discovery of novel biomarkers of early DKD becomes acute, as its incidence is reaching catastrophic proportions. Our study aimed to quantify previously identified metabolites from serum and urine through untargeted ultra-high-performance liquid chromatography coupled with electrospray ionization-quadrupole-time of flight-mass spectrometry (UHPLC-QTOF-ESI+-MS) techniques, such as the following: arginine, dimethylarginine, hippuric acid, indoxyl sulfate, p-cresyl sulfate, L-acetylcarnitine, butenoylcarnitine and sorbitol. The study concept was based on the targeted analysis of selected metabolites, using the serum and urine of 20 healthy subjects and 90 T2DM patients with DKD in different stages (normoalbuminuria-uACR < 30 mg/g; microalbuminuria-uACR 30-300 mg/g; macroalbuminuria-uACR > 300 mg/g). The quantitative evaluation of metabolites was performed with pure standards, followed by the validation methods such as the limit of detection (LOD) and the limit of quantification (LOQ). The following metabolites from this study resulted as possible biomarkers of early DKD: in serum-arginine, dimethylarginine, hippuric acid, indoxyl sulfate, butenoylcarnitine and sorbitol and in urine-p-cresyl sulfate.
Collapse
Affiliation(s)
- Lavinia Balint
- Department of Internal Medicine II-Division of Nephrology, "Victor Babes" University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, County Emergency Hospital, 300041 Timisoara, Romania
- Center for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania
| | - Carmen Socaciu
- Center for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania
- Research Center for Applied Biotechnology and Molecular Therapy Biodiatech, SC Proplanta, Trifoiului 12G, 400478 Cluj-Napoca, Romania
| | - Andreea Iulia Socaciu
- Department of Occupational Health, University of Medicine and Pharmacy "Iuliu Haţieganu", Victor Babes 8, 400347 Cluj-Napoca, Romania
| | - Adrian Vlad
- Center for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania
- Department of Internal Medicine II-Division of Diabetes and Metabolic Diseases, "Victor Babes" University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, County Emergency Hospital, 300041 Timisoara, Romania
| | - Florica Gadalean
- Department of Internal Medicine II-Division of Nephrology, "Victor Babes" University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, County Emergency Hospital, 300041 Timisoara, Romania
- Center for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania
| | - Flaviu Bob
- Department of Internal Medicine II-Division of Nephrology, "Victor Babes" University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, County Emergency Hospital, 300041 Timisoara, Romania
- Center for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania
| | - Oana Milas
- Department of Internal Medicine II-Division of Nephrology, "Victor Babes" University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, County Emergency Hospital, 300041 Timisoara, Romania
- Center for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania
| | - Octavian Marius Cretu
- Department of Surgery I-Division of Surgical Semiology I, "Victor Babes" University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, Emergency Clinical Municipal Hospital, 300041 Timisoara, Romania
| | - Anca Suteanu-Simulescu
- Department of Internal Medicine II-Division of Nephrology, "Victor Babes" University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, County Emergency Hospital, 300041 Timisoara, Romania
- Center for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania
| | - Mihaela Glavan
- Department of Internal Medicine II-Division of Nephrology, "Victor Babes" University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, County Emergency Hospital, 300041 Timisoara, Romania
- Center for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania
| | - Silvia Ienciu
- Department of Internal Medicine II-Division of Nephrology, "Victor Babes" University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, County Emergency Hospital, 300041 Timisoara, Romania
- Center for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania
| | - Maria Mogos
- Department of Internal Medicine II-Division of Nephrology, "Victor Babes" University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, County Emergency Hospital, 300041 Timisoara, Romania
- Center for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania
| | - Dragos Catalin Jianu
- Center for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania
- Department of Neurosciences-Division of Neurology, "Victor Babes" University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, County Emergency Hospital, 300041 Timisoara, Romania
- Center for Cognitive Research in Neuropsychiatric Pathology (Neuropsy-Cog), Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania
| | - Ligia Petrica
- Department of Internal Medicine II-Division of Nephrology, "Victor Babes" University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, County Emergency Hospital, 300041 Timisoara, Romania
- Center for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania
- Center for Cognitive Research in Neuropsychiatric Pathology (Neuropsy-Cog), Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, Eftimie Murgu Sq. No. 2, 300041 Timisoara, Romania
- Center for Translational Research and Systems Medicine, Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, Eftimie, Murgu Sq. No. 2, 300041 Timisoara, Romania
| |
Collapse
|
20
|
Li X, Miao Y, Fang Z, Zhang Q. The association and prediction value of acylcarnitine on diabetic nephropathy in Chinese patients with type 2 diabetes mellitus. Diabetol Metab Syndr 2023; 15:130. [PMID: 37330521 DOI: 10.1186/s13098-023-01058-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 04/12/2023] [Indexed: 06/19/2023] Open
Abstract
BACKGROUND Acylcarnitines play a role in type 2 diabetes mellitus (T2DM), but the relationship between acylcarnitine and diabetic nephropathy was unclear. We aimed to explore the association of acylcarnitine metabolites with diabetic nephropathy and estimate the predictive value of acylcarnitine for diabetic nephropathy. METHODS A total of 1032 (mean age: 57.24 ± 13.82) T2DM participants were derived from Liaoning Medical University First Affiliated Hospital. Mass Spectrometry was utilized to measure levels of 25 acylcarnitine metabolites in fasting plasma. Diabetic nephropathy was ascertained based on the medical records. Factor analysis was used to reduce the dimensions and extract factors of the 25 acylcarnitine metabolites. Logistic regression was used to estimate the relationship between factors extracted from the 25 acylcarnitine metabolites and diabetic nephropathy. Receiver operating characteristic curves were used to test the predictive values of acylcarnitine factors for diabetic nephropathy. RESULTS Among all T2DM participants, 138 (13.37%) patients had diabetic nephropathy. Six factors were extracted from 25 acylcarnitines, which account for 69.42% of the total variance. In multi-adjusted logistic regression models, the odds ratio (OR, 95% confidence interval [CI]) of diabetic nephropathy on factor 1 (including butyrylcarnitine/glutaryl-carnitine/hexanoylcarnitine/octanoylcarnitine/decanoylcarnitine/lauroylcarnitine/tetradecenoylcarnitine), factor 2 (including propionylcarnitine/palmitoylcarnitine/hydroxypalmitoleyl-carnitine/octadecanoylcarnitine/arachidiccarnitine), and factor 3 (including tetradecanoyldiacylcarnitine/behenic carnitine/tetracosanoic carnitine/hexacosanoic carnitine) were 1.33 (95%CI 1.12-1.58), 0.76 (95%CI 0.62-0.93), and 1.24 (95%CI 1.05-1.47), respectively. The area under the curve for diabetic nephropathy prediction was significantly increased after the complement of factors 1, 2, and 3 in traditional factors model (P < 0.01). CONCLUSIONS Some plasma acylcarnitine metabolites extracted in factors 1 and 3 were higher in diabetic nephropathy, while factor 2 was lower in diabetic nephropathy among T2DM patients. The addition of acylcarnitine to traditional factors model improved the predictive value for diabetic nephropathy.
Collapse
Affiliation(s)
- Xuerui Li
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin Geriatrics Institute, Anshan Road 154, Heping district, Tianjin, 300052, China
| | - Yuyang Miao
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin Geriatrics Institute, Anshan Road 154, Heping district, Tianjin, 300052, China
| | - Zhongze Fang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Tianjin Medical University, Qixiangtai Road 22, Heping district, Tianjin, 300070, China.
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, China.
| | - Qiang Zhang
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin Geriatrics Institute, Anshan Road 154, Heping district, Tianjin, 300052, China.
| |
Collapse
|
21
|
Shen Y, Wang P, Yang X, Chen M, Dong Y, Li J. A cross-sectional study identifying disparities in serum metabolic profiles among hypertensive patients with ISH, IDH and SDH subtypes. Front Cardiovasc Med 2023; 10:1102754. [PMID: 37215555 PMCID: PMC10192909 DOI: 10.3389/fcvm.2023.1102754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 04/20/2023] [Indexed: 05/24/2023] Open
Abstract
Background It has been well acknowledged that disordered intestinal microflora and their fermented products play crucial role during the development of hypertension (HTN). Aberrant profiles of fecal bacteria have been documented in subjects with isolated systolic HTN (ISH) and isolated diastolic HTN (IDH) previously. Nevertheless, evidence regarding the association of metabolic products in the bloodstream with ISH, IDH and combined systolic and diastolic HTN (SDH) remains scarce. Methods We performed a cross-sectional study and conducted untargeted liquid chromatography-mass spectrometry (LC/MS) analysis on serum samples of 119 participants, including 13 subjects with normotension (SBP < 120/DBP < 80 mm Hg), 11 individuals with ISH (SBP ≥ 130/DBP < 80 mm Hg), 27 patients with IDH (SBP < 130/DBP ≥ 80 mm Hg), and 68 SDH patients (SBP ≥ 130, DBP ≥ 80 mm Hg). Results Here, the results showed clearly separated clusters in PLS-DA and OPLS-DA score plots for patients suffering from ISH, IDH and SDH when compared with normotension controls. The ISH group was characterized by elevated levels of 3,5-tetradecadien carnitine and notable reduction of maleic acid. While IDH patients were enriched with metabolites in L-lactic acid and depleted in citric acid. Stearoylcarnitine was identified to be specifically enriched in SDH group. The differentially abundant metabolites between ISH and controls were involved in tyrosine metabolism pathways, and in biosynthesis of phenylalanine for those between SDH and controls. Potential linkages between the gut microbial and serum metabolic signatures were detected within ISH, IDH and SDH groups. Furthermore, we found the association of discriminatory metabolites with the characteristics of patients. Conclusion Our findings demonstrate disparate blood metabolomics signatures across ISH, IDH and SDH, with differentially enriched metabolites and potential functional pathways identified, reveal the underlying microbiome and metabolome network in HTN subtypes, and provide potential targets for disease classification and therapeutic strategy in clinical practice.
Collapse
Affiliation(s)
- Yang Shen
- Department of Nephrology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Pan Wang
- Heart Center & Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
- Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Xinchun Yang
- Heart Center & Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
- Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Mulei Chen
- Heart Center & Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
- Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Ying Dong
- Heart Center & Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
- Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Jing Li
- Heart Center & Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
- Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
22
|
Danzi F, Pacchiana R, Mafficini A, Scupoli MT, Scarpa A, Donadelli M, Fiore A. To metabolomics and beyond: a technological portfolio to investigate cancer metabolism. Signal Transduct Target Ther 2023; 8:137. [PMID: 36949046 PMCID: PMC10033890 DOI: 10.1038/s41392-023-01380-0] [Citation(s) in RCA: 79] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/08/2023] [Accepted: 02/15/2023] [Indexed: 03/24/2023] Open
Abstract
Tumour cells have exquisite flexibility in reprogramming their metabolism in order to support tumour initiation, progression, metastasis and resistance to therapies. These reprogrammed activities include a complete rewiring of the bioenergetic, biosynthetic and redox status to sustain the increased energetic demand of the cells. Over the last decades, the cancer metabolism field has seen an explosion of new biochemical technologies giving more tools than ever before to navigate this complexity. Within a cell or a tissue, the metabolites constitute the direct signature of the molecular phenotype and thus their profiling has concrete clinical applications in oncology. Metabolomics and fluxomics, are key technological approaches that mainly revolutionized the field enabling researchers to have both a qualitative and mechanistic model of the biochemical activities in cancer. Furthermore, the upgrade from bulk to single-cell analysis technologies provided unprecedented opportunity to investigate cancer biology at cellular resolution allowing an in depth quantitative analysis of complex and heterogenous diseases. More recently, the advent of functional genomic screening allowed the identification of molecular pathways, cellular processes, biomarkers and novel therapeutic targets that in concert with other technologies allow patient stratification and identification of new treatment regimens. This review is intended to be a guide for researchers to cancer metabolism, highlighting current and emerging technologies, emphasizing advantages, disadvantages and applications with the potential of leading the development of innovative anti-cancer therapies.
Collapse
Affiliation(s)
- Federica Danzi
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, Verona, Italy
| | - Raffaella Pacchiana
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, Verona, Italy
| | - Andrea Mafficini
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Maria T Scupoli
- Department of Neurosciences, Biomedicine and Movement Sciences, Biology and Genetics Section, University of Verona, Verona, Italy
| | - Aldo Scarpa
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
- ARC-NET Research Centre, University and Hospital Trust of Verona, Verona, Italy
| | - Massimo Donadelli
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, Verona, Italy.
| | - Alessandra Fiore
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, Verona, Italy
| |
Collapse
|
23
|
Validation of a fast and sensitive UPLC-MS/MS quantitative method for N-acyl taurine analysis in biological samples. J Pharm Biomed Anal 2023; 226:115252. [PMID: 36657348 DOI: 10.1016/j.jpba.2023.115252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 01/12/2023] [Accepted: 01/12/2023] [Indexed: 01/15/2023]
Abstract
The recent discovery of N-acyl taurines (NATs) as a class of endogenous bioactive lipids and the perspective of their possible pharmacological applications stimulated the development of mass spectrometry-based methods for their quantitative measurements in biological tissues and fluids. We report here for the first time a procedure validated both in liver surrogate matrix and neat solvent (MeOH) based on UPLC-ESI-QqQ analysis for the identification and quantification of NATs in biological tissue extracts. The LC-MS method was based on five representative lipid analogues, including saturated, monounsaturated and polyunsaturated species, namely N-palmitoyl taurine (C16:0 NAT), N-oleoyl taurine (C18:1 NAT), N-arachidonoyl taurine (C20:4 NAT), N-docosanoyl taurine (C22:0 NAT) and N-nervonoyl taurine (C24:1 NAT), and evaluated for specificity, linearity, matrix effect, recovery, repeatability and intermediate precision and accuracy. The method validated in MeOH by internal standard approach (d4-C20:4 NAT) showed excellent linearity in the range 1-300 ng/ml with R always ≥ 0.9996 for all NATs; intra-day and inter-day precision and accuracy were always within the acceptable range. Specificity was assessed on NAT standards in MeOH, applying the confirmation ratio of two diagnostic MRM ion transitions for product ions at m/z 80 and m/z 107 to true samples in the adopted BEH C18 UPLC conditions. Limit of detection (LOD) and limit of quantification (LOQ) were 0.3-0.4 and 1 ng/ml, respectively, for all compounds. The method was successfully applied to assess the levels of NATs in the mouse liver and, for the first time, in varying sections of the intestine (duodenum, jejunum, ileum and colon). NAT levels increased from duodenum to colon, evidencing a remarkable prevalence in the large intestine of C22:0 NAT, typically occurring mainly in the central nervous system. These findings prompt further studies to disclose the biological function of the various members of this class in different peripheral tissues.
Collapse
|
24
|
Arul Prakash S, Sengan M, John ML, Veerappan A, Kamlekar RK. Interaction of N-acyltaurines with phosphatidylcholines. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2023; 1865:184103. [PMID: 36563892 DOI: 10.1016/j.bbamem.2022.184103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 12/11/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022]
Abstract
N-acyltaurines (NATs) are biologically active amphiphilic lipids. They come under the group of compounds known as N-acyl amino acids. NATs were first detected in the brain and other tissues in mice lacking the enzyme fatty acid amide hydrolase FAAH (-/-). N-arachidonoyltaurine (20:4 NAT) acts as an excellent ligand for the subset of transient receptor potential (TRP) channels, especially vanilloid type channels TRPV1 and TRPV4. Also, hydrophobic and hydrophilic regions of NATs enable them to interact with membrane lipids. Here, we have investigated the interaction of NATs, N-myristoyltaurine (NMT), and N-palmitoyltaurine (NPT) with their corresponding diacyl phosphatidylcholines (PCs), dimyristoylphosphatidylcholine (DMPC), and dipalmitoylphosphatidylchoine (DPPC). The miscibility and phase behavior of the hydrated binary mixtures have been investigated by differential scanning calorimetry (DSC). Studies on the interaction of NMT/NPT with DMPC/DPPC revealed that the two amphiphiles mix well up to 50 mol% of NAT and phase separation is observed at higher contents of the NAT. The phase transition of the equimolar mixtures of NAT:PC (50:50) studied by fluorescence, also supported the DSC results. PXRD and FTIR analysis show that the NAT:PC equimolar mixture (50:50) forms different supramolecular structures when compared to that of individual NATs and PCs. From transmission electron microscopic studies it is observed that the equimolar mixtures of NMT and NPT with their corresponding diacylphosphatidylcholines (50:50, mol/mol) forms unilamellar vesicles whose diameter range between 30 and 50 nm.
Collapse
Affiliation(s)
- Sukanya Arul Prakash
- Department of Chemistry, School of Advanced Sciences, VIT, Vellore 632014, TN, India
| | - Megarajan Sengan
- Department of Chemistry, Bishop Heber College, Tiruchirappalli 620017, TN, India; Department of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613401, TN, India
| | - Martin Luther John
- Department of Chemistry, School of Advanced Sciences, VIT, Vellore 632014, TN, India
| | - Anbazhagan Veerappan
- Department of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613401, TN, India.
| | - Ravi Kanth Kamlekar
- Department of Chemistry, School of Advanced Sciences, VIT, Vellore 632014, TN, India.
| |
Collapse
|
25
|
Luo L, Ma W, Liang K, Wang Y, Su J, Liu R, Liu T, Shyh-Chang N. Spatial metabolomics reveals skeletal myofiber subtypes. SCIENCE ADVANCES 2023; 9:eadd0455. [PMID: 36735792 PMCID: PMC10939097 DOI: 10.1126/sciadv.add0455] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 01/04/2023] [Indexed: 06/18/2023]
Abstract
Skeletal muscle myofibers are heterogeneous in their metabolism. However, metabolomic profiling of single myofibers has remained difficult. Mass spectrometry imaging (MSI) is a powerful tool for imaging molecular distributions. In this work, we optimized the workflow of matrix-assisted laser desorption/ionization (MALDI)-based MSI from cryosectioning to metabolomics data analysis to perform high-spatial resolution metabolomic profiling of slow- and fast-twitch myofibers. Combining the advantages of MSI and liquid chromatography-MS (LC-MS), we produced spatial metabolomics results that were more reliable. After the combination of high-spatial resolution MSI and LC-MS metabolomic analysis, we also discovered a new subtype of superfast type 2B myofibers that were enriched for fatty acid oxidative metabolism. Our technological workflow could serve as an engine for metabolomics discoveries, and our approach has the potential to provide critical insights into the metabolic heterogeneity and pathways that underlie fundamental biological processes and disease states.
Collapse
Affiliation(s)
- Lanfang Luo
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Wenwu Ma
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- Department of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Kun Liang
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Yuefan Wang
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Jiali Su
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Ruirui Liu
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Taoyan Liu
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Ng Shyh-Chang
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| |
Collapse
|
26
|
The relationship between islet β-cell function and metabolomics in overweight patients with Type 2 diabetes. Biosci Rep 2023; 43:232114. [PMID: 36398677 PMCID: PMC9902842 DOI: 10.1042/bsr20221430] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 10/19/2022] [Accepted: 11/17/2022] [Indexed: 11/19/2022] Open
Abstract
A cross-sectional study was performed using metabolomics in overweight patients with Type 2 diabetes (T2D) at different stages of the disease. We aimed to identify potential metabolites for assessing islet β-cell function in order to investigate the correlation between islet β-cell dysfunction and metabolite changes in overweight patients with T2D. We selected 60 overweight adults (24 ≤ body mass index [BMI] < 28 kg/m2) with T2D who had been admitted to our hospital. The participants were equally divided into three groups according to disease duration: H1 (duration ≤ 5 years), H2 (5 years < duration ≤ 10 years), and H3 (duration > 10 years). Questionnaires, physical examinations, laboratory tests, and imaging studies were administered to all participants. The modified homeostasis model of assessment (HOMA) index was calculated using fasting C-peptide levels, and metabolite assays were performed using mass spectrometry. The results showed that HOMA-β and visceral fat area (VFA) were negatively correlated with diabetes duration. The VFA was positively correlated with arginine, cysteine, methionine, proline, and succinyl/methylmalonylcarnitine levels. The HOMA-β was negatively correlated with the serine and tetradecanoyldiacylcarnitine levels, and positively correlated with the aspartic acid, cysteine, homocysteine, piperamide, proline, and valine levels. The HOMA-IR was negatively correlated with hydroxypalmitoylcarnitine levels and positively correlated with the myristoylcarnitine levels. Thus, at different stages of T2D progression in overweight patients, serine, aspartic acid, cysteine, homocysteine, piperamide, proline, valine, and tetradecanoyldiacylcarnitine may be associated with HOMA-β and represent potential novel biomarkers for evaluating islet β-cell function.
Collapse
|
27
|
Olivares-Caro L, Nova-Baza D, Radojkovic C, Bustamante L, Duran D, Mennickent D, Melin V, Contreras D, Perez AJ, Mardones C. Berberis microphylla G. Forst Intake Reduces the Cardiovascular Disease Plasmatic Markers Associated with a High-Fat Diet in a Mice Model. Antioxidants (Basel) 2023; 12:antiox12020304. [PMID: 36829862 PMCID: PMC9952125 DOI: 10.3390/antiox12020304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/13/2023] [Accepted: 01/21/2023] [Indexed: 01/31/2023] Open
Abstract
Polyphenols are bioactive substances that participate in the prevention of chronic illnesses. High content has been described in Berberis microphylla G. Forst (calafate), a wild berry extensively distributed in Chilean-Argentine Patagonia. We evaluated its beneficial effect through the study of mouse plasma metabolome changes after chronic consumption of this fruit. Characterized calafate extract was administered in water, for four months, to a group of mice fed with a high-fat diet and compared with a control diet. Metabolome changes were studied using UHPLC-DAD-QTOF-based untargeted metabolomics. The study was complemented by the analysis of protein biomarkers determined using Luminex technology, and quantification of OH radicals by electron paramagnetic resonance spectroscopy. Thirteen features were identified with a maximum annotation level-A, revealing an increase in succinic acid, activation of tricarboxylic acid and reduction of carnitine accumulation. Changes in plasma biomarkers were related to inflammation and cardiovascular disease, with changes in thrombomodulin (-24%), adiponectin (+68%), sE-selectin (-34%), sICAM-1 (-24%) and proMMP-9 (-31%) levels. The production of OH radicals in plasma was reduced after calafate intake (-17%), especially for the group fed with a high-fat diet. These changes could be associated with protection against atherosclerosis due to calafate consumption, which is discussed from a holistic and integrative point of view.
Collapse
Affiliation(s)
- Lia Olivares-Caro
- Departamento de Análisis Instrumental, Facultad de Farmacia, Universidad de Concepción, Concepción 4070386, Chile
- Departamento de Bioquímica Clínica e Inmunología, Facultad de Farmacia, Universidad de Concepción, Concepción 4070386, Chile
| | - Daniela Nova-Baza
- Departamento de Análisis Instrumental, Facultad de Farmacia, Universidad de Concepción, Concepción 4070386, Chile
| | - Claudia Radojkovic
- Departamento de Bioquímica Clínica e Inmunología, Facultad de Farmacia, Universidad de Concepción, Concepción 4070386, Chile
| | - Luis Bustamante
- Departamento de Análisis Instrumental, Facultad de Farmacia, Universidad de Concepción, Concepción 4070386, Chile
| | - Daniel Duran
- Departamento de Bioquímica Clínica e Inmunología, Facultad de Farmacia, Universidad de Concepción, Concepción 4070386, Chile
| | - Daniela Mennickent
- Departamento de Análisis Instrumental, Facultad de Farmacia, Universidad de Concepción, Concepción 4070386, Chile
- Departamento de Bioquímica Clínica e Inmunología, Facultad de Farmacia, Universidad de Concepción, Concepción 4070386, Chile
| | - Victoria Melin
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Avda. General Velásquez 1775, Arica 1000007, Chile
| | - David Contreras
- Departamento de Química Analítica e Inorgánica, Facultad de Ciencias Químicas, Universidad de Concepción, Concepción 4070386, Chile
| | - Andy J. Perez
- Departamento de Análisis Instrumental, Facultad de Farmacia, Universidad de Concepción, Concepción 4070386, Chile
| | - Claudia Mardones
- Departamento de Análisis Instrumental, Facultad de Farmacia, Universidad de Concepción, Concepción 4070386, Chile
- Unidad de Desarrollo Tecnológico, Universidad de Concepción, Coronel 4191996, Chile
- Correspondence: ; Tel.: +56-983616340
| |
Collapse
|
28
|
Hu H, Laskin J. Emerging Computational Methods in Mass Spectrometry Imaging. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2203339. [PMID: 36253139 PMCID: PMC9731724 DOI: 10.1002/advs.202203339] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 09/17/2022] [Indexed: 05/10/2023]
Abstract
Mass spectrometry imaging (MSI) is a powerful analytical technique that generates maps of hundreds of molecules in biological samples with high sensitivity and molecular specificity. Advanced MSI platforms with capability of high-spatial resolution and high-throughput acquisition generate vast amount of data, which necessitates the development of computational tools for MSI data analysis. In addition, computation-driven MSI experiments have recently emerged as enabling technologies for further improving the MSI capabilities with little or no hardware modification. This review provides a critical summary of computational methods and resources developed for MSI data analysis and interpretation along with computational approaches for improving throughput and molecular coverage in MSI experiments. This review is focused on the recently developed artificial intelligence methods and provides an outlook for a future paradigm shift in MSI with transformative computational methods.
Collapse
Affiliation(s)
- Hang Hu
- Department of ChemistryPurdue University560 Oval DriveWest LafayetteIN47907USA
| | - Julia Laskin
- Department of ChemistryPurdue University560 Oval DriveWest LafayetteIN47907USA
| |
Collapse
|
29
|
Ackermann M, Kamp JC, Werlein C, Walsh CL, Stark H, Prade V, Surabattula R, Wagner WL, Disney C, Bodey AJ, Illig T, Leeming DJ, Karsdal MA, Tzankov A, Boor P, Kühnel MP, Länger FP, Verleden SE, Kvasnicka HM, Kreipe HH, Haverich A, Black SM, Walch A, Tafforeau P, Lee PD, Hoeper MM, Welte T, Seeliger B, David S, Schuppan D, Mentzer SJ, Jonigk DD. The fatal trajectory of pulmonary COVID-19 is driven by lobular ischemia and fibrotic remodelling. EBioMedicine 2022; 85:104296. [PMID: 36206625 PMCID: PMC9535314 DOI: 10.1016/j.ebiom.2022.104296] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND COVID-19 is characterized by a heterogeneous clinical presentation, ranging from mild symptoms to severe courses of disease. 9-20% of hospitalized patients with severe lung disease die from COVID-19 and a substantial number of survivors develop long-COVID. Our objective was to provide comprehensive insights into the pathophysiology of severe COVID-19 and to identify liquid biomarkers for disease severity and therapy response. METHODS We studied a total of 85 lungs (n = 31 COVID autopsy samples; n = 7 influenza A autopsy samples; n = 18 interstitial lung disease explants; n = 24 healthy controls) using the highest resolution Synchrotron radiation-based hierarchical phase-contrast tomography, scanning electron microscopy of microvascular corrosion casts, immunohistochemistry, matrix-assisted laser desorption ionization mass spectrometry imaging, and analysis of mRNA expression and biological pathways. Plasma samples from all disease groups were used for liquid biomarker determination using ELISA. The anatomic/molecular data were analyzed as a function of patients' hospitalization time. FINDINGS The observed patchy/mosaic appearance of COVID-19 in conventional lung imaging resulted from microvascular occlusion and secondary lobular ischemia. The length of hospitalization was associated with increased intussusceptive angiogenesis. This was associated with enhanced angiogenic, and fibrotic gene expression demonstrated by molecular profiling and metabolomic analysis. Increased plasma fibrosis markers correlated with their pulmonary tissue transcript levels and predicted disease severity. Plasma analysis confirmed distinct fibrosis biomarkers (TSP2, GDF15, IGFBP7, Pro-C3) that predicted the fatal trajectory in COVID-19. INTERPRETATION Pulmonary severe COVID-19 is a consequence of secondary lobular microischemia and fibrotic remodelling, resulting in a distinctive form of fibrotic interstitial lung disease that contributes to long-COVID. FUNDING This project was made possible by a number of funders. The full list can be found within the Declaration of interests / Acknowledgements section at the end of the manuscript.
Collapse
Affiliation(s)
- Maximilian Ackermann
- Institute of Pathology and Molecular Pathology, Helios University Clinic Wuppertal, University of Witten/Herdecke, Germany
- Institute of Functional and Clinical Anatomy, University Medical Center of the Johannes Gutenberg-University Mainz, Germany
| | - Jan C. Kamp
- Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany
- Member of the German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Hannover, Germany
| | - Christopher Werlein
- Member of the German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Hannover, Germany
- Institute of Pathology, Hannover Medical School, Hannover, Germany
| | - Claire L. Walsh
- Centre for Advanced Biomedical Imaging, University College London, UK
| | - Helge Stark
- Member of the German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Hannover, Germany
- Institute of Pathology, Hannover Medical School, Hannover, Germany
| | - Verena Prade
- Research Unit Analytical Pathology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Rambabu Surabattula
- Institute of Translational Immunology and Research Center for Immune Therapy, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Willi L. Wagner
- Department of Diagnostic and Interventional Radiology, University Hospital Heidelberg, Heidelberg, Germany
- Member of the German Center for Lung Research (DZL), Translational Lung Research Center Heidelberg (TLRC), Heidelberg, Germany
| | - Catherine Disney
- Department of Mechanical Engineering, University College London, UK
| | | | - Thomas Illig
- Member of the German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Hannover, Germany
- Hannover Unified Biobank, Hannover Medical School, Hannover Medical School, Germany
| | - Diana J. Leeming
- Hannover Unified Biobank, Hannover Medical School, Hannover Medical School, Germany
| | | | - Alexandar Tzankov
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - Peter Boor
- Institute of Pathology, RWTH Aachen University Hospital, Aachen, Germany
| | - Mark P. Kühnel
- Member of the German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Hannover, Germany
- Institute of Pathology, Hannover Medical School, Hannover, Germany
| | - Florian P. Länger
- Member of the German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Hannover, Germany
- Institute of Pathology, Hannover Medical School, Hannover, Germany
| | - Stijn E. Verleden
- Department of Thoracic Surgery, University Hospital Antwerp Edegem, Belgium
| | - Hans M. Kvasnicka
- Institute of Pathology and Molecular Pathology, Helios University Clinic Wuppertal, University of Witten/Herdecke, Germany
| | - Hans H. Kreipe
- Institute of Pathology, Hannover Medical School, Hannover, Germany
| | - Axel Haverich
- Member of the German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Hannover, Germany
- Department of Cardiothoracic, Transplantation, and Vascular Surgery, Hannover Medical School, Germany
| | - Stephen M. Black
- Department of Cellular Biology and Pharmacology, Center for Translational Research, Florida International University, USA
| | - Axel Walch
- Nordic Bioscience Biomarkers and Research, Herlev, Denmark
| | - Paul Tafforeau
- European Synchrotron Radiation Facility, Grenoble, France
| | - Peter D. Lee
- Hannover Unified Biobank, Hannover Medical School, Hannover Medical School, Germany
| | - Marius M. Hoeper
- Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany
- Member of the German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Hannover, Germany
| | - Tobias Welte
- Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany
- Member of the German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Hannover, Germany
| | - Benjamin Seeliger
- Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany
- Member of the German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Hannover, Germany
| | - Sascha David
- Institute of Intensive Care Medicine, University Hospital Zurich, Zurich, Switzerland
| | - Detlef Schuppan
- Institute of Translational Immunology and Research Center for Immune Therapy, University Medical Center, Johannes Gutenberg University, Mainz, Germany
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Steven J. Mentzer
- Laboratory of Adaptive and Regenerative Biology, Harvard Medical School, Brigham & Women's Hospital, Boston, United States
| | - Danny D. Jonigk
- Member of the German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Hannover, Germany
- Institute of Pathology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
30
|
Chen ZZ, Pacheco JA, Gao Y, Deng S, Peterson B, Shi X, Zheng S, Tahir UA, Katz DH, Cruz DE, Ngo D, Benson MD, Robbins JM, Guo X, del Rocio Sevilla Gonzalez M, Manning A, Correa A, Meigs JB, Taylor KD, Rich SS, Goodarzi MO, Rotter JI, Wilson JG, Clish CB, Gerszten RE. Nontargeted and Targeted Metabolomic Profiling Reveals Novel Metabolite Biomarkers of Incident Diabetes in African Americans. Diabetes 2022; 71:2426-2437. [PMID: 35998269 PMCID: PMC9630088 DOI: 10.2337/db22-0033] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 07/26/2022] [Indexed: 01/25/2023]
Abstract
Nontargeted metabolomics methods have increased potential to identify new disease biomarkers, but assessments of the additive information provided in large human cohorts by these less biased techniques are limited. To diversify our knowledge of diabetes-associated metabolites, we leveraged a method that measures 305 targeted or "known" and 2,342 nontargeted or "unknown" compounds in fasting plasma samples from 2,750 participants (315 incident cases) in the Jackson Heart Study (JHS)-a community cohort of self-identified African Americans-who are underrepresented in omics studies. We found 307 unique compounds (82 known) associated with diabetes after adjusting for age and sex at a false discovery rate of <0.05 and 124 compounds (35 known, including 11 not previously associated) after further adjustments for BMI and fasting plasma glucose. Of these, 144 and 68 associations, respectively, replicated in a multiethnic cohort. Among these is an apparently novel isomer of the 1-deoxyceramide Cer(m18:1/24:0) with functional geonomics and high-resolution mass spectrometry. Overall, known and unknown metabolites provided complementary information (median correlation ρ = 0.29), and their inclusion with clinical risk factors improved diabetes prediction modeling. Our findings highlight the importance of including nontargeted metabolomics methods to provide new insights into diabetes development in ethnically diverse cohorts.
Collapse
Affiliation(s)
- Zsu-Zsu Chen
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA
- Harvard School of Medicine, Boston, MA
| | | | - Yan Gao
- University of Mississippi Medical Center, Jacksonville, MS
| | - Shuliang Deng
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA
| | - Bennet Peterson
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA
| | - Xu Shi
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA
| | - Shuning Zheng
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA
| | - Usman A. Tahir
- Harvard School of Medicine, Boston, MA
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA
| | - Daniel H. Katz
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA
| | - Daniel E. Cruz
- Harvard School of Medicine, Boston, MA
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA
| | - Debby Ngo
- Harvard School of Medicine, Boston, MA
- Division of Pulmonary, Critical Care, and Sleep Medicine, Beth Israel Deaconess Medical Center, Boston, MA
| | - Mark D. Benson
- Harvard School of Medicine, Boston, MA
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA
| | - Jeremy M. Robbins
- Harvard School of Medicine, Boston, MA
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA
| | - Xiuqing Guo
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA
| | - Magdalena del Rocio Sevilla Gonzalez
- Harvard School of Medicine, Boston, MA
- Broad Institute of MIT and Harvard, Boston, MA
- Division of General Internal Medicine, Massachusetts General Hospital, Boston, MA
| | - Alisa Manning
- Harvard School of Medicine, Boston, MA
- Broad Institute of MIT and Harvard, Boston, MA
- Division of General Internal Medicine, Massachusetts General Hospital, Boston, MA
| | - Adolfo Correa
- University of Mississippi Medical Center, Jacksonville, MS
| | - James B. Meigs
- Harvard School of Medicine, Boston, MA
- Broad Institute of MIT and Harvard, Boston, MA
- Division of General Internal Medicine, Massachusetts General Hospital, Boston, MA
| | - Kent D. Taylor
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA
| | - Stephen S. Rich
- University of Virginia School of Medicine, Charlottesville, VA
| | - Mark O. Goodarzi
- Division of Endocrinology, Diabetes, and Metabolism, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Jerome I. Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA
| | - James G. Wilson
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA
| | | | - Robert E. Gerszten
- Harvard School of Medicine, Boston, MA
- Broad Institute of MIT and Harvard, Boston, MA
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA
| |
Collapse
|
31
|
Alrehaili BD, Lee M, Takahashi S, Novak R, Rimal B, Boehme S, Trammell SAJ, Grevengoed TJ, Kumar D, Alnouti Y, Chiti K, Wang X, Patterson AD, Chiang JYL, Gonzalez FJ, Lee Y. Bile acid conjugation deficiency causes hypercholanemia, hyperphagia, islet dysfunction, and gut dysbiosis in mice. Hepatol Commun 2022; 6:2765-2780. [PMID: 35866568 PMCID: PMC9512455 DOI: 10.1002/hep4.2041] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/09/2022] [Accepted: 06/12/2022] [Indexed: 01/05/2023] Open
Abstract
Bile acid-CoA: amino acid N-acyltransferase (BAAT) catalyzes bile acid conjugation, the last step in bile acid synthesis. BAAT gene mutation in humans results in hypercholanemia, growth retardation, and fat-soluble vitamin insufficiency. The current study investigated the physiological function of BAAT in bile acid and lipid metabolism using Baat-/- mice. The bile acid composition and hepatic gene expression were analyzed in 10-week-old Baat-/- mice. They were also challenged with a westernized diet (WD) for additional 15 weeks to assess the role of BAAT in bile acid, lipid, and glucose metabolism. Comprehensive lab animal monitoring system and cecal 16S ribosomal RNA gene sequencing were used to evaluate the energy metabolism and microbiome structure of the mice, respectively. In Baat-/- mice, hepatic bile acids were mostly unconjugated and their levels were significantly increased compared with wild-type mice. Bile acid polyhydroxylation was markedly up-regulated to detoxify unconjugated bile acid accumulated in Baat-/- mice. Although the level of serum marker of bile acid synthesis, 7α-hydroxy-4-cholesten-3-one, was higher in Baat-/- mice, their bile acid pool size was smaller. When fed a WD, the Baat-/- mice showed a compromised body weight gain and impaired insulin secretion. The gut microbiome of Baat-/- mice showed a low level of sulfidogenic bacteria Bilophila. Conclusion: Mouse BAAT is the major taurine-conjugating enzyme. Its deletion protected the animals from diet-induced obesity, but caused glucose intolerance. The gut microbiome of the Baat-/- mice was altered to accommodate the unconjugated bile acid pool.
Collapse
Affiliation(s)
- Bandar D. Alrehaili
- Department of Integrative Medical SciencesNortheast Ohio Medical UniversityRootstownOhioUSA
- Graduate Program of Biomedical SciencesKent State UniversityKentOhioUSA
- Department of Pharmacology and ToxicologyPharmacy CollegeTaibah UniversityMedinaSaudi Arabia
| | - Mikang Lee
- Department of Integrative Medical SciencesNortheast Ohio Medical UniversityRootstownOhioUSA
| | - Shogo Takahashi
- Laboratory of MetabolismCenter for Cancer ResearchNational Cancer InstituteNIHBethesdaMarylandUSA
| | - Robert Novak
- Department of PathologyCollege of MedicineNortheast Ohio Medical UniversityRootstownOhioUSA
| | - Bipin Rimal
- Department of Molecular ToxicologyThe Pennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| | - Shannon Boehme
- Department of Integrative Medical SciencesNortheast Ohio Medical UniversityRootstownOhioUSA
| | - Samuel A. J. Trammell
- Department of Biomedical SciencesFaculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Trisha J. Grevengoed
- Department of Biomedical SciencesFaculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Devendra Kumar
- Department of Pharmaceutical SciencesUniversity of Nebraska Medical CenterOmahaNAUSA
| | - Yazen Alnouti
- Department of Pharmaceutical SciencesUniversity of Nebraska Medical CenterOmahaNAUSA
| | - Katya Chiti
- Department of Pharmaceutical SciencesCollege of PharmacyNortheast Ohio Medical UniversityRootstownOhioUSA
| | - Xinwen Wang
- Department of Pharmaceutical SciencesCollege of PharmacyNortheast Ohio Medical UniversityRootstownOhioUSA
| | - Andrew D. Patterson
- Department of Molecular ToxicologyThe Pennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| | - John Y. L. Chiang
- Department of Integrative Medical SciencesNortheast Ohio Medical UniversityRootstownOhioUSA
| | - Frank J. Gonzalez
- Laboratory of MetabolismCenter for Cancer ResearchNational Cancer InstituteNIHBethesdaMarylandUSA
| | - Yoon‐Kwang Lee
- Department of Integrative Medical SciencesNortheast Ohio Medical UniversityRootstownOhioUSA
- Graduate Program of Biomedical SciencesKent State UniversityKentOhioUSA
| |
Collapse
|
32
|
Chen Y, Cai C, Tan J, Lei X, Chen Q, Zhang J, Zhang Y. High-risk Growth Trajectory Related to Childhood Overweight/Obesity and Its Predictive Model at Birth. J Clin Endocrinol Metab 2022; 107:e4015-e4026. [PMID: 35862057 DOI: 10.1210/clinem/dgac441] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Indexed: 11/19/2022]
Abstract
CONTEXT Childhood obesity increases the risk of chronic disease in adulthood. OBJECTIVE To construct an early predictive model for a growth trajectory that is highly related to childhood overweight/obesity. DESIGN Prospective cohort study. SETTINGS Shanghai Birth Cohort (SBC) and US Collaborative Perinatal Project (CPP). PARTICIPANTS A total of 848 mother-child pairs in the SBC (2013-2016) and 22 691 pairs in the CPP (1959-1965) with 2- and 7-year follow-up, respectively. MAIN OUTCOME MEASURES A high-risk postnatal growth trajectory intimately associated with childhood overweight/obesity and its predictive model. RESULTS We demonstrated that the shifts of postnatal body mass index (BMI) percentile had been completed around 1 year of age and identified a high-risk growth trajectory that was closely related to overweight/obesity [odds ratio 6.5 (95% CI 5.9, 7.2)] at 7 years old. Children with this trajectory presented with a consistent BMI around the 85th percentile after the age of 1 year. It could be recognized early after birth using a predictive model with 4 metabolites (tyrosine, glycine, octenoylcarnitine, and stearoylcarnitine), combined with sex, birth weight, and maternal prepregnancy BMI. The model had an area under the receiver operating characteristic curve of 0.869 (95% CI 0.779, 0.932), a sensitivity of 83.3% (95% CI 51.6%, 97.9%), and a specificity of 81.1% (95% CI 70.3%, 89.3%) in the validation data set. CONCLUSION Children with postnatal high-risk growth trajectories were significantly associated with subsequent overweight/obesity at 7 years old. Metabolite profiles at birth combined with clinical measures were able to predict at-risk children before overweight/obesity occurrence.
Collapse
Affiliation(s)
- Yan Chen
- Department of Neonatology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chen Cai
- Department of Neonatology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jintong Tan
- Department of Neonatology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoping Lei
- Division of Neonatology, Department of Pediatrics, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Qian Chen
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Shanghai Jiao Tong University School of Medicine, Xinhua Hospital, Shanghai, China
| | - Jun Zhang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Shanghai Jiao Tong University School of Medicine, Xinhua Hospital, Shanghai, China
| | - Yongjun Zhang
- Department of Neonatology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
33
|
Duncan RS, Riordan SM, Hall CW, Payne AJ, Chapman KD, Koulen P. N-acylethanolamide metabolizing enzymes are upregulated in human neural progenitor-derived neurons exposed to sub-lethal oxidative stress. Front Cell Neurosci 2022; 16:902278. [PMID: 36003139 PMCID: PMC9393304 DOI: 10.3389/fncel.2022.902278] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 07/05/2022] [Indexed: 11/28/2022] Open
Abstract
N-acyl amides (NAAs) are a class of lipids that consist of an acyl group N-linked to an amino acid, neurotransmitter, taurine or ethanolamide group (N-acylethanolamines or NAEs) and include some endocannabinoids (eCB) such as anandamide. These lipids are synthesized in a wide variety of organisms and in multiple cell types, including neurons. NAEs are involved in numerous cellular and physiological processes and their concentrations are elevated in response to ischemia and physical trauma to play a role in neuroprotection. The neuroprotective properties of eCB NAEs make the protein targets of these compounds attractive targets for clinical intervention for a variety of conditions. The most promising of these targets include cannabinoid receptor type 1 (CB1), cannabinoid receptor type 2 (CB2), fatty acid amide hydrolase (FAAH), N-acylethanolamine acid amidase (NAAA), and N-acyl phosphatidylethanolamine phospholipase D (NAPE-PLD). Further characterization of these targets in a more contemporary model system of neurodegeneration and neuroprotection will allow us to fully describe their role and mechanism of action in neuroprotection against oxidative stress leading to better utilization in the clinical setting. Human stem cell-derived or human neural progenitor cell-derived cells, such as ReN cells, have become more utilized for the study of human neuronal development and neurodegenerative diseases. ReN cells can be easily differentiated thereby circumventing the need for using transformed cell lines and primary neurons as cell model systems. In this study, we determined whether ReN cells, a superior cell model system for studying neurodevelopment, differentiation, and neuroprotection, express proteins involved in canonical eCB NAE signaling and whether oxidative stress can induce their expression. We determined that sublethal oxidative stress upregulates the expression of all eCB proteins tested. In addition, we determined that oxidative stress increases the nuclear localization of FAAH, and to a lesser extent, NAAA and NAPE-PLD. This study is a first step toward determining how oxidative stress affects CB1, CB2, FAAH, NAAA, and NAPE-PLD expression and their potential defense against oxidative stress. As such, our data is important for further determining the role of eCB metabolizing proteins and eCB receptors against oxidative stress.
Collapse
Affiliation(s)
- R. Scott Duncan
- Department of Ophthalmology, Vision Research Center, School of Medicine, University of Missouri–Kansas City, Kansas City, MO, United States
| | - Sean M. Riordan
- Department of Ophthalmology, Vision Research Center, School of Medicine, University of Missouri–Kansas City, Kansas City, MO, United States
| | - Conner W. Hall
- Department of Ophthalmology, Vision Research Center, School of Medicine, University of Missouri–Kansas City, Kansas City, MO, United States
| | - Andrew J. Payne
- Department of Ophthalmology, Vision Research Center, School of Medicine, University of Missouri–Kansas City, Kansas City, MO, United States
| | - Kent D. Chapman
- Department of Biological Sciences, Center for Plant Lipid Research, University of North Texas, Denton, TX, United States
| | - Peter Koulen
- Department of Ophthalmology, Vision Research Center, School of Medicine, University of Missouri–Kansas City, Kansas City, MO, United States
- Department of Biological Sciences, Center for Plant Lipid Research, University of North Texas, Denton, TX, United States
- Department of Biomedical Sciences, School of Medicine, University of Missouri–Kansas City, Kansas City, MO, United States
- *Correspondence: Peter Koulen,
| |
Collapse
|
34
|
Ravi VM, Will P, Kueckelhaus J, Sun N, Joseph K, Salié H, Vollmer L, Kuliesiute U, von Ehr J, Benotmane JK, Neidert N, Follo M, Scherer F, Goeldner JM, Behringer SP, Franco P, Khiat M, Zhang J, Hofmann UG, Fung C, Ricklefs FL, Lamszus K, Boerries M, Ku M, Beck J, Sankowski R, Schwabenland M, Prinz M, Schüller U, Killmer S, Bengsch B, Walch AK, Delev D, Schnell O, Heiland DH. Spatially resolved multi-omics deciphers bidirectional tumor-host interdependence in glioblastoma. Cancer Cell 2022; 40:639-655.e13. [PMID: 35700707 DOI: 10.1016/j.ccell.2022.05.009] [Citation(s) in RCA: 282] [Impact Index Per Article: 94.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 09/30/2021] [Accepted: 05/13/2022] [Indexed: 12/11/2022]
Abstract
Glioblastomas are malignant tumors of the central nervous system hallmarked by subclonal diversity and dynamic adaptation amid developmental hierarchies. The source of dynamic reorganization within the spatial context of these tumors remains elusive. Here, we characterized glioblastomas by spatially resolved transcriptomics, metabolomics, and proteomics. By deciphering regionally shared transcriptional programs across patients, we infer that glioblastoma is organized by spatial segregation of lineage states and adapts to inflammatory and/or metabolic stimuli, reminiscent of the reactive transformation in mature astrocytes. Integration of metabolic imaging and imaging mass cytometry uncovered locoregional tumor-host interdependence, resulting in spatially exclusive adaptive transcriptional programs. Inferring copy-number alterations emphasizes a spatially cohesive organization of subclones associated with reactive transcriptional programs, confirming that environmental stress gives rise to selection pressure. A model of glioblastoma stem cells implanted into human and rodent neocortical tissue mimicking various environments confirmed that transcriptional states originate from dynamic adaptation to various environments.
Collapse
Affiliation(s)
- Vidhya M Ravi
- Microenvironment and Immunology Research Laboratory, Medical Center - University of Freiburg, Freiburg, Germany; Department of Neurosurgery, Medical Center - University of Freiburg, Freiburg, Germany; Faculty of Medicine, University of Freiburg, Freiburg, Germany; Translational NeuroOncology Research Group, Medical Center - University of Freiburg, Freiburg, Germany; Freiburg Institute for Advanced Studies (FRIAS), University of Freiburg, Freiburg, Germany; Center of Advanced Surgical Tissue Analysis (CAST), University of Freiburg, Freiburg, Germany
| | - Paulina Will
- Microenvironment and Immunology Research Laboratory, Medical Center - University of Freiburg, Freiburg, Germany; Department of Neurosurgery, Medical Center - University of Freiburg, Freiburg, Germany; Faculty of Medicine, University of Freiburg, Freiburg, Germany; Translational NeuroOncology Research Group, Medical Center - University of Freiburg, Freiburg, Germany
| | - Jan Kueckelhaus
- Microenvironment and Immunology Research Laboratory, Medical Center - University of Freiburg, Freiburg, Germany; Department of Neurosurgery, Medical Center - University of Freiburg, Freiburg, Germany; Faculty of Medicine, University of Freiburg, Freiburg, Germany; Translational NeuroOncology Research Group, Medical Center - University of Freiburg, Freiburg, Germany; Neurosurgical Artificial Intelligence Laboratory Aachen (NAILA), Department of Neurosurgery, RWTH University of Aachen, Aachen, Germany
| | - Na Sun
- Research Unit Analytical Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Kevin Joseph
- Microenvironment and Immunology Research Laboratory, Medical Center - University of Freiburg, Freiburg, Germany; Department of Neurosurgery, Medical Center - University of Freiburg, Freiburg, Germany; Faculty of Medicine, University of Freiburg, Freiburg, Germany; Translational NeuroOncology Research Group, Medical Center - University of Freiburg, Freiburg, Germany; Center of Advanced Surgical Tissue Analysis (CAST), University of Freiburg, Freiburg, Germany
| | - Henrike Salié
- Faculty of Medicine, University of Freiburg, Freiburg, Germany; Department of Medicine II: Gastroenterology, Hepatology, Endocrinology, and Infectious Disease, Medical Center - University of Freiburg, Freiburg, Germany
| | - Lea Vollmer
- Microenvironment and Immunology Research Laboratory, Medical Center - University of Freiburg, Freiburg, Germany; Department of Neurosurgery, Medical Center - University of Freiburg, Freiburg, Germany; Faculty of Medicine, University of Freiburg, Freiburg, Germany; Translational NeuroOncology Research Group, Medical Center - University of Freiburg, Freiburg, Germany
| | - Ugne Kuliesiute
- Microenvironment and Immunology Research Laboratory, Medical Center - University of Freiburg, Freiburg, Germany; Translational NeuroOncology Research Group, Medical Center - University of Freiburg, Freiburg, Germany; The Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Jasmin von Ehr
- Microenvironment and Immunology Research Laboratory, Medical Center - University of Freiburg, Freiburg, Germany; Department of Neurosurgery, Medical Center - University of Freiburg, Freiburg, Germany; Faculty of Medicine, University of Freiburg, Freiburg, Germany; Translational NeuroOncology Research Group, Medical Center - University of Freiburg, Freiburg, Germany
| | - Jasim K Benotmane
- Microenvironment and Immunology Research Laboratory, Medical Center - University of Freiburg, Freiburg, Germany; Department of Neurosurgery, Medical Center - University of Freiburg, Freiburg, Germany; Faculty of Medicine, University of Freiburg, Freiburg, Germany; Translational NeuroOncology Research Group, Medical Center - University of Freiburg, Freiburg, Germany
| | - Nicolas Neidert
- Microenvironment and Immunology Research Laboratory, Medical Center - University of Freiburg, Freiburg, Germany; Department of Neurosurgery, Medical Center - University of Freiburg, Freiburg, Germany; Faculty of Medicine, University of Freiburg, Freiburg, Germany; Translational NeuroOncology Research Group, Medical Center - University of Freiburg, Freiburg, Germany
| | - Marie Follo
- Faculty of Medicine, University of Freiburg, Freiburg, Germany; Department of Medicine I, Medical Center - University of Freiburg, Freiburg, Germany
| | - Florian Scherer
- Faculty of Medicine, University of Freiburg, Freiburg, Germany; Department of Medicine I, Medical Center - University of Freiburg, Freiburg, Germany
| | - Jonathan M Goeldner
- Microenvironment and Immunology Research Laboratory, Medical Center - University of Freiburg, Freiburg, Germany; Department of Neurosurgery, Medical Center - University of Freiburg, Freiburg, Germany; Faculty of Medicine, University of Freiburg, Freiburg, Germany; Translational NeuroOncology Research Group, Medical Center - University of Freiburg, Freiburg, Germany
| | - Simon P Behringer
- Microenvironment and Immunology Research Laboratory, Medical Center - University of Freiburg, Freiburg, Germany; Department of Neurosurgery, Medical Center - University of Freiburg, Freiburg, Germany; Faculty of Medicine, University of Freiburg, Freiburg, Germany; Translational NeuroOncology Research Group, Medical Center - University of Freiburg, Freiburg, Germany
| | - Pamela Franco
- Faculty of Medicine, University of Freiburg, Freiburg, Germany; Translational NeuroOncology Research Group, Medical Center - University of Freiburg, Freiburg, Germany
| | - Mohammed Khiat
- Microenvironment and Immunology Research Laboratory, Medical Center - University of Freiburg, Freiburg, Germany; Department of Neurosurgery, Medical Center - University of Freiburg, Freiburg, Germany; Faculty of Medicine, University of Freiburg, Freiburg, Germany; Translational NeuroOncology Research Group, Medical Center - University of Freiburg, Freiburg, Germany
| | - Junyi Zhang
- Microenvironment and Immunology Research Laboratory, Medical Center - University of Freiburg, Freiburg, Germany; Department of Neurosurgery, Medical Center - University of Freiburg, Freiburg, Germany; Faculty of Medicine, University of Freiburg, Freiburg, Germany; Translational NeuroOncology Research Group, Medical Center - University of Freiburg, Freiburg, Germany
| | - Ulrich G Hofmann
- Department of Neurosurgery, Medical Center - University of Freiburg, Freiburg, Germany; Faculty of Medicine, University of Freiburg, Freiburg, Germany; Neuroelectronic Systems, Medical Center - University of Freiburg, Freiburg, Germany
| | - Christian Fung
- Department of Neurosurgery, Medical Center - University of Freiburg, Freiburg, Germany; Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Franz L Ricklefs
- Department of Neurosurgery, University Hospital Eppendorf, Hamburg, Germany; Laboratory for Brain Tumor Biology, University Hospital Eppendorf, Hamburg, Germany
| | - Katrin Lamszus
- Department of Neurosurgery, University Hospital Eppendorf, Hamburg, Germany; Laboratory for Brain Tumor Biology, University Hospital Eppendorf, Hamburg, Germany
| | - Melanie Boerries
- Faculty of Medicine, University of Freiburg, Freiburg, Germany; Institute of Medical Bioinformatics and Systems Medicine, Medical Center-University of Freiburg, Freiburg, Germany; Comprehensive Cancer Center Freiburg (CCCF), Medical Center - University of Freiburg, Freiburg, Germany; German Cancer Consortium (DKTK), partner site Freiburg, Freiburg, Germany
| | - Manching Ku
- Faculty of Medicine, University of Freiburg, Freiburg, Germany; Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, Medical Center - University of Freiburg, Freiburg, Germany
| | - Jürgen Beck
- Department of Neurosurgery, Medical Center - University of Freiburg, Freiburg, Germany; Faculty of Medicine, University of Freiburg, Freiburg, Germany; Center for NeuroModulation (NeuroModul), University of Freiburg, Freiburg, Germany; Center of Advanced Surgical Tissue Analysis (CAST), University of Freiburg, Freiburg, Germany
| | - Roman Sankowski
- Faculty of Medicine, University of Freiburg, Freiburg, Germany; Institute of Neuropathology, Medical Center - University of Freiburg, Freiburg, German
| | - Marius Schwabenland
- Faculty of Medicine, University of Freiburg, Freiburg, Germany; Institute of Neuropathology, Medical Center - University of Freiburg, Freiburg, German
| | - Marco Prinz
- Faculty of Medicine, University of Freiburg, Freiburg, Germany; Center for NeuroModulation (NeuroModul), University of Freiburg, Freiburg, Germany; Institute of Neuropathology, Medical Center - University of Freiburg, Freiburg, German; Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Ulrich Schüller
- Institute of Neuropathology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany; Research Institute Children's Cancer Center, Hamburg, Germany; Department of Pediatric Hematology and Oncology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Saskia Killmer
- Faculty of Medicine, University of Freiburg, Freiburg, Germany; Department of Medicine II: Gastroenterology, Hepatology, Endocrinology, and Infectious Disease, Medical Center - University of Freiburg, Freiburg, Germany
| | - Bertram Bengsch
- Faculty of Medicine, University of Freiburg, Freiburg, Germany; Department of Medicine II: Gastroenterology, Hepatology, Endocrinology, and Infectious Disease, Medical Center - University of Freiburg, Freiburg, Germany; Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Axel K Walch
- Research Unit Analytical Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Daniel Delev
- Neurosurgical Artificial Intelligence Laboratory Aachen (NAILA), Department of Neurosurgery, RWTH University of Aachen, Aachen, Germany; Department of Neurosurgery, RWTH University of Aachen, Aachen, Germany
| | - Oliver Schnell
- Microenvironment and Immunology Research Laboratory, Medical Center - University of Freiburg, Freiburg, Germany; Department of Neurosurgery, Medical Center - University of Freiburg, Freiburg, Germany; Faculty of Medicine, University of Freiburg, Freiburg, Germany; Translational NeuroOncology Research Group, Medical Center - University of Freiburg, Freiburg, Germany; Center of Advanced Surgical Tissue Analysis (CAST), University of Freiburg, Freiburg, Germany
| | - Dieter Henrik Heiland
- Microenvironment and Immunology Research Laboratory, Medical Center - University of Freiburg, Freiburg, Germany; Department of Neurosurgery, Medical Center - University of Freiburg, Freiburg, Germany; Faculty of Medicine, University of Freiburg, Freiburg, Germany; Comprehensive Cancer Center Freiburg (CCCF), Medical Center - University of Freiburg, Freiburg, Germany; German Cancer Consortium (DKTK), partner site Freiburg, Freiburg, Germany; Center of Advanced Surgical Tissue Analysis (CAST), University of Freiburg, Freiburg, Germany.
| |
Collapse
|
35
|
Jung T, Jung Y, Moon MK, Kwon O, Hwang GS, Park T. Integrative Pathway Analysis of SNP and Metabolite Data Using a Hierarchical Structural Component Model. Front Genet 2022; 13:814412. [PMID: 35401680 PMCID: PMC8987531 DOI: 10.3389/fgene.2022.814412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 01/13/2022] [Indexed: 11/16/2022] Open
Abstract
Integrative multi-omics analysis has become a useful tool to understand molecular mechanisms and drug discovery for treatment. Especially, the couplings of genetics to metabolomics have been performed to identify the associations between SNP and metabolite. However, while the importance of integrative pathway analysis is increasing, there are few approaches to utilize pathway information to analyze phenotypes using SNP and metabolite. We propose an integrative pathway analysis of SNP and metabolite data using a hierarchical structural component model considering the structural relationships of SNPs, metabolites, pathways, and phenotypes. The proposed method utilizes genome-wide association studies on metabolites and constructs the genetic risk scores for metabolites referred to as genetic metabolomic scores. It is based on the hierarchical model using the genetic metabolomic scores and pathways. Furthermore, this method adopts a ridge penalty to consider the correlations between genetic metabolomic scores and between pathways. We apply our method to the SNP and metabolite data from the Korean population to identify pathways associated with type 2 diabetes (T2D). Through this application, we identified well-known pathways associated with T2D, demonstrating that this method adds biological insights into disease-related pathways using genetic predispositions of metabolites.
Collapse
Affiliation(s)
- Taeyeong Jung
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, South Korea
| | - Youngae Jung
- Korea Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul, South Korea
| | - Min Kyong Moon
- Department of Internal Medicine, Seoul National University Boramae Medical Center, Seoul, South Korea
| | - Oran Kwon
- Department of Nutritional Science and Food Management, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul, South Korea
| | - Geum-Sook Hwang
- Korea Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul, South Korea
- *Correspondence: Geum-Sook Hwang, ; Taesung Park,
| | - Taesung Park
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, South Korea
- Department of Statistics, Seoul National University, Seoul, South Korea
- *Correspondence: Geum-Sook Hwang, ; Taesung Park,
| |
Collapse
|
36
|
Paul A, Azhar S, Das PN, Bairagi N, Chatterjee S. Elucidating the metabolic characteristics of pancreatic β-cells from patients with type 2 diabetes (T2D) using a genome-scale metabolic modeling. Comput Biol Med 2022; 144:105365. [PMID: 35276551 DOI: 10.1016/j.compbiomed.2022.105365] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/24/2022] [Accepted: 02/27/2022] [Indexed: 11/27/2022]
Abstract
Diabetes is a global health problem caused primarily by the inability of pancreatic β-cells to secrete adequate insulin. Despite extensive research, the identity of factors contributing to the dysregulated metabolism-secretion coupling in the β-cells remains elusive. The present study attempts to capture some of these factors responsible for the impaired β-cell metabolism-secretion coupling that contributes to diabetes pathogenesis. The metabolic-flux profiles of pancreatic β-cells were predicted using genome-scale metabolic modeling for ten diabetic patients and ten control subjects. Analysis of these flux states shows reduction in the mitochondrial fatty acid oxidation and mitochondrial oxidative phosphorylation pathways, that leads to decreased insulin secretion in diabetes. We also observed elevated reactive oxygen species (ROS) generation through peroxisomal fatty acid β-oxidation. In addition, cellular antioxidant defense systems were found to be attenuated in diabetes. Our analysis also uncovered the possible changes in the plasma metabolites in diabetes due to the β-cells failure. These efforts subsequently led to the identification of seven metabolites associated with cardiovascular disease (CVD) pathogenesis, thus establishing its link as a secondary complication of diabetes.
Collapse
Affiliation(s)
- Abhijit Paul
- Complex Analysis Group, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, India
| | - Salman Azhar
- Geriatric Research, Education and Clinical Center, VA Palo Alto Health Care System, Palo Alto, CA, 94304, USA; Division of Endocrinology, Gerontology and Metabolism, Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94304, USA
| | - Phonindra Nath Das
- Department of Mathematics, Ramakrishna Mission Vivekananda Centenary College, Rahara, Kolkata, 700118, India
| | - Nandadulal Bairagi
- Centre for Mathematical Biology and Ecology, Department of Mathematics, Jadavpur University, Kolkata, 700032, India
| | - Samrat Chatterjee
- Complex Analysis Group, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, India.
| |
Collapse
|
37
|
Du Y, Li DX, Lu DY, Zhang R, Zheng XX, Xu BJ, Zhao YL, Ji S, Guo MZ, Wang L, Tang DQ. Morus alba L. water extract changes gut microbiota and fecal metabolome in mice induced by high-fat and high-sucrose diet plus low-dose streptozotocin. Phytother Res 2022; 36:1241-1257. [PMID: 35129235 DOI: 10.1002/ptr.7343] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/22/2021] [Accepted: 11/10/2021] [Indexed: 12/12/2022]
Abstract
Gut microbiota plays a key role in the pathophysiology of type 2 diabetes mellitus (T2D). Mulberry leaf has a hypoglycemic effect, but the potential mechanism is not fully understood. This study aimed to explore the influences and potential mechanisms of mulberry leaf water extract (MLWE) intervention on mice with T2D induced through a high-fat and high-sucrose diet combined with streptozotocin by the combination of fecal metabolomics and gut microbiota analysis. Results showed that MLWE could decrease fasting blood glucose and body weight while ameliorating lipid profiles, insulin resistance, liver inflammation, and the accumulation of lipid droplets in T2D mice. MLWE could reverse the abundances of the phyla Actinobacteria and Bacteroidetes and the ratio of Firmicutes/Bacteroidetes, and increase the abundances of the phyla Cyanobacteria and Epsilonbacteraeota in the feces of T2D mice. The abundances of genera Alloprevotella, Parabacteroides, Muribaculaceae, and Romboutsia in the feces of T2D mice could be reversed, while Oscillatoriales_cyanobacterium and Gastranaerophilales could be reinforced by MLWE supplementation. The levels of nine metabolites in the feces of T2D mice were improved, among which glycine, Phe-Pro, urocanic acid, phylloquinone, and lactate were correlated with Romboutsia and Gastranaerophilales. Taken together, we conclude that MLWE can effectively alleviate T2D by mediating the host-microbial metabolic axis.
Collapse
Affiliation(s)
- Yan Du
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Ding-Xiang Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Dong-Yu Lu
- Department of Pharmacy, Suining People's Hospital Affiliated to Xuzhou Medical University, Suining, China
| | - Ran Zhang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Xiao-Xiao Zheng
- Department of Pharmacy, Xuzhou Municipal Hospital Affiliated to Xuzhou Medical University, Xuzhou, China
| | - Bing-Ju Xu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Yan-Lin Zhao
- Department of Pharmacy, Suining People's Hospital Affiliated to Xuzhou Medical University, Suining, China
| | - Shuai Ji
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China.,Department of Pharmaceutical Analysis, Xuzhou Medical University, Xuzhou, China
| | - Meng-Zhe Guo
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China.,Department of Pharmaceutical Analysis, Xuzhou Medical University, Xuzhou, China
| | - Liang Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China.,Department of Bioinformatics, School of Medical Informatics and Engineering, Xuzhou Medical University, Xuzhou, China
| | - Dao-Quan Tang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China.,Department of Pharmacy, Suining People's Hospital Affiliated to Xuzhou Medical University, Suining, China.,Department of Pharmaceutical Analysis, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
38
|
Sato S, Dyar KA, Treebak JT, Jepsen SL, Ehrlich AM, Ashcroft SP, Trost K, Kunzke T, Prade VM, Small L, Basse AL, Schönke M, Chen S, Samad M, Baldi P, Barrès R, Walch A, Moritz T, Holst JJ, Lutter D, Zierath JR, Sassone-Corsi P. Atlas of exercise metabolism reveals time-dependent signatures of metabolic homeostasis. Cell Metab 2022; 34:329-345.e8. [PMID: 35030324 DOI: 10.1016/j.cmet.2021.12.016] [Citation(s) in RCA: 113] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/22/2021] [Accepted: 12/15/2021] [Indexed: 12/12/2022]
Abstract
Tissue sensitivity and response to exercise vary according to the time of day and alignment of circadian clocks, but the optimal exercise time to elicit a desired metabolic outcome is not fully defined. To understand how tissues independently and collectively respond to timed exercise, we applied a systems biology approach. We mapped and compared global metabolite responses of seven different mouse tissues and serum after an acute exercise bout performed at different times of the day. Comparative analyses of intra- and inter-tissue metabolite dynamics, including temporal profiling and blood sampling across liver and hindlimb muscles, uncovered an unbiased view of local and systemic metabolic responses to exercise unique to time of day. This comprehensive atlas of exercise metabolism provides clarity and physiological context regarding the production and distribution of canonical and novel time-dependent exerkine metabolites, such as 2-hydroxybutyrate (2-HB), and reveals insight into the health-promoting benefits of exercise on metabolism.
Collapse
Affiliation(s)
- Shogo Sato
- Center for Epigenetics and Metabolism, INSERM U1233, Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Kenneth A Dyar
- Metabolic Physiology, Institute for Diabetes and Cancer, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany; German Center for Diabetes Research, Neuherberg, Germany
| | - Jonas T Treebak
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sara L Jepsen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Biomedical Sciences, Faculty of Health Science, University of Copenhagen, Copenhagen, Denmark
| | - Amy M Ehrlich
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Stephen P Ashcroft
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kajetan Trost
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Kunzke
- Research Unit Analytical Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Verena M Prade
- Research Unit Analytical Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Lewin Small
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Astrid Linde Basse
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Milena Schönke
- Department of Molecular Medicine and Surgery, Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
| | - Siwei Chen
- Institute for Genomics and Bioinformatics, University of California, Irvine, Irvine, CA, USA
| | - Muntaha Samad
- Institute for Genomics and Bioinformatics, University of California, Irvine, Irvine, CA, USA
| | - Pierre Baldi
- Institute for Genomics and Bioinformatics, University of California, Irvine, Irvine, CA, USA
| | - Romain Barrès
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Axel Walch
- Research Unit Analytical Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Thomas Moritz
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens J Holst
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Biomedical Sciences, Faculty of Health Science, University of Copenhagen, Copenhagen, Denmark
| | - Dominik Lutter
- German Center for Diabetes Research, Neuherberg, Germany; Computational Discovery Research, Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany.
| | - Juleen R Zierath
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Molecular Medicine and Surgery, Integrative Physiology, Karolinska Institutet, Stockholm, Sweden; Department of Physiology and Pharmacology, Integrative Physiology, Karolinska Institutet, Stockholm, Sweden.
| | - Paolo Sassone-Corsi
- Center for Epigenetics and Metabolism, INSERM U1233, Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, CA, USA
| |
Collapse
|
39
|
Mu X, Yang M, Ling P, Wu A, Zhou H, Jiang J. Acylcarnitines: Can They Be Biomarkers of Diabetic Nephropathy? Diabetes Metab Syndr Obes 2022; 15:247-256. [PMID: 35125878 PMCID: PMC8811266 DOI: 10.2147/dmso.s350233] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/13/2022] [Indexed: 12/22/2022] Open
Abstract
Diabetic nephropathy (DN), one of the most serious microvascular complications of diabetes mellitus (DM), may progress to end-stage renal disease (ESRD). Current biochemical biomarkers, such as urinary albumin excretion rate (UAER), have limitations for early screening and monitoring of DN. Recent studies have identified some metabolites as candidate biomarkers for early detection of DN. In this review, we summarize the role of dysregulated acylcarnitines (AcylCNs) in DN pathophysiology. Lower abundance of short- and medium-chain AcylCNs and higher long-chain AcylCNs often occurred in DM with normal albuminuria and microalbuminuria, compared with advanced stages of DN. The increase of long-chain AcylCNs was supposed to be an adaptive compensation in fat acids (FAs) oxidation in the early stage of DN. Conversely, the decrease of long-chain AcylCNs was due to incomplete oxidation of FAs in advanced stage of DN. Thus, AcylCNs may serve as sensitive biomarkers in predicting the risk of DN.
Collapse
Affiliation(s)
- Xiaodie Mu
- Department of Nephrology, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, People’s Republic of China
| | - Min Yang
- Department of Nephrology, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, People’s Republic of China
| | - Peiyao Ling
- Department of Nephrology, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, People’s Republic of China
| | - Aihua Wu
- Department of Nephrology, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, People’s Republic of China
| | - Hua Zhou
- Department of Nephrology, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, People’s Republic of China
| | - Jingting Jiang
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, People’s Republic of China
| |
Collapse
|
40
|
Jiang Y, Qin M, Teng T, Li X, Yu Y, Wang J, Wu H, He Y, Zhou X, Xie P. Identification of Sex-Specific Plasma Biomarkers Using Metabolomics for Major Depressive Disorder in Children and Adolescents. Front Psychiatry 2022; 13:929207. [PMID: 35911235 PMCID: PMC9329558 DOI: 10.3389/fpsyt.2022.929207] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/22/2022] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Children and adolescents are at a high risk of major depressive disorder (MDD) with known sex differences in epidemiology. However, there are currently no objective laboratory-based sex-specific biomarkers available to support the diagnoses of male and female patients with MDD. METHODS Here, a male set of 42 cases and 27 healthy controls (HCs) and a female set of 42 cases and 22 HCs were recruited. This study investigated the sex differences of plasma metabolite biomarkers in young patients with MDD by the application of ultra-high-performance liquid chromatography equipped with quadrupole time-of-flight mass spectrometry. RESULTS The metabolic profiles showed clear separations in both male and female sets. In total, this study identified 57 male-related and 53 female-related differential metabolites. Compared with HCs, both male and female subjects with MDD displayed four significantly altered pathways. Notably, biliverdin was selected as an independent diagnostic male-specific biomarker with an area under the receiver operating characteristic curve of 0.966, and phosphatidylcholine (10:0/14:1) was selected as a female-specific biomarker, achieving an area under the curve (AUC) of 0.957. CONCLUSION This metabolomics study may aid in the development of a plasma-based test for the diagnosis of male and female children and adolescents with MDD, as well as give new insight into the pathophysiology of sex differences in children and adolescents with MDD.
Collapse
Affiliation(s)
- Yuanliang Jiang
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,National Health Commission (NHC) Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Mengchang Qin
- National Health Commission (NHC) Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Teng Teng
- National Health Commission (NHC) Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xuemei Li
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,National Health Commission (NHC) Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ying Yu
- National Health Commission (NHC) Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jie Wang
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,National Health Commission (NHC) Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hongyan Wu
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,National Health Commission (NHC) Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuqian He
- National Health Commission (NHC) Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xinyu Zhou
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,National Health Commission (NHC) Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Peng Xie
- National Health Commission (NHC) Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
41
|
Song Y, Lyu C, Li M, Rahman ML, Chen Z, Zhu Y, Hinkle SN, Chen L, Mitro SD, Li LJ, Weir NL, Tsai MY, Zhang C. Plasma Acylcarnitines during Pregnancy and Neonatal Anthropometry: A Longitudinal Study in a Multiracial Cohort. Metabolites 2021; 11:metabo11120885. [PMID: 34940643 PMCID: PMC8704426 DOI: 10.3390/metabo11120885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/05/2021] [Accepted: 12/14/2021] [Indexed: 11/16/2022] Open
Abstract
As surrogate readouts reflecting mitochondrial dysfunction, elevated levels of plasma acylcarnitines have been associated with cardiometabolic disorders, such as obesity, gestational diabetes, and type 2 diabetes. This study aimed to examine prospective associations of acylcarnitine profiles across gestation with neonatal anthropometry, including birthweight, birthweight z score, body length, sum of skinfolds, and sum of body circumferences. We quantified 28 acylcarnitines using electrospray ionization tandem mass spectrometry in plasma collected at gestational weeks 10–14, 15–26, 23–31, and 33–39 among 321 pregnant women from the National Institute of Child Health and Human Development (NICHD) Fetal Growth Studies-Singletons. A latent-class trajectory approach was applied to identify trajectories of acylcarnitines across gestation. We examined the associations of individual acylcarnitines and distinct trajectory groups with neonatal anthropometry using weighted generalized linear models adjusting for maternal age, race/ethnicity, education, parity, gestational age at blood collection, and pre-pregnancy body mass index (BMI). We identified three distinct trajectory groups in C2, C3, and C4 and two trajectory groups in C5, C10, C5–DC, C8:1, C10:1, and C12, respectively. Women with nonlinear decreasing C12 levels across gestation (5.7%) had offspring with significantly lower birthweight (−475 g; 95% CI, −942, −6.79), birthweight z score (−0.39, −0.71, −0.06), and birth length (−1.38 cm, −2.49, −0.27) than those with persistently stable C12 levels (94.3%) (all nominal p value < 0.05). Women with consistently higher levels of C10 (6.1%) had offspring with thicker sum of skinfolds (4.91 mm, 0.85, 8.98) than did women with lower levels (93.9%) during pregnancy, whereas women with lower C10:1 levels (12.6%) had offspring with thicker sum of skinfolds (3.23 mm, 0.19, 6.27) than did women with abruptly increasing levels (87.4%) (p < 0.05). In conclusion, this study suggests that distinctive trajectories of C10, C10:1, and C12 acylcarnitine levels throughout pregnancy were significantly associated with neonatal anthropometry.
Collapse
Affiliation(s)
- Yiqing Song
- Department of Epidemiology, Indiana University Richard M. Fairbanks School of Public Health, Indianapolis, IN 46202, USA;
| | - Chen Lyu
- Department of Population Health, Division of Biostatistics, NYU Grossman School of Medicine, NYU Langone Health, New York, NY 10016, USA;
| | - Ming Li
- Department of Epidemiology and Biostatistics, School of Public Health, Indiana University, Bloomington, IN 47405, USA;
| | - Mohammad L. Rahman
- Department of Population Medicine and Harvard Pilgrim Healthcare Institute, Harvard Medical School, Boston, MA 02215, USA;
| | - Zhen Chen
- Division of Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institute of Health, Bethesda, MD 20817, USA; (Z.C.); (S.D.M.)
| | - Yeyi Zhu
- Kaiser Permanente Northern California Division of Research, Oakland, CA 94612, USA;
| | - Stefanie N. Hinkle
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Liwei Chen
- Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, CA 90095, USA;
| | - Susanna D. Mitro
- Division of Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institute of Health, Bethesda, MD 20817, USA; (Z.C.); (S.D.M.)
| | - Ling-Jun Li
- Department of O&G, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore;
| | - Natalie L. Weir
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA; (N.L.W.); (M.Y.T.)
| | - Michael Y. Tsai
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA; (N.L.W.); (M.Y.T.)
| | - Cuilin Zhang
- Division of Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institute of Health, Bethesda, MD 20817, USA; (Z.C.); (S.D.M.)
- Correspondence: ; Tel.: +1-301-435-6917
| |
Collapse
|
42
|
Kunzke T, Prade VM, Buck A, Sun N, Feuchtinger A, Matzka M, Fernandez IE, Wuyts W, Ackermann M, Jonigk D, Aichler M, Schmid RA, Eickelberg O, Berezowska S, Walch A. Patterns of carbon-bound exogenous compounds in lung cancer patients and association with disease pathophysiology. Cancer Res 2021; 81:5862-5875. [PMID: 34666994 DOI: 10.1158/0008-5472.can-21-1175] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 07/30/2021] [Accepted: 10/14/2021] [Indexed: 11/16/2022]
Abstract
Asymptomatic anthracosis is the accumulation of black carbon particles in adult human lungs. It is a common occurrence, but the pathophysiological significance of anthracosis is debatable. Using in situ high mass resolution matrix-assisted laser desorption/ionization (MALDI) fourier-transform ion cyclotron resonance (FT-ICR) mass spectrometry imaging analysis, we discovered noxious carbon-bound exogenous compounds, such as polycyclic aromatic hydrocarbons (PAHs), tobacco-specific nitrosamines, or aromatic amines, in a series of 330 lung cancer patients in highly variable and unique patterns. The characteristic nature of carbon-bound exogenous compound had a strong association with patient outcome, tumor progression, the tumor immune microenvironment, PD-L1 expression, and DNA damage. Spatial correlation network analyses revealed substantial differences in the metabolome of tumor cells compared to tumor stroma depending on carbon-bound exogenous compounds. Overall, the bioactive pool of exogenous compounds is associated with several changes in lung cancer pathophysiology and correlates with patient outcome. Given the high prevalence of anthracosis in the lungs of adult humans, future work should investigate the role of carbon-bound exogenous compounds in lung carcinogenesis and lung cancer therapy.
Collapse
Affiliation(s)
- Thomas Kunzke
- Research Unit Analytical Pathology, Helmholtz Center Munich - German Research Center for Environmental Health
| | - Verena M Prade
- Research Unit Analytical Pathology, Helmholtz Center Munich - German Research Center for Environmental Health
| | - Achim Buck
- Research Unit Analytical Pathology, Helmholtz Center Munich - German Research Center for Environmental Health
| | - Na Sun
- Research Unit Analytical Pathology, Helmholtz Center Munich - German Research Center for Environmental Health
| | - Annette Feuchtinger
- Research Unit Analytical Pathology, Helmholtz Center Munich - German Research Center for Environmental Health
| | - Marco Matzka
- Research Unit Analytical Pathology, Helmholtz Center Munich - German Research Center for Environmental Health
| | | | | | | | | | | | | | | | - Sabina Berezowska
- Deparment of Laboratory Medicine and Pathology, Institute of Pathology, Lausanne University Hospital and University of Lausanne
| | - Axel Walch
- Research Unit Analytical Pathology, Helmholtz Center Munich - German Research Center for Environmental Health
| |
Collapse
|
43
|
Aliluev A, Tritschler S, Sterr M, Oppenländer L, Hinterdobler J, Greisle T, Irmler M, Beckers J, Sun N, Walch A, Stemmer K, Kindt A, Krumsiek J, Tschöp MH, Luecken MD, Theis FJ, Lickert H, Böttcher A. Diet-induced alteration of intestinal stem cell function underlies obesity and prediabetes in mice. Nat Metab 2021; 3:1202-1216. [PMID: 34552271 PMCID: PMC8458097 DOI: 10.1038/s42255-021-00458-9] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 08/13/2021] [Indexed: 12/11/2022]
Abstract
Excess nutrient uptake and altered hormone secretion in the gut contribute to a systemic energy imbalance, which causes obesity and an increased risk of type 2 diabetes and colorectal cancer. This functional maladaptation is thought to emerge at the level of the intestinal stem cells (ISCs). However, it is not clear how an obesogenic diet affects ISC identity and fate. Here we show that an obesogenic diet induces ISC and progenitor hyperproliferation, enhances ISC differentiation and cell turnover and changes the regional identities of ISCs and enterocytes in mice. Single-cell resolution of the enteroendocrine lineage reveals an increase in progenitors and peptidergic enteroendocrine cell types and a decrease in serotonergic enteroendocrine cell types. Mechanistically, we link increased fatty acid synthesis, Ppar signaling and the Insr-Igf1r-Akt pathway to mucosal changes. This study describes molecular mechanisms of diet-induced intestinal maladaptation that promote obesity and therefore underlie the pathogenesis of the metabolic syndrome and associated complications.
Collapse
Affiliation(s)
- Alexandra Aliluev
- Institute of Diabetes and Regeneration Research, Helmholtz Diabetes Center, Helmholtz Center Munich, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Sophie Tritschler
- Institute of Diabetes and Regeneration Research, Helmholtz Diabetes Center, Helmholtz Center Munich, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Institute of Computational Biology, Helmholtz Center Munich, Neuherberg, Germany
- School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Michael Sterr
- Institute of Diabetes and Regeneration Research, Helmholtz Diabetes Center, Helmholtz Center Munich, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Lena Oppenländer
- Institute of Diabetes and Regeneration Research, Helmholtz Diabetes Center, Helmholtz Center Munich, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Julia Hinterdobler
- Institute of Diabetes and Regeneration Research, Helmholtz Diabetes Center, Helmholtz Center Munich, Neuherberg, Germany
| | - Tobias Greisle
- Institute of Diabetes and Regeneration Research, Helmholtz Diabetes Center, Helmholtz Center Munich, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Martin Irmler
- Institute of Experimental Genetics, Helmholtz Center Munich, Neuherberg, Germany
| | - Johannes Beckers
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Institute of Experimental Genetics, Helmholtz Center Munich, Neuherberg, Germany
- Technical University of Munich, Freising, Germany
| | - Na Sun
- Research Unit of Analytical Pathology, Helmholtz Center Munich, Neuherberg, Germany
| | - Axel Walch
- Research Unit of Analytical Pathology, Helmholtz Center Munich, Neuherberg, Germany
| | - Kerstin Stemmer
- Institute of Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Center Munich, Neuherberg, Germany
- Rudolf-Buchheim-Institute of Pharmacology, Justus Liebig University, Giessen, Germany
| | - Alida Kindt
- Institute of Computational Biology, Helmholtz Center Munich, Neuherberg, Germany
| | - Jan Krumsiek
- Institute of Computational Biology, Helmholtz Center Munich, Neuherberg, Germany
| | - Matthias H Tschöp
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Institute of Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Center Munich, Neuherberg, Germany
- Division of Metabolic Diseases, Department of Medicine, Technical University of Munich, Munich, Germany
| | - Malte D Luecken
- Institute of Computational Biology, Helmholtz Center Munich, Neuherberg, Germany
| | - Fabian J Theis
- Institute of Computational Biology, Helmholtz Center Munich, Neuherberg, Germany.
- Technical University of Munich, Munich, Germany.
| | - Heiko Lickert
- Institute of Diabetes and Regeneration Research, Helmholtz Diabetes Center, Helmholtz Center Munich, Neuherberg, Germany.
- German Center for Diabetes Research (DZD), Neuherberg, Germany.
- Technical University of Munich, Munich, Germany.
| | - Anika Böttcher
- Institute of Diabetes and Regeneration Research, Helmholtz Diabetes Center, Helmholtz Center Munich, Neuherberg, Germany.
- German Center for Diabetes Research (DZD), Neuherberg, Germany.
| |
Collapse
|
44
|
Zhao R, An Z, Sun Y, Xia L, Qiu L, Yao A, Liu Y, Liu L. Metabolic profiling in early pregnancy and associated factors of folate supplementation: A cross-sectional study. Clin Nutr 2021; 40:5053-5061. [PMID: 34455263 DOI: 10.1016/j.clnu.2021.01.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/10/2020] [Accepted: 01/12/2021] [Indexed: 01/05/2023]
Abstract
BACKGROUND Pregnancy generally alters the balance of maternal metabolism, but the molecular profiles in early pregnancy and associated factors of folate supplementation in pregnant women remains incompletely understood. METHODS Untargeted metabonomics based on high-performance liquid chromatography-high-resolution mass spectrometry integrated with multivariate metabolic pathway analysis were applied to characterize metabolite profiles and associated factors of folate supplements in early pregnancy. The metabolic baseline of early pregnancy was determined by metabolic analysis of 510 serum samples from 131 non-pregnant and 379 pregnant healthy Chinese women. The pathophysiology of adaptive reactions and metabolic challenges induced by folate supplementation in early pregnancy was further compared between pregnant women with (n = 168) and without (n = 184) folate supplements. RESULTS Compared with non-pregnant participants, 106 metabolites, majority of which are related to amino acids and lysophosphatidylcholine/phosphatidylcholine, and 13 metabolic pathways were significantly changed in early pregnancy. The supplementation of folate in early pregnancy induced marked changes in N-acyl ethanolamine 22:0, N-acyl taurine 18:2, glycerophosphoserine 44:1 and 8,11,14-eicosatrienoate, proline, and aminoimidazole ribotide levels. CONCLUSIONS During early pregnancy, the metabolism of amino acids significantly changes to meet the physiological requirements of pregnant women. Folate intake may change glucose and lipid metabolism. These findings provide a comprehensive landscape for understanding the basic characteristics and gestational metabolic networks of early pregnancy and folate supplementation. This study provides a basis for further research into the relationship between metabolic markers and pregnancy diseases. TRIAL REGISTRATION This study protocol was registered on www.ClinicalTrials.gov, NCT03651934, on August 29, 2018 (prior to recruitment).
Collapse
Affiliation(s)
- Rui Zhao
- Pharmacy Department of Beijing Chao-Yang Hospital Affiliated with Beijing Capital Medical University, Beijing, 100020, PR China
| | - Zhuoling An
- Pharmacy Department of Beijing Chao-Yang Hospital Affiliated with Beijing Capital Medical University, Beijing, 100020, PR China
| | - Yuan Sun
- Pharmacy Department of Beijing Chao-Yang Hospital Affiliated with Beijing Capital Medical University, Beijing, 100020, PR China
| | - Liangyu Xia
- Department of Clinical Laboratory, Peking Union Medical College Hospital, China Academic Medical Science and Peking Union Medical College, Beijing, 100730, PR China
| | - Ling Qiu
- Department of Clinical Laboratory, Peking Union Medical College Hospital, China Academic Medical Science and Peking Union Medical College, Beijing, 100730, PR China
| | - Aimin Yao
- Department of Gynaecology and Obstetrics, Shunyi District Maternal and Child Health Hospital, Beijing, China
| | - Yanping Liu
- Department of Clinical Nutrition, Peking Union Medical College Hospital, China Academic Medical Science and Peking Union Medical College, Beijing, 100730, PR China.
| | - Lihong Liu
- Pharmacy Department of Beijing Chao-Yang Hospital Affiliated with Beijing Capital Medical University, Beijing, 100020, PR China.
| |
Collapse
|
45
|
Wang L, Lv W, Sun X, Zheng F, Xu T, Liu X, Li H, Lu X, Peng X, Hu C, Xu G. Strategy for Nontargeted Metabolomic Annotation and Quantitation Using a High-Resolution Spectral-Stitching Nanoelectrospray Direct-Infusion Mass Spectrometry with Data-Independent Acquisition. Anal Chem 2021; 93:10528-10537. [PMID: 34293854 DOI: 10.1021/acs.analchem.1c01480] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Direct-infusion nanoelectrospray ionization high-resolution mass spectrometry (DI-nESI-HRMS) is an alternative approach to chromatography-MS-based techniques for nontargeted metabolomics, offering a high sample throughout. However, its annotation accuracy of analytes is still full of challenges. In this study, we proposed a strategy for the annotation and quantitation of nontargeted metabolomic data using a spectral-stitching DI-nESI-HRMS with data-independent acquisition. The metabolite annotation strategy included the isotopic distribution, MS/MS spectrum similarity, and precursor and product ion correlation as well as matching of the extracted metabolite features along with the targeted metabolite precursors. Two groups of mixed standard solutions containing 40 and 79 metabolites were, respectively, used to establish the metabolite annotation strategy and validate its reliability. The results showed that the detected standards could be well annotated at top three explanations and total qualitative percentages were 100% (40 of 40) for the standard solution and 94.9% (74 of 78) for the standards spiked into the serum matrix. The intensity of the precursor ions was used for quantitation except for isomers, which were quantified by the intensities of the characteristic product ions if available. Finally, the strategy was applied to study serum metabolomics in diabetes, and the results demonstrated that it is promising for a large-scale cohort metabolomic study.
Collapse
Affiliation(s)
- Lichao Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China.,State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wangjie Lv
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoshan Sun
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fujian Zheng
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tianrun Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinyu Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hang Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Lu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | - Chunxiu Hu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guowang Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
46
|
Function and therapeutic potential of N-acyl amino acids. Chem Phys Lipids 2021; 239:105114. [PMID: 34217720 DOI: 10.1016/j.chemphyslip.2021.105114] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 06/06/2021] [Accepted: 06/29/2021] [Indexed: 12/11/2022]
Abstract
N-acyl amino acids (NAAs) are amphiphilic molecules, with different potential fatty acid and head group moieties. NAAs are the largest family of anandamide congener lipids discovered to date. In recent years, several NAAs have been identified as potential ligands, engaging novel binding sites and mechanisms for modulation of membrane proteins such as G-protein coupled receptors (GPRs), nuclear receptors, ion channels, and transporters. NAAs play a key role in a variety of physiological functions as lipid signaling molecules. Understanding the structure, function roles, and pharmacological potential of these NAAs is still in its infancy, and the biochemical roles are also mostly unknown. This review will provide a summary of the literature on NAAs and emphasize their therapeutic potential.
Collapse
|
47
|
Joglekar MV, Wong WKM, Ema FK, Georgiou HM, Shub A, Hardikar AA, Lappas M. Postpartum circulating microRNA enhances prediction of future type 2 diabetes in women with previous gestational diabetes. Diabetologia 2021; 64:1516-1526. [PMID: 33755745 DOI: 10.1007/s00125-021-05429-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 01/14/2021] [Indexed: 12/18/2022]
Abstract
AIMS/HYPOTHESIS Type 2 diabetes mellitus is a major cause of morbidity and death worldwide. Women with gestational diabetes mellitus (GDM) have greater than a sevenfold higher risk of developing type 2 diabetes in later life. Accurate methods for postpartum type 2 diabetes risk stratification are lacking. Circulating microRNAs (miRNAs) are well recognised as biomarkers/mediators of metabolic disease. We aimed to determine whether postpartum circulating miRNAs can predict the development of type 2 diabetes in women with previous GDM. METHODS In an observational study, plasma samples were collected at 12 weeks postpartum from 103 women following GDM pregnancy. Utilising a discovery approach, we measured 754 miRNAs in plasma from type 2 diabetes non-progressors (n = 11) and type 2 diabetes progressors (n = 10) using TaqMan-based real-time PCR on an OpenArray platform. Machine learning algorithms involving penalised logistic regression followed by bootstrapping were implemented. RESULTS Fifteen miRNAs were selected based on their importance in discriminating type 2 diabetes progressors from non-progressors in our discovery cohort. The levels of miRNA miR-369-3p remained significantly different (p < 0.05) between progressors and non-progressors in the validation sample set (n = 82; 71 non-progressors, 11 progressors) after adjusting for age and correcting for multiple comparisons. In a clinical model of prediction of type 2 diabetes that included six traditional risk factors (age, BMI, pregnancy fasting glucose, postpartum fasting glucose, cholesterol and triacylglycerols), the addition of the circulating miR-369-3p measured at 12 weeks postpartum improved the prediction of future type 2 diabetes from traditional AUC 0.83 (95% CI 0.68, 0.97) to an AUC 0.92 (95% CI 0.84, 1.00). CONCLUSIONS This is the first demonstration of miRNA-based type 2 diabetes prediction in women with previous GDM. Improved prediction will facilitate early lifestyle/drug intervention for type 2 diabetes prevention.
Collapse
Affiliation(s)
- Mugdha V Joglekar
- Diabetes and Islet Biology Group, School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
- Diabetes and Islet Biology Group, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, Australia
| | - Wilson K M Wong
- Diabetes and Islet Biology Group, School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
- Diabetes and Islet Biology Group, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, Australia
| | - Fahmida K Ema
- Diabetes and Islet Biology Group, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, Australia
| | - Harry M Georgiou
- Department of Obstetrics and Gynaecology, University of Melbourne, Mercy Hospital for Women, Heidelberg, VIC, Australia
| | - Alexis Shub
- Department of Obstetrics and Gynaecology, University of Melbourne, Mercy Hospital for Women, Heidelberg, VIC, Australia
| | - Anandwardhan A Hardikar
- Diabetes and Islet Biology Group, School of Medicine, Western Sydney University, Campbelltown, NSW, Australia.
- Diabetes and Islet Biology Group, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, Australia.
- Department of Science and Environment, Roskilde University, Roskilde, Denmark.
| | - Martha Lappas
- Obstetrics, Nutrition and Endocrinology Group, Department of Obstetrics and Gynaecology, University of Melbourne, Heidelberg, VIC, Australia.
- Mercy Perinatal Research Centre, Mercy Hospital for Women, Heidelberg, VIC, Australia.
| |
Collapse
|
48
|
Long-Chain Acylcarnitines Decrease the Phosphorylation of the Insulin Receptor at Tyr1151 Through a PTP1B-Dependent Mechanism. Int J Mol Sci 2021; 22:ijms22126470. [PMID: 34208786 PMCID: PMC8235348 DOI: 10.3390/ijms22126470] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/11/2021] [Accepted: 06/14/2021] [Indexed: 01/26/2023] Open
Abstract
The accumulation of lipid intermediates may interfere with energy metabolism pathways and regulate cellular energy supplies. As increased levels of long-chain acylcarnitines have been linked to insulin resistance, we investigated the effects of long-chain acylcarnitines on key components of the insulin signalling pathway. We discovered that palmitoylcarnitine induces dephosphorylation of the insulin receptor (InsR) through increased activity of protein tyrosine phosphatase 1B (PTP1B). Palmitoylcarnitine suppresses protein kinase B (Akt) phosphorylation at Ser473, and this effect is not alleviated by the inhibition of PTP1B by the insulin sensitizer bis-(maltolato)-oxovanadium (IV). This result indicates that palmitoylcarnitine affects Akt activity independently of the InsR phosphorylation level. Inhibition of protein kinase C and protein phosphatase 2A does not affect the palmitoylcarnitine-mediated inhibition of Akt Ser473 phosphorylation. Additionally, palmitoylcarnitine markedly stimulates insulin release by suppressing Akt Ser473 phosphorylation in insulin-secreting RIN5F cells. In conclusion, long-chain acylcarnitines activate PTP1B and decrease InsR Tyr1151 phosphorylation and Akt Ser473 phosphorylation, thus limiting the cellular response to insulin stimulation.
Collapse
|
49
|
Mishra A, Liu S, Promes J, Harata M, Sivitz W, Fink B, Bhardwaj G, O'Neill BT, Kang C, Sah R, Strack S, Stephens S, King T, Jackson L, Greenberg AS, Anokye-Danso F, Ahima RS, Ankrum J, Imai Y. Perilipin 2 downregulation in β cells impairs insulin secretion under nutritional stress and damages mitochondria. JCI Insight 2021; 6:144341. [PMID: 33784258 PMCID: PMC8262280 DOI: 10.1172/jci.insight.144341] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 03/24/2021] [Indexed: 12/15/2022] Open
Abstract
Perilipin 2 (PLIN2) is a lipid droplet (LD) protein in β cells that increases under nutritional stress. Downregulation of PLIN2 is often sufficient to reduce LD accumulation. To determine whether PLIN2 positively or negatively affects β cell function under nutritional stress, PLIN2 was downregulated in mouse β cells, INS1 cells, and human islet cells. β Cell–specific deletion of PLIN2 in mice on a high-fat diet reduced glucose-stimulated insulin secretion (GSIS) in vivo and in vitro. Downregulation of PLIN2 in INS1 cells blunted GSIS after 24-hour incubation with 0.2 mM palmitic acid. Downregulation of PLIN2 in human pseudoislets cultured at 5.6 mM glucose impaired both phases of GSIS, indicating that PLIN2 is critical for GSIS. Downregulation of PLIN2 decreased specific OXPHOS proteins in all 3 models and reduced oxygen consumption rates in INS1 cells and mouse islets. Moreover, we found that PLIN2-deficient INS1 cells increased the distribution of a fluorescent oleic acid analog to mitochondria and showed signs of mitochondrial stress, as indicated by susceptibility to fragmentation and alterations of acyl-carnitines and glucose metabolites. Collectively, PLIN2 in β cells has an important role in preserving insulin secretion, β cell metabolism, and mitochondrial function under nutritional stress.
Collapse
Affiliation(s)
- Akansha Mishra
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA.,Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa, USA
| | - Siming Liu
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA.,Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa, USA
| | - Joseph Promes
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA.,Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa, USA
| | - Mikako Harata
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA.,Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa, USA
| | - William Sivitz
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA.,Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa, USA.,Iowa City Veterans Affairs Medical Center, Iowa City, Iowa, USA
| | - Brian Fink
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA.,Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa, USA.,Iowa City Veterans Affairs Medical Center, Iowa City, Iowa, USA
| | - Gourav Bhardwaj
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA.,Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa, USA
| | - Brian T O'Neill
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA.,Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa, USA.,Iowa City Veterans Affairs Medical Center, Iowa City, Iowa, USA
| | - Chen Kang
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Rajan Sah
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Stefan Strack
- Department of Neuroscience and Pharmacology, Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa, USA
| | - Samuel Stephens
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA.,Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa, USA
| | - Timothy King
- Department of Internal Medicine, Eastern Virginia Medical School, Norfolk, Virginia, USA
| | - Laura Jackson
- Department of Internal Medicine, Eastern Virginia Medical School, Norfolk, Virginia, USA
| | - Andrew S Greenberg
- Obesity and Metabolism Laboratory, Jean Mayer United States Department of Agriculture Human Nutrition Research Center on Aging at Tufts University, Boston, Massachusetts, USA
| | | | - Rexford S Ahima
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - James Ankrum
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa, USA.,Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, Iowa, USA
| | - Yumi Imai
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA.,Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
50
|
Huang R, Bai X, Li X, Wang X, Zhao L. Retinol-Binding Protein 4 Activates STRA6, Provoking Pancreatic β-Cell Dysfunction in Type 2 Diabetes. Diabetes 2021; 70:449-463. [PMID: 33199363 DOI: 10.2337/db19-1241] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 11/05/2020] [Indexed: 11/13/2022]
Abstract
Pancreatic β-cell dysfunction plays a decisive role in the progression of type 2 diabetes. Retinol-binding protein 4 (RBP4) is a prominent adipokine in type 2 diabetes, although its effect on β-cell function remains elusive, and the underlying mechanisms are unknown. Here, we found that elevated circulating RBP4 levels were inversely correlated with pancreatic β-cell function in db/db mice across different glycemic stages. RBP4 directly suppressed glucose-stimulated insulin secretion (GSIS) in primary isolated islets and INS-1E cells in a dose- and time-dependent manner. RBP4 transgenic (RBP4-Tg) overexpressing mice showed a dynamic decrease of GSIS, which appeared as early as 8 weeks old, preceding the impairment of insulin sensitivity and glucose tolerance. Islets isolated from RBP4-Tg mice showed a significant decrease of GSIS. Mechanistically, we demonstrated that the stimulated by retinoic acid 6 (STRA6), RBP4's only known specific membrane receptor, is expressed in β-cells and mediates the inhibitory effect of RBP4 on insulin synthesis through the Janus kinase 2/STAT1/ISL-1 pathway. Moreover, decreasing circulating RBP4 level could effectively restore β-cell dysfunction and ameliorate hyperglycemia in db/db mice. These observations revealed a role of RBP4 in pancreatic β-cell dysfunction, which provides new insight into the diabetogenic effect of RBP4.
Collapse
Affiliation(s)
- Rong Huang
- Guangdong Provincial Key Laboratory of Food, Nutrition, and Health and Department of Nutrition, School of Public Health, Sun Yat-sen University (Northern Campus), Guangzhou, Guangdong Province, People's Republic of China
| | - Xinxiu Bai
- Guangdong Provincial Key Laboratory of Food, Nutrition, and Health and Department of Nutrition, School of Public Health, Sun Yat-sen University (Northern Campus), Guangzhou, Guangdong Province, People's Republic of China
| | - Xueyan Li
- Guangdong Provincial Key Laboratory of Food, Nutrition, and Health and Department of Nutrition, School of Public Health, Sun Yat-sen University (Northern Campus), Guangzhou, Guangdong Province, People's Republic of China
| | - Xiaohui Wang
- Guangdong Provincial Key Laboratory of Food, Nutrition, and Health and Department of Nutrition, School of Public Health, Sun Yat-sen University (Northern Campus), Guangzhou, Guangdong Province, People's Republic of China
| | - Lina Zhao
- Guangdong Provincial Key Laboratory of Food, Nutrition, and Health and Department of Nutrition, School of Public Health, Sun Yat-sen University (Northern Campus), Guangzhou, Guangdong Province, People's Republic of China
| |
Collapse
|