1
|
Cai J, Han X, Peng S, Chen J, Zhang JV, Huang C. Chemerin facilitates placental trophoblast invasion and spiral artery remodeling through the pentose phosphate pathway. Life Sci 2025; 373:123645. [PMID: 40280299 DOI: 10.1016/j.lfs.2025.123645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 02/19/2025] [Accepted: 04/14/2025] [Indexed: 04/29/2025]
Abstract
AIMS The invasion of trophoblasts and remodeling of spiral arteries are the requisite processes for successful placentation. A defect of trophoblast invasion is closely associated with pregnancy complications, including miscarriage and preeclampsia. In this study, we investigated the function of chemerin in trophoblast invasion and artery remodeling and explored the underlying mechanism in this process. MAIN METHODS Immunostaining was performed to examine chemerin expression in different days of mouse placenta and early stage of human placenta. Chemerin KO and LPS-treated mice, with exogenous chemerin peptide, were used to evaluate trophoblast giant cells (TGC) invasion, artery remodeling, and NK cell infiltration. Chemerin KO and LPS-treated decidua on E8.5 were conducted in metabolites file and measured related enzymes' expression. Chemerin's function was further examined by human trophoblast HTR-8 cell migration and the enzymes expression in the pentose phosphate pathway. KEY FINDINGS Chemerin has high expression in mouse-invasive TGC and human extra-villous trophoblast cells. Deficiency of chemerin and LPS treatment in pregnant mice impaired placental TGC invasion, spiral artery remodeling, and NK cell infiltration in decidua, which mainly attributed to the downregulation of metabolites and G6PD and RPIA expression in pentose phosphate pathway (PPP). Chemerin activated the PPP to accelerate HTR-8 cell migration. Exogenous chemerin administration remarkably attenuated the defect of TGC invading and artery remodeling in LPS-treated mice, and promoted NK infiltration and maternal blood perfusion. SIGNIFICANCE This study described the indispensable role of chemerin in trophoblast invasion and arterial remodeling, and suggested its potential application in pregnancy complications miscarriage and preeclampsia.
Collapse
Affiliation(s)
- Jiaxuan Cai
- Center for Energy Metabolism and Reproduction, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China; Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen, China
| | - Xinyue Han
- Department of Obstetrics and Gynecology, Shenzhen University General Hospital, Shenzhen, China
| | - Suohao Peng
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Jie Chen
- Center for Energy Metabolism and Reproduction, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Jian V Zhang
- Center for Energy Metabolism and Reproduction, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China; Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, China; Faculty of Pharmaceutical Sciences, Shenzhen University of Advanced Technology, China.
| | - Chen Huang
- Center for Energy Metabolism and Reproduction, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China.
| |
Collapse
|
2
|
Saleh RO, Aboqader Al-Aouadi RF, Almuzaini NA, Uthirapathy S, Sanghvi G, Soothwal P, Arya R, Bareja L, Mohamed Abdelgawwad El-Sehrawy AA, Hulail HM. Glucose metabolism is controlled by non-coding RNAs in autoimmune diseases; a glimpse into immune system dysregulation. Hum Immunol 2025; 86:111269. [PMID: 39999745 DOI: 10.1016/j.humimm.2025.111269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 02/17/2025] [Accepted: 02/17/2025] [Indexed: 02/27/2025]
Abstract
The immune system accidentally targets the body's tissues, causing inflammation and tissue damage, the root causes of autoimmune illnesses. In recent studies, non-coding RNAs have been shown to significantly control gene expression and metabolic pathways linked to autoimmune diseases. This review investigates the effects of non-coding RNA on glucose metabolism, a route frequently dysregulated in autoimmune illnesses such as multiple sclerosis, rheumatoid arthritis, systemic lupus erythematosus, and diabetes. We review how non-coding RNA affects immune cell activity modulation, glucose absorption, glycolysis, and other metabolic processes critical to immune function. We also investigate the possibility of using non-coding RNA-mediated metabolic pathway targeting as a new therapeutic approach to treat autoimmune disorders. By clarifying the complex interplay of non-coding RNA, glucose metabolism, and immune dysregulation, this study endeavors to enhance comprehension of autoimmune etiology and facilitate the creation of focused therapies.
Collapse
Affiliation(s)
- Raed Obaid Saleh
- Medical Laboratory Techniques Department, College of Health and Medical Technology, University of Al Maarif, Anbar, Iraq
| | | | | | - Subasini Uthirapathy
- Pharmacy Department, Tishk International University, Erbil, Kurdistan Region, Iraq
| | - Gaurav Sanghvi
- Marwadi University Research Center, Department of Microbiology, Faculty of Science, Marwadi University, Rajkot 360003, Gujarat, India
| | - Pradeep Soothwal
- Department of Medicine, National Institute of Medical Sciences, NIMS University Rajasthan, Jaipur, India
| | - Renu Arya
- Chandigarh Pharmacy College, Chandigarh Group of Colleges-Jhanjeri, Mohali 140307, Punjab, India
| | - Lakshay Bareja
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura 140401, Punjab, India
| | | | - Hanen Mahmod Hulail
- Department of Medical Laboratories Technology, AL-Nisour University College, Baghdad, Iraq
| |
Collapse
|
3
|
Rincon JC, Wang D, Polcz VE, Barrios EL, Dirain ML, Ungaro RF, Nacionales DC, Zeumer-Spataro L, Xiao F, Efron PA, Moldawer LL, Cai G, Larson SD. Innate immune training in the neonatal response to sepsis. Mol Med 2025; 31:159. [PMID: 40307728 PMCID: PMC12042443 DOI: 10.1186/s10020-025-01179-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Accepted: 03/24/2025] [Indexed: 05/02/2025] Open
Abstract
Neonates, especially those born prematurely, are highly vulnerable to infection-induced mortality. Numerous observational and immunological studies in newborns have shown that live attenuated vaccines have beneficial, non-specific effects (NSEs) against secondary infections to unrelated pathogens. These beneficial effects have been attributed to trained immunity, and emergency granulopoiesis plays an essential role. However, trained immunity has been shown to affect multiple myeloid subsets and how trained immunity influences the host protective response is still undefined. Here we show that Bacillus-Calmette-Guérin (BCG) vaccination improves survival to polymicrobial sepsis by simultaneously reprogramming broad aspects of myelopoiesis. Specifically, BCG vaccination expands multiple myeloid subsets, including the lineage (Lin)-Sca- 1+c-kit+ (LSK) and granulocytic-macrophage progenitors (GMPs), and increases CD11b+Gr1+ cell number, as well as their oxidative metabolism and capacity to stimulate T-cell proliferation in response to sepsis. Single-cell RNA sequencing of neonatal splenocytes suggests that BCG-vaccination changes the broad transcriptional landscape of multiple myeloid subsets. The result is the maturation of various neutrophil and monocyte subsets, stimulation of antimicrobial processes, and suppression of inflammatory pathways and myeloid-derived suppressor cell transcription. These findings reveal that BCG administration early after birth fundamentally reorganizes the myeloid landscape to benefit the subsequent response to polymicrobial infection.
Collapse
Affiliation(s)
- Jaimar C Rincon
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, 1600 SW Archer Road, P.O. Box 100119, Gainesville, FL, 32610 - 0019, USA.
- Division of Pediatric Surgery, Department of Surgery, University of Florida College of Medicine, Gainesville, FL, USA.
| | - Dayuan Wang
- Department of Biostatistics, University of Florida Colleges of Medicine and Public Health and Health Sciences, Gainesville, FL, USA
| | - Valerie E Polcz
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, 1600 SW Archer Road, P.O. Box 100119, Gainesville, FL, 32610 - 0019, USA
| | - Evan L Barrios
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, 1600 SW Archer Road, P.O. Box 100119, Gainesville, FL, 32610 - 0019, USA
| | - Marvin L Dirain
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, 1600 SW Archer Road, P.O. Box 100119, Gainesville, FL, 32610 - 0019, USA
| | - Ricardo F Ungaro
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, 1600 SW Archer Road, P.O. Box 100119, Gainesville, FL, 32610 - 0019, USA
| | - Dina C Nacionales
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, 1600 SW Archer Road, P.O. Box 100119, Gainesville, FL, 32610 - 0019, USA
| | - Leilani Zeumer-Spataro
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, 1600 SW Archer Road, P.O. Box 100119, Gainesville, FL, 32610 - 0019, USA
| | - Feifei Xiao
- Department of Biostatistics, University of Florida Colleges of Medicine and Public Health and Health Sciences, Gainesville, FL, USA
| | - Philip A Efron
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, 1600 SW Archer Road, P.O. Box 100119, Gainesville, FL, 32610 - 0019, USA
| | - Lyle L Moldawer
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, 1600 SW Archer Road, P.O. Box 100119, Gainesville, FL, 32610 - 0019, USA
| | - Guoshuai Cai
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, 1600 SW Archer Road, P.O. Box 100119, Gainesville, FL, 32610 - 0019, USA
- Department of Biostatistics, University of Florida Colleges of Medicine and Public Health and Health Sciences, Gainesville, FL, USA
| | - Shawn D Larson
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, 1600 SW Archer Road, P.O. Box 100119, Gainesville, FL, 32610 - 0019, USA
- Division of Pediatric Surgery, Department of Surgery, University of Florida College of Medicine, Gainesville, FL, USA
| |
Collapse
|
4
|
Zhao C, Zhou H, Wang P, Zhang S, Lin X, Pan Y, Zhu H. Hexokinase 2-driven aerobic glycolysis modulates YAP1 in placental trophoblast development. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167872. [PMID: 40286881 DOI: 10.1016/j.bbadis.2025.167872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 02/21/2025] [Accepted: 04/23/2025] [Indexed: 04/29/2025]
Abstract
Recurrent pregnancy loss (RPL) is a severe complication, and its risk is heightened by dysregulated trophoblast development. However, the underlying mechanisms remain unclear. Herein, we show that a portion of villous samples from patients with RPL display reduced hexokinase II (HK2) and Yes-associated protein 1 (YAP1) expression compared with healthy controls. Moreover, in human trophoblast stem (TS) cell models, blocking HK2 activities via exposure to 3-bromopyruvate markedly reduced cell proliferation and induced cell cycle arrest by regulating YAP1 phosphorylation and localization. This was partially reversed by the YAP signaling activator TT-10. Moreover, YAP1 contributes to aerobic glycolysis regulation by influencing HK2 activity. Together, these findings demonstrate an interplay between the Hippo/YAP1 pathway and glucose metabolism in placental trophoblast development and highlight an approach for RPL intervention.
Collapse
Affiliation(s)
- Chenqiong Zhao
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China; Zhejiang Provincial Clinical Research Center for Reproductive Health and Disease, Hangzhou 310016, China; Zhejiang Key Laboratory of Precise Protection and Promotion of Fertility, Hangzhou 310016, China
| | - Hanjing Zhou
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China; Zhejiang Provincial Clinical Research Center for Reproductive Health and Disease, Hangzhou 310016, China; Zhejiang Key Laboratory of Precise Protection and Promotion of Fertility, Hangzhou 310016, China
| | - Peixing Wang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China; Zhejiang Provincial Clinical Research Center for Reproductive Health and Disease, Hangzhou 310016, China; Zhejiang Key Laboratory of Precise Protection and Promotion of Fertility, Hangzhou 310016, China
| | - Songying Zhang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China; Zhejiang Provincial Clinical Research Center for Reproductive Health and Disease, Hangzhou 310016, China; Zhejiang Key Laboratory of Precise Protection and Promotion of Fertility, Hangzhou 310016, China
| | - Xiaona Lin
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China; Zhejiang Provincial Clinical Research Center for Reproductive Health and Disease, Hangzhou 310016, China; Zhejiang Key Laboratory of Precise Protection and Promotion of Fertility, Hangzhou 310016, China
| | - Yibin Pan
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China; Zhejiang Provincial Clinical Research Center for Reproductive Health and Disease, Hangzhou 310016, China; Zhejiang Key Laboratory of Precise Protection and Promotion of Fertility, Hangzhou 310016, China.
| | - Haiyan Zhu
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China; Zhejiang Provincial Clinical Research Center for Reproductive Health and Disease, Hangzhou 310016, China; Zhejiang Key Laboratory of Precise Protection and Promotion of Fertility, Hangzhou 310016, China.
| |
Collapse
|
5
|
Yu J, Zhang C, Zhang Q, Lu B, Lu G, Zhang C, Qiu R, Wang X, Zou C, Chu J, Li H, Zhao W. AZIN1-dependent polyamine synthesis accelerates tumor cell cycle progression and impairs effector T-cell function in osteosarcoma. Cell Death Dis 2025; 16:310. [PMID: 40246846 PMCID: PMC12006533 DOI: 10.1038/s41419-025-07640-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 04/01/2025] [Accepted: 04/04/2025] [Indexed: 04/19/2025]
Abstract
Osteosarcoma, the most prevalent malignant bone tumor among adolescents, frequently exhibits limited responsiveness to immunotherapy, a challenge attributed to poorly understood underlying mechanisms. Here, we identify enhanced polyamine biosynthesis as a key driver of osteosarcoma progression and immunotherapy resistance. We show that osteosarcoma cell proliferation and tumor growth rely on polyamine availability and that disruption of polyamine synthesis significantly boosts the cytotoxic efficacy of TCR-engineered T cells against osteosarcoma cells. Mechanistically, we reveal that the knockdown of antizyme inhibitor 1 (AZIN1) or suppression of polyamine production reduces MYC expression, leading to diminished tumor cell viability via the downregulation of cell cycle-related genes. Furthermore, reduced MYC levels are associated with changes in the expression of immunomodulatory cytokines and human leukocyte antigen molecules, pointing to a potential link with enhanced T-cell-mediated cytotoxicity. Collectively, our findings establish a pivotal role for the AZIN1-polyamine axis in osteosarcoma proliferation and immune evasion, and support the development of novel immunotherapeutic strategies targeting polyamine biosynthesis to combat this aggressive cancer.
Collapse
Affiliation(s)
- Jiaming Yu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Chuanxia Zhang
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Qinkai Zhang
- Department of Breast and Thyroid Surgery, Guangzhou Women and Children's Medical Center, Guangzhou, 510623, China
| | - Bing Lu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Guohao Lu
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, 510000, China
| | - Chunxiao Zhang
- School of Laboratory Medicine, Guangzhou Health Science College, Guangzhou, 510450, China
| | - Ru Qiu
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, 510000, China
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510000, China
| | - Xinyue Wang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, 510000, China
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510000, China
| | - Changye Zou
- Musculoskeletal Oncology Center, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China
| | - Junjun Chu
- HRYZ Biotech Co., Guangzhou, 510507, China.
| | - Haizhou Li
- Ganzhou Hospital of Guangdong Provincial People's Hospital, Ganzhou Municipal Hospital, Ganzhou, 341000, China.
| | - Wei Zhao
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China.
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China.
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, 510000, China.
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510000, China.
| |
Collapse
|
6
|
Cai H, Chen X, Liu Y, Chen Y, Zhong G, Chen X, Rong S, Zeng H, Zhang L, Li Z, Liao A, Zeng X, Xiong W, Guo C, Zhu Y, Deng KQ, Ren H, Yan H, Cai Z, Xu K, Zhou L, Lu Z, Wang F, Liu S. Lactate activates trained immunity by fueling the tricarboxylic acid cycle and regulating histone lactylation. Nat Commun 2025; 16:3230. [PMID: 40185732 PMCID: PMC11971257 DOI: 10.1038/s41467-025-58563-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 03/24/2025] [Indexed: 04/07/2025] Open
Abstract
Trained immunity refers to the long-term memory of the innate immune cells. However, little is known about how environmental nutrient availability influences trained immunity. This study finds that physiologic carbon sources impact glucose contribution to the tricarboxylic acid (TCA) cycle and enhance cytokine production of trained monocytes. Our experiments demonstrate that trained monocytes preferentially employe lactate over glucose as a TCA cycle substrate, and lactate metabolism is required for trained immune cell responses to bacterial and fungal infection. Except for the contribution to the TCA cycle, endogenous lactate or exogenous lactate also supports trained immunity by regulating histone lactylation. Further transcriptome analysis, ATAC-seq, and CUT&Tag-seq demonstrate that lactate enhance chromatin accessibility in a manner dependent histone lactylation. Inhibiting lactate-dependent metabolism by silencing lactate dehydrogenase A (LDHA) impairs both lactate fueled the TCA cycle and histone lactylation. These findings suggest that lactate is the hub of immunometabolic and epigenetic programs in trained immunity.
Collapse
Affiliation(s)
- Huanhuan Cai
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, 430072, China
- Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, 430072, China
| | - Xueyuan Chen
- Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Yan Liu
- Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Yingbo Chen
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, 430072, China
- Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China
| | - Gechang Zhong
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, 430072, China
- Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China
| | - Xiaoyu Chen
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, 430072, China
- Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China
| | - Shuo Rong
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, 430072, China
- Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China
| | - Hao Zeng
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, 430072, China
| | - Lin Zhang
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, 430072, China
- Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, 430072, China
| | - Zelong Li
- Department of General Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China
- Department of Infectious Diseases, Longnan First People's Hospital, Longnan, 341700, China
| | - Aihua Liao
- Department of General Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China
- Department of Infectious Diseases, Longnan First People's Hospital, Longnan, 341700, China
| | - Xiangtai Zeng
- Department of General Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China
- Department of Infectious Diseases, Longnan First People's Hospital, Longnan, 341700, China
| | - Wei Xiong
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, 430072, China
- Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, 430072, China
| | - Cihang Guo
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, 430072, China
- Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, 430072, China
| | - Yanfang Zhu
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, 430072, China
- Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, 430072, China
| | - Ke-Qiong Deng
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, 430072, China
- Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, 430072, China
| | - Hong Ren
- Shanghai Children's Medical Center, Affiliated Hospital to Shanghai Jiao Tong University School of Medicine, Shanghai, 200240, China
| | - Huan Yan
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, 430072, China
- Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China
| | - Zeng Cai
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, 430072, China
- Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China
| | - Ke Xu
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, 430072, China
- Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China
| | - Li Zhou
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, 430072, China
- Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China
| | - Zhibing Lu
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, 430072, China.
- Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, 430072, China.
| | - Fubing Wang
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, 430072, China.
| | - Shi Liu
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, 430072, China.
- Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, 430072, China.
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
- Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
7
|
Slayo M, Rummel C, Singhaarachchi PH, Feldotto M, Spencer SJ. The role of n-3-derived specialised pro-resolving mediators (SPMs) in microglial mitochondrial respiration and inflammation resolution in Alzheimer's disease. Mol Neurodegener 2025; 20:35. [PMID: 40114266 PMCID: PMC11927317 DOI: 10.1186/s13024-025-00824-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 03/05/2025] [Indexed: 03/22/2025] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia globally and is characterised by reduced mitochondrial respiration and cortical deposition of amyloid-β plaques and neurofibrillary tangles comprised of hyper-phosphorylated tau. Despite its characterisation more than 110 years ago, the mechanisms by which AD develops are still unclear. Dysregulation of microglial phagocytosis of amyloid-β may play a key role. Microglia are the major innate immune cell of the central nervous system and are critical responders to pro-inflammatory states. Typically, microglia react with a short-lived inflammatory response. However, a dysregulation in the resolution of this microglial response results in the chronic release of inflammatory mediators. This prolongs the state of neuroinflammation, likely contributing to the pathogenesis of AD. In addition, the microglial specialised pro-resolving mediator (SPM) contribution to phagocytosis of amyloid-β is dysregulated in AD. SPMs are derivatives of dietary n-3 polyunsaturated fatty acids (PUFAs) and potentially represent a strategic target for protection against AD progression. However, there is little understanding of how mitochondrial respiration in microglia may be sustained long term by n-3-derived SPMs, and how this affects their clearance of amyloid-β. Here, we re-evaluate the current literature on SPMs in AD and propose that SPMs may improve phagocytosis of amyloid-β by microglia as a result of sustained mitochondrial respiration and allowing a pro-resolution response.
Collapse
Affiliation(s)
- Mary Slayo
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Melbourne, VIC, Australia.
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University Giessen, Giessen, Germany.
| | - Christoph Rummel
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University Giessen, Giessen, Germany
- Center for Mind, Brain and Behavior - CMBB, Giessen, Marburg, Germany
| | | | - Martin Feldotto
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University Giessen, Giessen, Germany
| | - Sarah J Spencer
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Melbourne, VIC, Australia
| |
Collapse
|
8
|
Shen YZ, Yao YD, Li HL, Li Y, Hu YC. CTSO and HLA-DQA1 as biomarkers in sepsis-associated ARDS: insights from RNA sequencing and immune infiltration analysis. BMC Infect Dis 2025; 25:326. [PMID: 40055592 PMCID: PMC11887161 DOI: 10.1186/s12879-025-10726-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 02/27/2025] [Indexed: 05/13/2025] Open
Abstract
The onset of sepsis frequently coincides with acute respiratory distress syndrome (ARDS), which constitutes a significant contributor to severe acid-base disturbances in septic patients. In the pathogenesis of sepsis, it conducts a crucial role. lysosomal metabolic disorders and immune imbalance conduct a pivotal role. Despite extensive research into the alterations in immune status during sepsis, few studies have been reported to thoroughly examine the association between lysosomes and sepsis. As a result, this study is predominantly Intended to delve into the link between lysosome-related genes and alterations in the lysosome in the immune microenvironment from the standpoint of bioinformatics in sepsis. The Registration Number was ChiCTR1900021261. Registration Date is 2019/02/04. Method Sepsis data source: Sepsis data was collected from previous clinical data and sequencing results (Originated from BGI Shenzhen Co., Ltd.) and the GO database was utilized for data collection of lysosome-related genes. Differential expression genes (DEGs) were screened on clinical sequencing data by employing IDEP 0.93 software subsequent to quality control. Afterwards, enrichment analysis was conducted by adopting Gene Set Enrichment Analysis (GSEA) and Weighted Gene Co expression Network Analysis (WGCNA), followed by cross referencing of lysosomal genes to identify DEGs associated with lysosomes. GO and KEGG pathway analysis wereperformed subsequently. The genes obtained from PLSGs and WGCNA by Creating a PPI network entails the following steps: the points were intersected at first. Afterwards, CytoHubba and MCODE analysis were performed by utilizing cytoscape software. Next, the intersection was taken to confirm Hub gene sequences, and subsequently the central DEGs tightly associated with existing CTD scores. Notwithstanding the fact that the causes of sepsis are multifaceted, ARDS can often trigger the development of sepsis in numerous cases. Simultaneously, with an aim to predict transcription factor levels in the central nervous system, Cytoscape software was adopted DEGs and to find relevant target miRNAs in the miRWalk database, and a correlated regulatory network was established accordingly. The SEPSIS immune infiltration model was constructed by employing ImmuCellAI software. Afterwards, the association between DEGs and immune microenvironment abundance was constructed by adopting Spearman's method. Last but not least, it is worth noting that single-cell sequencing has been validated as a method to analyze hub gene expression in immune cells of sepsis patients, enabling the selection of key genes that are closely associated with predictive outcomes. Result When acute respiratory distress syndrome (ARDS) is present, the differentially expressed genes (DEGs) are implicated in lysosomal metabolism and the regulation of the immune microenvironment. Six hub DEGs were bound up with sepsis or was attributable to the examinations. On top of that, it was determined that the patients had acute respiratory distress syndrome. The associated immune analysis illustrated a remarkable augment in T cell infiltration in the immune microenvironment of sepsis, while the infiltration relative to DC was reduced at certain level. Positive correlations were found between the two by employing Spearman analysis between hub DEGs and the regulatory role of immune cells. Moreover, it was universally acknowledged that anti-inflammatory immune cells were responsible for the negative correlation. On the basis of single-cell sequencing, it has been determined that CTSO and HLA-DQA1 were expressed in immune cells in sepsis. Aside from that, the survival-death curve direction suggested that they could be utilized as core genes for predicting sepsis-related prognosis analysis. Conclusion An analysis of this study demonstrates the interaction between sepsis lysosome-related metabolism and changes by understanding the pathogenesis of immune cells in the microenvironment. On this basis, we can develop new clinical diagnostics and therapeutic approaches of sepsis and identifying drug targets. Nonetheless, ARDS and sepsis can differ simply by the difference in site of infection; as the etiology of numerous ARDS cases is quite complex, progression to sepsis can occur if infection exacerbates or other complications arise, meeting the diagnostic criteria of sepsis 3.0.
Collapse
Affiliation(s)
- Yu Zhou Shen
- Department of Emergency Medicine, The Affiliated Hospital of Southwest Medical University, Lu Zhou, People's Republic of China
| | - Yan Dong Yao
- Department of Emergency Medicine, The Affiliated Hospital of Southwest Medical University, Lu Zhou, People's Republic of China
| | - Hai Li Li
- Department of Emergency Medicine, The Affiliated Hospital of Southwest Medical University, Lu Zhou, People's Republic of China
| | - Yang Li
- Department of Emergency Medicine, The Affiliated Hospital of Southwest Medical University, Lu Zhou, People's Republic of China
| | - Ying Chun Hu
- Department of Emergency Medicine, The Affiliated Hospital of Southwest Medical University, Lu Zhou, People's Republic of China.
| |
Collapse
|
9
|
Zhang M, Du L, Shen Y, Bin P. Toll-like Receptor Activation Remodels the Polyamine and Tryptophan Metabolism in Porcine Macrophages. Metabolites 2025; 15:162. [PMID: 40137127 PMCID: PMC11944168 DOI: 10.3390/metabo15030162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 01/31/2025] [Accepted: 02/13/2025] [Indexed: 03/27/2025] Open
Abstract
Background: The early nutritional metabolism of piglets is intimately associated with the regulation of immune function, and amino acids play a crucial role in modulating the fate and function of porcine immune cells, especially macrophages. However, the metabolic changes upon macrophage activation remain elusive. Methods: We established an in vitro activation model of porcine macrophages and investigated alterations in metabolites involved in polyamine and tryptophan metabolism upon activation by various toll-like receptor (TLR) activators. Results: TLR activation inhibits the production of spermine and alters the kynurenine pathway of the tryptophan metabolism toward the kynurenic acid biosynthesis. Specifically, TLR9 activation redirects the metabolic pathway of tryptophan toward kynurenic acid synthesis, which subsequently inhibits melatonin production via the protein kinase A (PKA)/cyclic adenosine monophosphate (cAMP)/cAMP-responsive element-binding protein (CREB) signaling pathways. Conclusions: TLR activation reprograms the polyamine and tryptophan metabolism in porcine macrophages. Knowledge of the metabolic alterations in polyamine and tryptophan upon TLR activation in macrophages offers valuable insights and potential strategies for nutritional intervention to enhance piglet immunity.
Collapse
Affiliation(s)
- Meimei Zhang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (M.Z.); (L.D.); (Y.S.)
| | - Lingfei Du
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (M.Z.); (L.D.); (Y.S.)
| | - Yinhao Shen
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (M.Z.); (L.D.); (Y.S.)
| | - Peng Bin
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (M.Z.); (L.D.); (Y.S.)
- Henry Fok School of Biology and Agriculture, Shaoguan University, Shaoguan 512005, China
| |
Collapse
|
10
|
Ma J, Tong S, Xiao J, Huang B. Mannose: A game-changer for T cell immunotherapy. Cell Metab 2025; 37:313-315. [PMID: 39826542 DOI: 10.1016/j.cmet.2024.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 12/17/2024] [Accepted: 12/24/2024] [Indexed: 01/22/2025]
Abstract
Metabolism influences the behavior of various immune cell types. In a recent Cancer Cell study, Qiu et al. revealed mannose metabolism as a prominent metabolic feature of tumor precursor exhausted T cells (Tpex) that is crucial for maintaining T cell stemness. Their work uncovers a novel metabolic mechanism that decouples T cell proliferation from differentiation, providing valuable insights into how metabolic modulation can be used to generate "better" T cells during the manufacturing process.
Collapse
Affiliation(s)
- Jingwei Ma
- Department of Immunology, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430030, China
| | - Shuai Tong
- Department of Immunology, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430030, China
| | - Jingxuan Xiao
- Department of Immunology, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430030, China
| | - Bo Huang
- Department of Immunology & National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China; Department of Biochemistry & Molecular Biology, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430030, China.
| |
Collapse
|
11
|
Rana AK, Bhatt B, Gusain C, Biswal SN, Das D, Kumar M. Neuroimmunometabolism: how metabolism orchestrates immune response in healthy and diseased brain. Am J Physiol Endocrinol Metab 2025; 328:E217-E229. [PMID: 39787332 DOI: 10.1152/ajpendo.00331.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/18/2024] [Accepted: 12/30/2024] [Indexed: 01/12/2025]
Abstract
Neuroimmunometabolism describes how neuroimmune cells, such as microglia, adapt their intracellular metabolic pathways to alter their immune functions in the central nervous system (CNS). Emerging evidence indicates that neurons also orchestrate the microglia-mediated immune response through neuro-immune cross talk, perhaps through metabolic signaling. However, little is known about how the brain's metabolic microenvironment and microglial intracellular metabolism orchestrate the neuroimmune response in healthy and diseased brains. This review addresses the balance of immunometabolic substrates in healthy and diseased brains, their metabolism by brain-resident microglia, and the potential impact of metabolic dysregulation of these substrates on the neuroimmune response and pathophysiology of psychiatric disorders. This review also suggests metabolic reprogramming of microglia as a preventive strategy for the management of neuroinflammation-related brain disorders, including psychiatric diseases.
Collapse
Affiliation(s)
- Anil Kumar Rana
- Food & Nutrition Biotechnology Division, National Agri-Food and Biomanufacturing Institute (BRIC-NABI), S.A.S Nagar, Punjab, India
| | - Babita Bhatt
- Food & Nutrition Biotechnology Division, National Agri-Food and Biomanufacturing Institute (BRIC-NABI), S.A.S Nagar, Punjab, India
| | - Chitralekha Gusain
- Food & Nutrition Biotechnology Division, National Agri-Food and Biomanufacturing Institute (BRIC-NABI), S.A.S Nagar, Punjab, India
| | - Surya Narayan Biswal
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, Punjab, India
| | - Debashree Das
- Department of Biology, Brandeis University, Waltham, Massachusetts, United States
| | - Mohit Kumar
- Food & Nutrition Biotechnology Division, National Agri-Food and Biomanufacturing Institute (BRIC-NABI), S.A.S Nagar, Punjab, India
- Regional Centre for Biotechnology (BRIC-RCB), Faridabad, Haryana, India
| |
Collapse
|
12
|
Wan X, Zhang Y, Zhang K, Mou Y, Jin X, Huang X. The alterations of ocular surface metabolism and the related immunity inflammation in dry eye. ADVANCES IN OPHTHALMOLOGY PRACTICE AND RESEARCH 2025; 5:1-12. [PMID: 39758836 PMCID: PMC11699629 DOI: 10.1016/j.aopr.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 07/22/2024] [Accepted: 08/09/2024] [Indexed: 01/07/2025]
Abstract
Background Dry eye disease (DED) stands as a prominent ocular condition of global prevalence, emerging as a growing concern within public health. However, the underlying mechanisms involved in its pathogenesis remain largely unknown. In recent years, with the development of metabolomics, numerous studies have reported alterations in ocular surface metabolism in DED and offered fresh perspectives on the development of DED. Main text The metabolic changes of the ocular surface of DED patients are closely intertwined with the cellular metabolism process and immune inflammation changes. This article expounds upon the correlation between ocular surface metabolism and immune inflammation alterations in DED in terms of glycolysis, lipid metabolism, amino acid metabolism, cellular signaling pathways, and immune inflammation regulation. Conclusions The alterations in ocular surface metabolism of patients with dry eye are closely associated with their inflammatory status. Our work contributes novel insights into the pathogenesis of dry eye diseases and offers innovative molecular targets for diagnosing, detecting, and managing DED patients.
Collapse
Affiliation(s)
- Xiaojie Wan
- Eye Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, China
| | - Yu Zhang
- Eye Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, China
| | - Kaiye Zhang
- Eye Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, China
| | - Yujie Mou
- Eye Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, China
| | - Xiuming Jin
- Eye Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, China
| | - Xiaodan Huang
- Eye Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, China
| |
Collapse
|
13
|
Li G, Cheng Y, Yang X, Chai Z, Mu Z, Chao H, Li H, Qi Y, Qi L, Liu J. Integrated gut microbiota and serum metabolomics reveal glyphosate-induced hepatic injury in mice. Hum Exp Toxicol 2025; 44:9603271251326877. [PMID: 40068150 DOI: 10.1177/09603271251326877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2025]
Abstract
IntroductionGlyphosate (GLP) is one of the most widely used herbicides in the world. However, its underlying effects on the liver remain unclear. This study aims to investigate the toxic effects and the gut microbiome- and serum metabolite-related mechanisms of GLP on the liver in mice.Methods16S rDNA sequencing and UPLC-Q-TOF-MS/MS were used to investigate the mechanisms of GLP toxicity in mice administered with 0, 50, 250 and 500 mg/kg/day GLP for 30 days.ResultsGLP induced hepatocyte edema and ballooning as well as inflammatory cell infiltration. Exposure to GLP resulted in increased levels of serum ALT, TBIL, DBIL, and GLU. Microbiota analysis at the phylum level demonstrated that the proportions of Patescibacteria decreased in the GLP-treated group. The genus-level analysis identified 11 different genera, with eight decreased and three increased in the GLP-exposed group. Metabolomics analysis of serum showed 42 differential metabolites between the GLP and control groups. The metabolic pathway enrichment analysis revealed that the pentose phosphate pathway (PPP) and pyrimidine metabolism were significantly activated. Spearman analysis showed that the changes in the differential metabolites of the PPP and pyrimidine metabolism and gut microbiota were strongly associated with the biochemical index.DiscussionIn conclusion, GLP exposure induces hepatic injury through alterations in the gut microbiome and metabolic pathways, particularly by activating the pentose phosphate pathway and pyrimidine metabolism.
Collapse
Affiliation(s)
- Gang Li
- School of Public Health, Qiqihar Medical University, Qiqihar, China
- Postdoctoral Research Station of Qiqihar Institute of Medical Science, Qiqihar, China
- Qiqihar Academy of Medical Sciences, Qiqihar, China
| | - Yu Cheng
- School of Public Health, Qiqihar Medical University, Qiqihar, China
| | - Xiaolei Yang
- School of Public Health, Qiqihar Medical University, Qiqihar, China
| | - Zijun Chai
- School of Public Health, Qiqihar Medical University, Qiqihar, China
| | - Zhihui Mu
- School of Public Health, Qiqihar Medical University, Qiqihar, China
| | - Hong Chao
- School of Public Health, Qiqihar Medical University, Qiqihar, China
| | - Hongjie Li
- School of Public Health, Qiqihar Medical University, Qiqihar, China
| | - Yanbo Qi
- School of Public Health, Qiqihar Medical University, Qiqihar, China
| | - Lei Qi
- School of Public Health, Qiqihar Medical University, Qiqihar, China
- Postdoctoral Research Station of Qiqihar Institute of Medical Science, Qiqihar, China
- Qiqihar Academy of Medical Sciences, Qiqihar, China
| | - Jicheng Liu
- Postdoctoral Research Station of Qiqihar Institute of Medical Science, Qiqihar, China
- Qiqihar Academy of Medical Sciences, Qiqihar, China
| |
Collapse
|
14
|
Liu Z, Zheng X, Li N, Wang Z. Baicalein suppresses inflammation and attenuates acute lung injury by inhibiting glycolysis via HIF‑1α signaling. Mol Med Rep 2025; 31:18. [PMID: 39513601 PMCID: PMC11564906 DOI: 10.3892/mmr.2024.13383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 09/18/2024] [Indexed: 11/15/2024] Open
Abstract
Baicalein, a flavonoid monomer compound isolated from the dried root of the traditional Chinese herb Scutellaria baicalensis, has several pharmacological activities, such as anti‑inflammatory, anti‑angiogenic, antitumor, antimicrobial and antiviral properties. Acute lung injury (ALI) is characterized by injury of the alveolar epithelium and capillary endothelium, which results in decreased lung volume, decreased lung compliance, ventilation/perfusion mismatch, intrapulmonary edema, alveolar edema and even acute hypoxemic respiratory failure. The present study aimed to investigate the effects of baicalein on lung injury and inflammation. Bioinformatics analysis using network pharmacology predicted that the hypoxia inducible factor‑1α (HIF‑1α) and glycolysis signaling pathways were involved in the mechanism underlying the therapeutic effects of baicalein. Further in vitro and in vivo experiments, such as immunohistochemistry, immunofluorescence and PCR, verified that baicalein could inhibit HIF‑1α signaling, thus suppressing glycolysis, and improving inflammatory responses and ALI. Taken together, the results of the present study suggested that the anti‑inflammatory effects of baicalein on treating ALI were associated with its ability to suppress glycolysis via the HIF‑1α signaling pathway.
Collapse
Affiliation(s)
- Zhongyou Liu
- Department of Respiratory Diseases, Zhumadian Hospital of Traditional Chinese Medicine, Zhumadian, Henan 463000, P.R. China
| | - Xiaona Zheng
- Department of Respiratory Diseases, Zhumadian Hospital of Traditional Chinese Medicine, Zhumadian, Henan 463000, P.R. China
| | - Ning Li
- Department of Scientific Research, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan 450046, P.R. China
| | - Zongyao Wang
- Department of Respiratory Diseases, Zhengzhou Hospital of Traditional Chinese Medicine, Zhengzhou, Henan 450007, P.R. China
| |
Collapse
|
15
|
Mutlu F, Kasap M, Yaprak Bayrak B, Sarıhan M, Şahin N, Önal A, Akpınar G, Bayrak YE, Sönmez HE. The first proteomics analysis of tonsils in patients with periodic fever, aphthous stomatitis, pharyngitis, and adenitis syndrome (PFAPA). Pediatr Res 2024:10.1038/s41390-024-03741-z. [PMID: 39613831 DOI: 10.1038/s41390-024-03741-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 10/05/2024] [Accepted: 11/02/2024] [Indexed: 12/01/2024]
Abstract
BACKGROUND Periodic fever, aphthous stomatitis, pharyngitis, and adenitis (PFAPA) syndrome is a recurrent fever syndrome. The exact etiopathogenesis of PFAPA syndrome remains unknown. Biological fluids or tissues may provide disease-specific biomarkers that may help clinicians to find new pathogenic pathways. METHODS Tonsil tissues of seven patients with PFAPA were collected during the tonsillectomy. Seven patients who underwent tonsillectomy for reasons other than chronic tonsillitis were enrolled as a control group. The nHPLC LC-MS/MS system was used for protein identification and label-free quantification. Bioinformatics analysis was carried out using the UniProt accession numbers of the identified proteins. RESULTS Proteomics analysis revealed to identity of proteins of which at least 23 were up and 57 were downregulated. Bioinformatics analysis of differentially regulated proteins by STRING indicated that protein folding and clearance machinery were interrupted in PFAPA patients compared to the controls. The affected pathways underlined the importance of the mitochondrial electron transport chain and ATP biosynthesis process. CONCLUSION Although it is not clear that changes in tonsil protein expression whether directly related to pathogenesis or simply result of chronic inflammation, the identification of tonsil biomarkers for PFAPA may provide clinicians an opportunity to understand disease pathogenesis or develop new molecular targets for treatments. IMPACT Proteomics analyses of tonsils revealed the identity of 80 proteins of which at least 23 were up and 57 were downregulated. Bioinformatics analysis underlined the importance of mitochondrial ETC and regulation of ATP biosynthetic process. This is the first study evaluating the proteomics of the tonsils of PFAPA patients. The identification of tonsil biomarkers for PFAPA may provide clinicians an opportunity to understand disease pathogenesis or develop new molecular targets for treatments.
Collapse
Affiliation(s)
- Fatih Mutlu
- Department of Otorhinolaryngology, Kocaeli University Faculty of Medicine, Kocaeli, Turkey
| | - Murat Kasap
- Department of Basic Medical Sciences, Medical Biology, Kocaeli University Faculty of Medicine, Kocaeli, Turkey
| | - Busra Yaprak Bayrak
- Department of Pathology, Kocaeli University Faculty of Medicine, Kocaeli, Turkey
| | - Mehmet Sarıhan
- Department of Basic Medical Sciences, Medical Biology, Kocaeli University Faculty of Medicine, Kocaeli, Turkey
| | - Nihal Şahin
- Department of Pediatrics, Division of Pediatric Rheumatology, Kocaeli University Faculty of Medicine, Kocaeli, Turkey
| | - Alperen Önal
- Department of Otorhinolaryngology, Kocaeli University Faculty of Medicine, Kocaeli, Turkey
| | - Gürler Akpınar
- Department of Basic Medical Sciences, Medical Biology, Kocaeli University Faculty of Medicine, Kocaeli, Turkey
| | - Yunus Emre Bayrak
- Department of Pediatrics, Division of Pediatric Rheumatology, Kocaeli University Faculty of Medicine, Kocaeli, Turkey
| | - Hafize Emine Sönmez
- Department of Pediatrics, Division of Pediatric Rheumatology, Kocaeli University Faculty of Medicine, Kocaeli, Turkey.
| |
Collapse
|
16
|
Wang H, Liu S, Sun Y, Chen C, Hu Z, Li Q, Long J, Yan Q, Liang J, Lin Y, Yang S, Lin M, Liu X, Wang H, Yu J, Yi F, Tan Y, Yang Y, Chen N, Ai Q. Target modulation of glycolytic pathways as a new strategy for the treatment of neuroinflammatory diseases. Ageing Res Rev 2024; 101:102472. [PMID: 39233146 DOI: 10.1016/j.arr.2024.102472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/22/2024] [Accepted: 08/24/2024] [Indexed: 09/06/2024]
Abstract
Neuroinflammation is an innate and adaptive immune response initiated by the release of inflammatory mediators from various immune cells in response to harmful stimuli. While initially beneficial and protective, prolonged or excessive neuroinflammation has been identified in clinical and experimental studies as a key pathological driver of numerous neurological diseases and an accelerant of the aging process. Glycolysis, the metabolic process that converts glucose to pyruvate or lactate to produce adenosine 5'-triphosphate (ATP), is often dysregulated in many neuroinflammatory disorders and in the affected nerve cells. Enhancing glucose availability and uptake, as well as increasing glycolytic flux through pharmacological or genetic manipulation of glycolytic enzymes, has shown potential protective effects in several animal models of neuroinflammatory diseases. Modulating the glycolytic pathway to improve glucose metabolism and ATP production may help alleviate energy deficiencies associated with these conditions. In this review, we examine six neuroinflammatory diseases-stroke, Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), amyotrophic lateral sclerosis (ALS), and depression-and provide evidence supporting the role of glycolysis in their treatment. We also explore the potential link between inflammation-induced aging and glycolysis. Additionally, we briefly discuss the critical role of glycolysis in three types of neuronal cells-neurons, microglia, and astrocytes-within physiological processes. This review highlights the significance of glycolysis in the pathology of neuroinflammatory diseases and its relevance to the aging process.
Collapse
Affiliation(s)
- Hanlong Wang
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Shasha Liu
- Department of Pharmacy, Changsha Hospital for Matemal&Child Health Care Affiliated to Hunan Normal University, Changsha 410007, China
| | - Yang Sun
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Chen Chen
- Department of Pharmacy, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Ziyi Hu
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Qinqin Li
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Junpeng Long
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Qian Yan
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Jinping Liang
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Yuting Lin
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Songwei Yang
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Meiyu Lin
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Xuan Liu
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Huiqin Wang
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Jingbo Yu
- Technology Innovation Center/National Key Laboratory Breeding Base of Chinese Medicine Powders and Innovative Drugs, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Fan Yi
- Key Laboratory of Cosmetic, China National Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Yong Tan
- Nephrology Department, Xiangtan Central Hospital, Xiangtan 411100, China
| | - Yantao Yang
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China.
| | - Naihong Chen
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Qidi Ai
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China.
| |
Collapse
|
17
|
Du P, Li J, Hua M, Zhu L, Chen C, Zeng H. Potential Contributions of Human Endogenous Retroviruses in Innate Immune Memory. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:1225-1233. [PMID: 39230265 DOI: 10.4049/jimmunol.2300411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/08/2024] [Indexed: 09/05/2024]
Abstract
The phenomenon wherein innate immune cells adopt long-term inflammatory phenotypes following the first stimuli is named trained immunity and can improve host defense against infections. Transcriptional and epigenetic reprogramming are critical mechanisms of trained immunity; however, the regulatory networks are not entirely clear at present. The human endogenous retroviruses (HERVs) provide large amounts of transcriptional regulators in the regulatory pathways. In this study, we analyzed published large omics data to explore the roles of such "dark matter" of the human genome in trained and tolerant macrophages. We collected 80 RNA sequencing data and 62 sequencing data to detect histone modifications and active regulatory regions from nine published studies on trained and tolerant macrophages. By analyzing the characteristics of transcription and epigenetic modification of HERVs, as well as their association with gene expression, we found that 15.3% of HERVs were transcribed nonrandomly from noncoding regions and enriched in specific HERV families and specific chromosomes, such as chromosomes 11, 15, 17, and 19, and they were highly related with the expression of adjacent genes. We found that 295 differentially expressed HERVs are located in 50-kbp flanking regions of 142 differentially expressed genes. We found epigenetic changes of these HERVs and that overlap with predicted enhancers and identified 35 enhancer-like HERVs. The related genes were highly involved in the activation and inflammatory responses, such as the TLR pathway. Other pathways including phosphoinositide signaling and transport of folate and K+ might be also related with trained immunity, which require further study. These results demonstrated that HERVs might play important roles in trained immunity.
Collapse
Affiliation(s)
- Pengcheng Du
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China; and
| | - Jiarui Li
- Biomedical Innovation Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Mingxi Hua
- Biomedical Innovation Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Liuluan Zhu
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China; and
| | - Chen Chen
- Biomedical Innovation Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Hui Zeng
- Biomedical Innovation Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
18
|
Signoretti C, Matsumura S, Fatehi S, D'Silva M, Mathew R, Cendali F, D'Alessandro A, Alam SMS, Garcia V, Miano JM, Gupte SA. G6pdN126D Variant Increases the Risk of Developing VEGFR (Vascular Endothelial Growth Factor Receptor) Blocker-Induced Pulmonary Vascular Disease. J Am Heart Assoc 2024; 13:e035174. [PMID: 39291493 DOI: 10.1161/jaha.123.035174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 08/09/2024] [Indexed: 09/19/2024]
Abstract
BACKGROUND G6PD (glucose-6-phosphate-dehydrogenase) is a key enzyme in the glycolytic pathway and has been implicated in the pathogenesis of cancer and pulmonary hypertension-associated vascular remodeling. Here, we investigated the role of an X-linked G6pd mutation (N126D polymorphism), which is known to increase the risk of cardiovascular disease in individuals from sub-Saharan Africa and many others with African ancestry, in the pathogenesis of pulmonary hypertension induced by a vascular endothelial cell growth factor receptor blocker used for treating cancer. METHODS AND RESULTS CRISPR-Cas9 genome editing was used to generate the G6pd variant (N126D; G6pdN126D) in rats. A single dose of the vascular endothelial cell growth factor receptor blocker sugen-5416 (SU; 20 mg/kg in DMSO), which is currently in a Phase 2/3 clinical trial for cancer treatment, was subcutaneously injected into G6pdN126D rats and their wild-type littermates. After 8 weeks of normoxic conditions, right ventricular pressure and hypertrophy, pulmonary artery remodeling, the metabolic profile, and cytokine expression were assessed. Right ventricular pressure and pulmonary arterial wall thickness were increased in G6PDN126D+SU/normoxic rats. Simultaneously, levels of oxidized glutathione, inositol triphosphate, and intracellular Ca2+ were increased in the lungs of G6PDN126D+SU/normoxic rats, whereas nitric oxide was decreased. Also increased in G6PDN126D+SU/normoxic rats were pulmonary levels of plasminogen activator inhibitor-1, thrombin-antithrombin complex, and expression of proinflammatory cytokines CCL3 (chemokine [C-C motif] ligand), CCL5, and CCL7. CONCLUSIONS Our results suggest G6PDN126D increases inositol triphosphate-Ca2+ signaling, inflammation, thrombosis, and hypertrophic pulmonary artery remodeling in SU-treated rats. This suggests an increased risk of vascular endothelial cell growth factor receptor blocker-induced pulmonary hypertension in those carrying this G6PD variant.
Collapse
MESH Headings
- Animals
- Glucosephosphate Dehydrogenase/genetics
- Glucosephosphate Dehydrogenase/metabolism
- Receptors, Vascular Endothelial Growth Factor/genetics
- Rats
- Male
- Pulmonary Artery/drug effects
- Pulmonary Artery/metabolism
- Pulmonary Artery/pathology
- Pulmonary Artery/physiopathology
- Hypertension, Pulmonary/chemically induced
- Hypertension, Pulmonary/metabolism
- Hypertension, Pulmonary/genetics
- Hypertension, Pulmonary/physiopathology
- Disease Models, Animal
- Vascular Remodeling/drug effects
- Rats, Sprague-Dawley
- Indoles/pharmacology
- Hypertrophy, Right Ventricular/genetics
- Hypertrophy, Right Ventricular/metabolism
- Hypertrophy, Right Ventricular/physiopathology
- Pyrroles
Collapse
Affiliation(s)
| | - Shun Matsumura
- Department of Pharmacology New York Medical College Valhalla NY USA
| | - Samuel Fatehi
- Department of Pharmacology New York Medical College Valhalla NY USA
| | - Melinee D'Silva
- Department of Pharmacology New York Medical College Valhalla NY USA
| | - Rajamma Mathew
- Department of Medicine, Division of Pediatric Cardiology, Physiology New York Medical College Valhalla NY USA
| | - Francesca Cendali
- Department of Biochemistry and Molecular Genetics University of Colorado Anschutz Medical Campus Aurora CO USA
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics University of Colorado Anschutz Medical Campus Aurora CO USA
| | - S M Shafiqul Alam
- Department of Pathology, Microbiology, and Immunology (PMI) New York Medical College Valhalla NY USA
| | - Victor Garcia
- Department of Pharmacology New York Medical College Valhalla NY USA
| | - Joseph M Miano
- Department of Medicine Vascular Biology Center, Medical College of Georgia at Augusta University Augusta GA USA
| | - Sachin A Gupte
- Department of Pharmacology New York Medical College Valhalla NY USA
| |
Collapse
|
19
|
Jahn J, Ehlen QT, Kaplan L, Best TM, Meng Z, Huang CY. Interplay of Glucose Metabolism and Hippo Pathway in Chondrocytes: Pathophysiology and Therapeutic Targets. Bioengineering (Basel) 2024; 11:972. [PMID: 39451348 PMCID: PMC11505586 DOI: 10.3390/bioengineering11100972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/24/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024] Open
Abstract
In this review, we explore the intricate relationship between glucose metabolism and mechanotransduction pathways, with a specific focus on the role of the Hippo signaling pathway in chondrocyte pathophysiology. Glucose metabolism is a vital element in maintaining proper chondrocyte function, but it has also been implicated in the pathogenesis of osteoarthritis (OA) via the induction of pro-inflammatory signaling pathways and the establishment of an intracellular environment conducive to OA. Alternatively, mechanotransduction pathways such as the Hippo pathway possess the capacity to respond to mechanical stimuli and have an integral role in maintaining chondrocyte homeostasis. However, these mechanotransduction pathways can be dysregulated and potentially contribute to the progression of OA. We discussed how alterations in glucose levels may modulate the Hippo pathway components via a variety of mechanisms. Characterizing the interaction between glucose metabolism and the Hippo pathway highlights the necessity of balancing both metabolic and mechanical signaling to maintain chondrocyte health and optimal functionality. Furthermore, this review demonstrates the scarcity of the literature on the relationship between glucose metabolism and mechanotransduction and provides a summary of current research dedicated to this specific area of study. Ultimately, increased research into this topic may elucidate novel mechanisms and relationships integrating mechanotransduction and glucose metabolism. Through this review we hope to inspire future research into this topic to develop innovative treatments for addressing the clinical challenges of OA.
Collapse
Affiliation(s)
- Jacob Jahn
- University of Miami Miller School of Medicine, Miami, FL 33136, USA; (J.J.); (Q.T.E.); (L.K.); (T.M.B.); (Z.M.)
| | - Quinn T. Ehlen
- University of Miami Miller School of Medicine, Miami, FL 33136, USA; (J.J.); (Q.T.E.); (L.K.); (T.M.B.); (Z.M.)
| | - Lee Kaplan
- University of Miami Miller School of Medicine, Miami, FL 33136, USA; (J.J.); (Q.T.E.); (L.K.); (T.M.B.); (Z.M.)
- Department of Orthopedics, University of Miami, Miami, FL 33136, USA
- UHealth Sports Medicine Institute, University of Miami, Miami, FL 33136, USA
| | - Thomas M. Best
- University of Miami Miller School of Medicine, Miami, FL 33136, USA; (J.J.); (Q.T.E.); (L.K.); (T.M.B.); (Z.M.)
- Department of Orthopedics, University of Miami, Miami, FL 33136, USA
- UHealth Sports Medicine Institute, University of Miami, Miami, FL 33136, USA
| | - Zhipeng Meng
- University of Miami Miller School of Medicine, Miami, FL 33136, USA; (J.J.); (Q.T.E.); (L.K.); (T.M.B.); (Z.M.)
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, Miami, FL 33136, USA
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Chun-Yuh Huang
- UHealth Sports Medicine Institute, University of Miami, Miami, FL 33136, USA
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL 33146, USA
| |
Collapse
|
20
|
Liu W, Man X, Wang Y, Wang Q, Wang Z, Qi J, Qin Q, Han B, Sun J. Tirofiban mediates neuroprotective effects in acute ischemic stroke by reducing inflammatory response. Neuroscience 2024; 555:32-40. [PMID: 39025399 DOI: 10.1016/j.neuroscience.2024.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 07/03/2024] [Accepted: 07/10/2024] [Indexed: 07/20/2024]
Abstract
Growing evidence suggests that neuroinflammation is a critical driver of the development, worsening, and cell death observed in acute ischemic stroke (AIS). While prior research has demonstrated that tirofiban enhances functional recovery in AIS patients by suppressing platelet aggregation, its impact and underlying mechanisms in AIS-related neuroinflammation remain elusive. The current study established an AIS mouse model employing photochemical techniques and assessed neurological function and brain infarct size using the modified neurological severity scale (mNSS) and 2,3,5-Triphenyltetrazolium chloride (TTC) staining, respectively. Tirofiban significantly reduced the volume of cerebral infarction in AIS mice, accompanied by an enhancement in their neurological functions. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assays along with experiments assessing oxidative stress showed that tirofiban mitigated oxidative damage and apoptosis in the ischemic penumbra post-AIS. Additionally, DNA microarray analysis revealed alterations in gene expression patterns in the ischemic penumbra after tirofiban treatment. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis showed that most gene-level downregulated signaling pathways were closely related to the inflammatory response. Moreover, the protein microarray analysis revealed that tirofiban diminished the expression levels of inflammatory cytokines, such as interleukin-1 (IL-1), IL-6, and tumor necrosis factor-alpha, in the ischemic penumbra. Additionally, immunofluorescence staining showed that tirofiban regulated inflammatory responses by altering the state and phenotype of microglia. In conclusion, this study suggests that tirofiban reduces inflammatory response by regulating microglial state and phenotype and lowering the levels of inflammatory factors, providing neuroprotection in acute ischemic stroke.
Collapse
Affiliation(s)
- Wei Liu
- Department of Emergency Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266003, China
| | - Xu Man
- Department of Integrative Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266003, China
| | - Yongbin Wang
- Department of Emergency Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266003, China
| | - Qingqing Wang
- Department of Emergency Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266003, China
| | - Zhiyuan Wang
- Department of Emergency Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266003, China
| | - Jianjiao Qi
- Department of Emergency Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266003, China
| | - Qiaoji Qin
- Department of Emergency Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266003, China
| | - Ban Han
- Department of Neurology, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266003, China.
| | - Jinping Sun
- Department of Emergency Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266003, China.
| |
Collapse
|
21
|
Zhou J, Han J, Wei Y, Wang Y. Desaminotyrosine is a redox-active microbial metabolite that bolsters macrophage antimicrobial functions while attenuating IL-6 production. FASEB J 2024; 38:e23844. [PMID: 39046365 DOI: 10.1096/fj.202400638r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/23/2024] [Accepted: 07/15/2024] [Indexed: 07/25/2024]
Abstract
Intestinal microbiota contributes to host defense against pathogens while avoiding the induction of inflammation in homeostatic conditions, but the mechanism is not fully understood. To investigate the potential role of the bacterial metabolite desaminotyrosine (DAT) in regulating host defense and inflammation, we pretreated mouse bone marrow-derived macrophages (BMDMs) with DAT for 12 hours and then challenged with bacterial lipopolysaccharide (LPS). We found that DAT priming-enhanced type I interferon response while selectively inhibiting proinflammatory interleukin (IL)-6 production after exposure to LPS. This is related to the fact that DAT is a natural antioxidant determined by radical scavenging assay in a cell-free system. DAT-primed cells had increased levels of the reduced form of nicotinamide adenine dinucleotide phosphate (NADPH) upon LPS stimulation. Countering the increased NADPH by supplementing extra oxidized NADP+ to cells reversed DAT's effect on LPS-induced Il-6 and interferon-stimulated gene expressions. DAT-primed cells also were more resistant to oxidative stress-induced generation of reactive oxygen species and cell death. DAT promoted the production of antimicrobial effector nitric oxide in a cellular redox-dependent manner, leading to enhanced macrophage antimicrobial activity during Salmonella enterica infection. Our data suggest that DAT acts as a host-microbiota crosstalk signal in shaping host immune defense and inflammatory response.
Collapse
Affiliation(s)
- Junyang Zhou
- Laboratory of Infection and Immunity, Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jinzhi Han
- Laboratory of Infection and Immunity, Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Xuzhou Center for Disease Control and Prevention, Xuzhou, Jiangsu, China
| | - Yanxia Wei
- Laboratory of Infection and Immunity, Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yugang Wang
- Laboratory of Infection and Immunity, Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
22
|
Zhang X, Zhang L, Gao Y, Liu Z, Gong K. Identification of hub glycolysis-related genes in acute myocardial infarction and their correlation with immune infiltration using bioinformatics analysis. BMC Cardiovasc Disord 2024; 24:349. [PMID: 38987688 PMCID: PMC11234719 DOI: 10.1186/s12872-024-03989-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 06/19/2024] [Indexed: 07/12/2024] Open
Abstract
PURPOSE Glycolysis and immune metabolism play important roles in acute myocardial infarction (AMI). Therefore, this study aimed to identify and experimentally validate the glycolysis-related hub genes in AMI as diagnostic biomarkers, and further explore the association between hub genes and immune infiltration. METHODS Differentially expressed genes (DEGs) from AMI peripheral blood mononuclear cells (PBMCs) were analyzed using R software. Glycolysis-related DEGs (GRDEGs) were identified and analyzed using the Database for Annotation, Visualization, and Integrated Discovery (DAVID) for functional enrichment. A protein-protein interaction network was constructed using the STRING database and visualized using Cytoscape software. Immune infiltration analysis between patients with AMI and stable coronary artery disease (SCAD) controls was performed using CIBERSORT, and correlation analysis between GRDEGs and immune cell infiltration was performed. We also plotted nomograms and receiver operating characteristic (ROC) curves to assess the predictive accuracy of GRDEGs for AMI occurrence. Finally, key genes were experimentally validated using reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blotting using PBMCs. RESULTS A total of 132 GRDEGs and 56 GRDEGs were identified on the first day and 4-6 days after AMI, respectively. Enrichment analysis indicated that these GRDEGs were mainly clustered in the glycolysis/gluconeogenesis and metabolic pathways. Five hub genes (HK2, PFKL, PKM, G6PD, and ALDOA) were selected using the cytoHubba plugin. The link between immune cells and hub genes indicated that HK2, PFKL, PKM, and ALDOA were significantly positively correlated with monocytes and neutrophils, whereas G6PD was significantly positively correlated with neutrophils. The calibration curve, decision curve analysis, and ROC curves indicated that the five hub GRDEGs exhibited high predictive value for AMI. Furthermore, the five hub GRDEGs were validated by RT-qPCR and western blotting. CONCLUSION We concluded that HK2, PFKL, PKM, G6PD, and ALDOA are hub GRDEGs in AMI and play important roles in AMI progression. This study provides a novel potential immunotherapeutic method for the treatment of AMI.
Collapse
Affiliation(s)
- Xiaoqing Zhang
- Department of Cardiology, Affiliated Hospital of Yangzhou University, No. 368, Hanjiang Middle Road, Yangzhou 225000, Jiangsu, China
- School of Medicine, Yangzhou University, No. 136, Jiang yang Middle Road, Yangzhou 225000, Jiangsu, China
| | - Lina Zhang
- Department of Cardiology, Affiliated Hospital of Nantong University, No.20, Xisi Road, Nantong 226001, Jiangsu, China
| | - Ya Gao
- Department of Cardiology, Affiliated Hospital of Yangzhou University, No. 368, Hanjiang Middle Road, Yangzhou 225000, Jiangsu, China
| | - Zhangyu Liu
- Department of Cardiology, Affiliated Hospital of Yangzhou University, No. 368, Hanjiang Middle Road, Yangzhou 225000, Jiangsu, China
| | - Kaizheng Gong
- Department of Cardiology, Affiliated Hospital of Yangzhou University, No. 368, Hanjiang Middle Road, Yangzhou 225000, Jiangsu, China.
| |
Collapse
|
23
|
ten Brink T, Damanik F, Rotmans JI, Moroni L. Unraveling and Harnessing the Immune Response at the Cell-Biomaterial Interface for Tissue Engineering Purposes. Adv Healthc Mater 2024; 13:e2301939. [PMID: 38217464 PMCID: PMC11468937 DOI: 10.1002/adhm.202301939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 12/14/2023] [Indexed: 01/15/2024]
Abstract
Biomaterials are defined as "engineered materials" and include a range of natural and synthetic products, designed for their introduction into and interaction with living tissues. Biomaterials are considered prominent tools in regenerative medicine that support the restoration of tissue defects and retain physiologic functionality. Although commonly used in the medical field, these constructs are inherently foreign toward the host and induce an immune response at the material-tissue interface, defined as the foreign body response (FBR). A strong connection between the foreign body response and tissue regeneration is suggested, in which an appropriate amount of immune response and macrophage polarization is necessary to trigger autologous tissue formation. Recent developments in this field have led to the characterization of immunomodulatory traits that optimizes bioactivity, the integration of biomaterials and determines the fate of tissue regeneration. This review addresses a variety of aspects that are involved in steering the inflammatory response, including immune cell interactions, physical characteristics, biochemical cues, and metabolomics. Harnessing the advancing knowledge of the FBR allows for the optimization of biomaterial-based implants, aiming to prevent damage of the implant, improve natural regeneration, and provide the tools for an efficient and successful in vivo implantation.
Collapse
Affiliation(s)
- Tim ten Brink
- Complex Tissue Regeneration DepartmentMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityUniversiteitssingel 40Maastricht6229ERThe Netherlands
| | - Febriyani Damanik
- Complex Tissue Regeneration DepartmentMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityUniversiteitssingel 40Maastricht6229ERThe Netherlands
| | - Joris I. Rotmans
- Department of Internal MedicineLeiden University Medical CenterAlbinusdreef 2Leiden2333ZAThe Netherlands
| | - Lorenzo Moroni
- Complex Tissue Regeneration DepartmentMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityUniversiteitssingel 40Maastricht6229ERThe Netherlands
| |
Collapse
|
24
|
Tian Y, Chen X, Pu J, Liang Y, Li W, Xu X, Tan X, Yu S, Shao T, Ma Y, Wang B, Chen Y, Li Y. Spermatogenic cell-specific type 1 hexokinase (HK1S) is essential for capacitation-associated increase in tyrosine phosphorylation and male fertility in mice. PLoS Genet 2024; 20:e1011357. [PMID: 39074078 DOI: 10.1371/journal.pgen.1011357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 06/27/2024] [Indexed: 07/31/2024] Open
Abstract
Hexokinase (HK) catalyzes the first irreversible rate-limiting step in glycolysis that converts glucose to glucose-6-phosphate. HK1 is ubiquitously expressed in the brain, erythrocytes, and other tissues where glycolysis serves as the major source of ATP production. Spermatogenic cell-specific type 1 hexokinase (HK1S) is expressed in sperm but its physiological role in male mice is still unknown. In this study, we generate Hk1s knockout mice using the CRISPR/Cas9 system to study the gene function in vivo. Hk1s mRNA is exclusively expressed in testes starting from postnatal day 18 and continuing to adulthood. HK1S protein is specifically localized in the outer surface of the sperm fibrous sheath (FS). Depletion of Hk1s leads to infertility in male mice and reduces sperm glycolytic pathway activity, yet they have normal motile parameters and ATP levels. In addition, by using in vitro fertilization (IVF), Hk1s deficient sperms are unable to fertilize cumulus-intact or cumulus-free oocytes, but can normally fertilize zona pellucida-free oocytes. Moreover, Hk1s deficiency impairs sperm migration into the oviduct, reduces acrosome reaction, and prevents capacitation-associated increases in tyrosine phosphorylation, which are probable causes of infertility. Taken together, our results reveal that HK1S plays a critical role in sperm function and male fertility in mice.
Collapse
Affiliation(s)
- Yingchao Tian
- The School of Public Health, Xinxiang Medical University, Xinxiang, Henan, China
| | - Xiu Chen
- Department of Pharmacy, Heze University, Heze, Shandong, China
| | - Jie Pu
- Department of Pharmacology, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yuxin Liang
- The School of Public Health, Xinxiang Medical University, Xinxiang, Henan, China
| | - Weixi Li
- The School of Public Health, Xinxiang Medical University, Xinxiang, Henan, China
| | - Xiaotong Xu
- National Institute of Biological Sciences, Beijing, Beijing, China
| | - Xinshui Tan
- National Institute of Biological Sciences, Beijing, Beijing, China
| | - Shuntai Yu
- National Institute of Biological Sciences, Beijing, Beijing, China
| | - Tianyu Shao
- National Institute of Biological Sciences, Beijing, Beijing, China
| | - Yan Ma
- National Institute of Biological Sciences, Beijing, Beijing, China
| | - Bingwei Wang
- Department of Pharmacology, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yongjie Chen
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Yushan Li
- The School of Public Health, Xinxiang Medical University, Xinxiang, Henan, China
| |
Collapse
|
25
|
Phua YL, D'Annibale OM, Karunanidhi A, Mohsen AW, Kirmse B, Dobrowolski SF, Vockley J. A multiomics approach reveals evidence for phenylbutyrate as a potential treatment for combined D,L-2- hydroxyglutaric aciduria. Mol Genet Metab 2024; 142:108495. [PMID: 38772223 DOI: 10.1016/j.ymgme.2024.108495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/30/2024] [Accepted: 05/13/2024] [Indexed: 05/23/2024]
Abstract
PURPOSE To identify therapies for combined D, L-2-hydroxyglutaric aciduria (C-2HGA), a rare genetic disorder caused by recessive variants in the SLC25A1 gene. METHODS Patients C-2HGA were identified and diagnosed by whole exome sequencing and biochemical genetic testing. Patient derived fibroblasts were then treated with phenylbutyrate and the functional effects assessed by metabolomics and RNA-sequencing. RESULTS In this study, we demonstrated that C-2HGA patient derived fibroblasts exhibited impaired cellular bioenergetics. Moreover, Fibroblasts form one patient exhibited worsened cellular bioenergetics when supplemented with citrate. We hypothesized that treating patient cells with phenylbutyrate (PB), an FDA approved pharmaceutical drug that conjugates glutamine for renal excretion, would reduce mitochondrial 2-ketoglutarate, thereby leading to improved cellular bioenergetics. Metabolomic and RNA-seq analyses of PB-treated fibroblasts demonstrated a significant decrease in intracellular 2-ketoglutarate, 2-hydroxyglutarate, and in levels of mRNA coding for citrate synthase and isocitrate dehydrogenase. Consistent with the known action of PB, an increased level of phenylacetylglutamine in patient cells was consistent with the drug acting as 2-ketoglutarate sink. CONCLUSION Our pre-clinical studies suggest that citrate supplementation has the possibility exacerbating energy metabolism in this condition. However, improvement in cellular bioenergetics suggests phenylbutyrate might have interventional utility for this rare disease.
Collapse
MESH Headings
- Humans
- Phenylbutyrates/pharmacology
- Phenylbutyrates/therapeutic use
- Fibroblasts/metabolism
- Fibroblasts/drug effects
- Glutarates/metabolism
- Ketoglutaric Acids/metabolism
- Energy Metabolism/drug effects
- Energy Metabolism/genetics
- Mitochondria/drug effects
- Mitochondria/metabolism
- Mitochondria/genetics
- Metabolomics
- Exome Sequencing
- Citrate (si)-Synthase/metabolism
- Citrate (si)-Synthase/genetics
- Brain Diseases, Metabolic, Inborn/drug therapy
- Brain Diseases, Metabolic, Inborn/genetics
- Brain Diseases, Metabolic, Inborn/metabolism
- Isocitrate Dehydrogenase/genetics
- Isocitrate Dehydrogenase/metabolism
- Brain Diseases, Metabolic/drug therapy
- Brain Diseases, Metabolic/genetics
- Brain Diseases, Metabolic/metabolism
- Brain Diseases, Metabolic/pathology
- Multiomics
- Mitochondrial Proteins
- Organic Anion Transporters
Collapse
Affiliation(s)
- Yu Leng Phua
- Department of Pediatrics, Division of Genetic and Genomic Medicine, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA; Department of Pathology, Clinical Biochemical Genetics Laboratory, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Olivia M D'Annibale
- Department of Pediatrics, Division of Genetic and Genomic Medicine, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA; Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, USA
| | - Anuradha Karunanidhi
- Department of Pediatrics, Division of Genetic and Genomic Medicine, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Al-Walid Mohsen
- Department of Pediatrics, Division of Genetic and Genomic Medicine, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA; Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, USA
| | - Brian Kirmse
- Department of Pediatrics, University of Mississippi Medical Center, Jackson, MS, USA
| | - Steven F Dobrowolski
- Department of Pathology, Clinical Biochemical Genetics Laboratory, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Jerry Vockley
- Department of Pediatrics, Division of Genetic and Genomic Medicine, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA; Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, USA.
| |
Collapse
|
26
|
Ramakrishnan P. O-GlcNAcylation and immune cell signaling: A review of known and a preview of unknown. J Biol Chem 2024; 300:107349. [PMID: 38718861 PMCID: PMC11180344 DOI: 10.1016/j.jbc.2024.107349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 04/25/2024] [Accepted: 04/27/2024] [Indexed: 06/06/2024] Open
Abstract
The dynamic and reversible modification of nuclear and cytoplasmic proteins by O-GlcNAcylation significantly impacts the function and dysfunction of the immune system. O-GlcNAcylation plays crucial roles under both physiological and pathological conditions in the biochemical regulation of all immune cell functions. Three and a half decades of knowledge acquired in this field is merely sufficient to perceive that what we know is just the prelude. This review attempts to mark out the known regulatory roles of O-GlcNAcylation in key signal transduction pathways and specific protein functions in the immune system and adumbrate ensuing questions toward the unknown functions.
Collapse
Affiliation(s)
- Parameswaran Ramakrishnan
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA; The Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, USA; Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio, USA; University Hospitals-Cleveland Medical Center, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA.
| |
Collapse
|
27
|
Ewald S, Nasuhidehnavi A, Feng TY, Lesani M, McCall LI. The intersection of host in vivo metabolism and immune responses to infection with kinetoplastid and apicomplexan parasites. Microbiol Mol Biol Rev 2024; 88:e0016422. [PMID: 38299836 PMCID: PMC10966954 DOI: 10.1128/mmbr.00164-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024] Open
Abstract
SUMMARYProtozoan parasite infection dramatically alters host metabolism, driven by immunological demand and parasite manipulation strategies. Immunometabolic checkpoints are often exploited by kinetoplastid and protozoan parasites to establish chronic infection, which can significantly impair host metabolic homeostasis. The recent growth of tools to analyze metabolism is expanding our understanding of these questions. Here, we review and contrast host metabolic alterations that occur in vivo during infection with Leishmania, trypanosomes, Toxoplasma, Plasmodium, and Cryptosporidium. Although genetically divergent, there are commonalities among these pathogens in terms of metabolic needs, induction of the type I immune responses required for clearance, and the potential for sustained host metabolic dysbiosis. Comparing these pathogens provides an opportunity to explore how transmission strategy, nutritional demand, and host cell and tissue tropism drive similarities and unique aspects in host response and infection outcome and to design new strategies to treat disease.
Collapse
Affiliation(s)
- Sarah Ewald
- Department of Microbiology, Immunology, and Cancer Biology at the Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Azadeh Nasuhidehnavi
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma, USA
| | - Tzu-Yu Feng
- Department of Microbiology, Immunology, and Cancer Biology at the Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Mahbobeh Lesani
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, Oklahoma, USA
| | - Laura-Isobel McCall
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma, USA
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, Oklahoma, USA
- Laboratories of Molecular Anthropology and Microbiome Research, University of Oklahoma, Norman, Oklahoma, USA
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, California, USA
| |
Collapse
|
28
|
Li J, Zeng G, Zhang Z, Wang Y, Shao M, Li C, Lu Z, Zhao Y, Zhang F, Ding W. Urban airborne PM 2.5 induces pulmonary fibrosis through triggering glycolysis and subsequent modification of histone lactylation in macrophages. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 273:116162. [PMID: 38458067 DOI: 10.1016/j.ecoenv.2024.116162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 02/05/2024] [Accepted: 02/26/2024] [Indexed: 03/10/2024]
Abstract
Airborne fine particulate matter (PM2.5) can cause pulmonary inflammation and even fibrosis, however, the underlying molecular mechanisms of the pathogenesis of PM2.5 exposure have not been fully appreciated. In the present study, we explored the dynamics of glycolysis and modification of histone lactylation in macrophages induced by PM2.5-exposure in both in vivo and in vitro models. Male C57BL/6 J mice were anesthetized and administrated with PM2.5 by intratracheal instillation once every other day for 4 weeks. Mouse RAW264.7 macrophages and alveolar epithelial MLE-12 cells were treated with PM2.5 for 24 h. We found that PM2.5 significantly increased lactate dehydrogenase (LDH) activities and lactate contents, and up-regulated the mRNA expression of key glycolytic enzymes in the lungs and bronchoalveolar lavage fluids of mice. Moreover, PM2.5 increased the levels of histone lactylation in both PM2.5-exposed lungs and RAW264.7 cells. The pro-fibrotic cytokines secreted from PM2.5-treated RAW264.7 cells triggered epithelial-mesenchymal transition (EMT) in MLE-12 cells through activating transforming growth factor-β (TGF-β)/Smad2/3 and VEGFA/ERK pathways. In contrast, LDHA inhibitor (GNE-140) pretreatment effectively alleviated PM2.5-induced pulmonary inflammation and fibrosis via inhibiting glycolysis and subsequent modification of histone lactylation in mice. Thus, our findings suggest that PM2.5-induced glycolysis and subsequent modification of histone lactylation play critical role in the PM2.5-associated pulmonary fibrosis.
Collapse
Affiliation(s)
- Jingyi Li
- Laboratory of Environment and Health, College of Life Sciences, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Guodong Zeng
- Laboratory of Environment and Health, College of Life Sciences, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Zezhong Zhang
- Laboratory of Environment and Health, College of Life Sciences, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Yuanli Wang
- Laboratory of Environment and Health, College of Life Sciences, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Mengyao Shao
- Laboratory of Environment and Health, College of Life Sciences, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Chunjiang Li
- Laboratory of Environment and Health, College of Life Sciences, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Zhongbing Lu
- Laboratory of Environment and Health, College of Life Sciences, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Yong Zhao
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, No. 1 Beichen West Road, Beijing 100101, China.
| | - Fang Zhang
- Laboratory of Environment and Health, College of Life Sciences, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China.
| | - Wenjun Ding
- Laboratory of Environment and Health, College of Life Sciences, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China.
| |
Collapse
|
29
|
Gudenschwager Basso EK, Ju J, Soliman E, de Jager C, Wei X, Pridham KJ, Olsen ML, Theus MH. Immunoregulatory and neutrophil-like monocyte subsets with distinct single-cell transcriptomic signatures emerge following brain injury. J Neuroinflammation 2024; 21:41. [PMID: 38310257 PMCID: PMC10838447 DOI: 10.1186/s12974-024-03032-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 01/26/2024] [Indexed: 02/05/2024] Open
Abstract
Monocytes represent key cellular elements that contribute to the neurological sequela following brain injury. The current study reveals that trauma induces the augmented release of a transcriptionally distinct CD115+/Ly6Chi monocyte population into the circulation of mice pre-exposed to clodronate depletion conditions. This phenomenon correlates with tissue protection, blood-brain barrier stability, and cerebral blood flow improvement. Uniquely, this shifted the innate immune cell profile in the cortical milieu and reduced the expression of pro-inflammatory Il6, IL1r1, MCP-1, Cxcl1, and Ccl3 cytokines. Monocytes that emerged under these conditions displayed a morphological and gene profile consistent with a subset commonly seen during emergency monopoiesis. Single-cell RNA sequencing delineated distinct clusters of monocytes and revealed a key transcriptional signature of Ly6Chi monocytes enriched for Apoe and chitinase-like protein 3 (Chil3/Ym1), commonly expressed in pro-resolving immunoregulatory monocytes, as well as granule genes Elane, Prtn3, MPO, and Ctsg unique to neutrophil-like monocytes. The predominate shift in cell clusters included subsets with low expression of transcription factors involved in monocyte conversion, Pou2f2, Na4a1, and a robust enrichment of genes in the oxidative phosphorylation pathway which favors an anti-inflammatory phenotype. Transfer of this monocyte assemblage into brain-injured recipient mice demonstrated their direct role in neuroprotection. These findings reveal a multifaceted innate immune response to brain injury and suggest targeting surrogate monocyte subsets may foster tissue protection in the brain.
Collapse
Affiliation(s)
- Erwin K Gudenschwager Basso
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, 970 Washington Street SW, Life Sciences I, Rm 249 (MC0910), Blacksburg, VA, 24061, USA
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Jing Ju
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, 970 Washington Street SW, Life Sciences I, Rm 249 (MC0910), Blacksburg, VA, 24061, USA
| | - Eman Soliman
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, 970 Washington Street SW, Life Sciences I, Rm 249 (MC0910), Blacksburg, VA, 24061, USA
| | - Caroline de Jager
- Translational, Biology, Medicine and Health Graduate Program, Virginia Tech, Roanoke, VA, 24016, USA
| | - Xiaoran Wei
- School of Neuroscience, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Kevin J Pridham
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, 970 Washington Street SW, Life Sciences I, Rm 249 (MC0910), Blacksburg, VA, 24061, USA
| | - Michelle L Olsen
- School of Neuroscience, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Michelle H Theus
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, 970 Washington Street SW, Life Sciences I, Rm 249 (MC0910), Blacksburg, VA, 24061, USA.
- Center for Engineered Health, Virginia Tech, Blacksburg, VA, 24061, USA.
| |
Collapse
|
30
|
Li S, Ding H, Qi Z, Yang J, Huang J, Huang L, Zhang M, Tang Y, Shen N, Qian K, Guo Q, Wan J. Serum Metabolic Fingerprints Characterize Systemic Lupus Erythematosus. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2304610. [PMID: 37953381 PMCID: PMC10787061 DOI: 10.1002/advs.202304610] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/01/2023] [Indexed: 11/14/2023]
Abstract
Metabolic fingerprints in serum characterize diverse diseases for diagnostics and biomarker discovery. The identification of systemic lupus erythematosus (SLE) by serum metabolic fingerprints (SMFs) will facilitate precision medicine in SLE in an early and designed manner. Here, a discovery cohort of 731 individuals including 357 SLE patients and 374 healthy controls (HCs), and a validation cohort of 184 individuals (SLE/HC, 91/93) are constructed. Each SMF is directly recorded by nano-assisted laser desorption/ionization mass spectrometry (LDI MS) within 1 minute using 1 µL of native serum, which contains 908 mass to charge features. Sparse learning of SMFs achieves the SLE identification with sensitivity/specificity and area-under-the-curve (AUC) up to 86.0%/92.0% and 0.950 for the discovery cohort. For the independent validation cohort, it exhibits no performance loss by affording the sensitivity/specificity and AUC of 89.0%/100.0% and 0.992. Notably, a metabolic biomarker panel is screened out from the SMFs, demonstrating the unique metabolic pattern of SLE patients different from both HCs and rheumatoid arthritis patients. In conclusion, SMFs characterize SLE by revealing its unique metabolic pattern. Different regulation of small molecule metabolites contributes to the precise diagnosis of autoimmune disease and further exploration of the pathogenic mechanisms.
Collapse
Affiliation(s)
- Shunxiang Li
- School of Biomedical Engineeringand Med‐X Research InstituteShanghai Jiao Tong UniversityShanghai200030P. R. China
- State Key Laboratory for Oncogenes and Related GenesShanghai Key Laboratory of Gynecologic Oncologyand Department of Obstetrics and GynecologyRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200127P. R. China
| | - Huihua Ding
- Department of Rheumatologyand Shanghai Institute of RheumatologyRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200001P. R. China
| | - Ziheng Qi
- School of Chemistry and Molecular EngineeringEast China Normal UniversityShanghai200241P. R. China
| | - Jing Yang
- School of Biomedical Engineeringand Med‐X Research InstituteShanghai Jiao Tong UniversityShanghai200030P. R. China
- State Key Laboratory for Oncogenes and Related GenesShanghai Key Laboratory of Gynecologic Oncologyand Department of Obstetrics and GynecologyRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200127P. R. China
| | - Jingyi Huang
- School of Biomedical Engineeringand Med‐X Research InstituteShanghai Jiao Tong UniversityShanghai200030P. R. China
| | - Lin Huang
- Shanghai Institute of Thoracic TumorsShanghai Chest HospitalShanghai Jiao Tong UniversityShanghai200030P. R. China
| | - Mengji Zhang
- School of Biomedical Engineeringand Med‐X Research InstituteShanghai Jiao Tong UniversityShanghai200030P. R. China
- State Key Laboratory for Oncogenes and Related GenesShanghai Key Laboratory of Gynecologic Oncologyand Department of Obstetrics and GynecologyRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200127P. R. China
| | - Yuanjia Tang
- Department of Rheumatologyand Shanghai Institute of RheumatologyRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200001P. R. China
| | - Nan Shen
- Department of Rheumatologyand Shanghai Institute of RheumatologyRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200001P. R. China
| | - Kun Qian
- School of Biomedical Engineeringand Med‐X Research InstituteShanghai Jiao Tong UniversityShanghai200030P. R. China
- State Key Laboratory for Oncogenes and Related GenesShanghai Key Laboratory of Gynecologic Oncologyand Department of Obstetrics and GynecologyRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200127P. R. China
| | - Qiang Guo
- Department of Rheumatologyand Shanghai Institute of RheumatologyRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200001P. R. China
| | - Jingjing Wan
- School of Chemistry and Molecular EngineeringEast China Normal UniversityShanghai200241P. R. China
| |
Collapse
|
31
|
Signoretti C, Gupte SA. G6PD Orchestrates Genome-Wide DNA Methylation and Gene Expression in the Vascular Wall. Int J Mol Sci 2023; 24:16727. [PMID: 38069050 PMCID: PMC10706803 DOI: 10.3390/ijms242316727] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/22/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
Recent advances have revealed the importance of epigenetic modifications to gene regulation and transcriptional activity. DNA methylation, a determinant of genetic imprinting and the de novo silencing of genes genome-wide, is known to be controlled by DNA methyltransferases (DNMT) and demethylases (TET) under disease conditions. However, the mechanism(s)/factor(s) influencing the expression and activity of epigenetic writers and erasers, and thus DNA methylation, in healthy vascular tissue is incompletely understood. Based on our recent studies, we hypothesized that glucose-6-phosphate dehydrogenase (G6PD) is a modifier of DNMT and TET expression and activity and an enabler of gene expression. In the aorta of CRISPR-edited rats with the Mediterranean G6PD variant, we determined DNA methylation by whole-genome bisulfite sequencing, gene expression by RNA sequencing, and large artery stiffness by echocardiography. Here, we documented higher expression of Dnmt1, Dnmt3a, Tet2, and Tet3 in aortas from Mediterranean G6PDS188F variant (a loss-of-function single nucleotide polymorphism) rats than their wild-type littermates. Concomitantly, we identified 17,618 differentially methylated loci genome-wide (5787 hypermethylated loci, including down-regulated genes encoding inflammation- and vasoconstriction-causing proteins, and 11,827 hypomethylated loci, including up-regulated genes encoding smooth muscle cell differentiation- and fatty acid metabolism-promoting proteins) in aortas from G6PDS188F as compared to wild-type rats. Our results demonstrated that nitric oxide, which is generated in a G6PD-derived NADPH-dependent manner, increases TET and decreases DNMT activity. Further, we observed less large artery (aorta) stiffness in G6PDS188F as compared to wild-type rats. These results establish a noncanonical function of the wild-type G6PD and G6PDS188F variant in the regulation of DNA methylation and gene expression in healthy vascular tissue and reveal that the G6PDS188F variant contributes to reducing large artery stiffness.
Collapse
Affiliation(s)
| | - Sachin A. Gupte
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, USA;
| |
Collapse
|
32
|
Sah P, Knighten BA, Reidy MA, Zenewicz LA. Polyamines and hypusination are important for Clostridioides difficile toxin B (TcdB)-mediated activation of group 3 innate lymphocytes (ILC3s). Infect Immun 2023; 91:e0023623. [PMID: 37861311 PMCID: PMC10652861 DOI: 10.1128/iai.00236-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 09/17/2023] [Indexed: 10/21/2023] Open
Abstract
Clostridioides difficile is the most common cause of nosocomial gastrointestinal tract bacterial infections. We lack fully effective reliable treatments for this pathogen, and there is a critical need to better understand how C. difficile interacts with our immune system. Group 3 innate lymphocytes (ILC3s) are rare immune cells localized within mucosal tissues that protect against bacterial infections. Upon activation, ILC3s secrete high levels of the cytokine interleukin-22 (IL-22), which is a critical regulator of tissue responses during infection. C. difficile toxin B (TcdB), the major virulence factor, directly activates ILC3s, resulting in high IL-22 levels. We previously reported that polyamines are important in the activation of ILC3s by the innate cytokine interleukin-23 (IL-23) but did not identify a specific mechanism. In this study, we examine how a pathogen impacts a metabolic pathway important for immune cell function and hypothesized that polyamines are important in TcdB-mediated ILC3 activation. We show that TcdB upregulates the polyamine biosynthesis pathway, and the inhibition of the pathway decreases TcdB-mediated ILC3 activation. Two polyamines, putrescine and spermidine, are involved. Spermidine is the key polyamine in the hypusination of eukaryotic initiation factor 5A (eIF5A), and the inhibition of eIF5A reduced ILC3 activation. Thus, there is potential to leverage polyamines in ILC3s to promote activation of ILC3s during C. difficile infection and other bacterial infections where ILC3s serve a protective role.
Collapse
Affiliation(s)
- Prakash Sah
- Department of Microbiology and Immunology, College of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Bailey A. Knighten
- Department of Microbiology and Immunology, College of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Megan A. Reidy
- Department of Microbiology and Immunology, College of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Lauren A. Zenewicz
- Department of Microbiology and Immunology, College of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| |
Collapse
|
33
|
Peng J, Qiu C, Zhang J, Xiao X. Serum metabolite profiling reveals metabolic characteristics of sepsis patients using LC/MS-based metabolic profiles: a cross-sectional study. BMC Med Genomics 2023; 16:224. [PMID: 37752563 PMCID: PMC10521453 DOI: 10.1186/s12920-023-01666-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 09/18/2023] [Indexed: 09/28/2023] Open
Abstract
BACKGROUND Individuals with sepsis exhibited a higher likelihood of benefiting from early initiation of specialized treatment to enhance the prognosis of the condition. The objective of this study is to identify potential biomarkers of sepsis by means of serum metabolomics. MATERIALS AND METHODS The screening of putative biomarkers of sepsis was conducted using serum samples from patients with sepsis and a control group of healthy individuals. The pathogenesis of sepsis was determined through the utilization of liquid chromatography-mass spectrometry-based metabolic profiles and bioinformatic techniques, which in turn provided a foundation for timely diagnosis and intervention. RESULTS Individuals with sepsis had significantly different metabolic characteristics compared to those with normal health. The concentrations of phosphatidylcholines (PCs), phosphatidylserine (PS), lysophosphatidylethanolamine (LysoPEs), and lysophosphatidylcholine (LysoPCs) exhibited a decrease, while the levels of creatinine, C17-Sphinganine, and PS(22:0/22:1(11Z)) demonstrated an increase in the serum of sepsis patients when compared to the control group. Additionally, ROC curves were generated to assess the discriminatory ability of the differentially expressed metabolites. The area under the ROC curve for PS (22:0/22:1(11Z)) and C17-Sphinganine were determined to be 0.976 and 0.913, respectively. These metabolites may potentially serve as diagnostic markers for sepsis. Additionally, the pathogenesis of sepsis is associated with mTOR signaling, NF-κB signaling pathway, calcium signaling, calcium transport, and tRNA charging pathway. CONCLUSION The identification of differential expression of these metabolites in sepsis serum samples could aid in the timely diagnosis and intervention of sepsis, as well as enhance our understanding of its pathogenesis.
Collapse
Affiliation(s)
- Jinliang Peng
- Department of Emergency, The Affiliated Ganzhou Hospital of Nanchang university, Ganzhou, Jiangxi Province, 341000, China
| | - Chongrong Qiu
- Department of Emergency, The Affiliated Ganzhou Hospital of Nanchang university, Ganzhou, Jiangxi Province, 341000, China
| | - Jun Zhang
- Department of Emergency, The Affiliated Ganzhou Hospital of Nanchang university, Ganzhou, Jiangxi Province, 341000, China
| | - Xiaoliu Xiao
- Department of Emergency, The Affiliated Ganzhou Hospital of Nanchang university, Ganzhou, Jiangxi Province, 341000, China.
| |
Collapse
|
34
|
He QQ, Huang Y, Nie L, Ren S, Xu G, Deng F, Cheng Z, Zuo Q, Zhang L, Cai H, Wang Q, Wang F, Ren H, Yan H, Xu K, Zhou L, Lu M, Lu Z, Zhu Y, Liu S. MAVS integrates glucose metabolism and RIG-I-like receptor signaling. Nat Commun 2023; 14:5343. [PMID: 37660168 PMCID: PMC10475032 DOI: 10.1038/s41467-023-41028-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 08/18/2023] [Indexed: 09/04/2023] Open
Abstract
MAVS is an adapter protein involved in RIG-I-like receptor (RLR) signaling in mitochondria, peroxisomes, and mitochondria-associated ER membranes (MAMs). However, the role of MAVS in glucose metabolism and RLR signaling cross-regulation and how these signaling pathways are coordinated among these organelles have not been defined. This study reports that RLR action drives a switch from glycolysis to the pentose phosphate pathway (PPP) and the hexosamine biosynthesis pathway (HBP) through MAVS. We show that peroxisomal MAVS is responsible for glucose flux shift into PPP and type III interferon (IFN) expression, whereas MAMs-located MAVS is responsible for glucose flux shift into HBP and type I IFN expression. Mechanistically, peroxisomal MAVS interacts with G6PD and the MAVS signalosome forms at peroxisomes by recruiting TNF receptor-associated factor 6 (TRAF6) and interferon regulatory factor 1 (IRF1). By contrast, MAMs-located MAVS interact with glutamine-fructose-6-phosphate transaminase, and the MAVS signalosome forms at MAMs by recruiting TRAF6 and TRAF2. Our findings suggest that MAVS mediates the interaction of RLR signaling and glucose metabolism.
Collapse
Affiliation(s)
- Qiao-Qiao He
- State Key Laboratory of Virology, Modern Virology Research Center, Frontier Science Center for Immunology and Metabolism, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Yu Huang
- State Key Laboratory of Virology, Modern Virology Research Center, Frontier Science Center for Immunology and Metabolism, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Longyu Nie
- State Key Laboratory of Virology, Modern Virology Research Center, Frontier Science Center for Immunology and Metabolism, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Sheng Ren
- State Key Laboratory of Virology, Modern Virology Research Center, Frontier Science Center for Immunology and Metabolism, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Gang Xu
- State Key Laboratory of Virology, Modern Virology Research Center, Frontier Science Center for Immunology and Metabolism, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Feiyan Deng
- State Key Laboratory of Virology, Modern Virology Research Center, Frontier Science Center for Immunology and Metabolism, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Zhikui Cheng
- State Key Laboratory of Virology, Modern Virology Research Center, Frontier Science Center for Immunology and Metabolism, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Qi Zuo
- State Key Laboratory of Virology, Modern Virology Research Center, Frontier Science Center for Immunology and Metabolism, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Lin Zhang
- Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, 430072, China
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, 430072, China
| | - Huanhuan Cai
- Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, 430072, China
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, 430072, China
| | - Qiming Wang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Fubing Wang
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, 430072, China
| | - Hong Ren
- Shanghai Children's Medical Center, Affiliated Hospital to Shanghai Jiao Tong University School of Medicine, Shanghai, 200000, China
| | - Huan Yan
- State Key Laboratory of Virology, Modern Virology Research Center, Frontier Science Center for Immunology and Metabolism, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Ke Xu
- State Key Laboratory of Virology, Modern Virology Research Center, Frontier Science Center for Immunology and Metabolism, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Li Zhou
- State Key Laboratory of Virology, Modern Virology Research Center, Frontier Science Center for Immunology and Metabolism, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Mengji Lu
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, 45122, Germany
| | - Zhibing Lu
- Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, 430072, China
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, 430072, China
| | - Ying Zhu
- State Key Laboratory of Virology, Modern Virology Research Center, Frontier Science Center for Immunology and Metabolism, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| | - Shi Liu
- State Key Laboratory of Virology, Modern Virology Research Center, Frontier Science Center for Immunology and Metabolism, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
- Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, 430072, China.
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China.
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, 430072, China.
| |
Collapse
|
35
|
Chen Y, Xu Z, Sun H, Ouyang X, Han Y, Yu H, Wu N, Xie Y, Su B. Regulation of CD8 + T memory and exhaustion by the mTOR signals. Cell Mol Immunol 2023; 20:1023-1039. [PMID: 37582972 PMCID: PMC10468538 DOI: 10.1038/s41423-023-01064-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 07/02/2023] [Indexed: 08/17/2023] Open
Abstract
CD8+ T cells are the key executioners of the adaptive immune arm, which mediates antitumor and antiviral immunity. Naïve CD8+ T cells develop in the thymus and are quickly activated in the periphery after encountering a cognate antigen, which induces these cells to proliferate and differentiate into effector cells that fight the initial infection. Simultaneously, a fraction of these cells become long-lived memory CD8+ T cells that combat future infections. Notably, the generation and maintenance of memory cells is profoundly affected by various in vivo conditions, such as the mode of primary activation (e.g., acute vs. chronic immunization) or fluctuations in host metabolic, inflammatory, or aging factors. Therefore, many T cells may be lost or become exhausted and no longer functional. Complicated intracellular signaling pathways, transcription factors, epigenetic modifications, and metabolic processes are involved in this process. Therefore, understanding the cellular and molecular basis for the generation and fate of memory and exhausted CD8+ cells is central for harnessing cellular immunity. In this review, we focus on mammalian target of rapamycin (mTOR), particularly signaling mediated by mTOR complex (mTORC) 2 in memory and exhausted CD8+ T cells at the molecular level.
Collapse
Affiliation(s)
- Yao Chen
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, and The Ministry of Education Key Laboratory of Cell Death and Differentiation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Ziyang Xu
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, and The Ministry of Education Key Laboratory of Cell Death and Differentiation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Hongxiang Sun
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, and The Ministry of Education Key Laboratory of Cell Death and Differentiation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xinxing Ouyang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, and The Ministry of Education Key Laboratory of Cell Death and Differentiation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Department of Tumor Biology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yuheng Han
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, and The Ministry of Education Key Laboratory of Cell Death and Differentiation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Haihui Yu
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, and The Ministry of Education Key Laboratory of Cell Death and Differentiation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Ningbo Wu
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, and The Ministry of Education Key Laboratory of Cell Death and Differentiation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yiting Xie
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, and The Ministry of Education Key Laboratory of Cell Death and Differentiation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Bing Su
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, and The Ministry of Education Key Laboratory of Cell Death and Differentiation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Department of Tumor Biology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Shanghai Jiao Tong University School of Medicine-Yale Institute for Immune Metabolism, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Key Laboratory of Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
36
|
Qiu T, Zhou Y, Hu L, Shan Z, Zhang Y, Fang Y, Huang W, Zhang L, Fan S, Xiao Z. 2-Deoxyglucose alleviates migraine-related behaviors by modulating microglial inflammatory factors in experimental model of migraine. Front Neurol 2023; 14:1115318. [PMID: 37090989 PMCID: PMC10117646 DOI: 10.3389/fneur.2023.1115318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 03/14/2023] [Indexed: 04/08/2023] Open
Abstract
BackgroundTargeting metabolic pathways has emerged as a new migraine treatment strategy as researchers realize the critical role metabolism plays in migraine. Activated inflammatory cells undergo metabolic reprogramming and rely on glycolysis to function. The objective of this study was to investigate the glycolysis changes in the experimental model of migraine and the effect of glycolysis inhibitor 2-Deoxy-D-glucose (2-DG) in the pathophysiology of migraine.MethodsWe used a rat model of migraine that triggered migraine attacks by applying inflammatory soup (IS) to the dura and examined changes in glycolysis. 2-DG was used to inhibit glycolysis, and the effects of 2-DG on mechanical ectopic pain, microglial cell activation, calcitonin gene-related peptides (CGRP), c-Fos, and inflammatory factors induced by inflammatory soup were observed. LPS stimulated BV2 cells to establish a model in vitro to observe the effects of 2-DG on brain-derived neurotrophic factor (BDNF) after microglia activation.ResultsIn the experimental model of migraine, key enzymes involved in glycolysis such as phosphofructokinase platelet (PFKP), hexokinase (HK2), hypoxia inducible factor-1α (HIF-1α), lactate dehydrogenase (LDH) and pyruvate kinase (PKM2) were expressed in the medullary dorsal horn. While the expression of electronic respiratory transport chain complex IV (COXIV) decreased. There were no significant changes in glucose 6-phosphate dehydrogenase (G6PD), a key enzyme in the pentose phosphate pathway. The glycolysis inhibitor 2-DG alleviated migraine-like symptoms in an experimental model of migraine, reduced the release of proinflammatory cytokines caused by microglia activation, and decreased the expression of CGRP and c-Fos. Further experiments in vitro demonstrated that glycolysis inhibition can reduce the release of Iba-1/proBDNF/BDNF and inhibit the activation of microglia.ConclusionThe migraine rat model showed enhanced glycolysis. This study suggests that glycolytic inhibitor 2-DG is an effective strategy for alleviating migraine-like symptoms. Glycolysis inhibition may be a new target for migraine treatment.
Collapse
|
37
|
Transcriptome Analysis on Hepatopancreas Reveals the Metabolic Dysregulation Caused by Vibrio parahaemolyticus Infection in Litopenaeus vannamei. BIOLOGY 2023; 12:biology12030417. [PMID: 36979109 PMCID: PMC10044748 DOI: 10.3390/biology12030417] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/19/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023]
Abstract
Acute hepatopancreas necrosis disease (AHPND) has caused massive deaths of shrimp and has led to huge economic losses in aquaculture. Vibrio parahaemolyticus (VPAHPND) carrying a plasmid encoding binary toxins homologous to the photorhabdus insect-related (Pir) toxins is one of the main pathogens causing this disease. Previous studies have reported many immune-related genes of shrimp in response to this pathogenic bacteria. However, few studies have so far focused on the metabolic changes in Litopenaeus vannamei upon VPAHPND infection. In the present study, comparative transcriptomic analysis was performed on the hepatopancreas of shrimp at different times during VPAHPND infection. Functional analyses on the differentially expressed genes (DEGs) during infection showed that pathways related to glucose, energy and amino acid metabolism, as well as nucleic acid synthesis, were obviously changed in the hepatopancreas after VPAHPND infection. Additionally, three signaling pathways, which could regulate metabolic processes, including HIF-1 signaling pathway, PI3K-Akt signaling pathway and NF-KappaB signaling pathway, also changed significantly. Collectively, these data reveal a close relationship between host metabolism processes and Vibrio infection. The information will enrich our understanding of the interaction mechanism between the shrimp and Vibrio.
Collapse
|
38
|
Signoretti C, Gupte SA. Studies in CRISPR-generated Mediterranean G6PD variant rats reveal G6PD orchestrates genome-wide DNA methylation and gene expression in vascular wall. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.06.531429. [PMID: 36945640 PMCID: PMC10028921 DOI: 10.1101/2023.03.06.531429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
Background Recent advances have revealed the importance of epigenetic modifications to gene regulation and transcriptional activity. DNA methylation, a determinant of genetic imprinting and de novo silencing of genes genome-wide, is known to be controlled by DNA methyltransferases (DNMT) and demethylases (TET) under disease conditions. However, the mechanism(s)/factor(s) influencing the expression and activity of DNMTs and TETs, and thus DNA methylation, in healthy vascular tissue is incompletely understood. Based on our recent studies, we hypothesized that glucose-6-phosphate dehydrogenase (G6PD) is a modifier of DNMT and TET expression and activity and an enabler of gene expression. Methods In aorta of CRISPR-edited rats with the Mediterranean G6PD variant we determined DNA methylation by whole-genome bisulfite sequencing, gene expression by RNA sequencing, and large artery stiffness by echocardiography. Results Here, we documented higher expression of Dnmt3a, Tet2, and Tet3 in aortas from Mediterranean G6PDS188F variant (a loss-of-function single nucleotide polymorphism) rats than their wild-type littermates. Concomitantly, we identified 17,618 differentially methylated loci genome-wide (5,787 hypermethylated loci, including down-regulated genes encoding inflammation- and vasoconstriction-causing proteins, and 11,827 hypomethylated loci, including up-regulated genes encoding smooth muscle cell differentiation- and fatty acid metabolism-promoting proteins) in aorta from G6PDS188F as compared to wild-type rats. Further, we observed less large artery (aorta) stiffness in G6PDS188F as compared to wild-type rats. Conclusions These results establish a noncanonical function of the wild-type G6PD and G6PDS188F variant in the regulation of DNA methylation and gene expression in healthy vascular tissue and reveals G6PDS188F variant contributes to reduce large artery stiffness.
Collapse
Affiliation(s)
| | - Sachin A. Gupte
- Department of Pharmacology, New York Medical College, Valhalla, NY, USA, 10595
| |
Collapse
|
39
|
Phua YL, D’Annibale OM, Karunanidhi A, Mohsen AW, Kirmse B, Dobrowolski SF, Vockley J. A multiomics approach to understanding pathology of Combined D,L-2- Hydroxyglutaric Aciduria and phenylbutyrate as potential treatment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.02.526527. [PMID: 36778323 PMCID: PMC9915603 DOI: 10.1101/2023.02.02.526527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Combined D, L-2-Hydroxyglutaric Aciduria (D,L-2HGA) is a rare genetic disorder caused by recessive mutations in the SLC25A1 gene that encodes the mitochondrial citrate carrier protein (CIC). SLC25A1 deficiency leads to a secondary increase in mitochondrial 2-ketoglutarate that, in turn, is reduced to neurotoxic 2-hydroxyglutarate. Clinical symptoms of Combined D,L-2HGA include neonatal encephalopathy, respiratory insufficiency and often with death in infancy. No current therapies exist, although replenishing cytosolic stores by citrate supplementation to replenish cytosolic stores has been proposed. In this study, we demonstrated that patient derived fibroblasts exhibited impaired cellular bioenergetics that were worsened with citrate supplementation. We hypothesized treating patient cells with phenylbutyrate, an FDA approved pharmaceutical drug, would reduce mitochondrial 2-ketoglutarate, leading to improved cellular bioenergetics including oxygen consumption and fatty acid oxidation. Metabolomic and RNA-seq analyses demonstrated a significant decrease in intracellular 2-ketoglutarate, 2-hydroxyglutarate, and in levels of mRNA coding for citrate synthase and isocitrate dehydrogenase. Consistent with the known action of phenylbutyrate, detected levels of phenylacetylglutamine was consistent with the drug acting as 2-ketoglutarate sink in patient cells. Our pre-clinical studies suggest citrate supplementation is unlikely to be an effective treatment of the disorder. However, cellular bioenergetics suggests phenylbutyrate may have interventional utility for this rare disease.
Collapse
Affiliation(s)
- Yu Leng Phua
- Department of Pediatrics, Division of Genetic and Genomic Medicine, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA, USA
- Department of Pathology, Clinical Biochemical Genetics Laboratory, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Olivia M D’Annibale
- Department of Pediatrics, Division of Genetic and Genomic Medicine, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA, USA
- Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, USA
| | - Anuradha Karunanidhi
- Department of Pediatrics, Division of Genetic and Genomic Medicine, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Al-Walid Mohsen
- Department of Pediatrics, Division of Genetic and Genomic Medicine, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA, USA
- Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, USA
| | - Brian Kirmse
- Department of Pediatrics, University of Mississippi Medical Center, Jackson, MS, USA
| | - Steven F Dobrowolski
- Department of Pathology, Clinical Biochemical Genetics Laboratory, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Jerry Vockley
- Department of Pediatrics, Division of Genetic and Genomic Medicine, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA, USA
- Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, USA
| |
Collapse
|
40
|
Hu C, Zhen Y, Ma Z, Zhao L, Wu H, Shu C, Pang B, Yu J, Xu Y, Zhang X, Wang XY, Yi H. Polyamines from myeloid-derived suppressor cells promote Th17 polarization and disease progression. Mol Ther 2023; 31:569-584. [PMID: 36307990 PMCID: PMC9931554 DOI: 10.1016/j.ymthe.2022.10.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 10/12/2022] [Accepted: 10/25/2022] [Indexed: 11/11/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are a group of immature myeloid cells that play an important role in diseases. MDSCs promote Th17 differentiation and aggravate systemic lupus erythematosus (SLE) progression by producing arginase-1 to metabolize arginine. However, the metabolic regulators remain unknown. Here, we report that MDSC derivative polyamines can promote Th17 differentiation via miR-542-5p in vitro. Th17 polarization was enhanced in response to polyamine treatment or upon miR-542-5p overexpression. The TGF-β/SMAD3 pathway was shown to be involved in miR-542-5p-facilitated Th17 differentiation. Furthermore, miR-542-5p expression positively correlated with the levels of polyamine synthetases in peripheral blood mononuclear cells of patients with SLE as well as disease severity. In humanized SLE model mice, MDSC depletion decreased the levels of Th17 cells, accompanied by reduced expression of miR-542-5p and these polyamine synthetases. In addition, miR-542-5p expression positively correlated with the Th17 level and disease severity in both patients and humanized SLE mice. Together, our data reveal a novel molecular pathway by which MDSC-derived polyamine metabolism enhances Th17 differentiation and aggravates SLE.
Collapse
Affiliation(s)
- Cong Hu
- Central Laboratory, The First Hospital of Jilin University, Changchun 130021, China; Key Laboratory of Organ Regeneration and Transplantation, Ministry of Education, Changchun 130021, China; Center for Reproductive Medicine, Center for Prenatal Diagnosis, The First Hospital of Jilin University, Changchun 130021, China
| | - Yu Zhen
- Department of Dermatology, The First Hospital of Jilin University, Changchun, China
| | - Zhanchuan Ma
- Central Laboratory, The First Hospital of Jilin University, Changchun 130021, China; Key Laboratory of Organ Regeneration and Transplantation, Ministry of Education, Changchun 130021, China
| | - Li Zhao
- Bethune Institute of Epigenetic Medicine, The First Hospital, Jilin University, Changchun 130021, China
| | - Hao Wu
- Department of Nephrology, The First Hospital of Jilin University, Changchun 130021, China
| | - Chang Shu
- Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Changchun 130021, China
| | - Bo Pang
- Central Laboratory, The First Hospital of Jilin University, Changchun 130021, China; Department of Cardiology, The First Hospital of Jilin University, Changchun, China
| | - Jinyu Yu
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Ying Xu
- Department of Nephrology, The First Hospital of Jilin University, Changchun 130021, China
| | - Xin Zhang
- Department of Rheumatology and Immunology, China-Japan Union Hospital of Jilin University, Changchun 130021, China
| | - Xiang-Yang Wang
- Department of Human and Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| | - Huanfa Yi
- Central Laboratory, The First Hospital of Jilin University, Changchun 130021, China; Key Laboratory of Organ Regeneration and Transplantation, Ministry of Education, Changchun 130021, China.
| |
Collapse
|
41
|
Paine A, Brookes PS, Bhattacharya S, Li D, De La Luz Garcia-Hernandez M, Tausk F, Ritchlin C. Dysregulation of Bile Acids, Lipids, and Nucleotides in Psoriatic Arthritis Revealed by Unbiased Profiling of Serum Metabolites. Arthritis Rheumatol 2023; 75:53-63. [PMID: 35818333 PMCID: PMC9797425 DOI: 10.1002/art.42288] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/29/2022] [Accepted: 06/30/2022] [Indexed: 02/04/2023]
Abstract
OBJECTIVE The transition from psoriasis to psoriatic arthritis (PsA) occurs in 20-30% of patients; however, the mechanisms underlying the emergence of musculoskeletal disease are not well understood. Metabolic disease is prevalent in psoriasis patients, but whether metabolic factors, other than obesity, increase arthritis risk in psoriasis patients is not known. This study was undertaken to investigate the link between metabolic changes and disease progression in psoriasis patients. METHODS To characterize the metabolic alterations during the progression of arthritis in psoriasis patients, we analyzed cross-sectional healthy controls and PsA samples and longitudinal psoriasis serum samples, before and after PsA onset. Nontargeted metabolomic profiling was performed using liquid chromatography mass spectrometry. RESULTS We identified several serum metabolites that differed between PsA patients, psoriasis patients, and healthy controls. Differentially abundant bile acids, purines, pyrimidines, glutathione, lipids, and amino acid metabolites were noted in these 3 groups. We also noted differences between psoriasis patients who progressed and those who did not progress to PsA. Bile acid and butyrate levels were depressed in those who progressed to PsA compared to those who did not, and the level of inflammatory lipid mediators increased following PsA diagnosis. In particular, the combination of leukotriene B4 and glycoursodeoxycholic acid sulfate were sensitive and specific predictors of PsA progression. CONCLUSION We observed notable differences in bile acid, purine, lipid, and amino acid-derived metabolites, among the healthy controls, psoriasis patients, and PsA patients and identified changes during the transition from psoriasis to PsA. The decreased bile acid and butyrate levels and elevated guanine levels in psoriasis patients at risk for PsA were particularly striking and may reflect gut microbial dysbiosis and dysregulated hepatic metabolism, leading to altered proliferation of immune cells and enhanced cytokine expression.
Collapse
Affiliation(s)
- Ananta Paine
- Division of Allergy, Immunology and Rheumatology, Center for Musculoskeletal Research, School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA
| | - Paul S. Brookes
- Department of Anesthesiology, University of Rochester Medical Center, Rochester, NY, USA
| | - Soumyaroop Bhattacharya
- Division of Neonatology, Department of Pediatrics, University of Rochester, Rochester, NY, USA
| | - Dongmei Li
- Department of Clinical and Translational Research, University of Rochester Medical Center, Rochester, NY, United States
| | - Maria De La Luz Garcia-Hernandez
- Division of Allergy, Immunology and Rheumatology, Center for Musculoskeletal Research, School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA
| | - Francisco Tausk
- Division of Allergy, Immunology and Rheumatology, Center for Musculoskeletal Research, School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA
| | - Christopher Ritchlin
- Division of Allergy, Immunology and Rheumatology, Center for Musculoskeletal Research, School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA
| |
Collapse
|
42
|
Sah P, Zenewicz LA. The Polyamine Putrescine Is a Positive Regulator of Group 3 Innate Lymphocyte Activation. Immunohorizons 2023; 7:41-48. [PMID: 36637514 PMCID: PMC10520894 DOI: 10.4049/immunohorizons.2200097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 12/12/2022] [Indexed: 01/14/2023] Open
Abstract
Group 3 innate lymphocytes (ILC3s) rapidly respond to invading pathogens or inflammatory signals, which requires shifting cellular metabolic demands. Metabolic adaptations regulating ILC3 function are not completely understood. Polyamines are polycationic metabolites that have diverse roles in cellular functions and in immunity regulate immune cell biology, including Th17 cells. Whether polyamines play a role in ILC3 activation is unknown. In this article, we report that the polyamine synthesis pathway is important for ILC3 activation. IL-23-activated mouse ILC3s upregulate ornithine decarboxylase, the enzyme catalyzing the rate-limiting step of the conversion of ornithine to putrescine in polyamine synthesis, with a subsequent increase in putrescine levels. Inhibition of ornithine decarboxylase via a specific inhibitor, α-difluoromethylornithine, reduced levels of IL-22 produced by steady-state or IL-23-activated ILC3s in a putrescine-dependent manner. Thus, the polyamine putrescine is a positive regulator of ILC3 activation. Our results suggest that polyamines represent a potential target for therapeutic modulation of ILC3 activation during infection or inflammatory disorders.
Collapse
Affiliation(s)
- Prakash Sah
- Department of Microbiology and Immunology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Lauren A Zenewicz
- Department of Microbiology and Immunology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| |
Collapse
|
43
|
Jacob C, Kitagawa A, Signoretti C, Dzieciatkowska M, D'Alessandro A, Gupte A, Hossain S, D'Addario CA, Gupte R, Gupte SA. Mediterranean G6PD variant mitigates expression of DNA methyltransferases and right heart pressure in experimental model of pulmonary hypertension. J Biol Chem 2022; 298:102691. [PMID: 36372233 PMCID: PMC9731845 DOI: 10.1016/j.jbc.2022.102691] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 10/30/2022] [Accepted: 10/31/2022] [Indexed: 11/13/2022] Open
Abstract
DNA methylation potentially contributes to the pathogenesis of pulmonary hypertension (PH). However, the role of DNA methyltransferases (DNMTs: 1, 3a, and 3b), the epigenetic writers, in modulating DNA methylation observed in PH remains elusive. Our objective was to determine DNMT activity and expression in the lungs of experimental rat models of PH. Because the activity of DNMTs is metabolically driven, another objective was to determine the role of glucose-6-phosphate dehydrogenase (G6PD) in regulating DNMT expression and activity in the lungs of novel loss-of-function Mediterranean G6PD variant (G6PDS188F) rats. As outlined for modeling PH, rats injected with sugen5416 (SU) were placed in a hypoxia (Hx) chamber set at 10% oxygen for 3 weeks and then returned to normoxia (Nx) for 5 weeks (SU/Hx/Nx). Rats kept in atmospheric oxygen and treated with SU were used as controls. We assessed the activity and expression of DNMTs in the lungs of rats exposed to SU/Hx/Nx. WT rats exposed to SU/Hx/Nx developed hypertension and exhibited increased DNMT activity and Dnmt1 and Dnmt3b expression. In G6PDS188F rats, which developed less of a SU/Hx/Nx-induced increase in right ventricle pressure and hypertrophy than WT rats, we observed a diminished increase in expression and activity of DNMTs, DNA hypomethylation, increased histone acetylation and methylation, and increased expression of genes encoding NOS3 and SOD2-vascular-protective proteins. Collectively, increased DNMTs contribute to reduced expression of protective genes and to the pathogenesis of SU/Hx/Nx-induced experimental PH. Notably, G6PD regulates the expression of DNMTs and protective proteins in the lungs of hypertensive rats.
Collapse
Affiliation(s)
- Christina Jacob
- Department of Pharmacology, New York Medical College, Valhalla, New York, USA
| | - Atsushi Kitagawa
- Department of Pharmacology, New York Medical College, Valhalla, New York, USA
| | | | - Monika Dzieciatkowska
- Department of Biochemistry & Molecular Genetics, School of Medicine, University of Colorado Denver - Anschutz Medical Campus, Aurora, Colorado, USA
| | - Angelo D'Alessandro
- Department of Biochemistry & Molecular Genetics, School of Medicine, University of Colorado Denver - Anschutz Medical Campus, Aurora, Colorado, USA
| | - Aaditya Gupte
- Department of Pharmacology, New York Medical College, Valhalla, New York, USA
| | - Shakib Hossain
- Department of Pharmacology, New York Medical College, Valhalla, New York, USA
| | | | - Rakhee Gupte
- Department of Pharmacology, New York Medical College, Valhalla, New York, USA
| | - Sachin A Gupte
- Department of Pharmacology, New York Medical College, Valhalla, New York, USA.
| |
Collapse
|
44
|
CD8 + T cell metabolic rewiring defined by scRNA-seq identifies a critical role of ASNS expression dynamics in T cell differentiation. Cell Rep 2022; 41:111639. [PMID: 36384124 DOI: 10.1016/j.celrep.2022.111639] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/05/2022] [Accepted: 10/19/2022] [Indexed: 11/18/2022] Open
Abstract
T cells dynamically rewire their metabolism during an immune response. We applied single-cell RNA sequencing to CD8+ T cells activated and differentiated in vitro in physiological medium to resolve these metabolic dynamics. We identify a differential time-dependent reliance of activating T cells on the synthesis versus uptake of various non-essential amino acids, which we corroborate with functional assays. We also identify metabolic genes that potentially dictate the outcome of T cell differentiation, by ranking them based on their expression dynamics. Among them, we find asparagine synthetase (Asns), whose expression peaks for effector T cells and decays toward memory formation. Disrupting these expression dynamics by ASNS overexpression promotes an effector phenotype, enhancing the anti-tumor response of adoptively transferred CD8+ T cells in a mouse melanoma model. We thus provide a resource of dynamic expression changes during CD8+ T cell activation and differentiation, and identify ASNS expression dynamics as a modulator of CD8+ T cell differentiation.
Collapse
|
45
|
Kang S, Liu L, Wang T, Cannon M, Lin P, Fan TWM, Scott DA, Wu HJJ, Lane AN, Wang R. GAB functions as a bioenergetic and signalling gatekeeper to control T cell inflammation. Nat Metab 2022; 4:1322-1335. [PMID: 36192601 PMCID: PMC9584824 DOI: 10.1038/s42255-022-00638-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 08/12/2022] [Indexed: 01/20/2023]
Abstract
γ-Aminobutyrate (GAB), the biochemical form of (GABA) γ-aminobutyric acid, participates in shaping physiological processes, including the immune response. How GAB metabolism is controlled to mediate such functions remains elusive. Here we show that GAB is one of the most abundant metabolites in CD4+ T helper 17 (TH17) and induced T regulatory (iTreg) cells. GAB functions as a bioenergetic and signalling gatekeeper by reciprocally controlling pro-inflammatory TH17 cell and anti-inflammatory iTreg cell differentiation through distinct mechanisms. 4-Aminobutyrate aminotransferase (ABAT) funnels GAB into the tricarboxylic acid (TCA) cycle to maximize carbon allocation in promoting TH17 cell differentiation. By contrast, the absence of ABAT activity in iTreg cells enables GAB to be exported to the extracellular environment where it acts as an autocrine signalling metabolite that promotes iTreg cell differentiation. Accordingly, ablation of ABAT activity in T cells protects against experimental autoimmune encephalomyelitis (EAE) progression. Conversely, ablation of GABAA receptor in T cells worsens EAE. Our results suggest that the cell-autonomous control of GAB on CD4+ T cells is bimodal and consists of the sequential action of two processes, ABAT-dependent mitochondrial anaplerosis and the receptor-dependent signalling response, both of which are required for T cell-mediated inflammation.
Collapse
Affiliation(s)
- Siwen Kang
- Center for Childhood Cancer & Blood Diseases, Hematology/Oncology & BMT, Abigail Wexner Research Institute at Nationwide Children's Hospital, Department of Pediatrics at The Ohio State University, Columbus, OH, USA
| | - Lingling Liu
- Center for Childhood Cancer & Blood Diseases, Hematology/Oncology & BMT, Abigail Wexner Research Institute at Nationwide Children's Hospital, Department of Pediatrics at The Ohio State University, Columbus, OH, USA
| | - Tingting Wang
- Center for Childhood Cancer & Blood Diseases, Hematology/Oncology & BMT, Abigail Wexner Research Institute at Nationwide Children's Hospital, Department of Pediatrics at The Ohio State University, Columbus, OH, USA
| | - Matthew Cannon
- Center for Childhood Cancer & Blood Diseases, Hematology/Oncology & BMT, Abigail Wexner Research Institute at Nationwide Children's Hospital, Department of Pediatrics at The Ohio State University, Columbus, OH, USA
| | - Penghui Lin
- Center for Environmental and Systems Biochemistry, Department of Toxicology and Cancer Biology, Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| | - Teresa W-M Fan
- Center for Environmental and Systems Biochemistry, Department of Toxicology and Cancer Biology, Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| | - David A Scott
- Cancer Metabolism Core, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Hsin-Jung Joyce Wu
- Division of Rheumatology and Immunology, Department of Internal Medicine at The Ohio State University, Columbus, OH, USA
| | - Andrew N Lane
- Center for Environmental and Systems Biochemistry, Department of Toxicology and Cancer Biology, Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| | - Ruoning Wang
- Center for Childhood Cancer & Blood Diseases, Hematology/Oncology & BMT, Abigail Wexner Research Institute at Nationwide Children's Hospital, Department of Pediatrics at The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
46
|
Xu Y, Chen Y, Zhang X, Ma J, Liu Y, Cui L, Wang F. Glycolysis in Innate Immune Cells Contributes to Autoimmunity. Front Immunol 2022; 13:920029. [PMID: 35844594 PMCID: PMC9284233 DOI: 10.3389/fimmu.2022.920029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 05/31/2022] [Indexed: 12/12/2022] Open
Abstract
Autoimmune diseases (AIDs) refer to connective tissue inflammation caused by aberrant autoantibodies resulting from dysfunctional immune surveillance. Most of the current treatments for AIDs use non-selective immunosuppressive agents. Although these therapies successfully control the disease process, patients experience significant side effects, particularly an increased risk of infection. There is a great need to study the pathogenesis of AIDs to facilitate the development of selective inhibitors for inflammatory signaling to overcome the limitations of traditional therapies. Immune cells alter their predominant metabolic profile from mitochondrial respiration to glycolysis in AIDs. This metabolic reprogramming, known to occur in adaptive immune cells, i.e., B and T lymphocytes, is critical to the pathogenesis of connective tissue inflammation. At the cellular level, this metabolic switch involves multiple signaling molecules, including serine-threonine protein kinase, mammalian target of rapamycin, and phosphoinositide 3-kinase. Although glycolysis is less efficient than mitochondrial respiration in terms of ATP production, immune cells can promote disease progression by enhancing glycolysis to satisfy cellular functions. Recent studies have shown that active glycolytic metabolism may also account for the cellular physiology of innate immune cells in AIDs. However, the mechanism by which glycolysis affects innate immunity and participates in the pathogenesis of AIDs remains to be elucidated. Therefore, we reviewed the molecular mechanisms, including key enzymes, signaling pathways, and inflammatory factors, that could explain the relationship between glycolysis and the pro-inflammatory phenotype of innate immune cells such as neutrophils, macrophages, and dendritic cells. Additionally, we summarize the impact of glycolysis on the pathophysiological processes of AIDs, including systemic lupus erythematosus, rheumatoid arthritis, vasculitis, and ankylosing spondylitis, and discuss potential therapeutic targets. The discovery that immune cell metabolism characterized by glycolysis may regulate inflammation broadens the avenues for treating AIDs by modulating immune cell metabolism.
Collapse
Affiliation(s)
- Yue Xu
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Yongkang Chen
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing, China
| | - Xuan Zhang
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Jie Ma
- Center of Biotherapy, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Yudong Liu
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Liyan Cui
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing, China
| | - Fang Wang
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
47
|
Wang X, Zhang G, Dasgupta S, Niewold EL, Li C, Li Q, Luo X, Tan L, Ferdous A, Lorenzi PL, Rothermel BA, Gillette TG, Adams CM, Scherer PE, Hill JA, Wang ZV. ATF4 Protects the Heart From Failure by Antagonizing Oxidative Stress. Circ Res 2022; 131:91-105. [PMID: 35574856 PMCID: PMC9351829 DOI: 10.1161/circresaha.122.321050] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Cellular redox control is maintained by generation of reactive oxygen/nitrogen species balanced by activation of antioxidative pathways. Disruption of redox balance leads to oxidative stress, a central causative event in numerous diseases including heart failure. Redox control in the heart exposed to hemodynamic stress, however, remains to be fully elucidated. METHODS Pressure overload was triggered by transverse aortic constriction in mice. Transcriptomic and metabolomic regulations were evaluated by RNA-sequencing and metabolomics, respectively. Stable isotope tracer labeling experiments were conducted to determine metabolic flux in vitro. Neonatal rat ventricular myocytes and H9c2 cells were used to examine molecular mechanisms. RESULTS We show that production of cardiomyocyte NADPH, a key factor in redox regulation, is decreased in pressure overload-induced heart failure. As a consequence, the level of reduced glutathione is downregulated, a change associated with fibrosis and cardiomyopathy. We report that the pentose phosphate pathway and mitochondrial serine/glycine/folate metabolic signaling, 2 NADPH-generating pathways in the cytosol and mitochondria, respectively, are induced by transverse aortic constriction. We identify ATF4 (activating transcription factor 4) as an upstream transcription factor controlling the expression of multiple enzymes in these 2 pathways. Consistently, joint pathway analysis of transcriptomic and metabolomic data reveal that ATF4 preferably controls oxidative stress and redox-related pathways. Overexpression of ATF4 in neonatal rat ventricular myocytes increases NADPH-producing enzymes' whereas silencing of ATF4 decreases their expression. Further, stable isotope tracer experiments reveal that ATF4 overexpression augments metabolic flux within these 2 pathways. In vivo, cardiomyocyte-specific deletion of ATF4 exacerbates cardiomyopathy in the setting of transverse aortic constriction and accelerates heart failure development, attributable, at least in part, to an inability to increase the expression of NADPH-generating enzymes. CONCLUSIONS Our findings reveal that ATF4 plays a critical role in the heart under conditions of hemodynamic stress by governing both cytosolic and mitochondrial production of NADPH.
Collapse
Affiliation(s)
- Xiaoding Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Guangyu Zhang
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Subhajit Dasgupta
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Erica L. Niewold
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Chao Li
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Qinfeng Li
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Xiang Luo
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Lin Tan
- Metabolomics Core Facility, Department of Bioinformatics & Computational Biology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Anwarul Ferdous
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Philip L. Lorenzi
- Metabolomics Core Facility, Department of Bioinformatics & Computational Biology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Beverly A. Rothermel
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Thomas G. Gillette
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Christopher M. Adams
- Division of Endocrinology, Metabolism and Nutrition, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Philipp E. Scherer
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Joseph A. Hill
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Zhao V. Wang
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
48
|
Pahl MC, Le Coz C, Su C, Sharma P, Thomas RM, Pippin JA, Cruz Cabrera E, Johnson ME, Leonard ME, Lu S, Chesi A, Sullivan KE, Romberg N, Grant SFA, Wells AD. Implicating effector genes at COVID-19 GWAS loci using promoter-focused Capture-C in disease-relevant immune cell types. Genome Biol 2022; 23:125. [PMID: 35659055 PMCID: PMC9164584 DOI: 10.1186/s13059-022-02691-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 05/16/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND SARS-CoV-2 infection results in a broad spectrum of COVID-19 disease, from mild or no symptoms to hospitalization and death. COVID-19 disease severity has been associated with some pre-existing conditions and the magnitude of the adaptive immune response to SARS-CoV-2, and a recent genome-wide association study (GWAS) of the risk of critical illness revealed a significant genetic component. To gain insight into how human genetic variation attenuates or exacerbates disease following SARS-CoV-2 infection, we implicated putatively functional COVID risk variants in the cis-regulatory landscapes of human immune cell types with established roles in disease severity and used high-resolution chromatin conformation capture to map these disease-associated elements to their effector genes. RESULTS This functional genomic approach implicates 16 genes involved in viral replication, the interferon response, and inflammation. Several of these genes (PAXBP1, IFNAR2, OAS1, OAS3, TNFAIP8L1, GART) were differentially expressed in immune cells from patients with severe versus moderate COVID-19 disease, and we demonstrate a previously unappreciated role for GART in T cell-dependent antibody-producing B cell differentiation in a human tonsillar organoid model. CONCLUSIONS This study offers immunogenetic insight into the basis of COVID-19 disease severity and implicates new targets for therapeutics that limit SARS-CoV-2 infection and its resultant life-threatening inflammation.
Collapse
Affiliation(s)
- Matthew C Pahl
- Division of Human Genetics, The Children's Hospital of Philadelphia, 3615 Civic Center Boulevard, Philadelphia, PA, USA
- Department of Pathology, The Children's Hospital of Philadelphia, 3615 Civic Center Boulevard, Philadelphia, PA, USA
| | - Carole Le Coz
- Division of Allergy and Immunology, The Children's Hospital of Philadelphia, 3615 Civic Center Boulevard, Philadelphia, PA, USA
| | - Chun Su
- Division of Human Genetics, The Children's Hospital of Philadelphia, 3615 Civic Center Boulevard, Philadelphia, PA, USA
- Department of Pathology, The Children's Hospital of Philadelphia, 3615 Civic Center Boulevard, Philadelphia, PA, USA
| | - Prabhat Sharma
- Department of Pathology, The Children's Hospital of Philadelphia, 3615 Civic Center Boulevard, Philadelphia, PA, USA
| | - Rajan M Thomas
- Department of Pathology, The Children's Hospital of Philadelphia, 3615 Civic Center Boulevard, Philadelphia, PA, USA
| | - James A Pippin
- Division of Human Genetics, The Children's Hospital of Philadelphia, 3615 Civic Center Boulevard, Philadelphia, PA, USA
| | - Emylette Cruz Cabrera
- Division of Allergy and Immunology, The Children's Hospital of Philadelphia, 3615 Civic Center Boulevard, Philadelphia, PA, USA
| | - Matthew E Johnson
- Division of Human Genetics, The Children's Hospital of Philadelphia, 3615 Civic Center Boulevard, Philadelphia, PA, USA
| | - Michelle E Leonard
- Division of Human Genetics, The Children's Hospital of Philadelphia, 3615 Civic Center Boulevard, Philadelphia, PA, USA
| | - Sumei Lu
- Division of Human Genetics, The Children's Hospital of Philadelphia, 3615 Civic Center Boulevard, Philadelphia, PA, USA
| | - Alessandra Chesi
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, 3615 Civic Center Boulevard, Philadelphia, PA, USA
| | - Kathleen E Sullivan
- Division of Allergy and Immunology, The Children's Hospital of Philadelphia, 3615 Civic Center Boulevard, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, 3615 Civic Center Boulevard, Philadelphia, PA, USA
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, 3615 Civic Center Boulevard, Philadelphia, PA, USA
| | - Neil Romberg
- Division of Allergy and Immunology, The Children's Hospital of Philadelphia, 3615 Civic Center Boulevard, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, 3615 Civic Center Boulevard, Philadelphia, PA, USA
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, 3615 Civic Center Boulevard, Philadelphia, PA, USA
| | - Struan F A Grant
- Division of Human Genetics, The Children's Hospital of Philadelphia, 3615 Civic Center Boulevard, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, 3615 Civic Center Boulevard, Philadelphia, PA, USA
- Division of Diabetes and Endocrinology, The Children's Hospital of Philadelphia, 3615 Civic Center Boulevard, Philadelphia, PA, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, 3615 Civic Center Boulevard, Philadelphia, PA, USA
| | - Andrew D Wells
- Department of Pathology, The Children's Hospital of Philadelphia, 3615 Civic Center Boulevard, Philadelphia, PA, USA.
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, 3615 Civic Center Boulevard, Philadelphia, PA, USA.
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, 3615 Civic Center Boulevard, Philadelphia, PA, USA.
| |
Collapse
|
49
|
Zhao T, Wang C, Duan B, Yang P, Wu J, Zhang Q. Altered Lipid Profile in COVID-19 Patients and Metabolic Reprogramming. Front Microbiol 2022; 13:863802. [PMID: 35633693 PMCID: PMC9133671 DOI: 10.3389/fmicb.2022.863802] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/28/2022] [Indexed: 01/09/2023] Open
Abstract
Background Coronavirus disease 2019 (COVID-19) is a global pandemic. Previous studies have reported dyslipidemia in patients with COVID-19. Herein, we conducted a retrospective study and a bioinformatics analysis to evaluate the essential data of the lipid profile as well as the possible mechanism in patients with COVID-19. Methods First of all, the retrospective study included three cohorts: patients with COVID-19, a healthy population, and patients with chronic obstructive pulmonary disease (COPD). For each subject, serum lipid profiles in the biochemical data were compared, including triglycerides (TG), total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), and low-density lipoprotein cholesterol (LDL-C). Furthermore, bioinformatics analyses were performed for exploring the biological or immunological mechanisms. Results In line with the biochemical data of the three cohorts, the statistical result displayed that patients with COVID-19 were more likely to have lower levels of TC and HDL-C as compared with healthy individuals. The differential proteins associated with COVID-19 are involved in the lipid pathway and can target and regulate cytokines and immune cells. Additionally, a heatmap revealed that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections were possibly involved in lipid metabolic reprogramming. The viral proteins, such as spike (S) and non-structural protein 2 (Nsp2) of SARS-CoV-2, may be involved in metabolic reprogramming. Conclusion The metabolic reprogramming after SARS-CoV-2 infections is probably associated with the immune and clinical phenotype of patients. Hence, metabolic reprogramming may be targeted for developing antivirals against COVID-19.
Collapse
Affiliation(s)
- Tie Zhao
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
- Key Laboratory of Special Pathogen Prevention and Control of Hunan Province, Hengyang Medical College, Institute of Pathogenic Biology, University of South China, Hengyang, China
| | - Chunhui Wang
- Department of Clinical Laboratory, Huizhou Central People’s Hospital, Huizhou, China
| | - Biyan Duan
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - Peipei Yang
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - Jianguo Wu
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
- Foshan Institute of Medical Microbiology, Foshan, China
| | - Qiwei Zhang
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
- Foshan Institute of Medical Microbiology, Foshan, China
- BSL-3 Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| |
Collapse
|
50
|
D’Addario CA, Lanier GM, Jacob C, Bauer N, Hewes JL, Bhadra A, Gupte SA. Differences in the expression of DNA methyltransferases and demethylases in leukocytes and the severity of pulmonary arterial hypertension between ethnic groups. Physiol Rep 2022; 10:e15282. [PMID: 35581740 PMCID: PMC9114656 DOI: 10.14814/phy2.15282] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 03/29/2022] [Accepted: 04/02/2022] [Indexed: 04/29/2023] Open
Abstract
The loss of ten-eleven translocation (TET2) methylcytosine dioxygenase expression contributes to the pathobiology of pulmonary arterial hypertension (PAH). However, whether the expression and activity of other TETs and DNA methyltransferases (DNMTs) are altered in PAH remains enigmatic. Therefore, our objective was to determine the expression of DNMT (1, 3a, and 3b) and TET (1, 2, and 3) and their total activity. We assessed the expression of DNMT and TET enzymes in the leukocytes and their activity in extracellular vesicles (EVs). Expression of DNMT (1, 3a, and 3b), TET (2 and 3) in leukocytes, and total activity in EVs, from PAH patients was higher than in healthy controls. Additionally, we noticed there were difference in expression of these epigenetic enzyme based on ethnicity and found higher DNMT1 and lower TET2/TET3 expression in Caucasian than Hispanic/African American (combine) patients. Since loss-of-function mutation(s) and down-regulation of TET enzymes are associated with hematological malignancies and cytokine production, we determined the expression of genes that encode cytokines in samples of Caucasian and Hispanic/African American patients. Expression of IL6, CSF2, and CCL5 genes were higher in the leukocytes of Caucasian than Hispanic/African American patients, and CSF2 and CCL5 negatively correlated with the decreased expression of TET3. Interestingly, the expression of gene encoding CD34, a marker of myeloid and lymphoid precursor cells, and CD163, a monocyte/macrophage protein, was higher in the leukocytes of Caucasian than Hispanic/African American patients. Furthermore, Hispanic/African American patients having higher TET2/TET3 expression had higher pulmonary capillary wedge pressure. In conclusion, our results revealed higher DNMT1 and lower TET2/TET3 in Caucasian than Hispanic/African American patients together potentially augmented genes encoding inflammation causing cytokines, and CD34+ -derived immunogenic cells, and the severity of PAH.
Collapse
Affiliation(s)
| | - Gregg M. Lanier
- Department of Cardiology, and Heart and Vascular InstituteWestchester Medical Center and New York Medical CollegeValhallaNYUSA
| | - Christina Jacob
- Department of PharmacologyNew York Medical CollegeValhallaNYUSA
| | - Natalie Bauer
- Department of PharmacologyCollege of MedicineUniversity of South AlabamaMobileALUSA
| | - Jenny L. Hewes
- Department of PharmacologyCollege of MedicineUniversity of South AlabamaMobileALUSA
| | - Aritra Bhadra
- Department of PharmacologyCollege of MedicineUniversity of South AlabamaMobileALUSA
| | - Sachin A. Gupte
- Department of PharmacologyNew York Medical CollegeValhallaNYUSA
| |
Collapse
|