1
|
Hu S, Ai Y, Hu C, Cassim Bawa FN, Xu Y. Transcription factors, metabolic dysfunction-associated fatty liver disease, and therapeutic implications. Genes Dis 2025; 12:101372. [PMID: 39911797 PMCID: PMC11795806 DOI: 10.1016/j.gendis.2024.101372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 03/27/2024] [Accepted: 06/21/2024] [Indexed: 02/07/2025] Open
Abstract
Metabolic dysfunction-associated fatty liver disease (MAFLD) encompasses a spectrum of liver diseases ranging from metabolic dysfunction-associated fatty liver to metabolic dysfunction-associated steatohepatitis, which may progress to liver cirrhosis and hepatocellular carcinoma. Several mechanisms, including obesity, insulin resistance, dyslipidemia, inflammation, apoptosis, mitochondrial dysfunction, and reactive oxygen species, have been proposed to underlie the progression of MAFLD. Transcription factors are proteins that specifically bind to DNA sequences to regulate the transcription of target genes. Numerous transcription factors regulate MAFLD by modulating the transcription of genes involved in steatosis, inflammation, apoptosis, and fibrosis. Here, we review the pathological factors associated with MAFLD, with a particular emphasis on the transcription factors that contribute to the progression of MAFLD and their therapeutic implications.
Collapse
Affiliation(s)
- Shuwei Hu
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| | - Yingjie Ai
- Department of Pathology of School of Basic Medical Sciences, Department of Gastroenterology and Hepatology of Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Chencheng Hu
- Department of Pathology of School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Fathima N. Cassim Bawa
- Institute of Diabetes, Obesity and Metabolism, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Yanyong Xu
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Frontier Innovation Center, Department of Pathology of School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| |
Collapse
|
2
|
Wan L, Li S, Du J, Li A, Zhan Y, Zhu W, Zheng P, Qiao D, Nie C, Pan Q. Review of Metal-Polyphenol Self-Assembled Nanoparticles: Synthesis, Properties, and Biological Applications in Inflammatory Diseases. ACS Biomater Sci Eng 2025. [PMID: 40276988 DOI: 10.1021/acsbiomaterials.4c02366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2025]
Abstract
Polyphenols, which are compounds characterized by the presence of phenolic hydroxyl groups, are abundantly found in natural plants and exist in highly complex forms within living organisms. As some of the most prevalent compounds in nature, polyphenols possess significant medicinal value due to their unique structural features, particularly their therapeutic efficacy in antitumor, anti-inflammatory, and antibacterial applications. In the context of inflammation therapy, polyphenolic compounds can inhibit the excessive release of inflammatory mediators from inflammatory cells, thereby mitigating inflammation. Furthermore, these compounds exhibit strong antioxidant properties, enabling them to scavenge free radicals and reactive oxygen species (ROS), reduce oxidative stress-related damage, and exert anti-inflammatory effects. Due to their multiple phenolic hydroxyl groups and their ability to chelate various metals, polyphenols are extensively utilized in the synthesis of self-assembled nanoparticles for the treatment of various diseases. Numerous studies have demonstrated that the therapeutic profile of nanoparticles formed through self-assembly with metal ions surpasses that of polyphenolic compounds alone. This Review will focus on the self-assembly of different polyphenolic compounds with various metal ions to generate nanoparticles, their characterization, and their therapeutic applications in inflammation-related diseases, providing researchers with new insights into the synthetic study of metal-polyphenol nanocomposites and their biological applications.
Collapse
Affiliation(s)
- Li Wan
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Shizhe Li
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Jiawei Du
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Anqi Li
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Yujie Zhan
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Wufu Zhu
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Pengwu Zheng
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Dan Qiao
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Cunpeng Nie
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Qingshan Pan
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, China
| |
Collapse
|
3
|
Xiong L, Zou J, Lin K, Zhang X, Yan C, He Y, Zhang J. Fecal metabonomics combined with 16S rRNA gene sequencing to study the mechanisms of cantharidin-induced hepatotoxicity. Toxicol Lett 2025; 408:65-76. [PMID: 40254041 DOI: 10.1016/j.toxlet.2025.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 03/13/2025] [Accepted: 04/17/2025] [Indexed: 04/22/2025]
Abstract
Cantharidin (CTD) serves as the principal bioactive compound in traditional Chinese medicine Mylabris, commonly employed in cancer treatment. Nevertheless, the clinical application of CTD is partly restricted by hepatotoxicity, and the toxicology mechanism is not fully elucidated. This study aims to explore the potential mechanism of CTD-induced hepatoxicity by targeted metabolomics-based UPLC-QTOF-MS/MS analysis and 16S rRNA sequencing. Studies have shown that the administration of CTD could lead to elevated serum biochemical indices including ALT and AST. Notably, dilatation of the liver central vein, hepatocellular necrosis, and slight vacuoles in rats were observed after CTD intervention. Fecal metabolomics found CTD could up-regulate 10 and down-regulate 33 metabolites, and metabolic pathway enrichment found that CTD could disrupt 2 metabolic pathways, including Arginine biosynthesis metabolism and β-Alanine metabolism. 16S rRNA gene sequencing analysis showed that CTD could increase the abundance of Turicibacter and Clostridium sensu stricto 1, but decrease the amounts of Prevotella 1. Our correlation analyses showed that alterations in the gut microbiota induced by CTD in rats may have impacted changes in the associated hepatic amino acid metabolism pathway. And the mechanism of action of CTD-induced hepatotoxicity may be related to inflammation, oxidative stress, impaired glucose metabolism and reduced hepatic glycogen storage. These findings will offer novel insights for the prevention and treatment of CTD-induced hepatotoxicity.
Collapse
Affiliation(s)
- Lijuan Xiong
- School of Pharmacy and Key Laboratory of Basic Pharmacology Ministry Education, Joint International Research Laboratory of Ethnomedicine Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Jialu Zou
- School of Pharmacy and Key Laboratory of Basic Pharmacology Ministry Education, Joint International Research Laboratory of Ethnomedicine Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Kexin Lin
- School of Basic Medicine, Zunyi Medical University, Zunyi 563000, China
| | - Xiaohong Zhang
- School of Pharmacy and Key Laboratory of Basic Pharmacology Ministry Education, Joint International Research Laboratory of Ethnomedicine Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Caiying Yan
- School of Pharmacy and Key Laboratory of Basic Pharmacology Ministry Education, Joint International Research Laboratory of Ethnomedicine Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Yanmei He
- School of Pharmacy and Key Laboratory of Basic Pharmacology Ministry Education, Joint International Research Laboratory of Ethnomedicine Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Jianyong Zhang
- School of Pharmacy and Key Laboratory of Basic Pharmacology Ministry Education, Joint International Research Laboratory of Ethnomedicine Ministry of Education, Zunyi Medical University, Zunyi 563000, China.
| |
Collapse
|
4
|
Wang X, Fang X, Zhou J, Pu H, Shang Q, Li J, Qin X, Zhao Q, Gu W. Hepatoprotective effects of wine-steamed Schisandra sphenanthera fruit in alleviating APAP-induced liver injury via the gut-liver axis. Food Funct 2025. [PMID: 40243619 DOI: 10.1039/d5fo00656b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
Drug-induced liver injury (DILI) is a common adverse drug reaction that can result in liver injury, particularly in cases of paracetamol (APAP) abuse. Schisandra sphenanthera Rehd. et Wils. has attracted attention due to its hepatoprotective properties, and the underlying mechanism is unclear. In this study, a mouse model of APAP-induced liver injury was employed to evaluate network pharmacology analysis, histopathological analysis, the gut microbiota, and fecal metabolome to investigate the mechanism by which S. sphenanthera fruit extract (SFE) alleviates DILI. Network pharmacology indicated that the SFE can attenuate APAP-induced liver injury via key targets, including MAPK3 and CASP3. Furthermore, SFE effectively alleviated APAP-induced oxidative stress (MDA, SOD, and GSH) and inflammation (IL-6, TNF-α, and IL-1β). Further analysis of gut microbiota and fecal metabolites revealed that SFE promoted the growth of Bacteroidales and Erysipelotrichales, and decreased the growth of Lactobacillales, leading to increased production of tryptophan metabolites. Correlation analysis showed that the increase in gut microbiota by SFE was positively correlated with improved antioxidant ability and improved liver and gut function. In conclusion, SFE pretreatment can alleviate APAP-induced liver injury by targeting the gut-liver axis, and provides a valuable reference for the clinical use of SFE in the prevention or treatment of DILI.
Collapse
Affiliation(s)
- Xiaorui Wang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, P. R. China.
| | - Xilin Fang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, P. R. China.
| | - Jia Zhou
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, P. R. China.
| | - Han Pu
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, P. R. China.
| | - Qianqian Shang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, P. R. China.
| | - Jianhua Li
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, P. R. China.
| | - Xiaolu Qin
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, P. R. China.
| | - Qiaozhu Zhao
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, P. R. China.
| | - Wei Gu
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, P. R. China.
| |
Collapse
|
5
|
Huang M, Huang W, Duan R, Huang Y, Xia Y. The repairing effect of baicalein on lead induced damage to the gut-liver axis in tadpoles. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 374:126232. [PMID: 40221113 DOI: 10.1016/j.envpol.2025.126232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 04/09/2025] [Accepted: 04/10/2025] [Indexed: 04/14/2025]
Abstract
Baicalein has pharmacological functions, such as antioxidant and anti-inflammatory properties, and has been shown to alleviate damage to organs caused by environmental pollutants. However, the mechanism by which baicalein reduces the toxic effects of metals needs further research. This study used Pelophylax nigromaculatus tadpoles as a model to explore the toxicological effects of lead (Pb) on the gut-liver axis, and the mechanism by which baicalein alleviates lead toxicity. Analysis of the gut microbiota showed that baicalein alleviated abnormal changes in the gut microbiota following Pb exposure, mainly by increasing the abundance of beneficial bacterial genera, including Cetobacterium, Clostridioides, and Monoglobus. Liver metabolomics showed that compared to a natural recovery, baicalein treatment significantly increased the content of metabolites such as uridine, 17α-hydroxypregnenolone, niacin, and cucurbitacin E, and significantly reduced the content of metabolites such as linoleic, gluconic acid, and tetrahydrocortisone. These differential metabolites could be enriched in pathways such as pyrimidine metabolism, nicotinic acid and nicotinamide metabolism, and steroid hormone biosynthesis, which were beneficial for the treatment of liver injury. There was a significant correlation between the gut microbiota and the main differential metabolites in the liver with the addition of baicalein. The improvement of these metabolic pathways by baicalein is beneficial for the repair of the liver and intestines. Therefore, baicalein can increase the abundance of beneficial gut microbiota, improve liver metabolism, and thus reduce the damage of Pb exposure to the gut-liver axis.
Collapse
Affiliation(s)
- Minyi Huang
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi, 417000, Hunan, China; Key Laboratory of Development, Utilization, Quality and Safety Control of Characteristic Agricultural Resources in Central Hunan Province, Loudi, 417000, Hunan, China
| | - Wentao Huang
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi, 417000, Hunan, China; Key Laboratory of Development, Utilization, Quality and Safety Control of Characteristic Agricultural Resources in Central Hunan Province, Loudi, 417000, Hunan, China
| | - Renyan Duan
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi, 417000, Hunan, China; Key Laboratory of Development, Utilization, Quality and Safety Control of Characteristic Agricultural Resources in Central Hunan Province, Loudi, 417000, Hunan, China.
| | - Yingfeng Huang
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi, 417000, Hunan, China; Key Laboratory of Development, Utilization, Quality and Safety Control of Characteristic Agricultural Resources in Central Hunan Province, Loudi, 417000, Hunan, China
| | - Yongqiang Xia
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi, 417000, Hunan, China; Key Laboratory of Development, Utilization, Quality and Safety Control of Characteristic Agricultural Resources in Central Hunan Province, Loudi, 417000, Hunan, China
| |
Collapse
|
6
|
Li X, Liu Y, Liu N, Wu H, Cong K, Duan L, Chen T, Zhang J. Health benefits of medicinal plant natural products via microbiota-mediated different gut axes. Pharmacol Res 2025; 215:107730. [PMID: 40216049 DOI: 10.1016/j.phrs.2025.107730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 03/30/2025] [Accepted: 04/04/2025] [Indexed: 04/15/2025]
Abstract
This review examines the multifaceted roles of medicinal plant natural products in influencing gut microbiota and their subsequent impact on various organ systems through established gut axes, including the gut-brain, gut-liver, gut-heart, gut-lung, and gut-kidney axes. Medicinal plant natural products have exhibited diverse pharmacological activities, including modulation of microbiota composition, enhancement of metabolic processes, and alleviation of inflammation and oxidative stress. Evidence suggests that these components can ameliorate conditions such as neurological disorders, metabolic syndrome, and chronic kidney disease by restoring microbial balance and improving gut barrier integrity. Furthermore, the review highlights the potential of medicinal plant natural products to foster beneficial microbial communities and improve gut health, which may lead to reduced disease severity and inflammation. By comprehensively analyzing current literature, this review provides a foundation for future research aim at exploring the therapeutic applications of medicinal plant natural products in disease prevention and treatment. The findings underscore the need for further studies to elucidate the underlying mechanisms of action and validate the clinical efficacy of medicinal plant natural products in managing chronic conditions through gut microbiota modulation.
Collapse
Affiliation(s)
- Xiang Li
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Yufan Liu
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Ning Liu
- Department of The Second Section Office of Breast Tumor, Jilin Cancer Hospital, Changchun 130000, China
| | - Hanning Wu
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Kexin Cong
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Linnan Duan
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Tianli Chen
- Changchun University of Chinese Medicine, Changchun 130000, China.
| | - Jie Zhang
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| |
Collapse
|
7
|
Noor S, Ali S, Summer M, Riaz A, Nazakat L, Aqsa. Therapeutic Role of Probiotics Against Environmental-Induced Hepatotoxicity: Mechanisms, Clinical Perspectives, Limitations, and Future. Probiotics Antimicrob Proteins 2025; 17:516-540. [PMID: 39316257 DOI: 10.1007/s12602-024-10365-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2024] [Indexed: 09/25/2024]
Abstract
Hepatotoxicity is one of the biggest health challenges, particularly in the context of liver diseases, often aggravated by gut microbiota dysbiosis. The gut-liver axis has been regarded as a key idea in liver health. It indicates that changes in gut flora caused by various hepatotoxicants, including alcoholism, acetaminophen, carbon tetrachloride, and thioacetamide, can affect the balance of the gut's microflora, which may lead to increased dysbiosis and intestinal permeability. As a result, bacterial endotoxins would eventually enter the bloodstream and liver, causing hepatotoxicity and inducing inflammatory reactions. Many treatments, including liver transplantation and modern drugs, can be used to address these issues. However, because of the many side effects of these approaches, scientists and medical experts are still hoping for a therapeutic approach with fewer side effects and more positive results. Thus, probiotics have become well-known as an adjunctive strategy for managing, preventing, or reducing hepatotoxicity in treating liver injury. By altering the gut microbiota, probiotics offer a secure, non-invasive, and economical way to improve liver health in the treatment of hepatotoxicity. Through various mechanisms such as regulation of gut microbiota, reduction of pathogenic overgrowth, suppression of inflammatory mediators, modification of hepatic lipid metabolism, improvement in the performance of the epithelial barrier of the gut, antioxidative effects, and modulation of mucosal immunity, probiotics play their role in the treatment and prevention of hepatotoxicity. This review highlights the mechanistic effects of probiotics in environmental toxicants-induced hepatotoxicity and current findings on this therapeutic approach's experimental and clinical trials.
Collapse
Affiliation(s)
- Shehzeen Noor
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| | - Shaukat Ali
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan.
| | - Muhammad Summer
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| | - Anfah Riaz
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| | - Laiba Nazakat
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| | - Aqsa
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| |
Collapse
|
8
|
Yin Y, Mu F, Zhang L, Zhao J, Gong R, Yin Y, Zheng L, Du Y, Jin F, Wang J. Wedelolactone activates the PI3K/AKT/NRF2 and SLC7A11/GPX4 signalling pathways to alleviate oxidative stress and ferroptosis and improve sepsis-induced liver injury. JOURNAL OF ETHNOPHARMACOLOGY 2025; 344:119557. [PMID: 40010556 DOI: 10.1016/j.jep.2025.119557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/11/2025] [Accepted: 02/22/2025] [Indexed: 02/28/2025]
Abstract
INTRODUCTION Sepsis-induced liver injury (SILI) is a severe complication of sepsis. Wedelolactone (WEL) can be used to treat liver diseases. However, its therapeutic mechanisms and efficacy in SILI remain unclear. To investigate the therapeutic effects of WEL on SILI and its potential mechanisms of action through in vitro and in vivo experiments. METHODS A SILI model based on lipopolysaccharide (LPS), and AML12 cells were treated with different concentrations of WEL, LY294002 and ML385. The SILI model was established by caecal ligation and puncture (CLP). C57BL/6 mice were administered WEL and biphenyl diester for seven consecutive days, and CLP was then performed 1 h later. Blood and liver tissue were collected 24 h later for subsequent analysis. HE staining, liver function index, oxidative stress index, JC-1 staining, transmission electron microscopy, immunofluorescence staining, Western blot, and inflammatory cytokines were used to detect oxidative stress and ferroptosis-related markers. RESULTS The in vivo experiments showed that WEL treatment reduced the pathological damage of the liver and decreased ALT and AST, MMP and ROS (the product of iron and lipid peroxidation) and inflammatory factors. WEL also decreased hepatocyte viability in vitro. Inhibition of NRF2 can lead to exacerbation of SILI. The expressions of P-PI3K and P-AKT were up-regulated while HO-1, GPX4, NRF2, and SLC7A11 were down-regulated in vitro and in vivo. CONCLUSIONS Ferroptosis and oxidative stress are pivotal in SILI. WEL mitigates SILI by inhibiting ferroptosis and oxidative stress, primarily through the PI3K/AKT/NRF2 and SLC7A11/GPX4 signalling pathways, thus suggesting a promising therapeutic strategy.
Collapse
Affiliation(s)
- Yanping Yin
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China; College of Life Science, Northwest University, Xi'an, 710069, China
| | - Fei Mu
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Lulu Zhang
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Jinyi Zhao
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Rui Gong
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Yanli Yin
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Lingling Zheng
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Yang Du
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Fuxing Jin
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Jingwen Wang
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
9
|
Wang J, Xu Q, Lu C, Cao J, Zhuang L, Li Y, Li Z, Song Y, Zhou S, Zhong F, Zhang T, Luo X. Probiotics isolated from the fermented grains of Chinese baijiu alleviate alcohol-induced liver injury by regulating alcohol metabolism and the gut microbiota in mice. Food Funct 2025; 16:2545-2563. [PMID: 40034049 DOI: 10.1039/d4fo03094j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Alcoholic liver disease is one of the diseases with a high mortality rate worldwide, resulting from excessive and chronic alcohol consumption. With the rapid rise of intestinal microbial research, more and more researchers have begun to focus on the role of probiotics in preventing, alleviating or treating diseases. In this study, effects of lactic acid bacteria (LAB), a general type of probiotic, isolated from the fermented grains of Chinese baijiu, on alcohol-induced liver injury and alcohol metabolism were investigated, and the results showed that Lactiplantibacillus pentosus LTJ12, Pediococcus acidilactici LTJ28, Lactiplantibacillus plantarum LTJ30, and Pediococcus acidilactici LTJ32 could prevent drunkenness and sober up, and had a good protective effect on alcoholic liver injury. These LAB, especially Lactiplantibacillus, can reduce the drunken rate and mortality of drinking mice, shorten the sobriety time, decrease the content of ethanol in serum, reduce the activity or content of aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), triglyceride (TG) and malondialdehyde (MDA), increase the activity or content of superoxide dismutase (SOD), glutathione (GSH) and nitric oxide (NO), and also improve the activity of alcohol dehydrogenase (ADH) and acetaldehyde dehydrogenase (ALDH) of the liver. The LAB intervention basically reversed the changes in the mRNA levels of genes related to ethanol/drug metabolism (CYP2E1, ADH1 and ALDH2), antioxidant markers (SOD2 and CAT), cellular inflammation, apoptosis and proliferation (SIRT1, SMYD3 and BRD4) and lipid metabolism (SREBP1 and FASn). In addition, we have found that the regulatory effect of these probiotics may be related to the SMYD3/BRD4 pathway, which needs further detailed research. Besides, the probiotics increased the abundance of gut microbes, restored the imbalance of the intestinal flora caused by alcohol consumption, and regulated the changes in the intestinal short-chain fatty acid content caused by chronic alcohol consumption. These results suggested that these baijiu-derived probiotics can effectively prevent drunkenness and chronic alcoholic liver injury. It is of great significance to provide scientific basis for subsequent research and development of new anti-alcoholism health products based on probiotics and the intestinal microecological regulation mechanism.
Collapse
Affiliation(s)
- Jiali Wang
- College of Food Science, Shanxi Normal University, Taiyuan 030031, China.
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Qiang Xu
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Chengshun Lu
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Jun Cao
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Lin Zhuang
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Yuechan Li
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Zhongyuan Li
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Yajian Song
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Sa Zhou
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Feiliang Zhong
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Tongcun Zhang
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Xuegang Luo
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China.
| |
Collapse
|
10
|
Ding W, Cheng Y, Liu X, Zhu Z, Wu L, Gao J, Lei W, Li Y, Zhou X, Wu J, Gao Y, Ling Z, Jiang R. Harnessing the human gut microbiota: an emerging frontier in combatting multidrug-resistant bacteria. Front Immunol 2025; 16:1563450. [PMID: 40165964 PMCID: PMC11955657 DOI: 10.3389/fimmu.2025.1563450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 02/25/2025] [Indexed: 04/02/2025] Open
Abstract
Antimicrobial resistance (AMR) has become a major and escalating global health threat, undermining the effectiveness of current antibiotic and antimicrobial therapies. The rise of multidrug-resistant bacteria has led to increasingly difficult-to-treat infections, resulting in higher morbidity, mortality, and healthcare costs. Tackling this crisis requires the development of novel antimicrobial agents, optimization of current therapeutic strategies, and global initiatives in infection surveillance and control. Recent studies highlight the crucial role of the human gut microbiota in defending against AMR pathogens. A balanced microbiota protects the body through mechanisms such as colonization resistance, positioning it as a key ally in the fight against AMR. In contrast, gut dysbiosis disrupts this defense, thereby facilitating the persistence, colonization, and dissemination of resistant pathogens. This review will explore how gut microbiota influence drug-resistant bacterial infections, its involvement in various types of AMR-related infections, and the potential for novel microbiota-targeted therapies, such as fecal microbiota transplantation, prebiotics, probiotics, phage therapy. Elucidating the interactions between gut microbiota and AMR pathogens will provide critical insights for developing novel therapeutic strategies to prevent and treat AMR infections. While previous reviews have focused on the general impact of the microbiota on human health, this review will specifically look at the latest research on the interactions between the gut microbiota and the evolution and spread of AMR, highlighting potential therapeutic strategies.
Collapse
Affiliation(s)
- Wenwen Ding
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
- Medical School of Nantong University, Nantong, Jiangsu, China
| | - Yiwen Cheng
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xia Liu
- Department of Intensive Care Unit, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhangcheng Zhu
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lingbin Wu
- Department of Intensive Care Unit, Lishui Second People’s Hospital, Lishui, Zhejiang, China
| | - Jie Gao
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wenhui Lei
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong, China
| | - Yating Li
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xin Zhou
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, United States
- Stanford Center for Genomics and Personalized Medicine, Stanford, CA, United States
- Stanford Diabetes Research Center, Stanford, CA, United States
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, United States
| | - Jian Wu
- Department of Clinical Laboratory, Suzhou Municipal Hospital, Suzhou, Jiangsu, China
| | - Yongtao Gao
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
- Medical School of Nantong University, Nantong, Jiangsu, China
| | - Zongxin Ling
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ruilai Jiang
- Department of Intensive Care Unit, Lishui Second People’s Hospital, Lishui, Zhejiang, China
| |
Collapse
|
11
|
Liu Y, Bai Z, Yan R, Ma J, Wang L, Li Y, Liu Y, Ma H, Wang T, Yang L, Liu J, Shen W, Zhang X, Jia S, Wang H. Lactobacillus rhamnosus GG ameliorates atherosclerosis via suppression of oxidative stress and inflammation by reshaping the gut microbiota. Biochem Biophys Res Commun 2025; 751:151417. [PMID: 39929060 DOI: 10.1016/j.bbrc.2025.151417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 01/09/2025] [Accepted: 01/27/2025] [Indexed: 02/17/2025]
Abstract
OBJECTIVE With growing awareness of probiotics' benefits, more studies are exploring their efficacy and mechanisms in reducing atherosclerosis (AS). This study aimed to investigate the potential therapeutic effects of Lactobacillus rhamnosus GG (LGG) on atherosclerotic mice and underlying mechanisms. DESIGN ApoE-/- mice were gavaged with a dose of 2 × 109 CFU LGG per mouse once daily, while both ApoE-/- and C57BL/6J mice received normal saline as controls. After 15 weeks, en face Oil Red O staining and aortic sinus morphometry were used to assess the effects of LGG intervention on AS. The expression of the Nrf2/HO-1 pathway, along with oxidative stress and inflammation, was measured in the aortic sinus, aortas, or plasma. Immune cells were analyzed by flow cytometry. 16S rRNA gene sequencing analysis evaluated structural changes in the intestinal microbiota. RESULTS LGG-treated ApoE-/- mice showed a significant reduction of AS progression by suppressing oxidative stress and inflammation. Mechanistically, LGG intervention significantly increased the levels of Nrf2/HO-1 in the aortic sinus of ApoE-/- mice. Moreover, decreased aortic macrophages and elevated blood regulatory T cells (Tregs) were found with LGG intervention in the murine AS model. Moreover, compared to C57BL/6J mice, ApoE-/- mice exhibited disrupted intestinal flora. Nonetheless, LGG intervention restored their intestinal flora to a composition resembling that of C57BL/6J mice, thereby increasing the abundance of beneficial bacteria. CONCLUSION LGG significantly attenuates AS by reducing oxidative stress and inflammation probably via activating the Nrf2/HO-1 pathway. Remarkably, LGG modulates gut microbiota, further enhancing its protective efficacy against AS.
Collapse
Affiliation(s)
- Yajuan Liu
- General Hospital of Ningxia Medical University, the First Clinical Medical College of Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Zhixia Bai
- General Hospital of Ningxia Medical University, the First Clinical Medical College of Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Ru Yan
- General Hospital of Ningxia Medical University, the First Clinical Medical College of Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Junbai Ma
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Liting Wang
- General Hospital of Ningxia Medical University, the First Clinical Medical College of Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Yiwei Li
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Yuanyuan Liu
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Huiyan Ma
- General Hospital of Ningxia Medical University, the First Clinical Medical College of Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Ting Wang
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Libo Yang
- General Hospital of Ningxia Medical University, the First Clinical Medical College of Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Jian Liu
- General Hospital of Ningxia Medical University, the First Clinical Medical College of Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Wenke Shen
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Xiaoxia Zhang
- College of Traditional Chinese Medicine, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Shaobin Jia
- General Hospital of Ningxia Medical University, the First Clinical Medical College of Ningxia Medical University, Yinchuan, 750004, Ningxia, China; Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia, China; National Health Commission Key Laboratory of Metabolic Cardiovascular Diseases Research, Yinchuan, 750004, Ningxia, China
| | - Hao Wang
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, Ningxia, China.
| |
Collapse
|
12
|
Hu Z, Yue H, Jiang N, Qiao L. Diet, oxidative stress and MAFLD: a mini review. Front Nutr 2025; 12:1539578. [PMID: 40104813 PMCID: PMC11913703 DOI: 10.3389/fnut.2025.1539578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 02/18/2025] [Indexed: 03/20/2025] Open
Abstract
Globally, metabolic dysfunction-associated fatty liver disease (MAFLD), also known as non-alcoholic fatty liver disease (NAFLD) or metabolic dysfunction-associated steatotic liver disease (MASLD), is a common chronic liver disease. The progression of MAFLD leads to a vicious cycle in which oxidative stress results from the disease that is augmenting de-novo lipid levels and increases steatosis. Most non-enzymatic antioxidants are present in food. Therefore, the present review summarizes the findings of studies on food-derived antioxidants and presents an oxidative stress-related regulatory network in MAFLD, offering new ideas for MAFLD prevention and treatment.
Collapse
Affiliation(s)
- Zenan Hu
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China
| | - Hanxun Yue
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China
| | - Na Jiang
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Liang Qiao
- Storr Liver Centre, Westmead Institute for Medical Research, The University of Sydney and Westmead Hospital, Westmead, NSW, Australia
| |
Collapse
|
13
|
Wang Z, Liu T, Liu L, Xie J, Tang F, Pi Y, Zhong Y, He Z, Zhang W, Zheng C. Lactobacillus vaginalis alleviates DSS induced colitis by regulating the gut microbiota and increasing the production of 3-indoleacrylic acid. Pharmacol Res 2025; 213:107663. [PMID: 39961405 DOI: 10.1016/j.phrs.2025.107663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/12/2025] [Accepted: 02/14/2025] [Indexed: 02/23/2025]
Abstract
Ulcerative colitis (UC) is a chronic inflammatory disorder, and its incidence is experiencing an upward trend worldwide. UC can result in gut microbiota dysbiosis, impaired intestinal epithelial barrier, and systemic inflammation, for all of which there is presently no definitive treatment available. Lactobacillus is known to regulate gut microbiota and related metabolites to intervene in the development of UC. The objective of this study was to explore the underlying mechanism through which a novel probiotic, Lactobacillus vaginalis, alleviates DSS-induced colitis. Specifically, L. vaginalis were found to ameliorate the DSS-induced UC phenotype, restore intestinal microbiota balance and intestinal barrier function, and elevate the levels of 3-indoleacrylic acid (IAA) in mouse feces. Furthermore, fecal microbiota transplantation and fecal filtrate transplantation provide additional evidence that L. vaginalis alleviate DSS-induced colitis through metabolic products. Additionally, IAA has been shown to alleviate DSS-induced colitis symptoms, decrease inflammatory responses, and enhance intestinal barrier function. Finally, our findings confirm that L. vaginal and metabolites possess the capability to regulate the immune microenvironment in mice with colitis. And the RNA-seq analysis suggests that L. vaginal may play a pivotal role in alleviating colitis by modulating the PPAR signaling pathway. In conclusion, our findings suggest that oral administration of L. vaginalis alleviates DSS induced colonic inflammation by increasing the levels of IAA. L. vaginalis, as an emerging probiotic, provides a potential therapeutic strategy for clinical UC.
Collapse
Affiliation(s)
- Zhuoya Wang
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China; Department of Rehabilitation Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China
| | - Tian Liu
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China; Department of Rehabilitation Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China
| | - Li Liu
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China; Department of Rehabilitation Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China; Graduate School of Jiangxi University of Chinese Medicine, Nanchang 330004, PR China
| | - Jian Xie
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China; Department of Rehabilitation Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China
| | - Furui Tang
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China; Department of Rehabilitation Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China
| | - Yimin Pi
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China; Department of Rehabilitation Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China
| | - Yuchun Zhong
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China
| | - Zhidong He
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China
| | - Wenming Zhang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China; Jiangxi Province Key Laboratory of Precision Cell Therapy, The Institute of Translational Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, PR China.
| | - Cihua Zheng
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China; Department of Rehabilitation Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China.
| |
Collapse
|
14
|
Zhao C, Bao L, Shan R, Zhao Y, Wu K, Shang S, Li H, Liu Y, Chen K, Zhang N, Ye C, Hu X, Fu Y. Maternal Gut Inflammation Aggravates Acute Liver Failure Through Facilitating Ferroptosis via Altering Gut Microbial Metabolism in Offspring. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2411985. [PMID: 39808540 PMCID: PMC11884527 DOI: 10.1002/advs.202411985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 01/01/2025] [Indexed: 01/16/2025]
Abstract
Microbial transmission from mother to infant is important for offspring microbiome formation and health. However, it is unclear whether maternal gut inflammation (MGI) during lactation influences mother-to-infant microbial transmission and offspring microbiota and disease susceptibility. In this study, it is found that MGI during lactation altered the gut microbiota of suckling pups by shaping the maternal microbiota in the gut and mammary glands. MGI-induced changes in the gut microbiota of suckling pups lasted into adulthood, resulting in the exacerbation of acute liver failure (ALF) caused by acetaminophen (APAP) in offspring. Specifically, MGI reduced the abundance of Lactobacillus reuteri (L. reuteri) and its metabolite indole-3-acetic acid (IAA) level in adult offspring. L. reuteri and IAA alleviated ALF in mice by promoting intestinal IL-22 production. Mechanistically, IL-22 limits APAP-induced excessive oxidative stress and ferroptosis by activating STAT3. The intestinal abundances of L. reuteri and IAA are inversely associated with the progression of patients with ALF. Overall, the study reveals the role of MGI in mother-to-infant microbial transmission and disease development in offspring, highlighting potential strategies for intervention in ALF based on the IAA-IL-22-STAT3 axis.
Collapse
Affiliation(s)
- Caijun Zhao
- Department of GynecologyChina‐Japan Union Hospital of Jilin UniversityChangchun130033China
- Department of Clinical Veterinary MedicineCollege of Veterinary MedicineJilin UniversityChangchun130062China
| | - Lijuan Bao
- Department of Clinical Veterinary MedicineCollege of Veterinary MedicineJilin UniversityChangchun130062China
| | - Ruping Shan
- Department of Clinical Veterinary MedicineCollege of Veterinary MedicineJilin UniversityChangchun130062China
| | - Yihong Zhao
- Department of Clinical Veterinary MedicineCollege of Veterinary MedicineJilin UniversityChangchun130062China
| | - Keyi Wu
- Department of Clinical Veterinary MedicineCollege of Veterinary MedicineJilin UniversityChangchun130062China
| | - Shan Shang
- Department of Clinical Veterinary MedicineCollege of Veterinary MedicineJilin UniversityChangchun130062China
| | - Haiqi Li
- Department of NeurologyChina‐Japan Union Hospital of Jilin UniversityChangchun130033China
| | - Yi Liu
- Department of Orthopedic CenterThe First Hospital of Jilin UniversityChangchun130012China
| | - Ke Chen
- Department of GynecologyChina‐Japan Union Hospital of Jilin UniversityChangchun130033China
| | - Naisheng Zhang
- Department of Clinical Veterinary MedicineCollege of Veterinary MedicineJilin UniversityChangchun130062China
| | - Cong Ye
- Department of GynecologyChina‐Japan Union Hospital of Jilin UniversityChangchun130033China
| | - Xiaoyu Hu
- Department of Clinical Veterinary MedicineCollege of Veterinary MedicineJilin UniversityChangchun130062China
| | - Yunhe Fu
- Department of Clinical Veterinary MedicineCollege of Veterinary MedicineJilin UniversityChangchun130062China
| |
Collapse
|
15
|
Zhou X, Zhang Y, Wei L, Yang Y, Wang B, Liu C, Bai J, Wang C. In vitro fermentation characteristics of fucoidan and its regulatory effects on human gut microbiota and metabolites. Food Chem 2025; 465:141998. [PMID: 39549519 DOI: 10.1016/j.foodchem.2024.141998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 10/29/2024] [Accepted: 11/08/2024] [Indexed: 11/18/2024]
Abstract
Dietary polysaccharides affect the intestinal microorganisms and their metabolites in the host. Clarifying the relationship among polysaccharides, intestinal microflora, and their metabolites is helpful to formulate dietary nutrition intervention strategies. Thus, we explored the regulatory effects of fucoidan on the human gut microbiota and its metabolites. After 48 h of fermentation, fucoidan significantly reduced the pH value in the broth, accompanied by an increase in total short-chain fatty acids, acetic acid, and propanoic acid contents. Fucoidan significantly reduced the relative abundance of Escherichia_shigella and Blebsiella and increased the relative abundance of Bifidobacterium and Lactobacillus. Concurrently, fucoidan altered the composition of intestinal microbial metabolites. These results indicate that fucoidan can regulate the metabolism of the intestinal flora and host, which may contribute to the intestinal health of the host.
Collapse
Affiliation(s)
- Xu Zhou
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Yuyan Zhang
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Li Wei
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Yuhan Yang
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Botao Wang
- Bloomage Biotechnology CO, LTD, Jinan, Shandong 250000, China
| | - Cuiping Liu
- Department of Radiology, Yuxi Children's Hospital, Yuxi, Yunnan 653100, China
| | - Junying Bai
- Citrus Research Institute, Southwest University, Chongqing 400700, China.
| | - Chen Wang
- College of Food Science, Southwest University, Chongqing 400715, China.
| |
Collapse
|
16
|
Foata F, Duboux S, Herzig S, Sizzano F, Thevenet J, Guy P, Rezzi S, Métairon S, Bourqui B, Montoliu I, Mercenier A, Bosco N. Identification and Biological Characterization of a Novel NRF2 Activator Molecule Released From the Membranes of Heat-Treated Bifidobacterium breve NCC 2950. Mol Nutr Food Res 2025:e202400770. [PMID: 39911038 DOI: 10.1002/mnfr.202400770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/16/2024] [Accepted: 01/14/2025] [Indexed: 02/07/2025]
Abstract
Postbiotics are defined as a "preparation of inanimate microorganisms and/or their components that confers a health benefit on the host". They represent an attractive alternative to probiotics as they could be used in a broader range of applications, where probiotic stability is limiting. To date knowledge on the mechanism of action of inanimate microorganisms is relatively scarce. In this study, we investigated the impact of heat treatment on NRF2 activation by several candidate probiotic strains from the Nestlé Culture Collection (NCC), including species encompassed in the Bifidobacterium genus and the Lactobacillaceae family. We identified an NRF2-activating bioactive molecule, 4-oxo-2-pentenoic acid (OPA), specifically released during heat treatment of Bifidobacterium breve NCC 2950. We explored cellular pathways that can be modulated by OPA, such as antiinflammatory signals and organismal defense against oxidative stress in zebrafish in vivo. We identified a new B. breve NCC 2950-derived postbiotic that, based on the mode of action, may have important applications for nutritional strategies to benefit human health.
Collapse
Affiliation(s)
- Francis Foata
- Clinical Research Unit, Nestlé Research, Société des Produits Nestlé S.A., Lausanne, Switzerland
| | - Stéphane Duboux
- Nestlé Institute of Food Sciences, Nestlé Research, Société des Produits Nestlé S.A., Lausanne, Switzerland
| | - Sébastien Herzig
- Nestlé Institute of Health Sciences, Nestlé Research, Société des Produits Nestlé S.A., Lausanne, Switzerland
| | - Federico Sizzano
- Nestlé Institute of Food Safety and Analytical Science, Nestlé Research, Société des Produits Nestlé S.A., Lausanne, Switzerland
| | - Jonathan Thevenet
- Nestlé Institute of Health Sciences, Nestlé Research, Société des Produits Nestlé S.A., Lausanne, Switzerland
| | - Philippe Guy
- Nestlé Research, Société des Produits Nestlé S.A., Lausanne, Switzerland
| | - Serge Rezzi
- Nestlé Research, Société des Produits Nestlé S.A., Lausanne, Switzerland
| | - Sylviane Métairon
- Nestlé Institute of Food Safety and Analytical Science, Nestlé Research, Société des Produits Nestlé S.A., Lausanne, Switzerland
| | - Bertrand Bourqui
- Nestlé Research, Société des Produits Nestlé S.A., Lausanne, Switzerland
| | - Ivan Montoliu
- Nestlé Institute of Health Sciences, Nestlé Research, Société des Produits Nestlé S.A., Lausanne, Switzerland
| | - Annick Mercenier
- Nestlé Research, Société des Produits Nestlé S.A., Lausanne, Switzerland
| | - Nabil Bosco
- Nestlé Institute of Health Sciences, Nestlé Research, Société des Produits Nestlé S.A., Lausanne, Switzerland
| |
Collapse
|
17
|
Stenvinkel P, Shiels PG, Kotanko P, Evenepoel P, Johnson RJ. Harnessing Evolution and Biomimetics to Enhance Planetary Health: Kidney Insights. J Am Soc Nephrol 2025; 36:311-321. [PMID: 39607684 PMCID: PMC11801751 DOI: 10.1681/asn.0000000582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 11/19/2024] [Indexed: 11/29/2024] Open
Abstract
Planetary health encompasses the understanding that the long-term well-being of humanity is intrinsically linked to the health of global ecological systems. Unfortunately, current practices often overlook this principle, leading to a human-oriented (anthropocentric) worldview that has resulted in heightened greenhouse gas emissions, increased heat stress, lack of access to clean water, and pollution, threatening both the environment and health and survival of Homo sapiens and countless other species. One significant consequence of these environmental changes is the exacerbation of inflammatory and oxidative stressors, which not only contributes to common lifestyle diseases but also accelerates the aging process. We advocate for a shift away from our current anthropocentric frameworks to an approach that focuses on nature's solutions that developed from natural selection over the eons. This approach, which encompasses the field of biomimicry, may provide insights that can help protect against an inflammatory phenotype to mitigate physiological and cellular senescence and provide a buffer against environmental stressors. Gaining insights from how animals have developed ingenious approaches to combat adversity through the evolutionary process of natural selection not only provides solutions for climate change but also confronts the rising burden of lifestyle diseases that accumulate with age.
Collapse
Affiliation(s)
- Peter Stenvinkel
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Paul G. Shiels
- Glasgow Geroscience Group, School of Molecular Biosciences, University of Glasgow, Glasgow, United Kingdom
| | - Peter Kotanko
- Renal Research Institute, New York, New York
- Icahn School of Medicine at Mount Sinai, New York, New York
| | - Pieter Evenepoel
- Laboratory of Nephrology, KU Leuven Department of Microbiology and Immunology, University Hospitals Leuven, Leuven, Belgium
| | - Richard J. Johnson
- Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
18
|
Wu G, Ai Q, Shi Y. Oral administration of Lactobacillus rhamnosus MP108 ameliorates hemolytic jaundice in rats. J Food Sci 2025; 90:e17671. [PMID: 39898970 DOI: 10.1111/1750-3841.17671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 12/15/2024] [Accepted: 12/30/2024] [Indexed: 02/04/2025]
Abstract
Accumulating evidence suggests that specific probiotic strains exert effects on hemolytic jaundice (HJ), and probiotic strains of Lactobacillus rhamnosus exhibit potential beneficial effects against HJ. This study aimed to determine the effects of L. rhamnosus MP108 (MP108) on rats with acetylphenylhydrazine (APH)-induced HJ. One week of oral MP108 administration (16 × 109 CFU/kg·day) significantly reversed the HJ-induced body-weight reduction and normalized serum levels of serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), total bilirubin (TBIL), total superoxide dismutase (T-SOD), glutathione peroxidase (GSH-PX), hydrogen peroxide (H2O2), and superoxide anion (O2-) in HJ rats. Furthermore, significant improvements were observed in the pathological changes of liver and intestinal tissues. 16S rRNA high-throughput sequencing of fecal samples demonstrated that MP108 altered gut microbiota composition by increasing Lacticaseibacillus spp. abundance, which correlated with the serum levels of ALT, AST, TBIL, T-SOD, GSH-PX, H2O2, and O2-. In summary, these results provide evidence that MP108 has the potential to improve HJ symptoms by alleviating hepatic impairment, which is associated with changes in gut microbiota composition. PRACTICAL APPLICATION: The study indicates that MP108 can modulate the gut microbiota, improve liver function, and thereby alleviate the symptoms of hemolytic jaundice (HJ). These findings suggest a promising therapeutic approach for HJ, offering potential benefits to patients with related conditions.
Collapse
Affiliation(s)
- Gaohong Wu
- Department of Neonatology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics Metabolism and Inflammatory Diseases, Chongqing, China
| | - Qing Ai
- Department of Neonatology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics Metabolism and Inflammatory Diseases, Chongqing, China
| | - Yuan Shi
- Department of Neonatology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics Metabolism and Inflammatory Diseases, Chongqing, China
| |
Collapse
|
19
|
Wang X, Zhang B, Jiang R. Microbiome interplays in the gut-liver axis: implications for liver cancer pathogenesis and therapeutic insights. Front Cell Infect Microbiol 2025; 15:1467197. [PMID: 39936163 PMCID: PMC11810975 DOI: 10.3389/fcimb.2025.1467197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 01/07/2025] [Indexed: 02/13/2025] Open
Abstract
Globally, primary liver cancer (PLC) ranks the most fatal malignancy. Most of the patients are in advanced stage of PLC at the very time they are diagnosed with it, accounting much for its poor prognosis. With the advancement of modern medical research and care system, the main etiology of PLC more and more switches from hepatitis viruses such as HAV, HBV, HCV, HEV to other causes like metabolism-associated steatohepatitis (MASH) and metabolic-associated fatty liver disease (MAFLD). As a result, it is of great necessity to find out new ways for treatment and early diagnosis to cope with this problem. Nowadays, as the mechanism of the Gut-Liver Axis in the formation of MAFLD, MASH and PLC has been gradually elucidated. The association between gut microbiome and the formation of PLC is of great significance to take an insight into. In this review, we present the concept of Gut-Liver Axis and its function in the mutual influence between gut microbiota and PLC from several aspects in which we will focus on the structure of gut barrier and the functional influences the gut microbiota have on the immune response and metabolic changes on human liver. Furthermore, we conclude the potential association of gut microbiota constitution with the PLC. Eventually, we hope this review can offer novel instructions for early diagnosis and treatment for liver cancer.
Collapse
Affiliation(s)
- Xuran Wang
- Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Bin Zhang
- Department of Gastroenterology, Affiliated Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Runqiu Jiang
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
20
|
Zhang R, Sun X, Lu H, Zhang X, Zhang M, Ji X, Yu X, Tang C, Wu Z, Mao Y, Zhu J, Ji M, Yang Z. Akkermansia muciniphila Mediated the Preventive Effect of Disulfiram on Acute Liver Injury via PI3K/Akt Pathway. Microb Biotechnol 2025; 18:e70083. [PMID: 39825784 PMCID: PMC11748400 DOI: 10.1111/1751-7915.70083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 12/15/2024] [Accepted: 12/26/2024] [Indexed: 01/20/2025] Open
Abstract
Acetaminophen induced acute liver injury (ALI) has a high incidence and is a serious medical problem, but there is a lack of effective treatment. The enterohepatic axis is one of the targets of recent attention due to its important role in liver diseases. Disulfiram (DSF) is a multitarget drug that has been proven to play a role in a variety of liver diseases and can affect intestinal flora, but whether it can alleviate ALI is not clear. We utilised bacterial 16S rRNA gene profiling, antimicrobial treatments, and faecal microbiota transplantation tests to explore whether DSF therapy for ALI is dependent on gut microbiota. Our findings indicate that DSF primarily restores intestinal microbiome balance by modulating the abundance of Akkermansia muciniphila (A. muciniphila), leading to significant alleviation of ALI symptoms in a gut microbiota dependent manner. We also found that A. muciniphila can promote the activation of PI3K/Akt pathway, correct the Bcl-2/Bax ratio, and further inhibit hepatocyte apoptosis. In conclusion, DSF ameliorates ALI by modulating the intestinal microbiome and activating the PI3K/AKT pathway through A. muciniphila.
Collapse
Affiliation(s)
- Ruonan Zhang
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, China
| | - Xuewei Sun
- Huadong Medical Institute of Biotechniques, Nanjing, China
| | - Han Lu
- The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xinrui Zhang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Mingyan Zhang
- Jinling Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xuewen Ji
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xinyi Yu
- Department of Infectious Disease, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | | | - Zihan Wu
- Huadong Medical Institute of Biotechniques, Nanjing, China
| | - Yinghua Mao
- Huadong Medical Institute of Biotechniques, Nanjing, China
| | - Jin Zhu
- Huadong Medical Institute of Biotechniques, Nanjing, China
| | - Minjun Ji
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, China
| | - Zhan Yang
- Huadong Medical Institute of Biotechniques, Nanjing, China
| |
Collapse
|
21
|
Peng M, Lu C, Ni L, Wen X, Chen T, Liang Y, Ruan G, Chen R. Preeminent Terminator of Oxygen Free Radicals─Mineralized Reduced Water. ACS APPLIED MATERIALS & INTERFACES 2024; 16:70205-70217. [PMID: 39670325 DOI: 10.1021/acsami.4c13802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Drinking water is an essential daily intake to hydrate the body. It is conceivable that water, when endowed with antioxidant properties, will be the most natural radical terminator surpassing conventional pill-based or food-derived antioxidants. However, current end-of-pipe purification of municipal water generally depletes minerals pivotal for antioxidant potency. To surmount this dilemma, we assemble a multistage and multifunctional water treatment system using various filter materials that dislodge contaminants, mineralize water and impart reductive attributes. The mineralized reduced water (MRW) generated by this system possesses an ideal antioxidant water quality with weak alkalinity, negative oxidation-reduction potential and rich minerals including calcium, magnesium, zinc and silicon. This water decreases oxidative products in vivo via counteracting reactive oxygen species and activating the endogenous antioxidant system governed by nuclear factor erythroid 2-related factor 2. Moreover, long-term intake of MRW effectively retards xenografted tumor growth without any discernible hematologic and organic toxicity. These findings portend enormous promise for MRW in the prevention and treatment of oxidative stress-related maladies and even antiaging.
Collapse
Affiliation(s)
- Minmin Peng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnosis, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Chan Lu
- The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Linjie Ni
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnosis, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Xinan Wen
- Department of Health Inspection and Quarantine, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Tao Chen
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yiying Liang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnosis, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Guohong Ruan
- Department of Health Inspection and Quarantine, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Ronghe Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnosis, School of Public Health, Xiamen University, Xiamen 361102, China
- Xiangan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, China
| |
Collapse
|
22
|
Lin W, Yang Y, Zhu Y, Pan R, Liu C, Pan J. Linking Gut Microbiota, Oral Microbiota, and Serum Metabolites in Insomnia Disorder: A Preliminary Study. Nat Sci Sleep 2024; 16:1959-1972. [PMID: 39664229 PMCID: PMC11633293 DOI: 10.2147/nss.s472675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 11/19/2024] [Indexed: 12/13/2024] Open
Abstract
Purpose Despite recent findings suggesting an altered gut microbiota in those suffering from insomnia disorder (ID), research into the gut microbiota, oral microbiota, serum metabolites, and their interactions in patients with ID is sparse. Patients and Methods We collected a total of 114 fecal samples, 133 oral cavity samples and 20 serum samples to characterize the gut microbiota, oral microbiota and serum metabolites in a cohort of 76 ID patients (IDs) and 59 well-matched healthy controls (HCs). We assessed the microbiota as potentially biomarkers for ID for ID by 16S rDNA sequencing and elucidated the interactions involving gut microbiota, oral microbiota and serum metabolites in ID in conjunction with untargeted metabolomics. Results Gut and oral microbiota of IDs were dysbiotic. Gut and oral microbial biomarkers could be used to differentiate IDs from HCs. Eleven significantly altered serum metabolites, including adenosine, phenol, and phenol sulfate, differed significantly between groups. In multi-omics analyses, adenosine showed a positive correlation with genus_Lachnospira (p=0.029) and total sleep time (p=0.016). Additionally, phenol and phenol sulphate had a negative correlation with genus_Coprococcus (p=0.0059; p=0.0059) and a positive correlation with Pittsburgh Sleep Quality Index (p=0.006; p=0.006) and Insomnia Severity Index (p=0.021; p=0.021). Conclusion Microbiota and serum metabolite changes in IDs are strongly correlated with clinical parameters, implying mechanistic links between altered bacteria, serum metabolites and ID. This study offers novel perspective into the interaction among gut microbiota, oral microbiota, and serum metabolites for ID.
Collapse
Affiliation(s)
- Weifeng Lin
- Department of Neurology, The Tenth Affiliated Hospital, Southern Medical University (Dongguan People’s Hospital), Dongguan, Guangdong, 523000, People’s Republic of China
- Department of Psychiatry, Sleep Medicine Center, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, 510632, People’s Republic of China
| | - Yifan Yang
- Sleep Medicine Center, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, 510120, People’s Republic of China
| | - Yurong Zhu
- Department of Pathology, The Tenth Affiliated Hospital, Southern Medical University (Dongguan People’s Hospital), Dongguan, Guangdong, 523000, People’s Republic of China
| | - Rong Pan
- Department of Psychology, The Third People’s Hospital of Zhaoqing, Zhaoqing, Guangdong Province, 526060, People’s Republic of China
| | - Chaonan Liu
- Department of Psychiatry, Sleep Medicine Center, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, 510632, People’s Republic of China
| | - Jiyang Pan
- Department of Psychiatry, Sleep Medicine Center, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, 510632, People’s Republic of China
| |
Collapse
|
23
|
Ferrara F, Valacchi G. Role of microbiota in the GUT-SKIN AXIS responses to outdoor stressors. Free Radic Biol Med 2024; 225:894-909. [PMID: 39505118 DOI: 10.1016/j.freeradbiomed.2024.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/31/2024] [Accepted: 11/02/2024] [Indexed: 11/08/2024]
Abstract
Beside the respiratory tract, the skin and the gut represent the first defensive lines of our body against the external insults displaying many important biochemical features able to maintain the epithelial barrier integrity and to regulate the tissue immune responses. The human microbiome is essential in maintaining the tissue homeostasis and its dysregulation may lead to tissue conditions including inflammatory pathologies. Among all external insults, air pollutants have been shown to cause oxidative stress damage within the target tissues via an OxInflammatory response. Dysregulation of the gut microbiome (dysbiosis) by outdoor stressors, including air pollutants, may promote the exacerbation of the skin tissue damage via the interplay between the gut-skin axis. The intent of this review is to highlight the ability of exogenous stressors to modulate the human gut-skin axis via a redox regulated mechanism affecting the microbiome and therefore contributing to the development and aggravation of gut and skin conditions.
Collapse
Affiliation(s)
- Francesca Ferrara
- Department of Chemical, Pharmaceuticals and Agricultural Sciences, University of Ferrara, 44121, Ferrara, Italy
| | - Giuseppe Valacchi
- Department of Environmental and Prevention Sciences, University of Ferrara, 44121, Ferrara, Italy; Department of Animal Sciences, Plants for Human Health Institute, NC Research Campus, NC State University, Kannapolis, NC, 28081, USA; Kyung Hee University, Department of Food and Nutrition, Seoul, South Korea.
| |
Collapse
|
24
|
Shi F, Qin Y, Qiu S, Luo Y. Nutrients, Phytochemicals, and Antioxidant Capacity of Red Raspberry Nectar Fermented with Lacticaseibacillus paracasei. Foods 2024; 13:3666. [PMID: 39594082 PMCID: PMC11593764 DOI: 10.3390/foods13223666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 11/09/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024] Open
Abstract
Fresh raspberries are highly perishable, but lactic acid bacteria fermentation offers a favourable method for developing healthy products. This study investigated the effects of Lacticaseibacillus paracasei fermentation on the nutrients and phytochemicals of red raspberry nectar using widely targeted metabolomics, as well as its antioxidant activity. The fermentation notably disrupted the raspberry tissue structure, reshaped its non-volatile composition, and increased its DPPH and hydroxyl free radical scavenging abilities. A total of 261 compounds showed significant differences, with 198 upregulated and 63 downregulated. Among these, certain flavonoid glucosides (e.g., pelargonid-in-3-O-rutinoside, delphinidin-3-O-rutinoside-7-O-glucoside, and kaempferol-3-O-glucoside) were significantly downregulated, while some bioactive phenolic acids (e.g., 3-(4-Hydroxyphenyl)-propionic acid and DL-3-phenyllactic acid), alkaloids (e.g., deoxymutaaspergillic acid and indole-3-lactic acid), amino acids (e.g., L-phenylalanine and L-glutamine), and B vitamins (e.g., VB6, VB7, and VB3) were substantially upregulated. Furthermore, the Kyoto Encyclopedia of Genes and Genomes (KEGG) annotation and enrichment analysis revealed that metabolic pathways and the biosynthesis of secondary metabolites contributed significantly to the new profile of fermented red raspberry nectar. These findings provide valuable insights for developing fermented raspberry products using Lacticaseibacillus paracasei, which can help minimise fresh raspberry loss and enhance their valorisation.
Collapse
Affiliation(s)
- Feng Shi
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China; (F.S.); (Y.Q.); (S.Q.)
| | - Yin Qin
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China; (F.S.); (Y.Q.); (S.Q.)
- School of Food and Drug Manufacturing Engineering, Guizhou Institute of Technology, Guiyang 550003, China
| | - Shuyi Qiu
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China; (F.S.); (Y.Q.); (S.Q.)
| | - You Luo
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China; (F.S.); (Y.Q.); (S.Q.)
- Centre for Nutrition and Food Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4068, Australia
| |
Collapse
|
25
|
Bukowska P, Bralewska M, Pietrucha T, Sakowicz A. Nutraceuticals as Modulators of Molecular Placental Pathways: Their Potential to Prevent and Support the Treatment of Preeclampsia. Int J Mol Sci 2024; 25:12167. [PMID: 39596234 PMCID: PMC11594370 DOI: 10.3390/ijms252212167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/09/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
Preeclampsia (PE) is a serious condition characterized by new-onset hypertension and proteinuria or organ dysfunction after the 20th week of gestation, making it a leading cause of maternal and fetal mortality worldwide. Despite extensive research, significant gaps remain in understanding the mechanisms underlying PE, contributing to the ineffectiveness of current prevention and treatment strategies. Consequently, premature cesarean sections often become the primary intervention to safeguard maternal and fetal health. Emerging evidence indicates that placental insufficiency, driven by molecular disturbances, plays a central role in the development of PE. Additionally, the maternal microbiome may be implicated in the pathomechanism of preeclampsia by secreting metabolites that influence maternal inflammation and oxidative stress, thereby affecting placental health. Given the limitations of pharmaceuticals during pregnancy due to potential risks to fetal development and concerns about teratogenic effects, nutraceuticals may provide safer alternatives. Nutraceuticals are food products or dietary supplements that offer health benefits beyond basic nutrition, including plant extracts or probiotics. Their historical use in traditional medicine has provided valuable insights into their safety and efficacy, including for pregnant women. This review will examine how the adoption of nutraceuticals can enhance dysregulated placental pathways, potentially offering benefits in the prevention and treatment of preeclampsia.
Collapse
Affiliation(s)
| | | | | | - Agata Sakowicz
- Department of Medical Biotechnology, Medical University of Lodz, Zeligowskiego 7/9, 90-752 Lodz, Poland
| |
Collapse
|
26
|
López-Almada G, Mejía-León ME, Salazar-López NJ. Probiotic, Postbiotic, and Paraprobiotic Effects of Lactobacillus rhamnosus as a Modulator of Obesity-Associated Factors. Foods 2024; 13:3529. [PMID: 39593945 PMCID: PMC11592899 DOI: 10.3390/foods13223529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 10/28/2024] [Accepted: 11/02/2024] [Indexed: 11/28/2024] Open
Abstract
Obesity is a pandemic currently affecting the world's population that decreases the quality of life and promotes the development of chronic non-communicable diseases. Lactobacillus rhamnosus is recognized for multiple positive effects on obesity and overall health. In fact, such effects may occur even when the microorganisms do not remain alive (paraprobiotic effects). This raises the need to elucidate the mechanisms by which obesity-associated factors can be modulated. This narrative review explores recent findings on the effects of L. rhamnosus, particularly, its postbiotic and paraprobiotic effects, on the modulation of adiposity, weight gain, oxidative stress, inflammation, adipokines, satiety, and maintenance of intestinal integrity, with the aim of providing a better understanding of its mechanisms of action in order to contribute to streamlining its clinical and therapeutic applications. The literature shows that L. rhamnosus can modulate obesity-associated factors when analyzed in vitro and in vivo. Moreover, its postbiotic and paraprobiotic effects may be comparable to the more studied probiotic actions. Some mechanisms involve regulation of gene expression, intracellular signaling, and enteroendocrine communication, among others. We conclude that the evidence is promising, although there are still multiple knowledge gaps that require further study in order to fully utilize L. rhamnosus to improve human health.
Collapse
Affiliation(s)
| | | | - Norma Julieta Salazar-López
- Facultad de Medicina de Mexicali, Universidad Autónoma de Baja California, Dr. Humberto Torres Sanginés, Centro Cívico, Mexicali 21000, BCN, Mexico
| |
Collapse
|
27
|
Feng X, Wang M, Wen S, Hu L, Lan Y, Xu H. Lactiplantibacillus plantarum P101 Alleviated Alcohol-Induced Hepatic Lipid Accumulation in Mice via AMPK Signaling Pathway: Gut Microbiota and Metabolomics Analysis. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10373-6. [PMID: 39388022 DOI: 10.1007/s12602-024-10373-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2024] [Indexed: 10/12/2024]
Abstract
Mitigating steatosis is essential for delaying the progression of alcoholic liver disease. The effect and mechanism of Lactiplantibacillus plantarum P101 (LP.P101) on alleviating alcohol-induced hepatic lipid accumulation were investigated in our study. The mouse model was constructed by a short-term (10-day)-plus-binge ethanol feeding and gavaged with 108 CFU/mL of LP.P101 daily. Lipid droplet in the liver was significantly reduced by LP.101 intervention on AMPK activation. However, when AMPK was inhibited by dorsomorphin, the levels of related indicators (ALT, TG, etc.) and the expression levels of AMPK and relevant genes in the liver converged to that of the alcohol-fed group. Compared with the alcohol-fed group, LP.P101 reduced the relative abundance of Firmicutes and increased that of Bacteroidetes. Parabacteroides merdae was negatively correlated with lipid accumulation, and unclassified Negativibacillus was negatively associated with AMPK activation. Importantly, LP.P101 modified the compositions of the serum metabolites. The potential biomarker stercobilinogen was positively correlated with AMPK activation and negatively associated with lipid accumulation. This work confirmed that LP.P101 attenuated alcohol-induced hepatic lipid accumulation in mice through AMPK activation, and the alterations in gut microbiota and metabolites may play a significant role on AMPK activation.
Collapse
Affiliation(s)
- Xiaoyan Feng
- State Key Laboratory of Food Science and Resource, Nanchang University, 235 Nanjing East Road, Nanchang, 330047, P. R. China
| | - Mengqi Wang
- State Key Laboratory of Food Science and Resource, Nanchang University, 235 Nanjing East Road, Nanchang, 330047, P. R. China
| | - Siyue Wen
- State Key Laboratory of Food Science and Resource, Nanchang University, 235 Nanjing East Road, Nanchang, 330047, P. R. China
| | - Liehai Hu
- State Key Laboratory of Food Science and Resource, Nanchang University, 235 Nanjing East Road, Nanchang, 330047, P. R. China
| | - Yuzhi Lan
- State Key Laboratory of Food Science and Resource, Nanchang University, 235 Nanjing East Road, Nanchang, 330047, P. R. China
| | - Hengyi Xu
- State Key Laboratory of Food Science and Resource, Nanchang University, 235 Nanjing East Road, Nanchang, 330047, P. R. China.
- International Institute of Food Innovation Co., Ltd., Nanchang University, Nanchang, 330200, P. R. China.
| |
Collapse
|
28
|
Ahlawat S, Mohan H, Sharma KK. Proteome profiling, biochemical and histological analysis of diclofenac-induced liver toxicity in Yersinia enterocolitica and Lactobacillus fermentum fed rat model: a comparative analysis. Biotechnol Lett 2024; 46:807-826. [PMID: 38985258 DOI: 10.1007/s10529-024-03510-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/23/2024] [Accepted: 07/02/2024] [Indexed: 07/11/2024]
Abstract
Diclofenac is a hepatotoxic non-steroidal anti-inflammatory drug (NSAID) that affects liver histology and its protein expression levels. Here, we studied the effect of diclofenac on rat liver when co-administrated with either Yersinia enterocolitica strain 8081 serotype O:8 biovar 1B (D*Y) or Lactobacillus fermentum strain 9338 (D*L). Spectroscopic analysis of stool samples showed biotransformation of diclofenac. When compared with each other, D*Y rats lack peaks at 1709 and 1198 cm-1, while D*L rats lack peaks at 1411 cm-1. However, when compared to control, both groups lack peaks at 1379 and 1170 cm-1. Assessment of serum biomarkers of hepatotoxicity indicated significantly altered activities of AST (D*Y: 185.65 ± 8.575 vs Control: 61.9 ± 2.607, D*L: 247.5 ± 5.717 vs Control: 61.9 ± 2.607), ALT (D*Y: 229.8 ± 6.920 vs Control: 70.7 ± 3.109, D*L: 123.75 ± 6.068 vs Control: 70.7 ± 3.109), and ALP (D*Y: 276.4 ± 18.154 vs Control: 320.6 ± 9.829, D*L: 298.5 ± 12.336 vs Control: 320.6 ± 9.829) in IU/L. The analysis of histological alterations showed hepatic sinusoidal dilation with vein congestion and cell infiltration exclusively in D*Y rats along with other histological changes that are common to both test groups, thereby suggesting more pronounced alterations in D*Y rats. Further, LC-MS/MS based label-free quantitation of proteins from liver tissues revealed 74.75% up-regulated, 25.25% down-regulated in D*Y rats and 51.16% up-regulated, 48.84% down-regulated in D*L experiments. The proteomics-identified proteins majorly belonged to metabolism, apoptosis, stress response and redox homeostasis, and detoxification and antioxidant defence that demonstrated the potential damage of rat liver, more pronounced in D*Y rats. Altogether the results are in favor that the administration of lactobacilli somewhat protected the rat hepatic cells against the diclofenac-induced toxicity.
Collapse
Affiliation(s)
- Shruti Ahlawat
- Laboratory of Enzymology and Recombinant DNA Technology, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
- Department of Microbiology, Faculty of Allied Health Sciences, SGT University, Gurgaon-Badli Road Chandu, Budhera, Gurugram, Haryana, 122505, India
| | - Hari Mohan
- Centre for Medical Biotechnology, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Krishna Kant Sharma
- Laboratory of Enzymology and Recombinant DNA Technology, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana, 124001, India.
| |
Collapse
|
29
|
Chen N, Chen L, Yang B, Lv L, Li H, Du S, Tan X. Toxic effects of avermectin on liver function, gut microbiota, and colon barrier in the rat model. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116964. [PMID: 39260218 DOI: 10.1016/j.ecoenv.2024.116964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 07/25/2024] [Accepted: 08/26/2024] [Indexed: 09/13/2024]
Abstract
Avermectin (AVM), a compound derived from the fermentation of Avermectin Streptomyces, has insecticidal, acaricidal, and nematicidal properties. Widely employed in agriculture, it serves as an effective and broad-spectrum insecticide for pest control. Although the toxicity of AVM at low doses may not be readily apparent, prolonged and extensive exposure can result in poisoning. To investigate the toxic effects of AVM on the body, this study established rat models of AVM poisoning with both low and high concentrations of the compound. Fifteen male rats were randomly assigned to one of three groups (n=5 per group): a control group, a low-concentration group, and a high-concentration group. The low-concentration group was administered an oral dose of 2 mg/kg AVM once daily for a duration of seven days, while the high-concentration group received an oral dose of 10 mg/kg AVM once daily for the same period. This study examined the impact of AVM on liver function and gut microbiota in rats using weight monitoring, liver function indicator detection, liver metabolomics sequencing, colon barrier function testing, and gut microbiota sequencing. The findings of this study demonstrated that exposure to 2 or 10 mg/kg AVM for seven days can lead to a notable decrease in rat weight, as well as induce liver dysfunction and metabolic disturbances. Additionally, AVM exposure can disrupt the composition of the intestinal microbiota and impair the integrity of the colon mucosal barrier, causing downregulation of Occludin expression and upregulation of inflammation-related protein expression levels such as IL-1β, Myd88, and TLR4. Furthermore, bioinformatics analysis revealed a significant association between liver dysfunction and dysbiosis of the gut microbiota. These findings have implications for the agricultural use of AVM and its potential contribution to environmental pollution. Consequently, individuals involved in AVM usage should prioritize safety precautions and monitor liver function.
Collapse
Affiliation(s)
- Na Chen
- Department of Pathology, Guangdong Women and Children Hospital, Guangzhou 511400, China
| | - Lijian Chen
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Bin Yang
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Lijun Lv
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Han Li
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Sihao Du
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China.
| | - Xiaohui Tan
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
30
|
Juhász B, Horváth K, Kuti D, Shen J, Feuchtinger A, Zhang C, Bata-Vidács I, Nagy I, Kukolya J, Witting M, Baranyi M, Ferenczi S, Walch A, Sun N, Kovács KJ. Dipeptide metabolite, glutamyl-glutamate mediates microbe-host interaction to boost spermatogenesis. Sci Rep 2024; 14:21864. [PMID: 39300146 DOI: 10.1038/s41598-024-73216-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024] Open
Abstract
The decrease in sperm count and infertility is a global issue that remains unresolved. By screening environmental bacterial isolates, we have found that a novel lactic acid bacterium, Lactiplantibacillus plantarum SNI3, increased testis size, testosterone levels, sperm count, sexual activity and fertility in mice that have consumed the bacteria for four weeks. The abundance of L. plantarum in the colon microbiome was positively associated with sperm count. Fecal microbiota transplantation (FMT) from L. plantarum SNI3-dosed mice improved testicular functions in microbiome-attenuated recipient animals. To identify mediators that confer pro-reproductive effects on the host, untargeted in situ mass spectrometry metabolomics was performed on testis samples of L. plantarum SNI3-treated and control mice. Enrichment pathway analysis revealed several perturbed metabolic pathways in the testis of treated mice. Within the testis, a dipeptide, glutamyl-glutamate (GluGlu) was the most upregulated metabolite following L. plantarum SNI3 administration. To validate the pro-reproductive feature of GluGlu, systemic and local injections of the dipeptide have been performed. γ-GluGlu increased sperm count but had no effect on testosterone. These findings highlight the role of γ-GluGlu in mediating spermatogenetic effects of L. plantarum on the male mouse host and -following relevant human clinical trials- may provide future tools for treating certain forms of male infertility.
Collapse
Affiliation(s)
- Balázs Juhász
- Laboratory of Molecular Neuroendocrinology, Institute of Experimental Medicine, Hungarian Research Network, Budapest, Hungary
- János Szentágothai School of Neurosciences, Semmelweis University, Budapest, Hungary
| | - Krisztina Horváth
- Laboratory of Molecular Neuroendocrinology, Institute of Experimental Medicine, Hungarian Research Network, Budapest, Hungary
- János Szentágothai School of Neurosciences, Semmelweis University, Budapest, Hungary
| | - Dániel Kuti
- Laboratory of Molecular Neuroendocrinology, Institute of Experimental Medicine, Hungarian Research Network, Budapest, Hungary
| | - Jian Shen
- Research Unit Analytical Pathology, German Research Center for Environmental Health, Helmholtz Zentrum München, Neuherberg, Germany
| | - Annette Feuchtinger
- Research Unit Analytical Pathology, German Research Center for Environmental Health, Helmholtz Zentrum München, Neuherberg, Germany
| | - Chaoyang Zhang
- Research Unit Analytical Pathology, German Research Center for Environmental Health, Helmholtz Zentrum München, Neuherberg, Germany
| | - Ildikó Bata-Vidács
- Food and Wine Research Institute, Eszterházy Károly Catholic University, Eger, Hungary
| | - István Nagy
- Food and Wine Research Institute, Eszterházy Károly Catholic University, Eger, Hungary
- Department of Structural Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - József Kukolya
- Food and Wine Research Institute, Eszterházy Károly Catholic University, Eger, Hungary
| | - Michael Witting
- Metabolomics and Proteomics Core, German Research Center for Environmental Health, Helmholtz Zentrum München, Neuherberg, Germany
- Chair of Analytical Food Chemistry, TUM School of Life Sciences, Technical University of Munich, Freising-Weihenstephan, Germany
| | - Mária Baranyi
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, Hungarian Research Network, Szigony u 43, H-1083, Budapest, Hungary
| | - Szilamér Ferenczi
- Laboratory of Molecular Neuroendocrinology, Institute of Experimental Medicine, Hungarian Research Network, Budapest, Hungary
| | - Axel Walch
- Research Unit Analytical Pathology, German Research Center for Environmental Health, Helmholtz Zentrum München, Neuherberg, Germany
| | - Na Sun
- Research Unit Analytical Pathology, German Research Center for Environmental Health, Helmholtz Zentrum München, Neuherberg, Germany
| | - Krisztina J Kovács
- Laboratory of Molecular Neuroendocrinology, Institute of Experimental Medicine, Hungarian Research Network, Budapest, Hungary.
| |
Collapse
|
31
|
Hao X, Guo W, Li F, Cui L, Kang W. Analysis of the liver-gut axis including metabolomics and intestinal flora to determine the protective effects of kiwifruit seed oil on CCl 4-induced acute liver injury. Food Funct 2024; 15:9149-9164. [PMID: 39157920 DOI: 10.1039/d4fo02106a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
The hepatoprotective effects of kiwifruit seed oil (KSO) were evaluated on acute liver injury (ALI) induced by carbon tetrachloride (CCl4) in vivo. Network pharmacology was used to predict active compounds and targets. Metabolomics and gut microbiota analyses were used to discover the activity mechanism of KSO. KSO improved the liver histological structure, significantly reduced serum proinflammatory cytokine levels, and increased liver antioxidant capacity. The metabolomics analysis showed that KSO may have hepatoprotective effects by controlling metabolites through its participation in signaling pathways like tryptophan metabolism, glycolysis/gluconeogenesis, galactose metabolism, and bile secretion. The gut microbiota analysis demonstrated that KSO improved the composition and quantity of the gut flora. Network pharmacological investigations demonstrated that KSO operated by altering Ptgs2, Nos2, Ppara, Pparg and Serpine1 mRNA levels. All evidence shows that KSO has a hepatoprotective effect, and the mechanism is connected to the regulation of metabolic disorders and intestinal flora.
Collapse
Affiliation(s)
- Xuting Hao
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, China.
- Functional Food Engineering Technology Research Center, Henan, Kaifeng 475004, China
- Joint International Research Laboratory of Food & Medicine Resource Function, Henan Province, Kaifeng 475004, China
| | - Wenjing Guo
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, China.
- Functional Food Engineering Technology Research Center, Henan, Kaifeng 475004, China
- Joint International Research Laboratory of Food & Medicine Resource Function, Henan Province, Kaifeng 475004, China
| | - Fangfang Li
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, China.
- Functional Food Engineering Technology Research Center, Henan, Kaifeng 475004, China
- Joint International Research Laboratory of Food & Medicine Resource Function, Henan Province, Kaifeng 475004, China
| | - Lili Cui
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, China.
- College of Agriculture, Henan University, Kaifeng 475004, China
- Functional Food Engineering Technology Research Center, Henan, Kaifeng 475004, China
- Joint International Research Laboratory of Food & Medicine Resource Function, Henan Province, Kaifeng 475004, China
| | - Wenyi Kang
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, China.
- College of Agriculture, Henan University, Kaifeng 475004, China
- Functional Food Engineering Technology Research Center, Henan, Kaifeng 475004, China
- Joint International Research Laboratory of Food & Medicine Resource Function, Henan Province, Kaifeng 475004, China
| |
Collapse
|
32
|
Hamamah S, Lobiuc A, Covasa M. Antioxidant Role of Probiotics in Inflammation-Induced Colorectal Cancer. Int J Mol Sci 2024; 25:9026. [PMID: 39201713 PMCID: PMC11354872 DOI: 10.3390/ijms25169026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 09/03/2024] Open
Abstract
Colorectal cancer (CRC) continues to be a significant contributor to global morbidity and mortality. Emerging evidence indicates that disturbances in gut microbial composition, the formation of reactive oxygen species (ROS), and the resulting inflammation can lead to DNA damage, driving the pathogenesis and progression of CRC. Notably, bacterial metabolites can either protect against or contribute to oxidative stress by modulating the activity of antioxidant enzymes and influencing signaling pathways that govern ROS-induced inflammation. Additionally, microbiota byproducts, when supplemented through probiotics, can affect tumor microenvironments to enhance treatment efficacy and selectively mediate the ROS-induced destruction of CRC cells. This review aims to discuss the mechanisms by which taxonomical shifts in gut microbiota and related metabolites such as short-chain fatty acids, secondary bile acids, and trimethylamine-N-oxide influence ROS concentrations to safeguard or promote the onset of inflammation-mediated CRC. Additionally, we focus on the role of probiotic species in modulating ROS-mediated signaling pathways that influence both oxidative status and inflammation, such as Nrf2-Keap1, NF-κB, and NLRP3 to mitigate carcinogenesis. Overall, a deeper understanding of the role of gut microbiota on oxidative stress may aid in delaying or preventing the onset of CRC and offer new avenues for adjunct, CRC-specific therapeutic interventions such as cancer immunotherapy.
Collapse
Affiliation(s)
- Sevag Hamamah
- Department of Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA 91766, USA;
- Department of Internal Medicine, Scripps Mercy Hospital, San Diego, CA 92103, USA
| | - Andrei Lobiuc
- Department of Medicine and Biomedical Sciences, College of Medicine and Biological Science, University of Suceava, 7200229 Suceava, Romania;
| | - Mihai Covasa
- Department of Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA 91766, USA;
- Department of Medicine and Biomedical Sciences, College of Medicine and Biological Science, University of Suceava, 7200229 Suceava, Romania;
| |
Collapse
|
33
|
Guo L, Ma J, Xiao M, Liu J, Hu Z, Xia S, Li N, Yang Y, Gong H, Xi Y, Fu R, Jiang P, Xia C, Lauschke VM, Yan M. The involvement of the Stat1/Nrf2 pathway in exacerbating Crizotinib-induced liver injury: implications for ferroptosis. Cell Death Dis 2024; 15:600. [PMID: 39160159 PMCID: PMC11333746 DOI: 10.1038/s41419-024-06993-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/03/2024] [Accepted: 08/09/2024] [Indexed: 08/21/2024]
Abstract
Crizotinib carries an FDA hepatotoxicity warning, yet analysis of the FAERS database suggests that the severity of its hepatotoxicity risks, including progression to hepatitis and liver failure, might be underreported. However, the underlying mechanism remains poorly understood, and effective intervention strategies are lacking. Here, mRNA-sequencing analysis, along with KEGG and GO analyses, revealed that DEGs linked to Crizotinib-induced hepatotoxicity predominantly associate with the ferroptosis pathway which was identified as the principal mechanism behind Crizotinib-induced hepatocyte death. Furthermore, we found that ferroptosis inhibitors, namely Ferrostatin-1 and Deferoxamine mesylate, significantly reduced Crizotinib-induced hepatotoxicity and ferroptosis in both in vivo and in vitro settings. We have also discovered that overexpression of AAV8-mediated Nrf2 could mitigate Crizotinib-induced hepatotoxicity and ferroptosis in vivo by restoring the imbalance in glutathione metabolism, iron homeostasis, and lipid peroxidation. Additionally, both Stat1 deficiency and the Stat1 inhibitor NSC118218 were found to reduce Crizotinib-induced ferroptosis. Mechanistically, Crizotinib induces the phosphorylation of Stat1 at Ser727 but not Tyr701, promoting the transcriptional inhibition of Nrf2 expression after its entry into the nucleus to promote ferroptosis. Meanwhile, we found that MgIG and GA protected against hepatotoxicity to counteract ferroptosis without affecting or compromising the anti-cancer activity of Crizotinib, with a mechanism potentially related to the Stat1/Nrf2 pathway. Overall, our findings identify that the phosphorylation activation of Stat1 Ser727, rather than Tyr701, promotes ferroptosis through transcriptional inhibition of Nrf2, and highlight MgIG and GA as potential therapeutic approaches to enhance the safety of Crizotinib-based cancer therapy.
Collapse
Affiliation(s)
- Lin Guo
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China
| | - JiaTing Ma
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China
| | - MingXuan Xiao
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China
| | - JiaYi Liu
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China
| | - ZhiYu Hu
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China
| | - Shuang Xia
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China
| | - Ning Li
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Yan Yang
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China
- Department of Pharmacy, Wuzhou Gongren Hospital, Wuzhou, China
| | - Hui Gong
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China
| | - Yang Xi
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China
| | - Rao Fu
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China
| | - Pei Jiang
- Department of Pharmacy, Jining No 1 People's Hospital, Jining Medical University, Jining, China
| | - ChunGuang Xia
- Chia Tai Tianqing Pharmaceutical Group Co. Ltd, Lianyungang, Jiangsu, China
| | - Volker M Lauschke
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China
- Department of Physiology and Pharmacology, Section of Pharmacogenetics, Karolinska Institutet, SE-171 77, Stockholm, Sweden
| | - Miao Yan
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, China.
- Institute of Clinical Pharmacy, Central South University, Changsha, China.
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China.
| |
Collapse
|
34
|
El-Baz AM, Shata A, Nouh NA, Jamil L, Hafez MM, Negm S, El-Kott AF, AlShehri MA, Khalaf EM. Vinpocetine and Lactobacillus improve fatty liver in rats: role of adiponectin and gut microbiome. AMB Express 2024; 14:89. [PMID: 39095672 PMCID: PMC11297008 DOI: 10.1186/s13568-024-01731-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 06/10/2024] [Indexed: 08/04/2024] Open
Abstract
Therapeutics that interfere with the damage/pathogen-associated molecular patterns (DAMPs/PAMPs) have evolved as promising candidates for hepatic inflammation like that occurring in non-alcoholic fatty liver disease (NAFLD). In the current study, we examined the therapeutic impact of the phosphodiesterase-1 inhibitor vinpocetine (Vinpo), alone or when combined with Lactobacillus, on hepatic abnormalities caused by a 13-week high-fat diet (HFD) and diabetes in rats. The results show that Vinpo (10 and 20 mg/kg/day) dose-dependently curbed HFD-induced elevation of liver injury parameters in serum (ALT, AST) and tissue histopathology. These effects were concordant with Vinpo's potential to ameliorate HFD-induced fibrosis (Histological fibrosis score, hydroxyproline, TGF-β1) and oxidative stress (MDA, NOx) alongside restoring the antioxidant-related parameters (GSH, SOD, Nrf-2, HO-1) in the liver. Mechanistically, Vinpo attenuated the hepatocellular release of DAMPs like high mobility group box (HMGB)1 alongside lowering the overactivation of the pattern recognition receptors including, toll-like receptor (TLR)4 and receptor for advanced glycation end-products (RAGE). Consequently, there was less activation of the transcription factor nuclear factor-kappa B that lowered production of the proinflammatory cytokines TNF-α and IL-6 in Vinpo-treated HFD/diabetes rats. Compared to Vinpo treatment alone, Lactobacillus probiotics as adjunctive therapy with Vinpo significantly improved the disease-associated inflammation and oxidative stress injury, as well as the insulin resistance and lipid profile abnormalities via enhancing the restoration of the symbiotic microbiota. In conclusion, combining Vinpo and Lactobacillus probiotics may be a successful approach for limiting NAFLD in humans.
Collapse
Affiliation(s)
- Ahmed M El-Baz
- Department of Microbiology and Immunology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, 11152, Egypt.
| | - Ahmed Shata
- Department of Clinical Pharmacology, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt
- Department of Clinical Pharmacology, Faculty of Medicine, Horus University-Egypt, New Damietta, 34518, Egypt
| | - Nehal A Nouh
- Department of Microbiology, Medicine Program, Batterjee Medical College, P.O. Box 6231, Jeddah, 21442, Saudi Arabia
- Inpatient Pharmacy, Mansoura University Hospital, Mansoura, 35516, Egypt
| | - Lubna Jamil
- Department of Histology, Faculty of Medicine, October 6 University (O6U), 6th of October City, Egypt
| | - Mohamed M Hafez
- Biochemistry Department, Faculty of Pharmacy, Ahram Canadian University, 6th of October City, Egypt
| | - Sally Negm
- Department of Life Sciences, College of Science and Art Mahyel Aseer, King Khalid University, Abha, 62529, Saudi Arabia
| | - Attalla F El-Kott
- Department of Biology, College of Science, King Khalid University, Abha, 61421, Saudi Arabia
- Department of Zoology, Faculty of Science, Damanhour University, Damanhour, 22511, Egypt
| | - Mohammed A AlShehri
- Department of Biology, College of Science, King Khalid University, Abha, 61421, Saudi Arabia
| | - Eman M Khalaf
- Department of Microbiology and Immunology, Faculty of Pharmacy, Damanhour University, Damanhour, 22511, Egypt
| |
Collapse
|
35
|
Guo H, Liu T, Li J, Li E, Wen X, Chen F, Li S, Li Y, Yin Q, Zhu Q. Compound probiotics regulate the NRF2 antioxidant pathway to inhibit aflatoxin B 1-induced autophagy in mouse Sertoli TM4 cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 281:116619. [PMID: 38925031 DOI: 10.1016/j.ecoenv.2024.116619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/09/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024]
Abstract
This study investigated the effects of compound probiotics (CP) on AFB1-induced cytotoxicity in Sertoli TM4 cells. The L9 (3 × 3) orthogonal test was conducted to determine the optimal CP required for high AFB1 degradation in the artificial gastrointestinal fluid in vitro. The maximal AFB1 degradation rate was 40.55 % (P < 0.05) when the final viable count was 1.0 × 105 CFU/mL for Bacillus subtilis, Lactobacillus casein, and Saccharomyces cerevisiae. The effects of CP and the CP supernatant (CPS) on TM4 cell viability were evaluated to achieve the optimal protective conditions. When CPS4 (corresponding to CP viable counts of 1.0 × 104 CFU/mL) was added to the TM4 cells for 24 h, the cell viability reached 108.86 % (P < 0.05). AFB1 reduced TM4 cell viability in a concentration- and time-dependent manner at an AFB1 concentration ranging from 0 to 1.5 μM after 48-h AFB1 exposure. The optimal AFB1 concentration/times for low- and high damage models were 0.5 and 1.25 μM both for 24 h, which decreased viability to 76.04 % and 65.35 %, respectively. however, CPS4 added to low- and high-damage models increased the cell viability to 97.43 % and 75.12 %, respectively (P < 0.05). Transcriptome sequencing was performed based on the following designed groups: the control, 0.5 μM AFB1, 1.25 μM AFB1, CPS4, and CPS4+0.5 μM AFB1. The Kyoto encyclopedia of genes and genomes (KEGG) pathway enrichment analysis was further performed to identify significantly enriched signaling pathways, which were subsequently verified. It was shown that AFB1 induced apoptosis by blocking the PI3K-AKT-mTOR pathway and upregulating autophagy proteins such as LC3B, Beclin1, and ATG5 while inhibiting autophagic flux. CPS4 promoted AFB1 degradation, activated the p62-NRF2 antioxidant, and inhibited ROS/TRPML1 pathways, thereby reducing ROS production and inflammation and ultimately alleviating AFB1-induced autophagy and apoptosis. These findings supports the potential of probiotics to protect the male reproductive system from toxin damage.
Collapse
Affiliation(s)
- Hongwei Guo
- Second Department of Urology, Affiliated Central Hospital of Huanghuai University, Zhumadian 463000, China; College of Biology and Food Engineering, Huanghuai University, Zhumadian 463000, China
| | - Taiyang Liu
- Second Department of Urology, Zhumadian Center Hospital, Zhumadian 463000, China
| | - Jie Li
- Second Department of Urology, Zhumadian Center Hospital, Zhumadian 463000, China
| | - Enzhong Li
- College of Biology and Food Engineering, Huanghuai University, Zhumadian 463000, China
| | - Xiuhua Wen
- Second Department of Urology, Zhumadian Center Hospital, Zhumadian 463000, China.
| | - Fujia Chen
- College of Biology and Food Engineering, Huanghuai University, Zhumadian 463000, China
| | - Siqaing Li
- College of Biology and Food Engineering, Huanghuai University, Zhumadian 463000, China
| | - Yun Li
- College of Biology and Food Engineering, Huanghuai University, Zhumadian 463000, China
| | - Qingqiang Yin
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Qun Zhu
- Henan Delin Biological Product Co. Ltd., Xinxiang 453000, China
| |
Collapse
|
36
|
Hu S, Tang B, Lu C, Wang S, Wu L, Lei Y, Tang L, Zhu H, Wang D, Yang S. Lactobacillus rhamnosus GG ameliorates triptolide-induced liver injury through modulation of the bile acid-FXR axis. Pharmacol Res 2024; 206:107275. [PMID: 38908615 DOI: 10.1016/j.phrs.2024.107275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 06/19/2024] [Indexed: 06/24/2024]
Abstract
Triptolide (TP) is the principal bioactive compound of Tripterygium wilfordii with significant anti-tumor, anti-inflammatory and immunosuppressive activities. However, its severe hepatotoxicity greatly limits its clinical use. The underlying mechanism of TP-induced liver damage is still poorly understood. Here, we estimate the role of the gut microbiota in TP hepatotoxicity and investigate the bile acid metabolism mechanisms involved. The results of the antibiotic cocktail (ABX) and fecal microbiota transplantation (FMT) experiment demonstrate the involvement of intestinal flora in TP hepatotoxicity. Moreover, TP treatment significantly perturbed gut microbial composition and reduced the relative abundances of Lactobacillus rhamnosus GG (LGG). Supplementation with LGG reversed TP-induced hepatotoxicity by increasing bile salt hydrolase (BSH) activity and reducing the increased conjugated bile acids (BA). LGG supplementation upregulates hepatic FXR expression and inhibits NLRP3 inflammasome activation in TP-treated mice. In summary, this study found that gut microbiota is involved in TP hepatotoxicity. LGG supplementation protects mice against TP-induced liver damage. The underlying mechanism was associated with the gut microbiota-BA-FXR axis. Therefore, LGG holds the potential to prevent and treat TP hepatotoxicity in the clinic.
Collapse
Affiliation(s)
- Shiping Hu
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing 400037, China; Department of Gastroenterology, No.983 Hospital of PLA Joint Logistics Support Force, Tianjin 300142, China
| | - Bo Tang
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Cheng Lu
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Sumin Wang
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Lingyi Wu
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Yuanyuan Lei
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Li Tang
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Hongbin Zhu
- Department of Gastroenterology, No.983 Hospital of PLA Joint Logistics Support Force, Tianjin 300142, China
| | - Dongxu Wang
- Department of Gastroenterology, No.983 Hospital of PLA Joint Logistics Support Force, Tianjin 300142, China.
| | - Shiming Yang
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing 400037, China.
| |
Collapse
|
37
|
Xie DY, Lin M, Luo YM, Dong L, Wei Y, Gao JM, Zhu YZ, Gong QH. Trilobatin suppresses aging-induced cognitive impairment by targeting SIRT2: Involvement of remodeling gut microbiota to mediate the brain-gut axis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 130:155744. [PMID: 38763011 DOI: 10.1016/j.phymed.2024.155744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/30/2024] [Accepted: 05/14/2024] [Indexed: 05/21/2024]
Abstract
BACKGROUND Aging is associated with learning and memory disorder, affecting multiple brain areas, especially the hippocampus. Previous studies have demonstrated trilobatin (TLB), as a natural food additive, can extend the life of Caenorhabditis elegans and exhibit neuroprotection in Alzheimer's disease mice. However, the possible significance of TLB in anti-aging remains elusive. PURPOSE This study aimed to delve into the physiological mechanism by which TLB ameliorated aging-induced cognitive impairment in senescence-accelerated mouse prone 8 (SAMP8) mice. METHODS 6-month-old SAMP8 mice were administrated with TLB (5, 10, 20 mg/kg/day, i.g.) for 3 months. The therapeutic effect of TLB on aging-induced cognitive impairment was assessed in mice using behavioral tests and aging score. The gut microbiota composition in fecal samples was analyzed by metagenomic analysis. The protective effects of TLB on blood-brain barrier (BBB) and intestinal barrier were detected by transmission electron microscope, H&E staining and western blot (WB) assay. The inhibitive effects of TLB on inflammation in brain and intestine were assessed using immunofluorescence, WB and ELISA assay. Molecular docking and surface plasma resonance (SPR) assay were utilized to investigate interaction between TLB and sirtuin 2 (SIRT2). RESULTS Herein, the findings exhibited TLB mitigated aging-induced cognitive impairment, neuron injury and neuroinflammation in hippocampus of aged SAMP8 mice. Moreover, TLB treatment repaired imbalance of gut microbiota in aged SAMP8 mice. Furthermore, TLB alleviated the damage to BBB and intestinal barrier, concomitant with reducing the expression of SIRT2, phosphorylated levels of c-Jun NH2 terminal kinases (JNK) and c-Jun, and expression of MMP9 protein in aged SAMP8 mice. Molecular docking and SPR unveiled TLB combined with SIRT2 and down-regulated SIRT2 protein expression. Mechanistically, the potential mechanism of SIRT2 in TLB that exerted anti-aging effect was validated in vitro. As expected, SIRT2 deficiency attenuated phosphorylated level of JNK in HT22 cells treated with d-galactose. CONCLUSION These findings reveal, for the first time, SIRT2-mediated brain-gut barriers contribute to aging and aging-related diseases, and TLB can rescue aging-induced cognitive impairment by targeting SIRT2 and restoring gut microbiota disturbance to mediate the brain-gut axis. Overall, this work extends the potential application of TLB as a natural food additive in aging-related diseases.
Collapse
Affiliation(s)
- Dian-You Xie
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Avenida Wai Long, Macau SAR, Taipa, 999078, China; Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, 6 Xuefu West Road, Zunyi, Guizhou 563006, China
| | - Mu Lin
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Avenida Wai Long, Macau SAR, Taipa, 999078, China; Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, 6 Xuefu West Road, Zunyi, Guizhou 563006, China; Guizhou Aerospace Hospital, Zunyi 563000, China
| | - Yun-Mei Luo
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Avenida Wai Long, Macau SAR, Taipa, 999078, China; Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, 6 Xuefu West Road, Zunyi, Guizhou 563006, China
| | - Lan Dong
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Avenida Wai Long, Macau SAR, Taipa, 999078, China; Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, 6 Xuefu West Road, Zunyi, Guizhou 563006, China
| | - Yu Wei
- Department of Neurology, The Affiliated Hospital of Zunyi Medical University, Zunyi 563099, China
| | - Jian-Mei Gao
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Avenida Wai Long, Macau SAR, Taipa, 999078, China; Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, 6 Xuefu West Road, Zunyi, Guizhou 563006, China
| | - Yi Zhun Zhu
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Avenida Wai Long, Macau SAR, Taipa, 999078, China.
| | - Qi-Hai Gong
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Avenida Wai Long, Macau SAR, Taipa, 999078, China; Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, 6 Xuefu West Road, Zunyi, Guizhou 563006, China.
| |
Collapse
|
38
|
Wang Y, Liu X, Li K, Wang X, Zhang X, Qian D, Meng X, Yu L, Yan X, He Z. Self-Sulfhydrated, Nitro-Fixed Albumin Nanoparticles as a Potent Therapeutic Agent for the Treatment of Acute Liver Injury. ACS NANO 2024. [PMID: 39041805 DOI: 10.1021/acsnano.4c07297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Exogenous polysulfhydryls (R-SH) supplementation and nitric oxide (NO) gas molecules delivery provide essential antioxidant buffering pool components and anti-inflammatory species in cellular defense against injury, respectively. Herein, the intermolecular disulfide bonds in bovine serum albumin (BSA) molecules were reductively cleaved under native and mild conditions to expose multiple sulfhydryl groups (BSA-SH), then sulfhydryl-nitrosylated (R-SNO), and nanoprecipitated to form injectable self-sulfhydrated, nitro-fixed albumin nanoparticles (BSA-SNO NPs), allowing albumin to act as a NO donor reservoir and multiple sulfhydryl group transporter while also preventing unfavorable oxidation and self-cross-linking of polysulfhydryl groups. In two mouse models of ischemia/reperfusion-induced and endotoxin-induced acute liver injury (ALI), a single low dosage of BSA-SNO NPs (S-nitrosothiols: 4 μmol·kg-1) effectively attenuated oxidative stress and systemic inflammation cascades in the upstream pathophysiology of disease progression, thus rescuing dying hepatocytes, regulating host defense, repairing microcirculation, and restoring liver function. By mechanistically upregulating the antioxidative signaling pathway (Nrf-2/HO-1/NOQ1) and inhibiting the inflammatory cytokine storm (NF-κB/p-IκBα/TNF-α/IL-β), BSA-SNO NPs blocked the initiation of the mitochondrial apoptotic signaling pathway (Cyto C/Bcl-2 family/caspase-3) and downregulated the cell pyroptosis pathway (NLRP3/ASC/IL-1β), resulting in an increased survival rate from 26.7 to 73.3%. This self-sulfhydrated, nitro-fixed functionalized BSA nanoformulation proposes a potential drug-free treatment strategy for ALI.
Collapse
Affiliation(s)
- Yanan Wang
- Frontiers Science Center for Deep Ocean Multispheres and Earth Systems, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Sanya Oceanographic Institution, Ocean University of China, Qingdao/Sanya 266100/572024, China
- Sanya Oceanographic Institution, Sanya 572024, China
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266003, China
| | - Xiaohu Liu
- Frontiers Science Center for Deep Ocean Multispheres and Earth Systems, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Sanya Oceanographic Institution, Ocean University of China, Qingdao/Sanya 266100/572024, China
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266003, China
| | - Keyang Li
- Frontiers Science Center for Deep Ocean Multispheres and Earth Systems, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Sanya Oceanographic Institution, Ocean University of China, Qingdao/Sanya 266100/572024, China
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266003, China
| | - Xinyuan Wang
- Frontiers Science Center for Deep Ocean Multispheres and Earth Systems, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Sanya Oceanographic Institution, Ocean University of China, Qingdao/Sanya 266100/572024, China
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266003, China
| | - Xue Zhang
- Frontiers Science Center for Deep Ocean Multispheres and Earth Systems, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Sanya Oceanographic Institution, Ocean University of China, Qingdao/Sanya 266100/572024, China
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266003, China
| | - Deyao Qian
- Frontiers Science Center for Deep Ocean Multispheres and Earth Systems, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Sanya Oceanographic Institution, Ocean University of China, Qingdao/Sanya 266100/572024, China
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266003, China
| | - Xinlei Meng
- Frontiers Science Center for Deep Ocean Multispheres and Earth Systems, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Sanya Oceanographic Institution, Ocean University of China, Qingdao/Sanya 266100/572024, China
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266003, China
| | - Liangmin Yu
- Frontiers Science Center for Deep Ocean Multispheres and Earth Systems, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Sanya Oceanographic Institution, Ocean University of China, Qingdao/Sanya 266100/572024, China
- Sanya Oceanographic Institution, Sanya 572024, China
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266003, China
| | - Xuefeng Yan
- Frontiers Science Center for Deep Ocean Multispheres and Earth Systems, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Sanya Oceanographic Institution, Ocean University of China, Qingdao/Sanya 266100/572024, China
- Sanya Oceanographic Institution, Sanya 572024, China
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266003, China
| | - Zhiyu He
- Frontiers Science Center for Deep Ocean Multispheres and Earth Systems, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Sanya Oceanographic Institution, Ocean University of China, Qingdao/Sanya 266100/572024, China
- Sanya Oceanographic Institution, Sanya 572024, China
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266003, China
| |
Collapse
|
39
|
Yao T, Fu L, Wu Y, Li L. Christensenella minuta Alleviates Acetaminophen-Induced Hepatotoxicity by Regulating Phenylalanine Metabolism. Nutrients 2024; 16:2314. [PMID: 39064757 PMCID: PMC11280030 DOI: 10.3390/nu16142314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/06/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Acetaminophen (APAP)-induced liver injury (AILI), even liver failure, is a significant challenge due to the limited availability of therapeutic medicine. Christensenella minuta (C. minuta), as a probiotic therapy, has shown promising prospects in metabolism and inflammatory diseases. Our research aimed to examine the influence of C. minuta on AILI and explore the molecular pathways underlying it. We found that administration of C. minuta remarkably alleviated AILI in a mouse model, as evidenced by decreased levels of alanine transaminase (ALT) and aspartate aminotransferase (AST) and improvements in the histopathological features of liver sections. Additionally, there was a notable decrease in malondialdehyde (MDA), accompanied by restoration of the reduced glutathione/oxidized glutathione (GSH/GSSG) balance, and superoxide dismutase (SOD) activity. Furthermore, there was a significant reduction in inflammatory markers (IL6, IL1β, TNF-α). C. minuta regulated phenylalanine metabolism. No significant difference in intestinal permeability was observed in either the model group or the treatment group. High levels of phenylalanine aggravated liver damage, which may be linked to phenylalanine-induced dysbiosis and dysregulation in cytochrome P450 metabolism, sphingolipid metabolism, the PI3K-AKT pathway, and the Integrin pathway. Furthermore, C. minuta restored the diversity of the microbiota, modulated metabolic pathways and MAPK pathway. Overall, this research demonstrates that supplementing with C. minuta offers both preventive and remedial benefits against AILI by modulating the gut microbiota, phenylalanine metabolism, oxidative stress, and the MAPK pathway, with high phenylalanine supplementation being identified as a risk factor exacerbating liver injury.
Collapse
Affiliation(s)
| | | | | | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City 310003, China
| |
Collapse
|
40
|
Lee H, Yang X, Jin PR, Won KJ, Kim CH, Jeong H. The Discovery of Gut Microbial Metabolites as Modulators of Host Susceptibility to Acetaminophen-Induced Hepatotoxicity. Drug Metab Dispos 2024; 52:754-764. [PMID: 38302428 PMCID: PMC11257691 DOI: 10.1124/dmd.123.001541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/11/2024] [Accepted: 01/29/2024] [Indexed: 02/03/2024] Open
Abstract
The mammalian gut microbiota plays diverse and essential roles in modulating host physiology. Key mediators determining the outcome of the microbiota-host interactions are the small molecule metabolites produced by the gut microbiota. The liver is a major organ exposed to gut microbial metabolites, and it serves as the nexus for maintaining healthy interactions between the gut microbiota and the host. At the same time, the liver is the primary target of potentially harmful gut microbial metabolites. In this review, we provide an up-to-date list of gut microbial metabolites that have been identified to either increase or decrease host susceptibility to acetaminophen (APAP)-induced liver injury. The signaling pathways and molecular factors involved in the progression of APAP-induced hepatotoxicity are well-established, and we propose that the mouse model of APAP-induced hepatotoxicity serves as a model system for uncovering gut microbial metabolites with previously unknown functions. Furthermore, we envision that gut microbial metabolites identified to alter APAP-induced hepatotoxicity likely have broader implications in other liver diseases. SIGNIFICANCE STATEMENT: This review provides an overview of the role of the gut microbiota in modulating the host susceptibility to acetaminophen (APAP)-induced liver injury. It focuses on the roles of gut bacterial small molecule metabolites as mediators of the interaction between the gut microbiota and the liver. It also illustrates the utility of APAP-induced liver injury as a model to identify gut microbial metabolites with biological function.
Collapse
Affiliation(s)
- Hyunwoo Lee
- Department of Industrial and Molecular Pharmaceutics (H.L., X.Y., P.-R.J., K.-J.W., H.J.), Department of Pharmacy Practice (H.J.), and College of Pharmacy, and Department of Comparative Pathobiology, College of Veterinary Medicine (H.L.), Purdue University, West Lafayette, Indiana and Department of Pathology and Mary H. Weiser Food Allergy Center and Rogel Center for Cancer Research, University of Michigan School of Medicine, Ann Arbor, Michigan (C.H.K.)
| | - Xiaotong Yang
- Department of Industrial and Molecular Pharmaceutics (H.L., X.Y., P.-R.J., K.-J.W., H.J.), Department of Pharmacy Practice (H.J.), and College of Pharmacy, and Department of Comparative Pathobiology, College of Veterinary Medicine (H.L.), Purdue University, West Lafayette, Indiana and Department of Pathology and Mary H. Weiser Food Allergy Center and Rogel Center for Cancer Research, University of Michigan School of Medicine, Ann Arbor, Michigan (C.H.K.)
| | - Pei-Ru Jin
- Department of Industrial and Molecular Pharmaceutics (H.L., X.Y., P.-R.J., K.-J.W., H.J.), Department of Pharmacy Practice (H.J.), and College of Pharmacy, and Department of Comparative Pathobiology, College of Veterinary Medicine (H.L.), Purdue University, West Lafayette, Indiana and Department of Pathology and Mary H. Weiser Food Allergy Center and Rogel Center for Cancer Research, University of Michigan School of Medicine, Ann Arbor, Michigan (C.H.K.)
| | - Kyoung-Jae Won
- Department of Industrial and Molecular Pharmaceutics (H.L., X.Y., P.-R.J., K.-J.W., H.J.), Department of Pharmacy Practice (H.J.), and College of Pharmacy, and Department of Comparative Pathobiology, College of Veterinary Medicine (H.L.), Purdue University, West Lafayette, Indiana and Department of Pathology and Mary H. Weiser Food Allergy Center and Rogel Center for Cancer Research, University of Michigan School of Medicine, Ann Arbor, Michigan (C.H.K.)
| | - Chang H Kim
- Department of Industrial and Molecular Pharmaceutics (H.L., X.Y., P.-R.J., K.-J.W., H.J.), Department of Pharmacy Practice (H.J.), and College of Pharmacy, and Department of Comparative Pathobiology, College of Veterinary Medicine (H.L.), Purdue University, West Lafayette, Indiana and Department of Pathology and Mary H. Weiser Food Allergy Center and Rogel Center for Cancer Research, University of Michigan School of Medicine, Ann Arbor, Michigan (C.H.K.)
| | - Hyunyoung Jeong
- Department of Industrial and Molecular Pharmaceutics (H.L., X.Y., P.-R.J., K.-J.W., H.J.), Department of Pharmacy Practice (H.J.), and College of Pharmacy, and Department of Comparative Pathobiology, College of Veterinary Medicine (H.L.), Purdue University, West Lafayette, Indiana and Department of Pathology and Mary H. Weiser Food Allergy Center and Rogel Center for Cancer Research, University of Michigan School of Medicine, Ann Arbor, Michigan (C.H.K.)
| |
Collapse
|
41
|
Cai L, Wang X, Zhu X, Xu Y, Qin W, Ren J, Jiang Q, Yan X. Lactobacillus-derived protoporphyrin IX and SCFAs regulate the fiber size via glucose metabolism in the skeletal muscle of chickens. mSystems 2024; 9:e0021424. [PMID: 38780275 PMCID: PMC11237663 DOI: 10.1128/msystems.00214-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 04/10/2024] [Indexed: 05/25/2024] Open
Abstract
The gut microbiota contributes to skeletal muscle energy metabolism and is an indirect factor affecting meat quality. However, the role of specific gut microbes in energy metabolism and fiber size of skeletal muscle in chickens remains largely unknown. In this study, we first performed cecal microbiota transplantation from Chinese indigenous Jingyuan chickens (JY) to Arbor Acres chickens (AA), to determine the effects of microbiota on skeletal muscle fiber and energy metabolism. Then, we used metagenomics, gas chromatography, and metabolomics analysis to identify functional microbes. Finally, we validated the role of these functional microbes in regulating the fiber size via glucose metabolism in the skeletal muscle of chickens through feeding experiments. The results showed that the skeletal muscle characteristics of AA after microbiota transplantation tended to be consistent with that of JY, as the fiber diameter was significantly increased, and glucose metabolism level was significantly enhanced in the pectoralis muscle. L. plantarum, L. ingluviei, L. salivarius, and their mixture could increase the production of the microbial metabolites protoporphyrin IX and short-chain fatty acids, therefore increasing the expression levels of genes related to the oxidative fiber type (MyHC SM and MyHC FRM), mitochondrial function (Tfam and CoxVa), and glucose metabolism (PFK, PK, PDH, IDH, and SDH), thereby increasing the fiber diameter and density. These three Lactobacillus species could be promising probiotics to improve the meat quality of chicken.IMPORTANCEThis study revealed that the L. plantarum, L. ingluviei, and L. salivarius could enhance the production of protoporphyrin IX and short-chain fatty acids in the cecum of chickens, improving glucose metabolism, and finally cause the increase in fiber diameter and density of skeletal muscle. These three microbes could be potential probiotic candidates to regulate glucose metabolism in skeletal muscle to improve the meat quality of chicken in broiler production.
Collapse
Affiliation(s)
- Liyuan Cai
- National Key Laboratory of Agricultural Microbiology, Frontiers Science Center for Animal Breeding and Sustainable Production, Hubei Hongshan Laboratory, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xinkai Wang
- National Key Laboratory of Agricultural Microbiology, Frontiers Science Center for Animal Breeding and Sustainable Production, Hubei Hongshan Laboratory, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
- Shandong Teamgene Technology Co. Ltd., Zibo, Shandong, China
| | - Xiaoyan Zhu
- National Key Laboratory of Agricultural Microbiology, Frontiers Science Center for Animal Breeding and Sustainable Production, Hubei Hongshan Laboratory, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yunzheng Xu
- National Key Laboratory of Agricultural Microbiology, Frontiers Science Center for Animal Breeding and Sustainable Production, Hubei Hongshan Laboratory, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Wenxia Qin
- National Key Laboratory of Agricultural Microbiology, Frontiers Science Center for Animal Breeding and Sustainable Production, Hubei Hongshan Laboratory, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Jing Ren
- National Key Laboratory of Agricultural Microbiology, Frontiers Science Center for Animal Breeding and Sustainable Production, Hubei Hongshan Laboratory, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Qin Jiang
- National Key Laboratory of Agricultural Microbiology, Frontiers Science Center for Animal Breeding and Sustainable Production, Hubei Hongshan Laboratory, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xianghua Yan
- National Key Laboratory of Agricultural Microbiology, Frontiers Science Center for Animal Breeding and Sustainable Production, Hubei Hongshan Laboratory, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| |
Collapse
|
42
|
Chu Z, Zhu L, Zhou Y, Yang F, Hu Z, Luo Y, Li W, Luo F. Targeting Nrf2 by bioactive peptides alleviate inflammation: expanding the role of gut microbiota and metabolites. Crit Rev Food Sci Nutr 2024:1-20. [PMID: 38881345 DOI: 10.1080/10408398.2024.2367570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Inflammation is a complex process that usually refers to the general response of the body to the harmful stimuli of various pathogens, tissue damage, or exogenous pollutants. Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor that regulates cellular defense against oxidative damage and toxicity by expressing genes related to oxidative stress response and drug detoxification. In addition to its antioxidant properties, Nrf2 is involved in many other important physiological processes, including inflammation and metabolism. Nrf2 can bind the promoters of antioxidant genes and upregulates their expressions, which alleviate oxidation-induced inflammation. Nrf2 has been shown to upregulate heme oxygenase-1 expression, which promotes NF-κB activation and is closely related with inflammation. Nrf2, as a key factor in antioxidant response, is closely related to the expressions of pro-inflammatory factors, NF-κB pathway and cell metabolism. Bioactive peptides come from a wide range of sources and have many biological functions. Increasing evidence indicates that bioactive peptides have potential anti-inflammatory activities. This article summarized the sources, absorption and utilization of bioactive peptides and their role in alleviating inflammation via Nrf2 pathway. Bioactive peptides can also regulate gut microbiota and alter metabolites, which regulates the Nrf2 pathway through novel pathway and supplement the anti-inflammatory mechanisms of bioactive peptides. This review provides a reference for further study on the anti-inflammatory effect of bioactive peptides and the development and utilization of functional foods.
Collapse
Affiliation(s)
- Zhongxing Chu
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Lingfeng Zhu
- Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha, Hunan, China
| | - Yaping Zhou
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Feiyan Yang
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Zuomin Hu
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Yi Luo
- Department of Clinic Medicine, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Wen Li
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Feijun Luo
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Central South University of Forestry and Technology, Changsha, Hunan, China
| |
Collapse
|
43
|
Yu X, Wang S, Ji Z, Meng J, Mou Y, Wu X, Yang X, Xiong P, Li M, Guo Y. Ferroptosis: An important mechanism of disease mediated by the gut-liver-brain axis. Life Sci 2024; 347:122650. [PMID: 38631669 DOI: 10.1016/j.lfs.2024.122650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/27/2024] [Accepted: 04/13/2024] [Indexed: 04/19/2024]
Abstract
AIMS As a unique iron-dependent non-apoptotic cell death, Ferroptosis is involved in the pathogenesis and development of many human diseases and has become a research hotspot in recent years. However, the regulatory role of ferroptosis in the gut-liver-brain axis has not been elucidated. This paper summarizes the regulatory role of ferroptosis and provides theoretical basis for related research. MATERIALS AND METHODS We searched PubMed, CNKI and Wed of Science databases on ferroptosis mediated gut-liver-brain axis diseases, summarized the regulatory role of ferroptosis on organ axis, and explained the adverse effects of related regulatory effects on various diseases. KEY FINDINGS According to our summary, the main way in which ferroptosis mediates the gut-liver-brain axis is oxidative stress, and the key cross-talk of ferroptosis affecting signaling pathway network is Nrf2/HO-1. However, there were no specific marker between different organ axes mediate by ferroptosis. SIGNIFICANCE Our study illustrates the main ways and key cross-talk of ferroptosis mediating the gut-liver-brain axis, providing a basis for future research.
Collapse
Affiliation(s)
- Xinxin Yu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong, China
| | - Shihao Wang
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong, China
| | - Zhongjie Ji
- College of Acupuncture and Massage, Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong, China
| | - Jiaqi Meng
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong, China
| | - Yunying Mou
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong, China
| | - Xinyi Wu
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong, China
| | - Xu Yang
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong, China
| | - Panyang Xiong
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong, China
| | - Mingxia Li
- Nursing School, Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong, China
| | - Yinghui Guo
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong, China.
| |
Collapse
|
44
|
Cai J, Zhu Z, Li Y, Li Q, Tian T, Meng Q, Wang T, Ma Y, Wu J. Artemisia capillaris Thunb. Polysaccharide alleviates cholestatic liver injury through gut microbiota modulation and Nrf2 signaling pathway activation in mice. JOURNAL OF ETHNOPHARMACOLOGY 2024; 327:118009. [PMID: 38447617 DOI: 10.1016/j.jep.2024.118009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/02/2024] [Accepted: 03/03/2024] [Indexed: 03/08/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE According to traditional Chinese medicine (TCM) theory, cholestasis belongs to category of jaundice. Artemisia capillaris Thunb. has been widely used for the treatment of jaundice in TCM. The polysaccharides are the one of main active components of the herb, but its effects on cholestasis remain unclear. AIM OF THE STUDY To investigate the protective effect and mechanism of Artemisia capillaris Thunb. polysaccharide (APS) on cholestasis and liver injury. MATERIALS AND METHODS The amelioration of APS on cholestasis was evaluated in an alpha-naphthyl isothiocyanate (ANIT)-induced mice model. Then nuclear Nrf2 knockout mice, mass spectrometry, 16s rDNA sequencing, metabolomics, and molecular biotechnology methods were used to elucidate the associated mechanisms of APS against cholestatic liver injury. RESULTS Treatment with low and high doses of APS markedly decreased cholestatic liver injury of mice. Mechanistically, APS promoted nuclear translocation of hepatic nuclear factor erythroid 2-related factor (Nrf2), upregulated downstream bile acid (BA) efflux transporters and detoxifying enzymes expression, improved BA homeostasis, and attenuated oxidative liver injury; however, these effects were annulled in Nrf2 knock-out mice. Furthermore, APS ameliorated the microbiota dysbiosis of cholestatic mice and selectively increased short-chain fatty acid (SCFA)-producing bacteria growth. Fecal microbiota transplantation of APS also promoted hepatic Nrf2 activation, increased BA efflux transporters and detoxifying enzymes expression, ameliorated intrahepatic BA accumulation and cholestatic liver injury. Non-targeted metabolomics and in vitro microbiota culture confirmed that APS significantly increased the production of a microbiota-derived SCFA (butyric acid), which is also able to upregulate Nrf2 expression. CONCLUSIONS These findings indicate that APS can ameliorate cholestasis by modulating gut microbiota and activating the Nrf2 pathway, representing a novel therapeutic approach for cholestatic liver disease.
Collapse
Affiliation(s)
- Jingyi Cai
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Zhenyun Zhu
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Yuanyuan Li
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Qi Li
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Tian Tian
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Qian Meng
- Shanghai Key Laboratory of Compound Chinese Medicines, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Tianming Wang
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Yueming Ma
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China; Shanghai Key Laboratory of Compound Chinese Medicines, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China.
| | - Jiasheng Wu
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China.
| |
Collapse
|
45
|
Huang Y, Zhang Y, Wu K, Tan X, Lan T, Wang G. Role of Gut Microecology in the Pathogenesis of Drug-Induced Liver Injury and Emerging Therapeutic Strategies. Molecules 2024; 29:2663. [PMID: 38893536 PMCID: PMC11173750 DOI: 10.3390/molecules29112663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/01/2024] [Accepted: 06/01/2024] [Indexed: 06/21/2024] Open
Abstract
Drug-induced liver injury (DILI) is a common clinical pharmacogenic disease. In the United States and Europe, DILI is the most common cause of acute liver failure. Drugs can cause hepatic damage either directly through inherent hepatotoxic properties or indirectly by inducing oxidative stress, immune responses, and inflammatory processes. These pathways can culminate in hepatocyte necrosis. The role of the gut microecology in human health and diseases is well recognized. Recent studies have revealed that the imbalance in the gut microecology is closely related to the occurrence and development of DILI. The gut microecology plays an important role in liver injury caused by different drugs. Recent research has revealed significant changes in the composition, relative abundance, and distribution of gut microbiota in both patients and animal models with DILI. Imbalance in the gut microecology causes intestinal barrier destruction and microorganism translocation; the alteration in microbial metabolites may initiate or aggravate DILI, and regulation and control of intestinal microbiota can effectively mitigate drug-induced liver injury. In this paper, we provide an overview on the present knowledge of the mechanisms by which DILI occurs, the common drugs that cause DILI, the gut microbiota and gut barrier composition, and the effects of the gut microbiota and gut barrier on DILI, emphasizing the contribution of the gut microecology to DILI.
Collapse
Affiliation(s)
- Yuqiao Huang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yu Zhang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Kaireng Wu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xinxin Tan
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Tian Lan
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150086, China
| | - Guixiang Wang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| |
Collapse
|
46
|
Wu H, Ding C, Chi C, Liu S, Gao Z, Sun W, Zhao H, Song S. Lactobacillus crispatus 7-4 Mitigates Salmonella typhimurium-Induced Enteritis via the γ‑Glutamylcysteine-Mediated Nrf2 Pathway. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10294-4. [PMID: 38829566 DOI: 10.1007/s12602-024-10294-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2024] [Indexed: 06/05/2024]
Abstract
Salmonella typhimurium (S. typhimurium) constitutes a major public health concern. We have previously proven that Lactobacillus crispatus 7-4 (L. crispatus 7-4) can inhibit the growth of S. typhimurium and thus can be used as a biocontrol strategy to suppress foodborne S. typhimurium infections. However, the inhibitory effect and in-depth mechanism of L. crispatus 7-4 remain to be elucidated. In this study, we found that L. crispatus 7-4 can protect against S. typhimurium-induced ileum injury by promoting intestinal barrier integrity, maintaining intestinal mucosal barrier homeostasis, and reducing intestinal inflammatory response. Furthermore, we demonstrated that this probiotic strain can increase the abundance of Lactobacillus spp. to maintain microbial homeostasis and simultaneously increase the amount of γ‑glutamylcysteine (γ-GC) by activating the glutathione metabolic pathway. The increased γ-GC promoted the transcription of Nrf2 target genes, thereby improving the host antioxidant level, reducing reactive oxygen species (ROS) accumulation, and removing pro-inflammatory cytokines. In other words, L. crispatus 7-4 could activate the enterocyte Nrf2 pathway by improving γ-GC to protect against S. typhimurium-induced intestinal inflammation and oxidative damage.
Collapse
Affiliation(s)
- Huixian Wu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chenchen Ding
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chunyan Chi
- Pure&Natural (Shanghai) Biotechnology Co., Ltd., Shanghai, 201112, China
| | - Shuhui Liu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhangshan Gao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Weidong Sun
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Haiming Zhao
- Pure&Natural (Shanghai) Biotechnology Co., Ltd., Shanghai, 201112, China
| | - Suquan Song
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
47
|
Yi B, Pan J, Yang Z, Zhu Z, Sun Y, Guo T, Zhao Z. Mesenchymal stem cell-derived exosomes promote tissue repair injury in rats with liver trauma by regulating gut microbiota and metabolism. Mol Cell Probes 2024; 75:101958. [PMID: 38518900 DOI: 10.1016/j.mcp.2024.101958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/19/2024] [Accepted: 03/19/2024] [Indexed: 03/24/2024]
Abstract
OBJECTIVE The effects of mesenchymal stem cells (MSCs) and MSC-derived exosomes (MSC-exos) on serum metabolites and intestinal microbiota in rats after liver trauma were discussed. METHODS Adult Wistar Albino rats were assigned into control, model (liver trauma), MSCs, and MSC-exos groups (n = 6). The study examined changes in the inflammatory environment in liver tissues were analyzed by histological examination and analysis of macrophage phenotypes. Alterations in serum metabolites were determined by untargeted metabonomics, and gut microbiota composition was characterized by 16S rDNA sequencing. Correlations between specific gut microbiota, metabolites, and inflammatory response were calculated using Spearman correlation analysis. RESULTS Rats with liver trauma after MSCs and MSC-exos treatment exhibited attenuated inflammatory infiltration and necrosis in liver tissues. MSCs and MSC-exos treatment reduced the proportion of M1 macrophages, accompanied by a decrease in inducible nitric oxide synthase (iNOS) and tumor necrosis factor-alpha (TNF-α) levels. Furthermore, MSCs and MSC-exos treatment expanded the proportion of M2 macrophages, accompanied by an increase in arginase-1 (Arg-1) and interleukin-10 (IL-10) levels. The beneficial effects of MSC-exo treatment on rats with liver trauma were superior to those of MSC treatment. The composition and abundance of the gut microbiota and metabolites were altered in pathological rats, whereas MSC and MSC-exo intervention partially restored specific gut microbiota and metabolite alterations. At the phylum level, alterations in Bacteroidota, Proteobacteria, and Verrucomicrobiota were observed after MSC and MSC-exo intervention. At the genus level, Intestinimonas, Alistipes, Aerococcus, Faecalibaculum, and Lachnospiraceae_ND3007_group were the main differential microbiota. 6-Methylnicotinamide, N-Methylnicotinamide, Glutathione, oxidized, ISOBUTYRATE, ASCORBATE, EICOSAPENTAENOATE, GLYCEROL 3-PHOSPHATE, and Ascorbate radical were selected as important differential metabolites. There was a clear correlation between Ascorbate, Intestinimonas/Faecalibaculum and inflammatory cytokines. CONCLUSION MSC-exos promoted the repair of tissue damage in rats with liver trauma by regulating serum metabolites and intestinal microbiota, providing new insights into how MSC-exos reduced inflammation in rats with liver trauma.
Collapse
Affiliation(s)
- Bo Yi
- Center of Hepatobiliary and Pancreatic Surgery, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, China
| | - Juan Pan
- Department of Ultrasound, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, China
| | - Zhaoming Yang
- Center of Hepatobiliary and Pancreatic Surgery, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, China
| | - Zemin Zhu
- Center of Hepatobiliary and Pancreatic Surgery, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, China
| | - Yongkang Sun
- Center of Hepatobiliary and Pancreatic Surgery, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, China
| | - Tao Guo
- Center of Hepatobiliary and Pancreatic Surgery, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, China
| | - Zhijian Zhao
- Center of Hepatobiliary and Pancreatic Surgery, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, China.
| |
Collapse
|
48
|
Gao Y, Liang Z, Mao B, Zheng X, Shan J, Jin C, Liu S, Kolliputi N, Chen Y, Xu F, Shi L. Gut microbial GABAergic signaling improves stress-associated innate immunity to respiratory viral infection. J Adv Res 2024; 60:41-56. [PMID: 37353002 PMCID: PMC10284622 DOI: 10.1016/j.jare.2023.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 06/14/2023] [Accepted: 06/18/2023] [Indexed: 06/25/2023] Open
Abstract
INTRODUCTION Epidemiological evidences reveal that populations with psychological stress have an increased likelihood of respiratory viral infection involving influenza A virus (IAV) and SARS-CoV-2. OBJECTIVES This study aims to explore the potential correlation between psychological stress and increased susceptibility to respiratory viral infections and how this may contribute to a more severe disease progression. METHODS A chronic restraint stress (CRS) mouse model was used to infect IAV and estimate lung inflammation. Alveolar macrophages (AMs) were observed in the numbers, function and metabolic-epigenetic properties. To confirm the central importance of the gut microbiome in stress-exacerbated viral pneumonia, mice were conducted through microbiome depletion and gut microbiome transplantation. RESULTS Stress exposure induced a decline in Lactobacillaceae abundance and hence γ-aminobutyric acid (GABA) level in mice. Microbial-derived GABA was released in the peripheral and sensed by AMs via GABAAR, leading to enhanced mitochondrial metabolism and α-ketoglutarate (αKG) generation. The metabolic intermediator in turn served as the cofactor for the epigenetic regulator Tet2 to catalyze DNA hydroxymethylation and promoted the PPARγ-centered gene program underpinning survival, self-renewing, and immunoregulation of AMs. Thus, we uncover an unappreciated GABA/Tet2/PPARγ regulatory circuitry initiated by the gut microbiome to instruct distant immune cells through a metabolic-epigenetic program. Accordingly, reconstitution with GABA-producing probiotics, adoptive transferring of GABA-conditioned AMs, or resumption of pulmonary αKG level remarkably improved AMs homeostasis and alleviated severe pneumonia in stressed mice. CONCLUSION Together, our study identifies microbiome-derived tonic signaling tuned by psychological stress to imprint resident immune cells and defensive response in the lungs. Further studies are warranted to translate these findings, basically from murine models, into the individuals with psychiatric stress during respiratory viral infection.
Collapse
Affiliation(s)
- Yanan Gao
- Department of Immunology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zihao Liang
- Department of Immunology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Bingyong Mao
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xudong Zheng
- Department of Immunology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jinjun Shan
- Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Cuiyuan Jin
- Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, Zhejiang 310015, China
| | - Shijia Liu
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Narasaiah Kolliputi
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Yugen Chen
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Feng Xu
- Department of Infectious Diseases, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China.
| | - Liyun Shi
- Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, Zhejiang 310015, China.
| |
Collapse
|
49
|
Li Z, Ma N, Gong X, Shi W, Meng X, Yan J, Zhao Z, Li J. Effects of herbal dregs supplementation of Salvia miltiorrhiza and Isatidis Radix residues improved production performance and gut microbiota abundance in late-phase laying hens. Front Vet Sci 2024; 11:1381226. [PMID: 38764854 PMCID: PMC11100463 DOI: 10.3389/fvets.2024.1381226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 03/26/2024] [Indexed: 05/21/2024] Open
Abstract
The present study was designed to evaluate the effect of a mixture of Chinese medicinal residues (CMRs) consisting of Salvia miltiorrhiza residues (SMR) and Isatidis Radix residues (IRR) on productive performance, egg quality, serum lipid and hormone levels, liver and blood antioxidant capacity, oviduct inflammation levels, and gut microbiota in the late-laying stage. A total of 288 fifty-four-week-old BaShang long-tailed hens were divided into four groups. The feed trial period was 8 weeks. The control group was fed the basic diet as a CCMR group, supplemented with 3, 4, and 6% for the experimental groups LCMR, MCMR, and HCMR. The egg production rate of the MCMR group was 8.1% higher than that of the CCMR group (p < 0.05). Serum triglyceride (TG) levels of hens of the CMR-supplemented group were significantly decreased than those of the CCMR group (p < 0.05). The group supplemented with different levels of CMR had significantly higher serum HDL-C levels compared with the control group (p < 0.05). Follicle-stimulating hormone (FSH) and luteinizing hormone (LH) levels were remarkably increased for the LCMR and MCMR groups and significantly decreased for the HCMR group compared to CCMR (p < 0.05). Serum and liver glutathione peroxidase (GSH-PX) activities were significantly increased, and malondialdehyde (MDA) levels were significantly decreased in the MCMR group compared to the CCMR group (p < 0.05). The expression levels of tubal inflammatory factor markers (IL-4, IL-1β, TNF-α) in the MCMR and HCMR groups were consistent with the pathological findings of the sections. As for cecal microbiota, supplementation with CMR affected the alpha diversity of the cecum microbiome at the genus level. The Shannon index was significantly higher in the MCMR group than in the CCMR and HCMR groups (p < 0.05). Supplementation with different levels of CMR mainly regulated the ratio of intestinal Firmicutes to Bacteroidetes and the abundance of phyla such as Proteobacteria. In addition, CMR supplementation at different levels in the diet enriched lipid-metabolizing bacteria, such as Bacteroides and Ruminococcus_gnavus_group. Furthermore, according to linear discriminant analysis (LDA) effect size (LEfSe) analysis, the MCMR group showed an increase in the number of short-chain fatty acid-producing bacteria Romboutsia and fiber-degrading specialized bacteria Monoglobus. Therefore, supplementation of appropriate amounts of CMR to the diet of laying hens enhanced reproductive hormone levels, hepatic antioxidant capacity, and lipid metabolism, alleviated the levels of oviductal inflammatory factors, and modulated the abundance structure of bacterial flora to improve the late-laying performance and egg quality. The results of the current study showed that CMR is a beneficial feed supplement for chickens when added in moderation.
Collapse
Affiliation(s)
- Zhaonian Li
- Institute of Animal Husbandry and Veterinary Medicine of Hebei Province, Baoding, China
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Ning Ma
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Xincheng Gong
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Wanyu Shi
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Xianhua Meng
- Hebei General Station of Animal Husbandry, Shijiazhuang, China
| | - Jingjiao Yan
- Animal Husbandry Technology Promotion Institution of Zhangjiakou, Zhangjiakou, China
| | - Zhiqiang Zhao
- Institute of Animal Husbandry and Veterinary Medicine of Hebei Province, Baoding, China
| | - Jiefeng Li
- Institute of Animal Husbandry and Veterinary Medicine of Hebei Province, Baoding, China
| |
Collapse
|
50
|
Chen P. Targeting gut microbiota to counteract acetaminophen-induced acute liver injury. Trends Microbiol 2024; 32:419-421. [PMID: 38472076 DOI: 10.1016/j.tim.2024.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024]
Abstract
Acetaminophen (N-acetyl-p-aminophenol; APAP) overdose-induced acute liver injury (AILI) is a huge threat to public health worldwide. Recent research clearly shows that the intestinal microbiota (IM) is a key modulator in AILI. Herein, I discuss the latest findings on how the IM regulates AILI and the potential interventions to combat AILI by targeting the IM.
Collapse
Affiliation(s)
- Peng Chen
- Department of Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China; Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|