1
|
Saaoud F, Liu L, Xu K, Lu Y, Shao Y, Ben Issa M, Jiang X, Wang X, Liu X, Autieri M, Wu S, Wei J, Yu J, Bouchareb R, Gillespie A, Luo JJ, Martinez L, Vazquez-Padron R, Sun J, Zhao H, Wang H, Pratico D, Yang X. Alzheimer's disease as an auto-innate immune pathology with potential cell trans-differentiation and enhanced trained immunity in 3xTg-AD mouse model. J Alzheimers Dis 2025; 105:550-572. [PMID: 40232249 DOI: 10.1177/13872877251329583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2025]
Abstract
BackgroundAlzheimer's disease (AD) is a neurodegenerative disorder characterized by memory impairment. Neuroinflammatory processes, mediated by glial and immune cells, contribute to neuronal damage. Emerging evidence implicates innate immune mechanisms, including trained immunity and cell trans-differentiation, in AD pathogenesis, though their roles remain unclear.ObjectiveTo investigate transcriptomic changes in the 3xTg-AD mouse model, focusing on trained immunity and cell trans-differentiation in disease mechanisms.MethodsRNA-sequencing was performed on brain tissue (cortex plus hippocampus) from 11-month-old female 3xTg-AD and wild-type mice (n = 3/group). Differentially expressed genes (fold change > 1.5, p < 0.05) were identified and followed by bioinformatics and knowledge-based transcriptomic profiling. Public AD datasets were also analyzed.Results3xTg-AD mice exhibited 316 upregulated and 412 downregulated genes. Downregulated genes included those for blood-brain barrier protein, while upregulated genes related to cerebrospinal fluid. Increased expression of proinflammatory markers, as well as genes related to cell differentiation, proliferation, activation, and adhesion. Upregulation of genes associated with cell migration and trans-differentiation suggests a potential role for inflammation and cellular plasticity. Additionally, genes involved in inflammasome pathways, immunometabolism, and trained immunity were upregulated. Mechanistically, these genes were modulated by knockdown of trained immunity promoter SET-7, overexpression of trained immunity inhibitor IL-37, and knockout of inflammasome genes IL-1 receptor, caspase-1, and pattern recognition receptor CD36.ConclusionsThe finding underscore the potential role of trained immunity and cell trans-differentiation in AD, revealing a mechanistic framework in which danger-associated molecular patterns drive innate immune responses, inflammasome activation, and cell plasticity contribute to AD, offering therapeutic targets for neuroinflammation and cellular reprograming.
Collapse
Affiliation(s)
- Fatma Saaoud
- Lemole Center for Integrated Lymphatics and Vascular Research, Temple University, Philadelphia, PA, USA
| | - Lu Liu
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Keman Xu
- Lemole Center for Integrated Lymphatics and Vascular Research, Temple University, Philadelphia, PA, USA
| | - Yifan Lu
- Lemole Center for Integrated Lymphatics and Vascular Research, Temple University, Philadelphia, PA, USA
| | - Ying Shao
- Lemole Center for Integrated Lymphatics and Vascular Research, Temple University, Philadelphia, PA, USA
| | - Mohammed Ben Issa
- Lemole Center for Integrated Lymphatics and Vascular Research, Temple University, Philadelphia, PA, USA
| | - Xiaohua Jiang
- Lemole Center for Integrated Lymphatics and Vascular Research, Temple University, Philadelphia, PA, USA
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Xianwei Wang
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Xiaolei Liu
- Lemole Center for Integrated Lymphatics and Vascular Research, Temple University, Philadelphia, PA, USA
| | - Michael Autieri
- Lemole Center for Integrated Lymphatics and Vascular Research, Temple University, Philadelphia, PA, USA
| | - Sheng Wu
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Juncheng Wei
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Jun Yu
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Rihab Bouchareb
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Avrum Gillespie
- Section of Nephrology, Hypertension, and Kidney Transplantation, Department of Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Jin Jun Luo
- Department of Neurology, Temple University, Philadelphia, PA, USA
| | - Laisel Martinez
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Roberto Vazquez-Padron
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Jianxin Sun
- Department of Medicine, Center for Translational Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | - Huaqing Zhao
- Department of Biomedical Education and Data Sciences, Temple University, Philadelphia, PA, USA
| | - Hong Wang
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Domenico Pratico
- Alzheimer's Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Xiaofeng Yang
- Lemole Center for Integrated Lymphatics and Vascular Research, Temple University, Philadelphia, PA, USA
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| |
Collapse
|
2
|
Gonzalez-Acera M, Patankar JV, Erkert L, Cineus R, Gamez-Belmonte R, Leupold T, Bubeck M, Bao LL, Dinkel M, Wang R, Schickedanz L, Limberger H, Stolzer I, Gerlach K, Diemand L, Mascia F, Gupta P, Naschberger E, Koop K, Plattner C, Sturm G, Weigmann B, Günther C, Wirtz S, Stürzl M, Hildner K, Kühl AA, Siegmund B, Gießl A, Atreya R, Hegazy AN, Trajanoski Z, Neurath MF, Becker C. Integrated multimodel analysis of intestinal inflammation exposes key molecular features of preclinical and clinical IBD. Gut 2025:gutjnl-2024-333729. [PMID: 40301114 DOI: 10.1136/gutjnl-2024-333729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 04/16/2025] [Indexed: 05/01/2025]
Abstract
BACKGROUND IBD is a chronic inflammatory condition driven by complex genetic and immune interactions, yet preclinical models often fail to fully recapitulate all aspects of the human disease. A systematic comparison of commonly used IBD models is essential to identify conserved molecular mechanisms and improve translational relevance. OBJECTIVE We performed a multimodel transcriptomic analysis of 13 widely used IBD mouse models to uncover coregulatory gene networks conserved between preclinical colitis/ileitis and human IBD and to define model-specific and conserved cellular, subcellular and molecular signatures. DESIGN We employed comparative transcriptomic analyses with curated and a priori statistical correlative methods between mouse models versus IBD patient datasets at both bulk and single-cell levels. RESULTS We identify IBD-related pathways, ontologies and cellular compositions that are translatable between mouse models and patient cohorts. We further describe a conserved core inflammatory signature of IBD-associated genes governing T-cell homing, innate immunity and epithelial barrier that translates into the new mouse gut Molecular Inflammation Score (mMIS). Moreover, specific mouse IBD models have distinct signatures for B-cell, T-cell and enteric neurons. We discover that transcriptomic relatedness of models is a function of the mode of induction, not the canonical immunotype (Th1/Th2/Th17). Moreover, the model compendium database is made available as a web explorer (http://trr241.hosting.rrze.uni-erlangen.de/SEPIA/). CONCLUSION This integrated multimodel approach provides a framework for systematically assessing the molecular landscape of intestinal inflammation. Our findings reveal conserved inflammatory circuits, refine model selection, offering a valuable resource for the IBD research community.
Collapse
Affiliation(s)
- Miguel Gonzalez-Acera
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Deutsche Zentrum Immuntherapie (DZI), Friedrich-Alexander-Universitat Erlangen-Nurnberg, Erlangen, Germany
| | - Jay V Patankar
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Deutsche Zentrum Immuntherapie (DZI), Friedrich-Alexander-Universitat Erlangen-Nurnberg, Erlangen, Germany
| | - Lena Erkert
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Deutsche Zentrum Immuntherapie (DZI), Friedrich-Alexander-Universitat Erlangen-Nurnberg, Erlangen, Germany
| | - Roodline Cineus
- Department of Gastroenterology, Infectious Diseases and Rheumatology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Deutsches Rheuma-Forschungszentrum, ein Institut der Leibniz-Gemeinschaft, Berlin, Germany
| | - Reyes Gamez-Belmonte
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Deutsche Zentrum Immuntherapie (DZI), Friedrich-Alexander-Universitat Erlangen-Nurnberg, Erlangen, Germany
| | - Tamara Leupold
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Deutsche Zentrum Immuntherapie (DZI), Friedrich-Alexander-Universitat Erlangen-Nurnberg, Erlangen, Germany
| | - Marvin Bubeck
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Deutsche Zentrum Immuntherapie (DZI), Friedrich-Alexander-Universitat Erlangen-Nurnberg, Erlangen, Germany
| | - Li-Li Bao
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Deutsche Zentrum Immuntherapie (DZI), Friedrich-Alexander-Universitat Erlangen-Nurnberg, Erlangen, Germany
| | - Martin Dinkel
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Deutsche Zentrum Immuntherapie (DZI), Friedrich-Alexander-Universitat Erlangen-Nurnberg, Erlangen, Germany
| | - Ru Wang
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Deutsche Zentrum Immuntherapie (DZI), Friedrich-Alexander-Universitat Erlangen-Nurnberg, Erlangen, Germany
| | - Laura Schickedanz
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Deutsche Zentrum Immuntherapie (DZI), Friedrich-Alexander-Universitat Erlangen-Nurnberg, Erlangen, Germany
| | - Heidi Limberger
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Deutsche Zentrum Immuntherapie (DZI), Friedrich-Alexander-Universitat Erlangen-Nurnberg, Erlangen, Germany
| | - Iris Stolzer
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Deutsche Zentrum Immuntherapie (DZI), Friedrich-Alexander-Universitat Erlangen-Nurnberg, Erlangen, Germany
| | - Katharina Gerlach
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Deutsche Zentrum Immuntherapie (DZI), Friedrich-Alexander-Universitat Erlangen-Nurnberg, Erlangen, Germany
| | - Leonard Diemand
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Deutsche Zentrum Immuntherapie (DZI), Friedrich-Alexander-Universitat Erlangen-Nurnberg, Erlangen, Germany
| | - Fabrizio Mascia
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Deutsche Zentrum Immuntherapie (DZI), Friedrich-Alexander-Universitat Erlangen-Nurnberg, Erlangen, Germany
| | - Pooja Gupta
- Department of Stem Cell Biology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Erlangen, Bayern, Germany
| | - Elisabeth Naschberger
- Department of Surgery, Universitätsklinikum, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Kristina Koop
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Deutsche Zentrum Immuntherapie (DZI), Friedrich-Alexander-Universitat Erlangen-Nurnberg, Erlangen, Germany
| | - Christina Plattner
- Biocenter, Institute of Bioinformatics, Medical University of Innsbruck, Innsbruck, Austria
| | - Gregor Sturm
- Biocenter, Institute of Bioinformatics, Medical University of Innsbruck, Innsbruck, Austria
| | - Benno Weigmann
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Deutsche Zentrum Immuntherapie (DZI), Friedrich-Alexander-Universitat Erlangen-Nurnberg, Erlangen, Germany
| | - Claudia Günther
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Deutsche Zentrum Immuntherapie (DZI), Friedrich-Alexander-Universitat Erlangen-Nurnberg, Erlangen, Germany
| | - Stefan Wirtz
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Deutsche Zentrum Immuntherapie (DZI), Friedrich-Alexander-Universitat Erlangen-Nurnberg, Erlangen, Germany
| | - Michael Stürzl
- Department of Surgery, Universitätsklinikum, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Kai Hildner
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Deutsche Zentrum Immuntherapie (DZI), Friedrich-Alexander-Universitat Erlangen-Nurnberg, Erlangen, Germany
| | - Anja A Kühl
- iPATH.Berlin, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Britta Siegmund
- Department of Gastroenterology, Infectious Diseases and Rheumatology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Andreas Gießl
- Department of Ophthalmology, Universitätsklinikum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Raja Atreya
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Deutsche Zentrum Immuntherapie (DZI), Friedrich-Alexander-Universitat Erlangen-Nurnberg, Erlangen, Germany
| | - Ahmed N Hegazy
- Department of Gastroenterology, Infectious Diseases and Rheumatology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Deutsches Rheuma-Forschungszentrum, ein Institut der Leibniz-Gemeinschaft, Berlin, Germany
| | - Zlatko Trajanoski
- Biocenter, Institute of Bioinformatics, Medical University of Innsbruck, Innsbruck, Austria
| | - Markus F Neurath
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Deutsche Zentrum Immuntherapie (DZI), Friedrich-Alexander-Universitat Erlangen-Nurnberg, Erlangen, Germany
| | - Christoph Becker
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Deutsche Zentrum Immuntherapie (DZI), Friedrich-Alexander-Universitat Erlangen-Nurnberg, Erlangen, Germany
| |
Collapse
|
3
|
Roubanis A, Hilaire M, Le Teuff M, Devergne O, Sparwasser T, Berod L, Salomon BL. A new method to measure cell metabolism of rare cells in vivo reveals a high oxidative phosphorylation dependence of lung T cells. Immunol Cell Biol 2025. [PMID: 40268295 DOI: 10.1111/imcb.70018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 02/28/2025] [Accepted: 03/09/2025] [Indexed: 04/25/2025]
Abstract
Regulation of cellular metabolism is a central element governing the fate and function of T cells. However, the in vivo metabolic characteristics of rare cells, such as nonlymphoid tissue T cells, are poorly understood because of experimental limitations. Most techniques measuring cell metabolism require large cell numbers. The recent SCENITH method allows for studying the metabolism of rare cells by flow cytometry. However, this technique requires cells to be isolated and cultured ex vivo, which may alter their metabolism. Here, we propose a new experimental approach, called in vivo SCENITH, to investigate the cellular metabolism of T cells in vivo at a steady state in the spleen and lungs. For this purpose, we administered the metabolic modulators directly in mice, instead of applying these reagents ex vivo, as in the classical SCENITH method. Whereas ex vivo manipulation impacted the viability and phenotype of T cells, this toxic effect was not observed in the in vivo SCENITH. We observed that conventional and regulatory T cells shared similar metabolic profiles. Importantly, whereas spleen T cells used both oxidative phosphorylation and glycolysis, the metabolism of T cells in the lungs was mainly based on oxidative phosphorylation. Finally, metabolic inhibitors that interfere with protein translation and energy availability downregulated Foxp3 expression in regulatory T cells. These results describe an expansion of SCENITH that allows to measure the metabolic profile of rare cells in vivo, revealing a high dependence on oxidative phosphorylation of lung T cells.
Collapse
Affiliation(s)
- Aristeidis Roubanis
- Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), INSERM, CNRS, Sorbonne Université, Paris, France
| | - Morgane Hilaire
- Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), INSERM, CNRS, Sorbonne Université, Paris, France
| | - Morgane Le Teuff
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), INSERM - CNRS - University Toulouse III, Toulouse, France
| | - Odile Devergne
- Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), INSERM, CNRS, Sorbonne Université, Paris, France
| | - Tim Sparwasser
- Institute of Medical Microbiology and Hygiene and Research Center for Immunotherapy (FZI), University Medical Center, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Luciana Berod
- Institute of Medical Microbiology and Hygiene and Research Center for Immunotherapy (FZI), University Medical Center, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Benoît L Salomon
- Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), INSERM, CNRS, Sorbonne Université, Paris, France
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), INSERM - CNRS - University Toulouse III, Toulouse, France
| |
Collapse
|
4
|
Li M, Sun X, Zeng L, Sun A, Ge J. Metabolic Homeostasis of Immune Cells Modulates Cardiovascular Diseases. RESEARCH (WASHINGTON, D.C.) 2025; 8:0679. [PMID: 40270694 PMCID: PMC12015101 DOI: 10.34133/research.0679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 03/20/2025] [Accepted: 03/28/2025] [Indexed: 04/25/2025]
Abstract
Recent investigations into the mechanisms underlying inflammation have highlighted the pivotal role of immune cells in regulating cardiac pathophysiology. Notably, these immune cells modulate cardiac processes through alternations in intracellular metabolism, including glycolysis and oxidative phosphorylation, whereas the extracellular metabolic environment is changed during cardiovascular disease, influencing function of immune cells. This dynamic interaction between immune cells and their metabolic environment has given rise to the novel concept of "immune metabolism". Consequently, both the extracellular and intracellular metabolic environment modulate the equilibrium between anti- and pro-inflammatory responses. This regulatory mechanism subsequently influences the processes of myocardial ischemia, cardiac fibrosis, and cardiac remodeling, ultimately leading to a series of cardiovascular events. This review examines how local microenvironmental and systemic environmental changes induce metabolic reprogramming in immune cells and explores the subsequent effects of aberrant activation or polarization of immune cells in the progression of cardiovascular disease. Finally, we discuss potential therapeutic strategies targeting metabolism to counteract abnormal immune activation.
Collapse
Affiliation(s)
- Mohan Li
- Department of Cardiology, Zhongshan Hospital,
Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
- State Key Laboratory of Cardiology, Zhongshan Hospital,
Fudan University, Shanghai 200032, China
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai 200032, China
- Key Laboratory of Viral Heart Diseases,
Chinese Academy of Medical Sciences, Shanghai 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai 200032, China
| | - Xiaolei Sun
- Department of Cardiology, Zhongshan Hospital,
Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
- State Key Laboratory of Cardiology, Zhongshan Hospital,
Fudan University, Shanghai 200032, China
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai 200032, China
- Key Laboratory of Viral Heart Diseases,
Chinese Academy of Medical Sciences, Shanghai 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai 200032, China
| | - Linqi Zeng
- Department of Cardiology, Zhongshan Hospital,
Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
- State Key Laboratory of Cardiology, Zhongshan Hospital,
Fudan University, Shanghai 200032, China
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai 200032, China
- Key Laboratory of Viral Heart Diseases,
Chinese Academy of Medical Sciences, Shanghai 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai 200032, China
| | - Aijun Sun
- Department of Cardiology, Zhongshan Hospital,
Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
- State Key Laboratory of Cardiology, Zhongshan Hospital,
Fudan University, Shanghai 200032, China
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai 200032, China
- Key Laboratory of Viral Heart Diseases,
Chinese Academy of Medical Sciences, Shanghai 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai 200032, China
- Institutes of Biomedical Sciences,
Fudan University, Shanghai 200032, China
| | - Junbo Ge
- Department of Cardiology, Zhongshan Hospital,
Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
- State Key Laboratory of Cardiology, Zhongshan Hospital,
Fudan University, Shanghai 200032, China
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai 200032, China
- Key Laboratory of Viral Heart Diseases,
Chinese Academy of Medical Sciences, Shanghai 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai 200032, China
- Institutes of Biomedical Sciences,
Fudan University, Shanghai 200032, China
| |
Collapse
|
5
|
Petrova B, Guler AT. Recent Developments in Single-Cell Metabolomics by Mass Spectrometry─A Perspective. J Proteome Res 2025; 24:1493-1518. [PMID: 39437423 PMCID: PMC11976873 DOI: 10.1021/acs.jproteome.4c00646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 10/07/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024]
Abstract
Recent advancements in single-cell (sc) resolution analyses, particularly in sc transcriptomics and sc proteomics, have revolutionized our ability to probe and understand cellular heterogeneity. The study of metabolism through small molecules, metabolomics, provides an additional level of information otherwise unattainable by transcriptomics or proteomics by shedding light on the metabolic pathways that translate gene expression into functional outcomes. Metabolic heterogeneity, critical in health and disease, impacts developmental outcomes, disease progression, and treatment responses. However, dedicated approaches probing the sc metabolome have not reached the maturity of other sc omics technologies. Over the past decade, innovations in sc metabolomics have addressed some of the practical limitations, including cell isolation, signal sensitivity, and throughput. To fully exploit their potential in biological research, however, remaining challenges must be thoroughly addressed. Additionally, integrating sc metabolomics with orthogonal sc techniques will be required to validate relevant results and gain systems-level understanding. This perspective offers a broad-stroke overview of recent mass spectrometry (MS)-based sc metabolomics advancements, focusing on ongoing challenges from a biologist's viewpoint, aimed at addressing pertinent and innovative biological questions. Additionally, we emphasize the use of orthogonal approaches and showcase biological systems that these sophisticated methodologies are apt to explore.
Collapse
Affiliation(s)
- Boryana Petrova
- Medical
University of Vienna, Vienna 1090, Austria
- Department
of Pathology, Boston Children’s Hospital, Boston, Massachusetts 02115, United States
| | - Arzu Tugce Guler
- Department
of Pathology, Boston Children’s Hospital, Boston, Massachusetts 02115, United States
- Institute
for Experiential AI, Northeastern University, Boston, Massachusetts 02115, United States
| |
Collapse
|
6
|
Zhao R, Zhang X, Geng Y, Lu D, Wang Y, Xie H, Zhang X, Xu S, Cao Y. SPRY1 regulates macrophage M1 polarization in skin aging and melanoma prognosis. Transl Oncol 2025; 54:102331. [PMID: 40023001 PMCID: PMC11915026 DOI: 10.1016/j.tranon.2025.102331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/28/2025] [Accepted: 02/10/2025] [Indexed: 03/04/2025] Open
Abstract
INTRODUCTION Skin aging is a complex, multifactorial process involving cellular damage, inflammation, and increased susceptibility to diseases. Despite its importance, the role of SPRY1 in skin aging remains poorly understood. This study aims to investigate the function of SPRY1 in skin aging, particularly its impact on macrophage M1 polarization, and explore its potential as a therapeutic target for mitigating skin aging and melanoma. METHODS Bioinformatics analyses were performed using datasets from the GTEx and GEO databases, alongside in vitro cellular experiments. These included Weighted Gene Co-expression Network Analysis (WGCNA), single-cell sequencing, and various cellular assays in RAW264.7 murine monocyte/macrophage leukemia cells and NIH/3T3 mouse skin fibroblasts. The assays comprised gene transfection, Cell Counting Kit-8 (CCK-8) assays, quantitative real-time PCR (qRT-PCR), and measurements of reactive oxygen species (ROS) and superoxide dismutase (SOD) activity. RESULTS SPRY1 was identified as a key gene within modules linked to skin aging. Single-cell sequencing revealed its enrichment in macrophages and keratinocytes. Knockdown of SPRY1 in RAW264.7 cells resulted in a shift from M1 to M2 macrophage polarization, reduced oxidative stress, and decreased expression of inflammatory markers. In NIH/3T3 cells, SPRY1 knockdown reduced cell viability and lowered the expression of inflammatory genes. Additionally, SPRY1 expression was downregulated in melanoma, and its reduced levels were associated with poorer survival outcomes. CONCLUSIONS SPRY1 accelerates skin aging by promoting macrophage M1 polarization and may serve as a promising therapeutic target. Future research should focus on in vivo validation and further exploration of its regulatory networks to develop novel treatments.
Collapse
Affiliation(s)
- Rongxin Zhao
- Department of Dermatology, Pudong New Area People's Hospital, 490 Chuanhuang South Road, Pudong New Area, Shanghai, China
| | - Xun Zhang
- Digestive Endoscopy Center, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 XianXia Road, Shanghai 200336, China
| | - Yingnan Geng
- Department of Burns and Plastic Surgery, Second Affiliated Hospital of Naval Medical University, 415 Fengyang Road, Huangpu District, Shanghai 200003, China
| | - Dan Lu
- Department of Dermatology, Pudong New Area People's Hospital, 490 Chuanhuang South Road, Pudong New Area, Shanghai, China
| | - Yuqing Wang
- Department of Dermatology, Xuzhou Huamei Cosmetology Hospital, Jiangsu, West Huaihai Road, Quanshan District, Xuzhou, Jiangsu, China
| | - Han Xie
- The Fifth People's Hospital of Shanghai, Fudan University, No. 128, Ruili Road, Minhang District, Shanghai, China
| | - Xiaofei Zhang
- Shanghai Xinmei Medical Beauty Outpatient Department, 202A, No.285, Jianguo West Road, Xuhui District, Shanghai, China.
| | - Shunming Xu
- Department of Dermatology, Pudong New Area People's Hospital, 490 Chuanhuang South Road, Pudong New Area, Shanghai, China.
| | - Yanyun Cao
- Department of Dermatology, Pudong New Area People's Hospital, 490 Chuanhuang South Road, Pudong New Area, Shanghai, China.
| |
Collapse
|
7
|
Xie X, Liu W, Yuan Z, Chen H, Mao W. Bridging epigenomics and tumor immunometabolism: molecular mechanisms and therapeutic implications. Mol Cancer 2025; 24:71. [PMID: 40057791 PMCID: PMC11889836 DOI: 10.1186/s12943-025-02269-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 02/11/2025] [Indexed: 04/02/2025] Open
Abstract
Epigenomic modifications-such as DNA methylation, histone acetylation, and histone methylation-and their implications in tumorigenesis, progression, and treatment have emerged as a pivotal field in cancer research. Tumors undergo metabolic reprogramming to sustain proliferation and metastasis in nutrient-deficient conditions, while suppressing anti-tumor immunity in the tumor microenvironment (TME). Concurrently, immune cells within the immunosuppressive TME undergo metabolic adaptations, leading to alterations in their immune function. The complicated interplay between metabolites and epigenomic modulation has spotlighted the significance of epigenomic regulation in tumor immunometabolism. In this review, characteristics of the epigenomic modification associated with tumors are systematically summarized alongside with their regulatory roles in tumor metabolic reprogramming and immunometabolism. Classical and emerging approaches are delineated to broaden the boundaries of research on the crosstalk research on the crosstalk between tumor immunometabolism and epigenomics. Furthermore, we discuss potential therapeutic strategies that target tumor immunometabolism to modulate epigenomic modifications, highlighting the burgeoning synergy between metabolic therapies and immunotherapy as a promising avenue for cancer treatment.
Collapse
Affiliation(s)
- Xiaowen Xie
- Department of Thoracic Surgery, the Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, 214023, China
| | - Weici Liu
- Department of Thoracic Surgery, the Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, 214023, China
- Center of Clinical Research, the Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, 214023, China
| | - Zhiyuan Yuan
- Institute of Science and Technology for Brain-Inspired Intelligence; MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence; MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200433, China.
| | - Hanqing Chen
- Department of Nutrition and Food Hygiene, School of Public Health, Capital Medical University, Beijing, 100069, China.
| | - Wenjun Mao
- Department of Thoracic Surgery, the Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, 214023, China.
| |
Collapse
|
8
|
Suri C, Pande B, Suhasini Sahithi L, Swarnkar S, Khelkar T, Verma HK. Metabolic crossroads: unravelling immune cell dynamics in gastrointestinal cancer drug resistance. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2025; 8:7. [PMID: 40051496 PMCID: PMC11883236 DOI: 10.20517/cdr.2024.164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 01/15/2025] [Accepted: 01/20/2025] [Indexed: 03/09/2025]
Abstract
Metabolic reprogramming within the tumor microenvironment (TME) plays a critical role in driving drug resistance in gastrointestinal cancers (GI), particularly through the pathways of fatty acid oxidation and glycolysis. Cancer cells often rewire their metabolism to sustain growth and reshape the TME, creating conditions such as nutrient depletion, hypoxia, and acidity that impair antitumor immune responses. Immune cells within the TME also undergo metabolic alterations, frequently adopting immunosuppressive phenotypes that promote tumor progression and reduce the efficacy of therapies. The competition for essential nutrients, particularly glucose, between cancer and immune cells compromises the antitumor functions of effector immune cells, such as T cells. Additionally, metabolic by-products like lactate and kynurenine further suppress immune activity and promote immunosuppressive populations, including regulatory T cells and M2 macrophages. Targeting metabolic pathways such as fatty acid oxidation and glycolysis presents new opportunities to overcome drug resistance and improve therapeutic outcomes in GI cancers. Modulating these key pathways has the potential to reinvigorate exhausted immune cells, shift immunosuppressive cells toward antitumor phenotypes, and enhance the effectiveness of immunotherapies and other treatments. Future strategies will require continued research into TME metabolism, the development of novel metabolic inhibitors, and clinical trials evaluating combination therapies. Identifying and validating metabolic biomarkers will also be crucial for patient stratification and treatment monitoring. Insights into metabolic reprogramming in GI cancers may have broader implications across multiple cancer types, offering new avenues for improving cancer treatment.
Collapse
Affiliation(s)
- Chahat Suri
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton AB T6G 1Z2, Canada
| | - Babita Pande
- Department of Physiology, All India Institute of Medical Sciences, Raipur 492099, India
| | | | | | - Tuneer Khelkar
- Department of Botany and Biotechnology, Govt. Kaktiya P G College, Jagdalpur 494001, India
| | - Henu Kumar Verma
- Department of Immunopathology, Institute of Lung Health and Immunity, Comprehensive Pneumology Center, Helmholtz Zentrum, Munich 85764, Germany
| |
Collapse
|
9
|
Jin R, Neufeld L, McGaha TL. Linking macrophage metabolism to function in the tumor microenvironment. NATURE CANCER 2025; 6:239-252. [PMID: 39962208 DOI: 10.1038/s43018-025-00909-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 12/10/2024] [Indexed: 02/28/2025]
Abstract
Macrophages are present at high frequency in most solid tumor types, and their relative abundance negatively correlates with therapy responses and survival outcomes. Tissue-resident macrophages are highly tuned to integrate tissue niche signals, and multiple factors within the idiosyncratic tumor microenvironment (TME) drive macrophages to polarization states that favor immune suppression, tumor growth and metastasis. These diverse functional states are underpinned by extensive and complex rewiring of tumor-associated macrophage (TAM) metabolism. In this Review, we link distinct and specific macrophage functional states within the TME to major, phenotype-sustaining metabolic programs and discuss the metabolic impact of macrophage-modulating therapeutic interventions.
Collapse
Affiliation(s)
- Robbie Jin
- Tumor Immunotherapy Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Immunology, Temerty Faculty of Medicine, the University of Toronto, Toronto, Ontario, Canada
| | - Luke Neufeld
- Tumor Immunotherapy Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Immunology, Temerty Faculty of Medicine, the University of Toronto, Toronto, Ontario, Canada
| | - Tracy L McGaha
- Tumor Immunotherapy Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.
- Department of Immunology, Temerty Faculty of Medicine, the University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
10
|
Zhang QS, Wang JN, Yang TL, Li SY, Li JQ, Liu DN, Shang H, Zhang ZN. SHMT2 regulates CD8+ T cell senescence via the reactive oxygen species axis in HIV-1 infected patients on antiretroviral therapy. EBioMedicine 2025; 112:105533. [PMID: 39808948 PMCID: PMC11782833 DOI: 10.1016/j.ebiom.2024.105533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND Although antiretroviral therapy (ART) effectively inhibits viral replication, it does not fully mitigate the immunosenescence instigated by HIV infection. Cellular metabolism regulates cellular differentiation, survival, and senescence. Serine hydroxymethyltransferase 2 (SHMT2) is the first key enzyme for the entry of serine into the mitochondria from the de novo synthesis pathway that orchestrates its conversion glutathione (GSH), a key molecule in neutralising ROS and ensuring the stability of the immune system. It remains incompletely understood whether SHMT2 is involved in the senescence of CD8+ T cells, crucial for immune vigilance against HIV. METHODS HIV-infected individuals receiving antiretroviral therapy were enrolled in our study. SHMT2-siRNA was electroporated into T cells to disrupt the gene expression of SHMT2, followed by the quantification of mRNA levels of crucial serine metabolism enzymes using real-time PCR. Immunophenotyping, proliferation, cellular and mitochondrial function, and senescence-associated signalling pathways were examined using flow cytometry in CD8+ T cell subsets. FINDINGS Our findings revealed that CD8+ T cells in HIV-infected subjects are inclined towards senescence, and we identified that SHMT2, a key enzyme in serine metabolism, plays a role in CD8+ T cell senescence. SHMT2 can regulate glutathione (GSH) synthesis and protect mitochondrial function, thus effectively controlling intracellular reactive oxygen species (ROS) levels. Moreover, SHMT2 significantly contributes to averting immunosenescence and sustaining CD8+ T cell competence by modulating downstream DNA damage and phosphorylation cascades in pathways intricately linked to cellular senescence. Additionally, our study identified glycine can ameliorate CD8+ T cell senescence in HIV-infected individuals. INTERPRETATION Decreased SHMT2 levels in HIV-infected CD8+ T cells affect ROS levels by altering mitochondrial function and GSH content. Increased ROS levels activate senescence-related signalling pathways in the nucleus. However, glycine supplementation counteracts these effects and moderates senescence. FUNDING This study was supported by grants from the National Key R&D Program of China (2021YFC2301900-2021YFC2301901), National Natural Science Foundation of China (82372240), and Department of Science and Technology of Liaoning Province Project for the High-Quality Scientific and Technological Development of China Medical University (2022JH2/20200074).
Collapse
Affiliation(s)
- Qi-Sheng Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, NHC Key Laboratory of AIDS Prevention and Treatment, National Clinical Research Center for Laboratory Medicine, The First Hospital of China Medical University, China Medical University, Shenyang, 110001, China; The First Affiliated Hospital of Baotou Medical College, Baotou, 014010, China; Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, 110001, China; Key Laboratory of AIDS Immunology of Liaoning Province, Shenyang, 110001, China
| | - Jia-Ning Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, NHC Key Laboratory of AIDS Prevention and Treatment, National Clinical Research Center for Laboratory Medicine, The First Hospital of China Medical University, China Medical University, Shenyang, 110001, China; Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, 110001, China; Key Laboratory of AIDS Immunology of Liaoning Province, Shenyang, 110001, China
| | - Tian-Ling Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, NHC Key Laboratory of AIDS Prevention and Treatment, National Clinical Research Center for Laboratory Medicine, The First Hospital of China Medical University, China Medical University, Shenyang, 110001, China; Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, 110001, China; Key Laboratory of AIDS Immunology of Liaoning Province, Shenyang, 110001, China
| | - Si-Yao Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, NHC Key Laboratory of AIDS Prevention and Treatment, National Clinical Research Center for Laboratory Medicine, The First Hospital of China Medical University, China Medical University, Shenyang, 110001, China; Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, 110001, China; Key Laboratory of AIDS Immunology of Liaoning Province, Shenyang, 110001, China
| | - Jia-Qi Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, NHC Key Laboratory of AIDS Prevention and Treatment, National Clinical Research Center for Laboratory Medicine, The First Hospital of China Medical University, China Medical University, Shenyang, 110001, China; Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, 110001, China; Key Laboratory of AIDS Immunology of Liaoning Province, Shenyang, 110001, China
| | - Ding-Ning Liu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, NHC Key Laboratory of AIDS Prevention and Treatment, National Clinical Research Center for Laboratory Medicine, The First Hospital of China Medical University, China Medical University, Shenyang, 110001, China; Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, 110001, China; Key Laboratory of AIDS Immunology of Liaoning Province, Shenyang, 110001, China
| | - Hong Shang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, NHC Key Laboratory of AIDS Prevention and Treatment, National Clinical Research Center for Laboratory Medicine, The First Hospital of China Medical University, China Medical University, Shenyang, 110001, China; Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, 110001, China; Key Laboratory of AIDS Immunology of Liaoning Province, Shenyang, 110001, China.
| | - Zi-Ning Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, NHC Key Laboratory of AIDS Prevention and Treatment, National Clinical Research Center for Laboratory Medicine, The First Hospital of China Medical University, China Medical University, Shenyang, 110001, China; Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, 110001, China; Key Laboratory of AIDS Immunology of Liaoning Province, Shenyang, 110001, China.
| |
Collapse
|
11
|
Niveau C, Cettour-Cave M, Mouret S, Sosa Cuevas E, Pezet M, Roubinet B, Gil H, De Fraipont F, Landemarre L, Charles J, Saas P, Aspord C. MCT1 lactate transporter blockade re-invigorates anti-tumor immunity through metabolic rewiring of dendritic cells in melanoma. Nat Commun 2025; 16:1083. [PMID: 39870647 PMCID: PMC11772620 DOI: 10.1038/s41467-025-56392-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 01/16/2025] [Indexed: 01/30/2025] Open
Abstract
Dendritic cells (DC) are key players in antitumor immune responses. Tumors exploit their plasticity to escape immune control; their aberrant surface carbohydrate patterns (e.g., glycans) shape immune responses through lectin binding, and manipulate the metabolism of immune cells, including DCs to alter their function and escape immune surveillance. DC metabolic reprogramming could induce immune subversion and tumor immune escape. Here we explore metabolic features of human DC subsets (cDC2s, cDC1s, pDCs) in melanoma, at single cell level, using the flow cytometry-based SCENITH (Single-Cell ENergetIc metabolism by profiling Translation inHibition) method. We demonstrate that circulating and tumor-infiltrating DC subsets from melanoma patients are characterized by altered metabolism, which is linked to their activation status and profile of immune checkpoint expression. This altered metabolism influences their function and affects patient clinical outcome. Notably, melanoma tumor cells directly remodel the metabolic profile of DC subsets, in a glycan-dependent manner. Strikingly, modulation of the mTOR/AMPK-dependent metabolic pathways and/or the MCT1 lactate transporter rescue cDC2s and cDC1s from skewing by tumor-derived glycans, Sialyl-Tn antigen and Fucose, and restore anti-tumor T-cell fitness. Our findings thus open the way for appropriate tuning of metabolic pathways to rescue DCs from tumor hijacking and restore potent antitumor responses.
Collapse
Affiliation(s)
- Camille Niveau
- Institute for Advanced Biosciences, Team: Epigenetics, Immunity, Metabolism, Cell Signaling & Cancer, Inserm U 1209, CNRS UMR 5309, Univ. Grenoble Alpes, Grenoble, France
- Etablissement Français du Sang Auvergne-Rhône-Alpes, R&D Laboratory, Grenoble, France
| | - Mélanie Cettour-Cave
- Institute for Advanced Biosciences, Team: Epigenetics, Immunity, Metabolism, Cell Signaling & Cancer, Inserm U 1209, CNRS UMR 5309, Univ. Grenoble Alpes, Grenoble, France
- Etablissement Français du Sang Auvergne-Rhône-Alpes, R&D Laboratory, Grenoble, France
| | - Stéphane Mouret
- Dermatology, Allergology & Photobiology Department, Univ. Grenoble Alpes, CHU Grenoble Alpes, Grenoble, France
| | - Eleonora Sosa Cuevas
- Institute for Advanced Biosciences, Team: Epigenetics, Immunity, Metabolism, Cell Signaling & Cancer, Inserm U 1209, CNRS UMR 5309, Univ. Grenoble Alpes, Grenoble, France
- Etablissement Français du Sang Auvergne-Rhône-Alpes, R&D Laboratory, Grenoble, France
| | - Mylene Pezet
- Optical Microscopy and Flow Cytometry (MicroCell), Institute for Advanced Biosciences, Inserm U 1209, CNRS UMR 5309, Univ. Grenoble Alpes, Grenoble, France
| | | | - Hugo Gil
- Department of Anatomopathology, Grenoble Alpes University Hospital Center, Grenoble, France
| | - Florence De Fraipont
- Medical Unit of Molecular genetic (hereditary diseases and oncology), Grenoble University Hospital, Grenoble, France
| | | | - Julie Charles
- Dermatology, Allergology & Photobiology Department, Univ. Grenoble Alpes, CHU Grenoble Alpes, Grenoble, France
| | - Philippe Saas
- Institute for Advanced Biosciences, Team: Epigenetics, Immunity, Metabolism, Cell Signaling & Cancer, Inserm U 1209, CNRS UMR 5309, Univ. Grenoble Alpes, Grenoble, France
- Etablissement Français du Sang Auvergne-Rhône-Alpes, R&D Laboratory, Grenoble, France
| | - Caroline Aspord
- Institute for Advanced Biosciences, Team: Epigenetics, Immunity, Metabolism, Cell Signaling & Cancer, Inserm U 1209, CNRS UMR 5309, Univ. Grenoble Alpes, Grenoble, France.
- Etablissement Français du Sang Auvergne-Rhône-Alpes, R&D Laboratory, Grenoble, France.
| |
Collapse
|
12
|
Ma M, Zhang Y, Pu K, Tang W. Nanomaterial-enabled metabolic reprogramming strategies for boosting antitumor immunity. Chem Soc Rev 2025; 54:653-714. [PMID: 39620588 DOI: 10.1039/d4cs00679h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2025]
Abstract
Immunotherapy has become a crucial strategy in cancer treatment, but its effectiveness is often constrained. Most cancer immunotherapies focus on stimulating T-cell-mediated immunity by driving the cancer-immunity cycle, which includes tumor antigen release, antigen presentation, T cell activation, infiltration, and tumor cell killing. However, metabolism reprogramming in the tumor microenvironment (TME) supports the viability of cancer cells and inhibits the function of immune cells within this cycle, presenting clinical challenges. The distinct metabolic needs of tumor cells and immune cells require precise and selective metabolic interventions to maximize therapeutic outcomes while minimizing adverse effects. Recent advances in nanotherapeutics offer a promising approach to target tumor metabolism reprogramming and enhance the cancer-immunity cycle through tailored metabolic modulation. In this review, we explore cutting-edge nanomaterial strategies for modulating tumor metabolism to improve therapeutic outcomes. We review the design principles of nanoplatforms for immunometabolic modulation, key metabolic pathways and their regulation, recent advances in targeting these pathways for the cancer-immunity cycle enhancement, and future prospects for next-generation metabolic nanomodulators in cancer immunotherapy. We expect that emerging immunometabolic modulatory nanotechnology will establish a new frontier in cancer immunotherapy in the near future.
Collapse
Affiliation(s)
- Muye Ma
- Department of Diagnostic Radiology, Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Dr, Singapore, 117597, Singapore.
| | - Yongliang Zhang
- Department of Microbiology and Immunology, Immunology Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Dr 2, Singapore, 117545, Singapore
- Immunology Programme, Life Sciences Institute, National University of Singapore, 28 Medical Dr, Singapore, 117597, Singapore
| | - Kanyi Pu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore.
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, Singapore, 636921, Singapore
| | - Wei Tang
- Department of Diagnostic Radiology, Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Dr, Singapore, 117597, Singapore.
- Department of Pharmacy and Pharmaceutic Sciences, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore, 117543, Singapore
| |
Collapse
|
13
|
Cai H, Li T, Feng W, Wu X, Zhao Y, Wang T. Triple probiotics attenuate colitis via inhibiting macrophage glycolysis dependent pro-inflammatory response. Biochem Biophys Res Commun 2025; 742:151128. [PMID: 39644601 DOI: 10.1016/j.bbrc.2024.151128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 11/05/2024] [Accepted: 12/02/2024] [Indexed: 12/09/2024]
Abstract
Probiotics, a class of live microorganisms, play an important role in anti-inflammation, regulating immunity and optimizing intestinal microecological environment. In this study, we constructed a combination of three strains - Lactobacillus acidophilus, Bacillus bulgaricus, and Bacillus subtilis - to ferment triple probiotics Bornlisy. Our findings indicate that Bornlisy has a significant therapeutic effect in alleviating colitis in mice, further proofing its ability to suppress inflammation in colon, enhance intestinal barrier function and restore imbalanced intestinal microbiome. Then we found Bornlisy could modulate immune response by inhibiting macrophage glycolysis and ultimately attenuated the progression of colitis in mice. Our investigation into the therapeutic efficacy of Bornlisy in colitis revealed that triple probiotics offer a promising approach for the management of intestinal inflammation.
Collapse
Affiliation(s)
- Hantao Cai
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China; Jiangsu Key Laboratory of Molecular Medicine, Division of Immunology, Medical School, Nanjing University, Nanjing, China
| | - Tianxin Li
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China; Jiangsu Key Laboratory of Molecular Medicine, Division of Immunology, Medical School, Nanjing University, Nanjing, China
| | - Wanting Feng
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China; Jiangsu Key Laboratory of Molecular Medicine, Division of Immunology, Medical School, Nanjing University, Nanjing, China
| | - Xian Wu
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China; Jiangsu Key Laboratory of Molecular Medicine, Division of Immunology, Medical School, Nanjing University, Nanjing, China
| | - Yue Zhao
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China; Jiangsu Key Laboratory of Molecular Medicine, Division of Immunology, Medical School, Nanjing University, Nanjing, China.
| | - Tingting Wang
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China; Jiangsu Key Laboratory of Molecular Medicine, Division of Immunology, Medical School, Nanjing University, Nanjing, China.
| |
Collapse
|
14
|
Liu C, Mou S, Zhang B, Pang Y, Chan L, Li J, He Q, Zheng Z, Zhao Z, Sun W, Shi X, Qiu H, Deng X, Wang W, Ge P, Zhao J. Innate Immune Cell Profiling in Peripheral Blood Mononuclear Cells of Patients with Moyamoya Disease. Inflammation 2024:10.1007/s10753-024-02201-4. [PMID: 39671077 DOI: 10.1007/s10753-024-02201-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/13/2024] [Accepted: 11/24/2024] [Indexed: 12/14/2024]
Abstract
Moyamoya disease (MMD) is a rare cerebrovascular disease characterized by stenosis or occlusion of the internal carotid artery, thus leading to ischaemic and haemorrhagic strokes. Although genetic studies have identified ring finger protein 213 (RNF213) as a susceptibility gene, the low disease penetrance suggests that a secondary trigger, such as infection, may initiate disease onset. This study aimed to characterize the innate immune cell profile of peripheral blood mononuclear cells (PBMCs) of MMD patients via mass cytometry (CyTOF). Blood samples from 10 MMD patients and 10 healthy controls were analysed, with a focus on natural killer (NK) cells, monocytes, and dendritic cells (DCs). The results revealed significant changes in the NK and monocyte subpopulations in MMD patients; specifically, there was a decrease in the CD56dimCD16- NK03 subset and an increase in CD163high classical monocytes, thus indicating compromised microbial defences and heightened inflammation. Additionally, significant changes were observed in DC subpopulations, including an increase in CCR7+ mature DCs and a decrease in CD141+ and CD1c+ DCs. Overactivation of the TLR/MyD88/NF-κB pathway was observed in most innate immune cells, thus indicating its potential role in disease progression. These findings provide novel insights into immune dysfunction in MMD and highlight potential therapeutic targets.
Collapse
Affiliation(s)
- Chenglong Liu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Siqi Mou
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- Medical School, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Bojian Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Yuheng Pang
- Beijing Institute of Hepatology, Beijing YouAn Hospital, Capital Medical University, Beijing, 100069, China
| | - Liujia Chan
- Beijing Institute of Hepatology, Beijing YouAn Hospital, Capital Medical University, Beijing, 100069, China
| | - Junsheng Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Qiheng He
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Zhiyao Zheng
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- Research Unit of Accurate Diagnosis, Treatment, and Translational Medicine of Brain Tumors (No.2019RU011), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Zhikang Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Wei Sun
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Xiangjun Shi
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- Department of Rheumatology and Immunology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Hancheng Qiu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Xiaofeng Deng
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Wenjing Wang
- Beijing Institute of Hepatology, Beijing YouAn Hospital, Capital Medical University, Beijing, 100069, China.
| | - Peicong Ge
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China.
| | - Jizong Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China.
| |
Collapse
|
15
|
Guerreiro D, Almeida A, Ramalho R. Ketogenic Diet and Neuroinflammation: Implications for Neuroimmunometabolism and Therapeutic Approaches to Refractory Epilepsy. Nutrients 2024; 16:3994. [PMID: 39683388 DOI: 10.3390/nu16233994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/18/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024] Open
Abstract
Refractory epilepsy, characterized by seizures that do not respond to standard antiseizure medications, remains a significant clinical challenge. The central role of the immune system on the occurrence of epileptic disorders has been long studied, but recent perspectives on immunometabolism and neuroinflammation are reshaping scientific knowledge. The ketogenic diet and its variants have been considered an important medical nutrition therapy for refractory epilepsy and may have a potential modulation effect on the immune system, specifically, on the metabolism of immune cells. In this comprehensive review, we gathered current evidence-based practice, ketogenic diet variants and interventional ongoing clinical trials addressing the role of the ketogenic diet in epilepsy. We also discussed in detail the ketogenic diet metabolism and its anticonvulsant mechanisms, and the potential role of this diet on neuroinflammation and neuroimmunometabolism, highlighting Th17/Treg homeostasis as one of the most interesting aspects of ketogenic diet immune modulation in refractory epilepsy, deserving consideration in future clinical trials.
Collapse
Affiliation(s)
- Daniela Guerreiro
- Nutrition Lab, Egas Moniz Center for Interdisciplinary Research (CiiEM, U4585 FCT), Egas Moniz School of Health and Science, 2829-511 Caparica, Portugal
- Nutritional Immunology-Clinical and Experimental Lab (NICE Lab), Clinical Research Unit, Egas Moniz Center for Interdisciplinary Research (CiiEM, U4585 FCT), Egas Moniz School of Health and Science, 2829-511 Caparica, Portugal
| | - Anabela Almeida
- Serviço de Nutrição do Hospital Garcia de Orta (HGO), 2805-267 Almada, Portugal
| | - Renata Ramalho
- Nutrition Lab, Egas Moniz Center for Interdisciplinary Research (CiiEM, U4585 FCT), Egas Moniz School of Health and Science, 2829-511 Caparica, Portugal
- Nutritional Immunology-Clinical and Experimental Lab (NICE Lab), Clinical Research Unit, Egas Moniz Center for Interdisciplinary Research (CiiEM, U4585 FCT), Egas Moniz School of Health and Science, 2829-511 Caparica, Portugal
| |
Collapse
|
16
|
Phillips EA, Alharithi YJ, Kadam L, Coussens LM, Kumar S, Maloyan A. Metabolic abnormalities in the bone marrow cells of young offspring born to mothers with obesity. Int J Obes (Lond) 2024; 48:1542-1551. [PMID: 38937647 DOI: 10.1038/s41366-024-01563-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 05/31/2024] [Accepted: 06/05/2024] [Indexed: 06/29/2024]
Abstract
BACKGROUND/OBJECTIVES Intrauterine metabolic reprogramming occurs in mothers with obesity during gestation, putting the offspring at high risk of developing obesity and associated metabolic disorders even before birth. We have generated a mouse model of maternal high-fat diet-induced obesity that recapitulates the metabolic changes seen in humans born to women with obesity. METHODS Here, we profiled and compared the metabolic characteristics of bone marrow cells of newly weaned 3-week-old offspring of dams fed either a high-fat (Off-HFD) or a regular diet (Off-RD). We utilized a state-of-the-art flow cytometry, and targeted metabolomics approach coupled with a Seahorse metabolic analyzer. RESULTS We revealed significant metabolic perturbation in the offspring of HFD-fed vs. RD-fed dams, including utilization of glucose primarily via oxidative phosphorylation. We also show a reduction in levels of amino acids, a phenomenon previously linked to bone marrow aging. Using flow cytometry, we found changes in the immune complexity of bone marrow cells and identified a unique B cell population expressing CD19 and CD11b in the bone marrow of three-week-old offspring of high-fat diet-fed mothers. Our data also revealed increased expression of Cyclooxygenase-2 (COX-2) on myeloid CD11b, and on CD11bhi B cells. CONCLUSIONS Altogether, we demonstrate that the offspring of mothers with obesity show metabolic and immune changes in the bone marrow at a very young age and prior to any symptomatic metabolic disease.
Collapse
Affiliation(s)
- Elysse A Phillips
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, 97239, USA
- The University of California San Francisco, San Francisco, CA, USA
| | - Yem J Alharithi
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Leena Kadam
- Department of OB/GYN, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Lisa M Coussens
- Department of Cell, Development and Cancer Biology, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Sushil Kumar
- Department of Cell, Development and Cancer Biology, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, 97239, USA.
| | - Alina Maloyan
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, 97239, USA.
- The University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
17
|
Zhang C, Ren T, Zhao X, Su Y, Wang Q, Zhang T, He B, Chen Y, Wu LY, Sun L, Zhang B, Xia Z. Biologically informed machine learning modeling of immune cells to reveal physiological and pathological aging process. Immun Ageing 2024; 21:74. [PMID: 39449067 PMCID: PMC11515583 DOI: 10.1186/s12979-024-00479-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 10/17/2024] [Indexed: 10/26/2024]
Abstract
The immune system undergoes progressive functional remodeling from neonatal stages to old age. Therefore, understanding how aging shapes immune cell function is vital for precise treatment of patients at different life stages. Here, we constructed the first transcriptomic atlas of immune cells encompassing human lifespan, ranging from newborns to supercentenarians, and comprehensively examined gene expression signatures involving cell signaling, metabolism, differentiation, and functions in all cell types to investigate immune aging changes. By comparing immune cell composition among different age groups, HLA highly expressing NK cells and CD83 positive B cells were identified with high percentages exclusively in the teenager (Tg) group, whereas unknown_T cells were exclusively enriched in the supercentenarian (Sc) group. Notably, we found that the biological age (BA) of pediatric COVID-19 patients with multisystem inflammatory syndrome accelerated aging according to their chronological age (CA). Besides, we proved that inflammatory shift- myeloid abundance and signature correlate with the progression of complications in Kawasaki disease (KD). The shift- myeloid signature was also found to be associated with KD treatment resistance, and effective therapies improve treatment outcomes by reducing this signaling. Finally, based on those age-related immune cell compositions, we developed a novel BA prediction model PHARE ( https://xiazlab.org/phare/ ), which can apply to both scRNA-seq and bulk RNA-seq data. Using this model, we found patients with coronary artery disease (CAD) also exhibit accelerated aging compared to healthy individuals. Overall, our study revealed changes in immune cell proportions and function associated with aging, both in health and disease, and provided a novel tool for successfully capturing features that accelerate or delay aging.
Collapse
Affiliation(s)
- Cangang Zhang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi, China
| | - Tao Ren
- Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, China
- School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xiaofan Zhao
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA
| | - Yanhong Su
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi, China
| | - Qianhao Wang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi, China
| | - Tianzhe Zhang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi, China
| | - Boxiao He
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yabing Chen
- Department of Pathology and Laboratory Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Ling-Yun Wu
- Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, China
- School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Lina Sun
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, China.
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China.
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi, China.
| | - Baojun Zhang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, China.
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China.
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi, China.
| | - Zheng Xia
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA.
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA.
- Center for Biomedical Data Science, Oregon Health & Science University, Portland, OR, USA.
| |
Collapse
|
18
|
Hu T, Liu CH, Lei M, Zeng Q, Li L, Tang H, Zhang N. Metabolic regulation of the immune system in health and diseases: mechanisms and interventions. Signal Transduct Target Ther 2024; 9:268. [PMID: 39379377 PMCID: PMC11461632 DOI: 10.1038/s41392-024-01954-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/18/2024] [Accepted: 08/11/2024] [Indexed: 10/10/2024] Open
Abstract
Metabolism, including glycolysis, oxidative phosphorylation, fatty acid oxidation, and other metabolic pathways, impacts the phenotypes and functions of immune cells. The metabolic regulation of the immune system is important in the pathogenesis and progression of numerous diseases, such as cancers, autoimmune diseases and metabolic diseases. The concept of immunometabolism was introduced over a decade ago to elucidate the intricate interplay between metabolism and immunity. The definition of immunometabolism has expanded from chronic low-grade inflammation in metabolic diseases to metabolic reprogramming of immune cells in various diseases. With immunometabolism being proposed and developed, the metabolic regulation of the immune system can be gradually summarized and becomes more and more clearer. In the context of many diseases including cancer, autoimmune diseases, metabolic diseases, and many other disease, metabolic reprogramming occurs in immune cells inducing proinflammatory or anti-inflammatory effects. The phenotypic and functional changes of immune cells caused by metabolic regulation further affect and development of diseases. Based on experimental results, targeting cellular metabolism of immune cells becomes a promising therapy. In this review, we focus on immune cells to introduce their metabolic pathways and metabolic reprogramming, and summarize how these metabolic pathways affect immune effects in the context of diseases. We thoroughly explore targets and treatments based on immunometabolism in existing studies. The challenges of translating experimental results into clinical applications in the field of immunometabolism are also summarized. We believe that a better understanding of immune regulation in health and diseases will improve the management of most diseases.
Collapse
Affiliation(s)
- Tengyue Hu
- West China School of clinical medical, West China Second University Hospital, Sichuan University, Chengdu, China
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
- Laboratory of Infectious and Liver Diseases, Institution of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Chang-Hai Liu
- West China School of clinical medical, West China Second University Hospital, Sichuan University, Chengdu, China
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
- Laboratory of Infectious and Liver Diseases, Institution of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Min Lei
- West China School of clinical medical, West China Second University Hospital, Sichuan University, Chengdu, China
- National Center for Birth Defect Monitoring, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Qingmin Zeng
- West China School of clinical medical, West China Second University Hospital, Sichuan University, Chengdu, China
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
- Laboratory of Infectious and Liver Diseases, Institution of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Li Li
- Division of Renal and endocrinology, Qin Huang Hospital, Xi'an, China
| | - Hong Tang
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China.
- Laboratory of Infectious and Liver Diseases, Institution of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China.
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, China.
| | - Nannan Zhang
- West China School of clinical medical, West China Second University Hospital, Sichuan University, Chengdu, China.
- National Center for Birth Defect Monitoring, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China.
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
19
|
Yang J, Chen Y, Li X, Qin H, Bao J, Wang C, Dong X, Xu D. Complex Interplay Between Metabolism and CD4 + T-Cell Activation, Differentiation, and Function: a Novel Perspective for Atherosclerosis Immunotherapy. Cardiovasc Drugs Ther 2024; 38:1033-1046. [PMID: 37199882 DOI: 10.1007/s10557-023-07466-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/06/2023] [Indexed: 05/19/2023]
Abstract
Atherosclerosis is a complex pathological process that results from the chronic inflammatory reaction of the blood vessel wall and involves various immune cells and cytokines. An imbalance in the proportion and function of the effector CD4+ T-cell (Teff) and regulatory T-cell (Treg) subsets is an important cause of the occurrence and development of atherosclerotic plaques. Teff cells depend on glycolytic metabolism and glutamine catabolic metabolism for energy, while Treg cells mainly rely on fatty acid oxidation (FAO), which is crucial for determining the fate of CD4+ T cells during differentiation and maintaining their respective immune functions. Here, we review recent research achievements in the field of immunometabolism related to CD4+ T cells, focusing on the cellular metabolic pathways and metabolic reprogramming involved in the activation, proliferation, and differentiation of CD4+ T cells. Subsequently, we discuss the important roles of mTOR and AMPK signaling in regulating CD4+ T-cell differentiation. Finally, we evaluated the links between CD4+ T-cell metabolism and atherosclerosis, highlighting the potential of targeted modulation of CD4+ T-cell metabolism in the prevention and treatment of atherosclerosis in the future.
Collapse
Affiliation(s)
- Jingmin Yang
- Department of Cardiology, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, 410000, Hunan, China
| | - Yanying Chen
- Department of Cardiology, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, 410000, Hunan, China
| | - Xiao Li
- Department of Cardiology, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, 410000, Hunan, China
| | - Huali Qin
- Department of Cardiology, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, 410000, Hunan, China
| | - Jinghui Bao
- Department of Cardiology, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, 410000, Hunan, China
| | - Chunfang Wang
- Department of Cardiology, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, 410000, Hunan, China
| | - Xiaochen Dong
- Department of Cardiology, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, 410000, Hunan, China
| | - Danyan Xu
- Department of Cardiology, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, 410000, Hunan, China.
| |
Collapse
|
20
|
Nunes JB, Ijsselsteijn ME, Abdelaal T, Ursem R, van der Ploeg M, Giera M, Everts B, Mahfouz A, Heijs B, de Miranda NFCC. Integration of mass cytometry and mass spectrometry imaging for spatially resolved single-cell metabolic profiling. Nat Methods 2024; 21:1796-1800. [PMID: 39210066 PMCID: PMC11466816 DOI: 10.1038/s41592-024-02392-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 07/26/2024] [Indexed: 09/04/2024]
Abstract
The integration of spatial omics technologies can provide important insights into the biology of tissues. Here we combined mass spectrometry imaging-based metabolomics and imaging mass cytometry-based immunophenotyping on a single tissue section to reveal metabolic heterogeneity at single-cell resolution within tissues and its association with specific cell populations such as cancer cells or immune cells. This approach has the potential to greatly increase our understanding of tissue-level interplay between metabolic processes and their cellular components.
Collapse
Affiliation(s)
- Joana B Nunes
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Tamim Abdelaal
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
- Systems and Biomedical Engineering Department, Faculty of Engineering Cairo University, Giza, Egypt
- Pattern Recognition and Bioinformatics, Delft University of Technology, Delft, The Netherlands
| | - Rick Ursem
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Manon van der Ploeg
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Martin Giera
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden University Medical Center, Leiden, The Netherlands
| | - Bart Everts
- Center of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Ahmed Mahfouz
- Pattern Recognition and Bioinformatics, Delft University of Technology, Delft, The Netherlands
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Bram Heijs
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden University Medical Center, Leiden, The Netherlands
| | | |
Collapse
|
21
|
Xiao Y, Li Y, Zhao H. Spatiotemporal metabolomic approaches to the cancer-immunity panorama: a methodological perspective. Mol Cancer 2024; 23:202. [PMID: 39294747 PMCID: PMC11409752 DOI: 10.1186/s12943-024-02113-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 09/05/2024] [Indexed: 09/21/2024] Open
Abstract
Metabolic reprogramming drives the development of an immunosuppressive tumor microenvironment (TME) through various pathways, contributing to cancer progression and reducing the effectiveness of anticancer immunotherapy. However, our understanding of the metabolic landscape within the tumor-immune context has been limited by conventional metabolic measurements, which have not provided comprehensive insights into the spatiotemporal heterogeneity of metabolism within TME. The emergence of single-cell, spatial, and in vivo metabolomic technologies has now enabled detailed and unbiased analysis, revealing unprecedented spatiotemporal heterogeneity that is particularly valuable in the field of cancer immunology. This review summarizes the methodologies of metabolomics and metabolic regulomics that can be applied to the study of cancer-immunity across single-cell, spatial, and in vivo dimensions, and systematically assesses their benefits and limitations.
Collapse
Affiliation(s)
- Yang Xiao
- Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, 400044, China
| | - Yongsheng Li
- Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, 400044, China.
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, 400030, China.
| | - Huakan Zhao
- Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, 400044, China.
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, 400030, China.
| |
Collapse
|
22
|
Demangel C, Surace L. Host-pathogen interactions from a metabolic perspective: methods of investigation. Microbes Infect 2024; 26:105267. [PMID: 38007087 DOI: 10.1016/j.micinf.2023.105267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 10/21/2023] [Accepted: 11/21/2023] [Indexed: 11/27/2023]
Abstract
Metabolism shapes immune homeostasis in health and disease. This review presents the range of methods that are currently available to investigate the dialog between metabolism and immunity at the systemic, tissue and cellular levels, particularly during infection.
Collapse
Affiliation(s)
- Caroline Demangel
- Institut Pasteur, Université Paris Cité, Inserm U1224, Immunobiology and Therapy Unit, Paris, France
| | - Laura Surace
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, University of Bonn, Bonn, Germany.
| |
Collapse
|
23
|
Ya X, Liu C, Ma L, Ge P, Xu X, Zheng Z, Mou S, Wang R, Zhang Q, Ye X, Zhang D, Zhang Y, Wang W, Li H, Zhao J. Single-cell atlas of peripheral blood by CyTOF revealed peripheral blood immune cells metabolic alterations and neutrophil changes in intracranial aneurysm rupture. MedComm (Beijing) 2024; 5:e637. [PMID: 39015556 PMCID: PMC11247334 DOI: 10.1002/mco2.637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 05/12/2024] [Accepted: 05/30/2024] [Indexed: 07/18/2024] Open
Abstract
Previous studies have found that the peripheral immune environment is closely related to the occurrence and development of intracranial aneurysms. However, it remains unclear how the metabolism of peripheral blood mononuclear cells (PBMCs) and the composition of polymorphonuclear leukocytes (PMNs) changes in the process of intracranial aneurysm rupture. This study utilized cytometry by time of flight technology to conduct single-cell profiling analysis of PBMCs and PMNs from 72 patients with IAs. By comparing the expression differences of key metabolic enzymes in PBMCs between patients with ruptured intracranial aneurysms (RIAs) and unruptured intracranial aneurysms, we found that most PBMCs subsets from RIA group showed upregulation of rate-limiting enzymes related to the glycolytic pathway. By comparing the composition of PMNs, it was found that the proinflammatory CD101+HLA DR+ subsets were increased in the RIA group, accompanied by a decrease in the anti-inflammatory polymorphonuclear myeloid-derived suppressor cells. In conclusion, this study showed the changes in the peripheral immune profile of RIAs, which is helpful for our understanding of the mechanisms underlying peripheral changes and provides a direction for future related research.
Collapse
Affiliation(s)
- Xiaolong Ya
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Chenglong Liu
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Long Ma
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Peicong Ge
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Xiaoxue Xu
- Department of Core Facility CenterCapital Medical UniversityBeijingChina
| | - Zhiyao Zheng
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Department of Neurosurgery, Peking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Siqi Mou
- Medical SchoolUniversity of Chinese Academy of SciencesBeijingChina
| | - Rong Wang
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Qian Zhang
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Xun Ye
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Dong Zhang
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Department of NeurosurgeryBeijing HospitalBeijingChina
| | - Yan Zhang
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Wenjing Wang
- Beijing Institute of Hepatology, Beijing YouAn HospitalCapital Medical UniversityBeijingChina
| | - Hao Li
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Jizong Zhao
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
| |
Collapse
|
24
|
Chen M, Chu YH, Yu WX, You YF, Tang Y, Pang XW, Zhang H, Shang K, Deng G, Zhou LQ, Yang S, Wang W, Xiao J, Tian DS, Qin C. Serum LDL Promotes Microglial Activation and Exacerbates Demyelinating Injury in Neuromyelitis Optica Spectrum Disorder. Neurosci Bull 2024; 40:1104-1114. [PMID: 38227181 PMCID: PMC11306683 DOI: 10.1007/s12264-023-01166-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 10/28/2023] [Indexed: 01/17/2024] Open
Abstract
Neuromyelitis optica spectrum disorder (NMOSD) is an autoimmune inflammatory demyelinating disease of the central nervous system (CNS) accompanied by blood-brain barrier (BBB) disruption. Dysfunction in microglial lipid metabolism is believed to be closely associated with the neuropathology of NMOSD. However, there is limited evidence on the functional relevance of circulating lipids in CNS demyelination, cellular metabolism, and microglial function. Here, we found that serum low-density lipoprotein (LDL) was positively correlated with markers of neurological damage in NMOSD patients. In addition, we demonstrated in a mouse model of NMOSD that LDL penetrates the CNS through the leaky BBB, directly activating microglia. This activation leads to excessive phagocytosis of myelin debris, inhibition of lipid metabolism, and increased glycolysis, ultimately exacerbating myelin damage. We also found that therapeutic interventions aimed at reducing circulating LDL effectively reversed the lipid metabolic dysfunction in microglia and mitigated the demyelinating injury in NMOSD. These findings shed light on the molecular and cellular mechanisms underlying the positive correlation between serum LDL and neurological damage, highlighting the potential therapeutic target for lowering circulating lipids to alleviate the acute demyelinating injury in NMOSD.
Collapse
Affiliation(s)
- Man Chen
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, 430030, China
- Department of Neurology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570311, China
| | - Yun-Hui Chu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wen-Xiang Yu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yun-Fan You
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yue Tang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiao-Wei Pang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hang Zhang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ke Shang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Gang Deng
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Luo-Qi Zhou
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Sheng Yang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wei Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jun Xiao
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Dai-Shi Tian
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Chuan Qin
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
25
|
Chen T, Tan W, Zhan X, Zhou C, Zhu J, Wu S, Qin B, He R, Qin X, Wei W, Huang C, Zhang B, Feng S, Liu C. The shared role of neutrophils in ankylosing spondylitis and ulcerative colitis. Genes Immun 2024; 25:324-335. [PMID: 39060428 DOI: 10.1038/s41435-024-00286-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 07/05/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024]
Abstract
This study aimed to analyze single-cell sequencing data to investigate immune cell interactions in ankylosing spondylitis (AS) and ulcerative colitis (UC). Vertebral bone marrow blood was collected from three AS patients for 10X single-cell sequencing. Analysis of single-cell data revealed distinct cell types in AS and UC patients. Cells significantly co-expressing immune cells (P < 0.05) were subjected to communication analysis. Overlapping genes of these co-expressing immune cells were subjected to GO and KEGG analyses. Key genes were identified using STRING and Cytoscape to assess their correlation with immune cell expression. The results showed the significance of neutrophils in both diseases (P < 0.01), with notable interactions identified through communication analysis. XBP1 emerged as a Hub gene for both diseases, with AUC values of 0.760 for AS and 0.933 for UC. Immunohistochemistry verified that the expression of XBP1 was significantly lower in the AS group and significantly greater in the UC group than in the control group (P < 0.01). This finding highlights the critical role of neutrophils in both AS and UC, suggesting the presence of shared immune response elements. The identification of XBP1 as a potential therapeutic target offers promising intervention avenues for both diseases.
Collapse
Affiliation(s)
- Tianyou Chen
- The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, PR China
| | - Weiming Tan
- The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, PR China
| | - Xinli Zhan
- The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, PR China
| | - Chenxing Zhou
- The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, PR China
| | - Jichong Zhu
- The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, PR China
| | - Shaofeng Wu
- The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, PR China
| | - Boli Qin
- The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, PR China
| | - Rongqing He
- The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, PR China
| | - Xiaopeng Qin
- The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, PR China
| | - Wendi Wei
- The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, PR China
| | - Chengqian Huang
- The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, PR China
| | - Bin Zhang
- The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, PR China
| | - Sitan Feng
- The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, PR China
| | - Chong Liu
- The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, PR China.
| |
Collapse
|
26
|
Lu X, Zhu Y, Qin T, Shen Y. The role of immune metabolism in skin cancers: implications for pathogenesis and therapy. Transl Cancer Res 2024; 13:3898-3903. [PMID: 39145080 PMCID: PMC11319983 DOI: 10.21037/tcr-24-695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 07/11/2024] [Indexed: 08/16/2024]
Abstract
The skin is a complex organ that serves as a critical barrier against external pathogens and environmental impact. Recent advances in immunometabolism have highlighted the intricate link between cellular metabolism and immune function, particularly in the context of skin cancers. This review aims to provide a comprehensive overview of the key metabolic pathways and adaptations that occur in immune cells during homeostasis and activation, and explore how metabolic reprogramming contributes to the pathogenesis of specific skin cancers. We discuss the complex interplay between tumor cells and infiltrating immune cells, which shapes the tumor microenvironment and influences disease outcomes. The review delves into the role of various metabolic pathways, such as glycolysis, oxidative phosphorylation, and lipid metabolism, in the regulation of immune cell function and their impact on the development and progression of skin cancers. Furthermore, we examine the potential of targeting metabolic pathways as a therapeutic strategy in skin cancers and discuss the challenges and future perspectives in this rapidly evolving field. By understanding the metabolic basis of skin immune responses, we can develop novel, personalized therapies for the treatment of skin cancers, ultimately improving patient outcomes and quality of life. The insights gained from this review will contribute to the growing body of knowledge in immunometabolism and its application in the management of skin cancers, paving the way for more effective and targeted interventions in the future.
Collapse
Affiliation(s)
- Xuanyu Lu
- Department of Dermatology, Third Affiliated Hospital of Nantong University, Nantong Third People’s Hospital, Nantong, China
- School of Medicine, Nantong University, Nantong, China
| | - Yurui Zhu
- Department of Dermatology, Third Affiliated Hospital of Nantong University, Nantong Third People’s Hospital, Nantong, China
- School of Medicine, Nantong University, Nantong, China
| | - Tianyu Qin
- Department of Dermatology, Third Affiliated Hospital of Nantong University, Nantong Third People’s Hospital, Nantong, China
- School of Medicine, Nantong University, Nantong, China
| | - Yu Shen
- Department of Dermatology, Third Affiliated Hospital of Nantong University, Nantong Third People’s Hospital, Nantong, China
| |
Collapse
|
27
|
Sun Y, Lu Y, Liu L, Saaoud F, Shao Y, Xu K, Drummer C, Cueto R, Shan H, Jiang X, Zhao H, Wang H, Yang X. Caspase-4/11 promotes hyperlipidemia and chronic kidney disease-accelerated vascular inflammation by enhancing trained immunity. JCI Insight 2024; 9:e177229. [PMID: 39024553 PMCID: PMC11343595 DOI: 10.1172/jci.insight.177229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 07/10/2024] [Indexed: 07/20/2024] Open
Abstract
To determine whether hyperlipidemia and chronic kidney disease (CKD) have a synergy in accelerating vascular inflammation via trained immunity (TI), we performed aortic pathological analysis and RNA-Seq of high-fat diet-fed (HFD-fed) 5/6 nephrectomy CKD (HFD+CKD) mice. We made the following findings: (a) HFD+CKD increased aortic cytosolic LPS levels, caspase-11 (CASP11) activation, and 998 gene expressions of TI pathways in the aorta (first-tier TI mechanism); (b) CASP11-/- decreased aortic neointima hyperplasia, aortic recruitment of macrophages, and casp11-gasdermin D-mediated cytokine secretion; (c) CASP11-/- decreased N-terminal gasdermin D (N-GSDMD) membrane expression on aortic endothelial cells and aortic IL-1B levels; (d) LPS transfection into human aortic endothelial cells resulted in CASP4 (human)/CASP11 (mouse) activation and increased N-GSDMD membrane expression; and (e) IL-1B served as the second-tier mechanism underlying HFD+CKD-promoted TI. Taken together, hyperlipidemia and CKD accelerated vascular inflammation by promoting 2-tier trained immunity.
Collapse
Affiliation(s)
- Yu Sun
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | - Yifan Lu
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Lu Liu
- Centers of Metabolic Disease Research and Thrombosis Research Center, Department of Cardiovascular Sciences, and
| | - Fatma Saaoud
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Ying Shao
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Keman Xu
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Charles Drummer
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Ramon Cueto
- Centers of Metabolic Disease Research and Thrombosis Research Center, Department of Cardiovascular Sciences, and
| | - Huimin Shan
- Centers of Metabolic Disease Research and Thrombosis Research Center, Department of Cardiovascular Sciences, and
| | - Xiaohua Jiang
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
- Centers of Metabolic Disease Research and Thrombosis Research Center, Department of Cardiovascular Sciences, and
| | - Huaqing Zhao
- Center for Biostatistics and Epidemiology, Department of Biomedical Education and Data Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Hong Wang
- Centers of Metabolic Disease Research and Thrombosis Research Center, Department of Cardiovascular Sciences, and
| | - Xiaofeng Yang
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
- Centers of Metabolic Disease Research and Thrombosis Research Center, Department of Cardiovascular Sciences, and
| |
Collapse
|
28
|
Kunes RZ, Walle T, Land M, Nawy T, Pe'er D. Supervised discovery of interpretable gene programs from single-cell data. Nat Biotechnol 2024; 42:1084-1095. [PMID: 37735262 PMCID: PMC10958532 DOI: 10.1038/s41587-023-01940-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 08/09/2023] [Indexed: 09/23/2023]
Abstract
Factor analysis decomposes single-cell gene expression data into a minimal set of gene programs that correspond to processes executed by cells in a sample. However, matrix factorization methods are prone to technical artifacts and poor factor interpretability. We address these concerns with Spectra, an algorithm that combines user-provided gene programs with the detection of novel programs that together best explain expression covariation. Spectra incorporates existing gene sets and cell-type labels as prior biological information, explicitly models cell type and represents input gene sets as a gene-gene knowledge graph using a penalty function to guide factorization toward the input graph. We show that Spectra outperforms existing approaches in challenging tumor immune contexts, as it finds factors that change under immune checkpoint therapy, disentangles the highly correlated features of CD8+ T cell tumor reactivity and exhaustion, finds a program that explains continuous macrophage state changes under therapy and identifies cell-type-specific immune metabolic programs.
Collapse
Affiliation(s)
- Russell Z Kunes
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Statistics, Columbia University, New York, NY, USA
| | - Thomas Walle
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Clinical Cooperation Unit Virotherapy, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Medical Oncology, National Center for Tumor Diseases, Heidelberg University Hospital, Heidelberg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Max Land
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Tal Nawy
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Dana Pe'er
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
29
|
Verheijen FWM, Tran TNM, Chang J, Broere F, Zaal EA, Berkers CR. Deciphering metabolic crosstalk in context: lessons from inflammatory diseases. Mol Oncol 2024; 18:1759-1776. [PMID: 38275212 PMCID: PMC11223610 DOI: 10.1002/1878-0261.13588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/02/2023] [Accepted: 01/15/2024] [Indexed: 01/27/2024] Open
Abstract
Metabolism plays a crucial role in regulating the function of immune cells in both health and disease, with altered metabolism contributing to the pathogenesis of cancer and many inflammatory diseases. The local microenvironment has a profound impact on the metabolism of immune cells. Therefore, immunological and metabolic heterogeneity as well as the spatial organization of cells in tissues should be taken into account when studying immunometabolism. Here, we highlight challenges of investigating metabolic communication. Additionally, we review the capabilities and limitations of current technologies for studying metabolism in inflamed microenvironments, including single-cell omics techniques, flow cytometry-based methods (Met-Flow, single-cell energetic metabolism by profiling translation inhibition (SCENITH)), cytometry by time of flight (CyTOF), cellular indexing of transcriptomes and epitopes by sequencing (CITE-Seq), and mass spectrometry imaging. Considering the importance of metabolism in regulating immune cells in diseased states, we also discuss the applications of metabolomics in clinical research, as well as some hurdles to overcome to implement these techniques in standard clinical practice. Finally, we provide a flowchart to assist scientists in designing effective strategies to unravel immunometabolism in disease-relevant contexts.
Collapse
Affiliation(s)
- Fenne W. M. Verheijen
- Division of Cell Biology, Metabolism & Cancer, Department Biomolecular Health Sciences, Faculty of Veterinary MedicineUtrecht UniversityThe Netherlands
- Division of Infectious Diseases and Immunology, Department Biomolecular Health Sciences, Faculty of Veterinary MedicineUtrecht UniversityThe Netherlands
| | - Thi N. M. Tran
- Division of Cell Biology, Metabolism & Cancer, Department Biomolecular Health Sciences, Faculty of Veterinary MedicineUtrecht UniversityThe Netherlands
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Centre for Biomolecular ResearchUtrecht UniversityThe Netherlands
| | - Jung‐Chin Chang
- Division of Cell Biology, Metabolism & Cancer, Department Biomolecular Health Sciences, Faculty of Veterinary MedicineUtrecht UniversityThe Netherlands
| | - Femke Broere
- Division of Infectious Diseases and Immunology, Department Biomolecular Health Sciences, Faculty of Veterinary MedicineUtrecht UniversityThe Netherlands
| | - Esther A. Zaal
- Division of Cell Biology, Metabolism & Cancer, Department Biomolecular Health Sciences, Faculty of Veterinary MedicineUtrecht UniversityThe Netherlands
| | - Celia R. Berkers
- Division of Cell Biology, Metabolism & Cancer, Department Biomolecular Health Sciences, Faculty of Veterinary MedicineUtrecht UniversityThe Netherlands
| |
Collapse
|
30
|
Molnar N, Miskolci V. Imaging immunometabolism in situ in live animals. IMMUNOMETABOLISM (COBHAM, SURREY) 2024; 6:e00044. [PMID: 39296471 PMCID: PMC11406703 DOI: 10.1097/in9.0000000000000044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
Immunometabolism is a rapidly developing field that holds great promise for diagnostic and therapeutic benefits to human diseases. The field has emerged based on seminal findings from in vitro and ex vivo studies that established the fundamental role of metabolism in immune cell effector functions. Currently, the field is acknowledging the necessity of investigating cellular metabolism within the natural context of biological processes. Examining cells in their native microenvironment is essential not only to reveal cell-intrinsic mechanisms but also to understand how cross-talk between neighboring cells regulates metabolism at the tissue level in a local niche. This necessity is driving innovation and advancement in multiple imaging-based technologies to enable analysis of dynamic intracellular metabolism at the single-cell level, with spatial and temporal resolution. In this review, we tally the currently available imaging-based technologies and explore the emerging methods of Raman and autofluorescence lifetime imaging microscopy, which hold significant potential and offer broad applications in the field of immunometabolism.
Collapse
Affiliation(s)
- Nicole Molnar
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers Health, Rutgers University, Newark, NJ, USA
- Center for Cell Signaling, Rutgers Health, Rutgers University, Newark, NJ, USA
- Center for Immunity and Inflammation, Rutgers Health, Rutgers University, Newark, NJ, USA
| | - Veronika Miskolci
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers Health, Rutgers University, Newark, NJ, USA
- Center for Cell Signaling, Rutgers Health, Rutgers University, Newark, NJ, USA
- Center for Immunity and Inflammation, Rutgers Health, Rutgers University, Newark, NJ, USA
| |
Collapse
|
31
|
Liu D, Liao P, Li H, Tong S, Wang B, Lu Y, Gao Y, Huang Y, Zhou H, Shi L, Papadimitriou J, Zong Y, Yuan J, Chen P, Chen Z, Ding P, Zheng Y, Zhang C, Zheng M, Gao J. Regulation of blood-brain barrier integrity by Dmp1-expressing astrocytes through mitochondrial transfer. SCIENCE ADVANCES 2024; 10:eadk2913. [PMID: 38941455 PMCID: PMC11212732 DOI: 10.1126/sciadv.adk2913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 05/24/2024] [Indexed: 06/30/2024]
Abstract
The blood-brain barrier (BBB) acts as the crucial physical filtration structure in the central nervous system. Here, we investigate the role of a specific subset of astrocytes in the regulation of BBB integrity. We showed that Dmp1-expressing astrocytes transfer mitochondria to endothelial cells via their endfeet for maintaining BBB integrity. Deletion of the Mitofusin 2 (Mfn2) gene in Dmp1-expressing astrocytes inhibited the mitochondrial transfer and caused BBB leakage. In addition, the decrease of MFN2 in astrocytes contributes to the age-associated reduction of mitochondrial transfer efficiency and thus compromises the integrity of BBB. Together, we describe a mechanism in which astrocytes regulate BBB integrity through mitochondrial transfer. Our findings provide innnovative insights into the cellular framework that underpins the progressive breakdown of BBB associated with aging and disease.
Collapse
Affiliation(s)
- Delin Liu
- Centre for Orthopaedic Research, Medical School, The University of Western Australia, Nedlands, Western Australia 6009, Australia
- Perron Institute for Neurological and Translational Science, Nedlands, Western Australia 6009, Australia
- Department of Orthopaedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Peng Liao
- Department of Orthopaedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Hao Li
- Department of Orthopaedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Sihan Tong
- Department of Orthopaedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Bingqi Wang
- Department of Orthopaedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Yafei Lu
- Department of Orthopaedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Youshui Gao
- Department of Orthopaedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Yigang Huang
- Department of Orthopaedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Hao Zhou
- Department of Orthopaedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310009, China
| | - Linjing Shi
- Department of Orthopaedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310009, China
| | - John Papadimitriou
- Centre for Orthopaedic Research, Medical School, The University of Western Australia, Nedlands, Western Australia 6009, Australia
- Department of Pathology, Pathwest, Nedlands, Western Australia 6009, Australia
| | - Yao Zong
- Centre for Orthopaedic Research, Medical School, The University of Western Australia, Nedlands, Western Australia 6009, Australia
| | - Jun Yuan
- Centre for Orthopaedic Research, Medical School, The University of Western Australia, Nedlands, Western Australia 6009, Australia
- Perron Institute for Neurological and Translational Science, Nedlands, Western Australia 6009, Australia
| | - Peilin Chen
- Centre for Orthopaedic Research, Medical School, The University of Western Australia, Nedlands, Western Australia 6009, Australia
| | - Ziming Chen
- Centre for Orthopaedic Research, Medical School, The University of Western Australia, Nedlands, Western Australia 6009, Australia
| | - Peng Ding
- Department of Orthopaedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Yongqiang Zheng
- Department of Orthopaedics, Jinjiang Municipal Hospital, Jinjiang, Fujian Province, 362200, China
| | - Changqing Zhang
- Department of Orthopaedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Minghao Zheng
- Centre for Orthopaedic Research, Medical School, The University of Western Australia, Nedlands, Western Australia 6009, Australia
- Perron Institute for Neurological and Translational Science, Nedlands, Western Australia 6009, Australia
| | - Junjie Gao
- Department of Orthopaedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
- Department of Orthopaedics, Jinjiang Municipal Hospital, Jinjiang, Fujian Province, 362200, China
| |
Collapse
|
32
|
Guo Y, Luo L, Zhu J, Li C. Advance in Multi-omics Research Strategies on Cholesterol Metabolism in Psoriasis. Inflammation 2024; 47:839-852. [PMID: 38244176 DOI: 10.1007/s10753-023-01961-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/29/2023] [Accepted: 12/25/2023] [Indexed: 01/22/2024]
Abstract
The skin is a complex and dynamic organ where homeostasis is maintained through the intricate interplay between the immune system and metabolism, particularly cholesterol metabolism. Various factors such as cytokines, inflammatory mediators, cholesterol metabolites, and metabolic enzymes play crucial roles in facilitating these interactions. Dysregulation of this delicate balance contributes to the pathogenic pathways of inflammatory skin conditions, notably psoriasis. In this article, we provide an overview of omics biomarkers associated with psoriasis in relation to cholesterol metabolism. We explore multi-omics approaches that reveal the communication between immunometabolism and psoriatic inflammation. Additionally, we summarize the use of multi-omics strategies to uncover the complexities of multifactorial and heterogeneous inflammatory diseases. Finally, we highlight potential future perspectives related to targeted drug therapies and research areas that can advance precise medicine. This review aims to serve as a valuable resource for those investigating the role of cholesterol metabolism in psoriasis.
Collapse
Affiliation(s)
- Youming Guo
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, Jiangsu, China
| | - Lingling Luo
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, Jiangsu, China
| | - Jing Zhu
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, Jiangsu, China
| | - Chengrang Li
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, Jiangsu, China.
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, Jiangsu, China.
| |
Collapse
|
33
|
Simon-Molas H, Montironi C, Kabanova A, Eldering E. Metabolic reprogramming in the CLL TME; potential for new therapeutic targets. Semin Hematol 2024; 61:155-162. [PMID: 38493076 DOI: 10.1053/j.seminhematol.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/28/2024] [Accepted: 02/12/2024] [Indexed: 03/18/2024]
Abstract
Chronic lymphocytic leukemia (CLL) cells circulate between peripheral (PB) blood and lymph node (LN) compartments, and strictly depend on microenvironmental factors for proliferation, survival and drug resistance. All cancer cells display metabolic reprogramming and CLL is no exception - though the inert status of the PB CLL cells has hampered detailed insight into these processes. We summarize previous work on reactive oxygen species (ROS), oxidative stress, and hypoxia, as well as the important roles of Myc, and PI3K/Akt/mTor pathways. In vitro co-culture systems and gene expression analyses have provided a partial picture of CLL LN metabolism. New broad omics techniques allow to obtain molecular and also single-cell level understanding of CLL plasticity and metabolic reprogramming. We summarize recent developments and describe the new concept of glutamine addiction for CLL, which may hold therapeutic promise.
Collapse
Affiliation(s)
- Helga Simon-Molas
- Department of Experimental Immunology, Amsterdam UMC location University of Amsterdam, Amsterdam, the Netherlands; Cancer Immunology, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands; Cancer Immunology, Cancer Center Amsterdam, Amsterdam, the Netherlands; Department of Hematology, Amsterdam UMC location University of Amsterdam, Amsterdam, the Netherlands
| | - Chiara Montironi
- Department of Experimental Immunology, Amsterdam UMC location University of Amsterdam, Amsterdam, the Netherlands; Cancer Immunology, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands; Cancer Immunology, Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Anna Kabanova
- Tumour Immunology Unit, Toscana Life Sciences Foundation, Siena, Italy
| | - Eric Eldering
- Department of Experimental Immunology, Amsterdam UMC location University of Amsterdam, Amsterdam, the Netherlands; Cancer Immunology, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands; Cancer Immunology, Cancer Center Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
34
|
Chen C, Han P, Qing Y. Metabolic heterogeneity in tumor microenvironment - A novel landmark for immunotherapy. Autoimmun Rev 2024; 23:103579. [PMID: 39004158 DOI: 10.1016/j.autrev.2024.103579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/10/2024] [Accepted: 07/09/2024] [Indexed: 07/16/2024]
Abstract
The surrounding non-cancer cells and tumor cells that make up the tumor microenvironment (TME) have various metabolic rhythms. TME metabolic heterogeneity is influenced by the intricate network of metabolic control within and between cells. DNA, protein, transport, and microbial levels are important regulators of TME metabolic homeostasis. The effectiveness of immunotherapy is also closely correlated with alterations in TME metabolism. The response of a tumor patient to immunotherapy is influenced by a variety of variables, including intracellular metabolic reprogramming, metabolic interaction between cells, ecological changes within and between tumors, and general dietary preferences. Although immunotherapy and targeted therapy have made great strides, their use in the accurate identification and treatment of tumors still has several limitations. The function of TME metabolic heterogeneity in tumor immunotherapy is summarized in this article. It focuses on how metabolic heterogeneity develops and is regulated as a tumor progresses, the precise molecular mechanisms and potential clinical significance of imbalances in intracellular metabolic homeostasis and intercellular metabolic coupling and interaction, as well as the benefits and drawbacks of targeted metabolism used in conjunction with immunotherapy. This offers insightful knowledge and important implications for individualized tumor patient diagnosis and treatment plans in the future.
Collapse
Affiliation(s)
- Chen Chen
- The First Affiliated Hospital of Ningbo University, Ningbo 315211, Zhejiang, China
| | - Peng Han
- Harbin Medical University Cancer Hospital, Harbin 150081, Heilongjiang, China.
| | - Yanping Qing
- The First Affiliated Hospital of Ningbo University, Ningbo 315211, Zhejiang, China.
| |
Collapse
|
35
|
Wang K, Zerdes I, Johansson HJ, Sarhan D, Sun Y, Kanellis DC, Sifakis EG, Mezheyeuski A, Liu X, Loman N, Hedenfalk I, Bergh J, Bartek J, Hatschek T, Lehtiö J, Matikas A, Foukakis T. Longitudinal molecular profiling elucidates immunometabolism dynamics in breast cancer. Nat Commun 2024; 15:3837. [PMID: 38714665 PMCID: PMC11076527 DOI: 10.1038/s41467-024-47932-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 04/12/2024] [Indexed: 05/10/2024] Open
Abstract
Although metabolic reprogramming within tumor cells and tumor microenvironment (TME) is well described in breast cancer, little is known about how the interplay of immune state and cancer metabolism evolves during treatment. Here, we characterize the immunometabolic profiles of tumor tissue samples longitudinally collected from individuals with breast cancer before, during and after neoadjuvant chemotherapy (NAC) using proteomics, genomics and histopathology. We show that the pre-, on-treatment and dynamic changes of the immune state, tumor metabolic proteins and tumor cell gene expression profiling-based metabolic phenotype are associated with treatment response. Single-cell/nucleus RNA sequencing revealed distinct tumor and immune cell states in metabolism between cold and hot tumors. Potential drivers of NAC based on above analyses were validated in vitro. In summary, the study shows that the interaction of tumor-intrinsic metabolic states and TME is associated with treatment outcome, supporting the concept of targeting tumor metabolism for immunoregulation.
Collapse
Affiliation(s)
- Kang Wang
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Ioannis Zerdes
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- Theme Cancer, Karolinska University Hospital and Karolinska Comprehensive Cancer Center, Stockholm, Sweden
| | - Henrik J Johansson
- Department of Oncology-Pathology, Karolinska Institutet, and Science for Life Laboratory, Stockholm, Sweden
| | - Dhifaf Sarhan
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Yizhe Sun
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Dimitris C Kanellis
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | | | - Artur Mezheyeuski
- Department of Immunology, Genetics and Pathology, Uppsala University, Rudbeck Laboratory, Uppsala, Sweden
- Molecular Oncology Group, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Xingrong Liu
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Niklas Loman
- Department of Hematology, Oncology and Radiation Physics, Lund University Hospital, Lund, Sweden
- Division of Oncology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Ingrid Hedenfalk
- Division of Oncology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Jonas Bergh
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- Breast Center, Theme Cancer, Karolinska University Hospital and Karolinska Comprehensive Cancer Center, Stockholm, Sweden
| | - Jiri Bartek
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- Danish Cancer Institute, DK-2100, Copenhagen, Denmark
| | - Thomas Hatschek
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- Breast Center, Theme Cancer, Karolinska University Hospital and Karolinska Comprehensive Cancer Center, Stockholm, Sweden
| | - Janne Lehtiö
- Department of Oncology-Pathology, Karolinska Institutet, and Science for Life Laboratory, Stockholm, Sweden
- Division of Pathology, Karolinska University Hospital and Karolinska Comprehensive Cancer Center, Stockholm, Sweden
| | - Alexios Matikas
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- Breast Center, Theme Cancer, Karolinska University Hospital and Karolinska Comprehensive Cancer Center, Stockholm, Sweden
| | - Theodoros Foukakis
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden.
- Breast Center, Theme Cancer, Karolinska University Hospital and Karolinska Comprehensive Cancer Center, Stockholm, Sweden.
| |
Collapse
|
36
|
Cosgrove J, Marçais A, Hartmann FJ, Bergthaler A, Zanoni I, Corrado M, Perié L, Cabezas-Wallscheid N, Bousso P, Alexandrov T, Kielian T, Martínez-Martín N, Opitz CA, Lyssiotis CA, Argüello RJ, Van den Bossche J. A call for accessible tools to unlock single-cell immunometabolism research. Nat Metab 2024; 6:779-782. [PMID: 38605184 DOI: 10.1038/s42255-024-01031-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Affiliation(s)
- Jason Cosgrove
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico Chimie Curie, Paris, France
| | - Antoine Marçais
- CIRI, Centre International de Recherche en Infectiologie, (Team Lyacts), Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
| | - Felix J Hartmann
- German Cancer Research Center (DKFZ), Heidelberg, Systems Immunology & Single-Cell Biology, Germany and German Cancer Consortium (DKTK), DKFZ, Core Center Heidelberg, Heidelberg, Germany
| | - Andreas Bergthaler
- Institute of Hygiene and Applied Immunology, Department of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Ivan Zanoni
- Division of Immunology, Division of Gastroenterology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Mauro Corrado
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Center for Molecular Medicine Cologne (CMMC) and Institute for Genetics, University of Cologne, Cologne, Germany
| | - Leïla Perié
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico Chimie Curie, Paris, France
| | | | - Philippe Bousso
- Institut Pasteur, Université Paris Cité, INSERM U1223, Dynamics of Immune Responses Unit, Paris, France
| | - Theodore Alexandrov
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Bio Studio, BioInnovation Institute, Copenhagen, Denmark
| | - Tammy Kielian
- Department of Pathology, Microbiology, and Immunology University of Nebraska Medical Center, Omaha, NE, USA
| | - Nuria Martínez-Martín
- Program of Tissue and Organ Homeostasis, Centro de Biología Molecular 'Severo Ochoa', Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
| | - Christiane A Opitz
- German Cancer Research Center (DKFZ), Heidelberg, Division of Metabolic Crosstalk in Cancer and the German Cancer Consortium (DKTK), DKFZ Core Center Heidelberg, Heidelberg, Germany
| | - Costas A Lyssiotis
- Department of Molecular & Integrative Physiology, Department of Internal Medicine, Division of Gastroenterology and Hepatology, Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Rafael J Argüello
- Aix-Marseille University, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Turing Centre for Living Systems, Marseille, France
| | - Jan Van den Bossche
- Department of Molecular Cell Biology and Immunology, Amsterdam Cardiovascular Sciences, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam Institute for Infection and Immunity, Cancer Centre Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
37
|
Xu J, Morten KJ. Raman micro-spectroscopy as a tool to study immunometabolism. Biochem Soc Trans 2024; 52:733-745. [PMID: 38477393 PMCID: PMC11088913 DOI: 10.1042/bst20230794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/27/2024] [Accepted: 03/04/2024] [Indexed: 03/14/2024]
Abstract
In the past two decades, immunometabolism has emerged as a crucial field, unraveling the intricate molecular connections between cellular metabolism and immune function across various cell types, tissues, and diseases. This review explores the insights gained from studies using the emerging technology, Raman micro-spectroscopy, to investigate immunometabolism. Raman micro-spectroscopy provides an exciting opportunity to directly study metabolism at the single cell level where it can be combined with other Raman-based technologies and platforms such as single cell RNA sequencing. The review showcases applications of Raman micro-spectroscopy to study the immune system including cell identification, activation, and autoimmune disease diagnosis, offering a rapid, label-free, and minimally invasive analytical approach. The review spotlights three promising Raman technologies, Raman-activated cell sorting, Raman stable isotope probing, and Raman imaging. The synergy of Raman technologies with machine learning is poised to enhance the understanding of complex Raman phenotypes, enabling biomarker discovery and comprehensive investigations in immunometabolism. The review encourages further exploration of these evolving technologies in the rapidly advancing field of immunometabolism.
Collapse
Affiliation(s)
- Jiabao Xu
- Division of Biomedical Engineering, James Watt School of Engineering, University of Glasgow, Glasgow G12 8LT, U.K
| | - Karl J Morten
- Nuffield Department of Women's and Reproductive Health, University of Oxford, The Women Centre, John Radcliffe Hospital, Headley Way, Headington, Oxford OX3 9DU, U.K
| |
Collapse
|
38
|
Tsuchiya M, Tachibana N, Hamachi I. Post-click labeling enables highly accurate single cell analyses of glucose uptake ex vivo and in vivo. Commun Biol 2024; 7:459. [PMID: 38627603 PMCID: PMC11021395 DOI: 10.1038/s42003-024-06164-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 04/08/2024] [Indexed: 04/19/2024] Open
Abstract
Cellular glucose uptake is a key feature reflecting metabolic demand of cells in physiopathological conditions. Fluorophore-conjugated sugar derivatives are widely used for monitoring glucose transporter (GLUT) activity at the single-cell level, but have limitations in in vivo applications. Here, we develop a click chemistry-based post-labeling method for flow cytometric measurement of glucose uptake with low background adsorption. This strategy relies on GLUT-mediated uptake of azide-tagged sugars, and subsequent intracellular labeling with a cell-permeable fluorescent reagent via a copper-free click reaction. Screening a library of azide-substituted monosaccharides, we discover 6-azido-6-deoxy-D-galactose (6AzGal) as a suitable substrate of GLUTs. 6AzGal displays glucose-like physicochemical properties and reproduces in vivo dynamics similar to 18F-FDG. Combining this method with multi-parametric immunophenotyping, we demonstrate the ability to precisely resolve metabolically-activated cells with various GLUT activities in ex vivo and in vivo models. Overall, this method provides opportunities to dissect the heterogenous metabolic landscape in complex tissue environments.
Collapse
Affiliation(s)
- Masaki Tsuchiya
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
- PRESTO (Precursory Research for Embryonic Science and Technology, JST), Sanbancho, Chiyoda-ku, Tokyo, 102-0075, Japan
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Nobuhiko Tachibana
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
- PRESTO (Precursory Research for Embryonic Science and Technology, JST), Sanbancho, Chiyoda-ku, Tokyo, 102-0075, Japan
| | - Itaru Hamachi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan.
- ERATO (Exploratory Research for Advanced Technology, JST), Sanbancho, Chiyoda-ku, Tokyo, 102-0075, Japan.
| |
Collapse
|
39
|
Sun X, Nong M, Meng F, Sun X, Jiang L, Li Z, Zhang P. Architecting the metabolic reprogramming survival risk framework in LUAD through single-cell landscape analysis: three-stage ensemble learning with genetic algorithm optimization. J Transl Med 2024; 22:353. [PMID: 38622716 PMCID: PMC11017668 DOI: 10.1186/s12967-024-05138-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 03/27/2024] [Indexed: 04/17/2024] Open
Abstract
Recent studies have increasingly revealed the connection between metabolic reprogramming and tumor progression. However, the specific impact of metabolic reprogramming on inter-patient heterogeneity and prognosis in lung adenocarcinoma (LUAD) still requires further exploration. Here, we introduced a cellular hierarchy framework according to a malignant and metabolic gene set, named malignant & metabolism reprogramming (MMR), to reanalyze 178,739 single-cell reference profiles. Furthermore, we proposed a three-stage ensemble learning pipeline, aided by genetic algorithm (GA), for survival prediction across 9 LUAD cohorts (n = 2066). Throughout the pipeline of developing the three stage-MMR (3 S-MMR) score, double training sets were implemented to avoid over-fitting; the gene-pairing method was utilized to remove batch effect; GA was harnessed to pinpoint the optimal basic learner combination. The novel 3 S-MMR score reflects various aspects of LUAD biology, provides new insights into precision medicine for patients, and may serve as a generalizable predictor of prognosis and immunotherapy response. To facilitate the clinical adoption of the 3 S-MMR score, we developed an easy-to-use web tool for risk scoring as well as therapy stratification in LUAD patients. In summary, we have proposed and validated an ensemble learning model pipeline within the framework of metabolic reprogramming, offering potential insights for LUAD treatment and an effective approach for developing prognostic models for other diseases.
Collapse
Affiliation(s)
- Xinti Sun
- Department of Cardiothoracic Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Minyu Nong
- School of Clinical Medicine, Youjiang Medical University for Nationalities, Baise, Guangxi, China
| | - Fei Meng
- Department of Cardiothoracic Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiaojuan Sun
- Department of Oncology, Qingdao University Affiliated Hospital, Qingdao, Shandong, China
| | - Lihe Jiang
- School of Clinical Medicine, Youjiang Medical University for Nationalities, Baise, Guangxi, China
| | - Zihao Li
- Department of Cardiothoracic Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Peng Zhang
- Department of Cardiothoracic Surgery, Tianjin Medical University General Hospital, Tianjin, China.
| |
Collapse
|
40
|
Dang Q, Li B, Jin B, Ye Z, Lou X, Wang T, Wang Y, Pan X, Hu Q, Li Z, Ji S, Zhou C, Yu X, Qin Y, Xu X. Cancer immunometabolism: advent, challenges, and perspective. Mol Cancer 2024; 23:72. [PMID: 38581001 PMCID: PMC10996263 DOI: 10.1186/s12943-024-01981-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 03/06/2024] [Indexed: 04/07/2024] Open
Abstract
For decades, great strides have been made in the field of immunometabolism. A plethora of evidence ranging from basic mechanisms to clinical transformation has gradually embarked on immunometabolism to the center stage of innate and adaptive immunomodulation. Given this, we focus on changes in immunometabolism, a converging series of biochemical events that alters immune cell function, propose the immune roles played by diversified metabolic derivatives and enzymes, emphasize the key metabolism-related checkpoints in distinct immune cell types, and discuss the ongoing and upcoming realities of clinical treatment. It is expected that future research will reduce the current limitations of immunotherapy and provide a positive hand in immune responses to exert a broader therapeutic role.
Collapse
Affiliation(s)
- Qin Dang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Borui Li
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Bing Jin
- School of Clinical Medicine, Zhengzhou University, Zhengzhou, China
| | - Zeng Ye
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Xin Lou
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Ting Wang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Yan Wang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Xuan Pan
- Department of Hepatobiliary Surgery, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Qiangsheng Hu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Zheng Li
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Shunrong Ji
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Chenjie Zhou
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, China.
| | - Yi Qin
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, China.
| | - Xiaowu Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, China.
| |
Collapse
|
41
|
Goldberg L, Haas ER, Urak R, Vyas V, Pathak KV, Garcia-Mansfield K, Pirrotte P, Singhal J, Figarola JL, Aldoss I, Forman SJ, Wang X. Immunometabolic Adaptation of CD19-Targeted CAR T Cells in the Central Nervous System Microenvironment of Patients Promotes Memory Development. Cancer Res 2024; 84:1048-1064. [PMID: 38315779 PMCID: PMC10984768 DOI: 10.1158/0008-5472.can-23-2299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/16/2023] [Accepted: 01/29/2024] [Indexed: 02/07/2024]
Abstract
Metabolic reprogramming is a hallmark of T-cell activation, and metabolic fitness is fundamental for T-cell-mediated antitumor immunity. Insights into the metabolic plasticity of chimeric antigen receptor (CAR) T cells in patients could help identify approaches to improve their efficacy in treating cancer. Here, we investigated the spatiotemporal immunometabolic adaptation of CD19-targeted CAR T cells using clinical samples from CAR T-cell-treated patients. Context-dependent immunometabolic adaptation of CAR T cells demonstrated the link between their metabolism, activation, differentiation, function, and local microenvironment. Specifically, compared with the peripheral blood, low lipid availability, high IL15, and low TGFβ in the central nervous system microenvironment promoted immunometabolic adaptation of CAR T cells, including upregulation of a lipolytic signature and memory properties. Pharmacologic inhibition of lipolysis in cerebrospinal fluid led to decreased CAR T-cell survival. Furthermore, manufacturing CAR T cells in cerebrospinal fluid enhanced their metabolic fitness and antileukemic activity. Overall, this study elucidates spatiotemporal immunometabolic rewiring of CAR T cells in patients and demonstrates that these adaptations can be exploited to maximize the therapeutic efficacy of CAR T cells. SIGNIFICANCE The spatiotemporal immunometabolic landscape of CD19-targeted CAR T cells from patients reveals metabolic adaptations in specific microenvironments that can be exploited to maximize the therapeutic efficacy of CAR T cells.
Collapse
Affiliation(s)
- Lior Goldberg
- Department of Hematology and Hematopoietic Cell Transplantation, T Cell Therapeutics Research Laboratories, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
- Department of Pediatrics, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Eric R. Haas
- Department of Hematology and Hematopoietic Cell Transplantation, T Cell Therapeutics Research Laboratories, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
- Ionic Cytometry Solutions, Cambridge, MA 02141, USA
| | - Ryan Urak
- Department of Hematology and Hematopoietic Cell Transplantation, T Cell Therapeutics Research Laboratories, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Vibhuti Vyas
- Department of Hematology and Hematopoietic Cell Transplantation, T Cell Therapeutics Research Laboratories, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Khyatiben V. Pathak
- Integrated Mass Spectrometry Shared Resource, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
- Cancer & Cell Biology Division, Translational Genomics Research Institute, Phoenix, AZ 85004 USA
| | - Krystine Garcia-Mansfield
- Integrated Mass Spectrometry Shared Resource, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
- Cancer & Cell Biology Division, Translational Genomics Research Institute, Phoenix, AZ 85004 USA
| | - Patrick Pirrotte
- Integrated Mass Spectrometry Shared Resource, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
- Cancer & Cell Biology Division, Translational Genomics Research Institute, Phoenix, AZ 85004 USA
| | - Jyotsana Singhal
- Division of Diabetes and Metabolic Diseases Research, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - James L. Figarola
- Division of Diabetes and Metabolic Diseases Research, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Ibrahim Aldoss
- Department of Hematology and Hematopoietic Cell Transplantation, T Cell Therapeutics Research Laboratories, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Stephen J. Forman
- Department of Hematology and Hematopoietic Cell Transplantation, T Cell Therapeutics Research Laboratories, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Xiuli Wang
- Department of Hematology and Hematopoietic Cell Transplantation, T Cell Therapeutics Research Laboratories, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| |
Collapse
|
42
|
Tang M, Da X, Xu Z, Zhao X, Zhou H. UHPLC/MS-based metabolomics of asthmatic mice reveals metabolic changes in group 2 innate lymphoid cells. Int Immunopharmacol 2024; 130:111775. [PMID: 38430805 DOI: 10.1016/j.intimp.2024.111775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/22/2024] [Accepted: 02/26/2024] [Indexed: 03/05/2024]
Abstract
Helper Th2-type immune responses are essential in allergic airway diseases, including asthma and allergic rhinitis. Recent studies have indicated that group 2 innate lymphoid cells (ILC2s) play a crucial role in the occurrence and development of asthma. However, the metabolic profile of ILC2s and their regulatory mechanisms in asthma remain unclear. Therefore, we established two asthma mouse models: an ovalbumin (OVA)-induced asthma model and an IL-33-induced asthma model. We then used ultra-high-performance liquid chromatography/mass spectrometry (UHPLC/MS) to conduct high-throughput untargeted metabolic analysis of ILC2s in the lung tissues of the asthma models. The identified metabolites primarily consisted of lipids, lipid-like molecules, benzene, organic acids, derivatives, and organic oxidation compounds. Specifically, 34 differentially accumulated metabolites influenced the metabolic profiles of the control and OVA-induced asthma model groups. Moreover, the accumulation of 39 metabolites significantly differed between the Interleukin 33 (IL-33) and control groups. These differentially accumulated metabolites were mainly involved in pathways such as sphingolipid, oxidative phosphorylation, and fatty acid metabolism. This metabolomic study revealed, for the first time, the key metabolites and metabolic pathways of ILC2s, revealing new aspects of cellular metabolism in the context of airway inflammation. These findings not only contribute to unraveling the pathogenesis of asthma but also provide a crucial theoretical foundation for the future development of therapeutic strategies targeting ILC2s.
Collapse
Affiliation(s)
- Min Tang
- Department of Pediatrics, Provincial Hospital affiliated to Anhui Medical University, Hefei, China
| | - Xianzong Da
- Department of Pediatrics, Provincial Hospital affiliated to Anhui Medical University, Hefei, China
| | - Zhiwei Xu
- Department of Pediatrics, Bengbu Medical College, Bengbu, China
| | - Xiaoman Zhao
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, China
| | - Haoquan Zhou
- Department of Pediatrics, Provincial Hospital affiliated to Anhui Medical University, Hefei, China; Department of Pediatrics, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
43
|
Cai L, Xia M, Zhang F. Redox Regulation of Immunometabolism in Microglia Underpinning Diabetic Retinopathy. Antioxidants (Basel) 2024; 13:423. [PMID: 38671871 PMCID: PMC11047590 DOI: 10.3390/antiox13040423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/24/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
Diabetic retinopathy (DR) is the leading cause of visual impairment and blindness among the working-age population. Microglia, resident immune cells in the retina, are recognized as crucial drivers in the DR process. Microglia activation is a tightly regulated immunometabolic process. In the early stages of DR, the M1 phenotype commonly shifts from oxidative phosphorylation to aerobic glycolysis for energy production. Emerging evidence suggests that microglia in DR not only engage specific metabolic pathways but also rearrange their oxidation-reduction (redox) system. This redox adaptation supports metabolic reprogramming and offers potential therapeutic strategies using antioxidants. Here, we provide an overview of recent insights into the involvement of reactive oxygen species and the distinct roles played by key cellular antioxidant pathways, including the NADPH oxidase 2 system, which promotes glycolysis via enhanced glucose transporter 4 translocation to the cell membrane through the AKT/mTOR pathway, as well as the involvement of the thioredoxin and nuclear factor E2-related factor 2 antioxidant systems, which maintain microglia in an anti-inflammatory state. Therefore, we highlight the potential for targeting the modulation of microglial redox metabolism to offer new concepts for DR treatment.
Collapse
Affiliation(s)
- Luwei Cai
- National Clinical Research Center for Eye Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China; (L.C.); (M.X.)
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai 200080, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai 200080, China
- Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai 200080, China
| | - Mengxue Xia
- National Clinical Research Center for Eye Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China; (L.C.); (M.X.)
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai 200080, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai 200080, China
- Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai 200080, China
| | - Fang Zhang
- National Clinical Research Center for Eye Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China; (L.C.); (M.X.)
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai 200080, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai 200080, China
- Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai 200080, China
| |
Collapse
|
44
|
De Biasi S, Gigan JP, Borella R, Santacroce E, Lo Tartaro D, Neroni A, Paschalidis N, Piwocka K, Argüello RJ, Gibellini L, Cossarizza A. Cell metabolism: Functional and phenotypic single cell approaches. Methods Cell Biol 2024; 186:151-187. [PMID: 38705598 DOI: 10.1016/bs.mcb.2024.02.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
Several metabolic pathways are essential for the physiological regulation of immune cells, but their dysregulation can cause immune dysfunction. Hypermetabolic and hypometabolic states represent deviations in the magnitude and flexibility of effector cells in different contexts, for example in autoimmunity, infections or cancer. To study immunometabolism, most methods focus on bulk populations and rely on in vitro activation assays. Nowadays, thanks to the development of single-cell technologies, including multiparameter flow cytometry, mass cytometry, RNA cytometry, among others, the metabolic state of individual immune cells can be measured in a variety of samples obtained in basic, translational and clinical studies. Here, we provide an overview of different single-cell approaches that are employed to investigate both mitochondrial functions and cell dependence from mitochondria metabolism. Moreover, besides the description of the appropriate experimental settings, we discuss the strengths and weaknesses of different approaches with the aim to suggest how to study cell metabolism in the settings of interest.
Collapse
Affiliation(s)
- Sara De Biasi
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, Modena, Italy.
| | - Julien Paul Gigan
- Aix Marseille University, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Rebecca Borella
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Elena Santacroce
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Domenico Lo Tartaro
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Anita Neroni
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, Modena, Italy
| | | | - Katarzyna Piwocka
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Rafael José Argüello
- Aix Marseille University, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Lara Gibellini
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Andrea Cossarizza
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
45
|
Noble J, Macek Jilkova Z, Aspord C, Malvezzi P, Fribourg M, Riella LV, Cravedi P. Harnessing Immune Cell Metabolism to Modulate Alloresponse in Transplantation. Transpl Int 2024; 37:12330. [PMID: 38567143 PMCID: PMC10985621 DOI: 10.3389/ti.2024.12330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 03/06/2024] [Indexed: 04/04/2024]
Abstract
Immune cell metabolism plays a pivotal role in shaping and modulating immune responses. The metabolic state of immune cells influences their development, activation, differentiation, and overall function, impacting both innate and adaptive immunity. While glycolysis is crucial for activation and effector function of CD8 T cells, regulatory T cells mainly use oxidative phosphorylation and fatty acid oxidation, highlighting how different metabolic programs shape immune cells. Modification of cell metabolism may provide new therapeutic approaches to prevent rejection and avoid immunosuppressive toxicities. In particular, the distinct metabolic patterns of effector and suppressive cell subsets offer promising opportunities to target metabolic pathways that influence immune responses and graft outcomes. Herein, we review the main metabolic pathways used by immune cells, the techniques available to assay immune metabolism, and evidence supporting the possibility of shifting the immune response towards a tolerogenic profile by modifying energetic metabolism.
Collapse
Affiliation(s)
- Johan Noble
- Nephrology, Hemodialysis, Apheresis and Kidney Transplantation Department, University Hospital Grenoble, Grenoble, France
- Inserm U 1209, CNRS UMR 5309, Team Epigenetics, Immunity, Metabolism, Cell Signaling and Cancer, Institute for Advanced Biosciences Grenoble, University Grenoble Alpes, La Tronche, France
| | - Zuzana Macek Jilkova
- Inserm U 1209, CNRS UMR 5309, Team Epigenetics, Immunity, Metabolism, Cell Signaling and Cancer, Institute for Advanced Biosciences Grenoble, University Grenoble Alpes, La Tronche, France
- Hepato-Gastroenterology and Digestive Oncology Department, University Hospital Grenoble, Grenoble, France
| | - Caroline Aspord
- Inserm U 1209, CNRS UMR 5309, Team Epigenetics, Immunity, Metabolism, Cell Signaling and Cancer, Institute for Advanced Biosciences Grenoble, University Grenoble Alpes, La Tronche, France
- Établissement Français du Sang Auvergne-Rhône-Alpes, R&D-Laboratory, Grenoble, France
| | - Paolo Malvezzi
- Nephrology, Hemodialysis, Apheresis and Kidney Transplantation Department, University Hospital Grenoble, Grenoble, France
| | - Miguel Fribourg
- Translational Transplant Research Center, Icahn School of Medicine at Mount Sinai New York, New York, NY, United States
| | - Leonardo V. Riella
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Division of Nephrology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Paolo Cravedi
- Translational Transplant Research Center, Icahn School of Medicine at Mount Sinai New York, New York, NY, United States
| |
Collapse
|
46
|
Huang L, Li H, Zhang C, Chen Q, Liu Z, Zhang J, Luo P, Wei T. Unlocking the potential of T-cell metabolism reprogramming: Advancing single-cell approaches for precision immunotherapy in tumour immunity. Clin Transl Med 2024; 14:e1620. [PMID: 38468489 PMCID: PMC10928360 DOI: 10.1002/ctm2.1620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/20/2024] [Accepted: 02/22/2024] [Indexed: 03/13/2024] Open
Abstract
As single-cell RNA sequencing enables the detailed clustering of T-cell subpopulations and facilitates the analysis of T-cell metabolic states and metabolite dynamics, it has gained prominence as the preferred tool for understanding heterogeneous cellular metabolism. Furthermore, the synergistic or inhibitory effects of various metabolic pathways within T cells in the tumour microenvironment are coordinated, and increased activity of specific metabolic pathways generally corresponds to increased functional activity, leading to diverse T-cell behaviours related to the effects of tumour immune cells, which shows the potential of tumour-specific T cells to induce persistent immune responses. A holistic understanding of how metabolic heterogeneity governs the immune function of specific T-cell subsets is key to obtaining field-level insights into immunometabolism. Therefore, exploring the mechanisms underlying the interplay between T-cell metabolism and immune functions will pave the way for precise immunotherapy approaches in the future, which will empower us to explore new methods for combating tumours with enhanced efficacy.
Collapse
Affiliation(s)
- Lihaoyun Huang
- Department of OncologyZhujiang HospitalSouthern Medical UniversityGuangzhouChina
- The First Clinical Medical SchoolSouthern Medical UniversityGuangzhouChina
| | - Haitao Li
- Department of OncologyTaishan People's HospitalGuangzhouChina
| | - Cangang Zhang
- Department of Pathogenic Microbiology and ImmunologySchool of Basic Medical SciencesXi'an Jiaotong UniversityXi'anShaanxiChina
| | - Quan Chen
- Department of NeurosurgeryXiangya HospitalCentral South UniversityChangshaHunanChina
| | - Zaoqu Liu
- Key Laboratory of ProteomicsBeijing Proteome Research CenterNational Center for Protein Sciences (Beijing)Beijing Institute of LifeomicsBeijingChina
- Key Laboratory of Medical Molecular BiologyChinese Academy of Medical SciencesDepartment of PathophysiologyPeking Union Medical CollegeInstitute of Basic Medical SciencesBeijingChina
| | - Jian Zhang
- Department of OncologyZhujiang HospitalSouthern Medical UniversityGuangzhouChina
- The First Clinical Medical SchoolSouthern Medical UniversityGuangzhouChina
| | - Peng Luo
- Department of OncologyZhujiang HospitalSouthern Medical UniversityGuangzhouChina
- The First Clinical Medical SchoolSouthern Medical UniversityGuangzhouChina
| | - Ting Wei
- Department of OncologyZhujiang HospitalSouthern Medical UniversityGuangzhouChina
- The First Clinical Medical SchoolSouthern Medical UniversityGuangzhouChina
| |
Collapse
|
47
|
Merech F, Gori S, Calo G, Hauk V, Paparini D, Rios D, Lara B, Doga L, D'Eramo L, Squassi A, Ramhorst R, Argüello RJ, Pérez Leirós C, Vota D. Monocyte immunometabolic reprogramming in human pregnancy: contribution of trophoblast cells. Am J Physiol Endocrinol Metab 2024; 326:E215-E225. [PMID: 38117266 DOI: 10.1152/ajpendo.00357.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/04/2023] [Accepted: 12/18/2023] [Indexed: 12/21/2023]
Abstract
Immunometabolism research is uncovering the relationship between metabolic features and immune cell functions in physiological and pathological conditions. Normal pregnancy entails a fine immune and metabolic regulation of the maternal-fetal interaction to assist the energetic demands of the fetus with immune homeostasis maintenance. Here, we determined the immunometabolic status of monocytes of pregnant women compared with nonpregnant controls and its impact on monocyte anti-inflammatory functions such as efferocytosis. Monocytes from pregnant women (16-20 wk) and nonpregnant age-matched controls were studied. Single cell-based metabolic assays using freshly isolated monocytes from both groups were carried out in parallel with functional assays ex vivo to evaluate monocyte efferocytic capacity. On the other hand, various in vitro metabolic assays with human monocytes or monocyte-derived macrophages were designed to explore the effect of trophoblast cells in the profiles observed. We found that pregnancy alters monocyte metabolism and function. An increased glucose dependency and enhanced efferocytosis were detected in monocytes from pregnant women at resting states, compared with nonpregnant controls. Furthermore, monocytes display a reduced glycolytic response when stimulated with lipopolysaccharide (LPS). The metabolic profiling of monocytes at this stage of pregnancy was comparable with the immunometabolic phenotypes of human monocytes treated in vitro with human first trimester trophoblast cell conditioned media. These findings suggest that immunometabolic mechanisms are involved in the functional shaping of monocytes during pregnancy with a contribution of trophoblast cells. Results provide new clues for future hypotheses regarding pregnancies complicated by metabolic disorders.NEW & NOTEWORTHY Immunometabolism stands as a novel perspective to understand the complex regulation of the immune response and to provide small molecule-based therapies. By applying this approach to study monocytes during pregnancy, we found that these cells have a unique activation pattern. They rely more on glycolysis and show increased efferocytosis/IL-10 production, but they do not have the typical proinflammatory responses. We also present evidence that trophoblast cells can shape monocytes into this distinct immunometabolic profile.
Collapse
Affiliation(s)
- Fátima Merech
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Universidad de Buenos Aires (UBA)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Soledad Gori
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Universidad de Buenos Aires (UBA)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Guillermina Calo
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Universidad de Buenos Aires (UBA)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Vanesa Hauk
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Universidad de Buenos Aires (UBA)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Daniel Paparini
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Universidad de Buenos Aires (UBA)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Daiana Rios
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Universidad de Buenos Aires (UBA)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Brenda Lara
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Universidad de Buenos Aires (UBA)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Luciana Doga
- Facultad de Odontología, Cátedra de Odontología Preventiva y Comunitaria, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - Luciana D'Eramo
- Facultad de Odontología, Cátedra de Odontología Preventiva y Comunitaria, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - Aldo Squassi
- Facultad de Odontología, Cátedra de Odontología Preventiva y Comunitaria, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - Rosanna Ramhorst
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Universidad de Buenos Aires (UBA)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Rafael J Argüello
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille University, CNRS, INSERM, Marseille, France
| | - Claudia Pérez Leirós
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Universidad de Buenos Aires (UBA)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Daiana Vota
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Universidad de Buenos Aires (UBA)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
48
|
Jyoti TP, Chandel S, Singh R. Flow cytometry: Aspects and application in plant and biological science. JOURNAL OF BIOPHOTONICS 2024; 17:e202300423. [PMID: 38010848 DOI: 10.1002/jbio.202300423] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 10/28/2023] [Indexed: 11/29/2023]
Abstract
Flow cytometry is a potent method that enables the quick and concurrent investigation of several characteristics of single cells in solution. Photodiodes or photomultiplier tubes are employed to detect the dispersed and fluorescent light signals that are produced by the laser beam as it passes through the cells. Photodetectors transform the light signals produced by the laser into electrical impulses. A computer then analyses these electrical impulses to identify and measure the various cell populations depending on their fluorescence or light scattering characteristics. Based on their fluorescence or light scattering properties, cell populations can be examined and/or isolated. This review covers the basic principle, components, working and specific biological applications of flow cytometry, including studies on plant, cell and molecular biology and methods employed for data processing and interpretation as well as the potential future relevance of this methodology in light of retrospective analysis and recent advancements in flow cytometry.
Collapse
Affiliation(s)
- Thakur Prava Jyoti
- Department of Pharmacognosy, ISF College of Pharmacy, Moga, Punjab, India
| | - Shivani Chandel
- Department of Pharmacognosy, ISF College of Pharmacy, Moga, Punjab, India
| | - Rajveer Singh
- Department of Pharmacognosy, ISF College of Pharmacy, Moga, Punjab, India
| |
Collapse
|
49
|
Huldani H, Malviya J, Rodrigues P, Hjazi A, Deorari MM, Al-Hetty HRAK, Qasim QA, Alasheqi MQ, Ihsan A. Discovering the strength of immunometabolism in cancer therapy: Employing metabolic pathways to enhance immune responses. Cell Biochem Funct 2024; 42:e3934. [PMID: 38379261 DOI: 10.1002/cbf.3934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/03/2024] [Accepted: 01/09/2024] [Indexed: 02/22/2024]
Abstract
Immunometabolism, which studies cellular metabolism and immune cell function, is a possible cancer treatment. Metabolic pathways regulate immune cell activation, differentiation, and effector functions, crucial to tumor identification and elimination. Immune evasion and tumor growth can result from tumor microenvironment metabolic dysregulation. These metabolic pathways can boost antitumor immunity. This overview discusses immune cell metabolism, including glycolysis, oxidative phosphorylation, amino acid, and lipid metabolism. Amino acid and lipid metabolic manipulations may improve immune cell activity and antitumor immunity. Combination therapy using immunometabolism-based strategies may enhance therapeutic efficacy. The complexity of the metabolic network, biomarker development, challenges, and future approaches are all covered, along with a summary of case studies demonstrating the effectiveness of immunometabolism-based therapy. Metabolomics, stable isotope tracing, single-cell analysis, and computational modeling are also reviewed for immunometabolism research. Personalized and combination treatments are considered. This review adds to immunometabolism expertise and sheds light on metabolic treatments' ability to boost cancer treatment immunological response. Also, in this review, we discussed the immune response in cancer treatment and altering metabolic pathways to increase the immune response against malignancies.
Collapse
Affiliation(s)
- Huldani Huldani
- Department of Physiology, Universitas Lambung Mangkurat, Banjarmasin, South Kalimantan, Indonesia
| | - Jitendra Malviya
- Institute of Advance Bioinformatics, Bhopal, Madhya Pradesh, India
| | - Paul Rodrigues
- Department of Computer Engineering, King Khalid University, Al-Faraa, Asir-Abha, Saudi Arabia
| | - Ahmed Hjazi
- Department of Medical Laboratory Sciences, Prince Sattam bin Abdulaziz University College of Applied Medical Sciences, Al-Kharj, Saudi Arabia
| | - Maha Medha Deorari
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | | | | | | | - Ali Ihsan
- Department of Medical Laboratories Techniques, Imam Ja'afar Al-Sadiq University, Al-Muthanna, Iraq
| |
Collapse
|
50
|
Ferri-Borgogno S, Burks JK, Seeley EH, McKee TD, Stolley DL, Basi AV, Gomez JA, Gamal BT, Ayyadhury S, Lawson BC, Yates MS, Birrer MJ, Lu KH, Mok SC. Molecular, Metabolic, and Subcellular Mapping of the Tumor Immune Microenvironment via 3D Targeted and Non-Targeted Multiplex Multi-Omics Analyses. Cancers (Basel) 2024; 16:846. [PMID: 38473208 PMCID: PMC10930466 DOI: 10.3390/cancers16050846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 02/16/2024] [Accepted: 02/17/2024] [Indexed: 03/14/2024] Open
Abstract
Most platforms used for the molecular reconstruction of the tumor-immune microenvironment (TIME) of a solid tumor fail to explore the spatial context of the three-dimensional (3D) space of the tumor at a single-cell resolution, and thus lack information about cell-cell or cell-extracellular matrix (ECM) interactions. To address this issue, a pipeline which integrated multiplex spatially resolved multi-omics platforms was developed to identify crosstalk signaling networks among various cell types and the ECM in the 3D TIME of two FFPE (formalin-fixed paraffin embedded) gynecologic tumor samples. These platforms include non-targeted mass spectrometry imaging (glycans, metabolites, and peptides) and Stereo-seq (spatial transcriptomics) and targeted seqIF (IHC proteomics). The spatially resolved imaging data in a two- and three-dimensional space demonstrated various cellular neighborhoods in both samples. The collection of spatially resolved analytes in a voxel (3D pixel) across serial sections of the tissue was also demonstrated. Data collected from this analytical pipeline were used to construct spatial 3D maps with single-cell resolution, which revealed cell identity, activation, and energized status. These maps will provide not only insights into the molecular basis of spatial cell heterogeneity in the TIME, but also novel predictive biomarkers and therapeutic targets, which can improve patient survival rates.
Collapse
Affiliation(s)
- Sammy Ferri-Borgogno
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA (K.H.L.)
| | - Jared K. Burks
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (D.L.S.); (A.V.B.); (J.A.G.)
| | - Erin H. Seeley
- Department of Chemistry, The University of Texas at Austin, Austin, TX 78712, USA;
| | - Trevor D. McKee
- Pathomics, Inc., Toronto, ON M4C 3K2, Canada; (T.D.M.); (S.A.)
| | - Danielle L. Stolley
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (D.L.S.); (A.V.B.); (J.A.G.)
| | - Akshay V. Basi
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (D.L.S.); (A.V.B.); (J.A.G.)
| | - Javier A. Gomez
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (D.L.S.); (A.V.B.); (J.A.G.)
| | - Basant T. Gamal
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA (K.H.L.)
| | | | - Barrett C. Lawson
- Department of Anatomical Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Melinda S. Yates
- Department of Pathology and Laboratory Medicine, The University of North Carolina, Chapel Hill, NC 27599, USA
| | - Michael J. Birrer
- Winthrop P. Rockefelle Cancer Institute, The University of Arkanasas for Medical Sciences, Little Rock, AR 72205, USA
| | - Karen H. Lu
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA (K.H.L.)
| | - Samuel C. Mok
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA (K.H.L.)
| |
Collapse
|