1
|
Lan D, Zhang D, Dai X, Cai J, Zhou H, Song T, Wang X, Kong Q, Tang Z, Tan J, Zhang J. Mesenchymal stem cells and exosomes: A novel therapeutic approach for aging. Exp Gerontol 2025; 206:112781. [PMID: 40349806 DOI: 10.1016/j.exger.2025.112781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 05/05/2025] [Accepted: 05/07/2025] [Indexed: 05/14/2025]
Abstract
Mesenchymal stem cells (MSCs), a vital component of the adult stem cell repertoire, are distinguished by their dual capacity for self-renewal and multilineage differentiation. The therapeutic effects of MSCs are primarily mediated through mechanisms such as homing, paracrine signaling, and cellular differentiation. Exosomes (Exos), a type of extracellular vesicles (EVs) secreted by MSCs via the paracrine pathway, play a pivotal role in conveying the biological functions of MSCs. Accumulating evidence from extensive research underscores the remarkable anti-aging potential of both MSCs and their Exos. This review comprehensively explores the impact of MSCs and their Exos on key hallmarks of aging, including genomic instability, telomere attrition, epigenetic alterations, loss of proteostasis, impaired macroautophagy, deregulated nutrient-sensing, mitochondrial dysfunction, cellular senescence, stem cell exhaustion, altered intercellular communication, chronic inflammation, and dysbiosis. Furthermore, this paper highlights emerging strategies and novel approaches for modulating the aging process, offering insights into potential therapeutic interventions.
Collapse
Affiliation(s)
- Dongfeng Lan
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China; Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563000, China
| | - Dan Zhang
- Zunyi Medical University Library, Zunyi 563000, China
| | - Xiaofang Dai
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China; Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563000, China
| | - Ji Cai
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China; Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563000, China
| | - He Zhou
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China; Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563000, China
| | - Tao Song
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China; Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563000, China
| | - Xianyao Wang
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China; Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563000, China
| | - Qinghong Kong
- Guizhou Provincial College-based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi 563000, China
| | - Zhengzhen Tang
- Department of Pediatrics, Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi 563000, China.
| | - Jun Tan
- Department of Histology and Embryology, Zunyi Medical University, Zunyi 563000, China.
| | - Jidong Zhang
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China; Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563000, China; Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi Medical University, Zunyi 563000, China.
| |
Collapse
|
2
|
Sun Y, Vermulst M. The hidden costs of imperfection: transcription errors in protein aggregation diseases. Curr Opin Genet Dev 2025; 93:102350. [PMID: 40300213 DOI: 10.1016/j.gde.2025.102350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 03/26/2025] [Accepted: 04/06/2025] [Indexed: 05/01/2025]
Abstract
At first glance, biological systems appear to operate with remarkable precision and order. Yet, closer examination reveals that this perfection is an illusion, biological processes are inherently prone to errors. Here, we describe recent evidence that indicates that errors that occur during transcription play an important role in neurological diseases. These errors, though transient, can have lasting consequences when they generate mutant proteins with amyloid or prion-like properties. Such proteins can seed aggregation cascades, converting wild-type counterparts into misfolded conformations, ultimately leading to toxic deposits seen in diseases like Alzheimer's and amyotrophic lateral sclerosis. These observations help to paint a fuller picture of the origins of neurodegenerative diseases in aging humans and suggest a unified mechanism by which they may arise.
Collapse
Affiliation(s)
- Yingwo Sun
- University of Southern California, School of Gerontology, Los Angeles 90089, United States
| | - Marc Vermulst
- University of Southern California, School of Gerontology, Los Angeles 90089, United States.
| |
Collapse
|
3
|
Ohtsuka H, Kawai S, Ito Y, Kato Y, Shimasaki T, Imada K, Otsubo Y, Yamashita A, Mishiro‐Sato E, Kuwata K, Aiba H. Novel TORC1 inhibitor Ecl1 is regulated by phosphorylation in fission yeast. Aging Cell 2025; 24:e14450. [PMID: 39910760 PMCID: PMC11984688 DOI: 10.1111/acel.14450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 11/11/2024] [Accepted: 12/02/2024] [Indexed: 02/07/2025] Open
Abstract
Extender of chronological lifespan 1 (Ecl1) inhibits target of rapamycin complex 1 (TORC1) and is necessary for appropriate cellular responses to various stressors, such as starvation, in fission yeast. However, little is known about the effect of posttranslational modifications on Ecl1 regulation. Thus, we investigated the phosphorylation levels of Ecl1 extracted from yeast under conditions of sulfur or metal starvation. Mass spectrometry analysis revealed that Ecl1 was phosphorylated at Thr7, and the level was decreased by starvation. The phosphorylation-mimetic mutation of Thr7 significantly reduced the effects of Ecl1-induced cellular responses to starvation, suggesting that Ecl1 function was suppressed by Thr7 phosphorylation. By contrast, regardless of starvation exposure, TORC1 was significantly suppressed, even when Thr7 phosphorylation-mimetic Ecl1 was overexpressed. This indicated that Ecl1 suppressed TORC1 regardless of Thr7 phosphorylation. We newly identified that Ecl1 physically interacted with TORC1 subunit RAPTOR (Mip1). Based on these evidences, we propose that, Ecl1 has dual functional modes: quantity-dependent TORC1 inhibition and Thr7 phosphorylation-dependent control of cellular function.
Collapse
Affiliation(s)
- Hokuto Ohtsuka
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Laboratory of Molecular MicrobiologyTokai National Higher Education and Research System, Nagoya UniversityNagoyaJapan
| | - Sawa Kawai
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Laboratory of Molecular MicrobiologyTokai National Higher Education and Research System, Nagoya UniversityNagoyaJapan
| | - Yurika Ito
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Laboratory of Molecular MicrobiologyTokai National Higher Education and Research System, Nagoya UniversityNagoyaJapan
| | - Yuka Kato
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Laboratory of Molecular MicrobiologyTokai National Higher Education and Research System, Nagoya UniversityNagoyaJapan
| | - Takafumi Shimasaki
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Laboratory of Molecular MicrobiologyTokai National Higher Education and Research System, Nagoya UniversityNagoyaJapan
| | - Kazuki Imada
- Department of Chemistry and BiochemistrySuzuka College, National Institute of Technology (KOSEN)SuzukaJapan
- Department of Biology, Graduate School of ScienceOsaka City UniversityOsakaJapan
| | - Yoko Otsubo
- Department of Life Sciences, Graduate School of Arts and SciencesThe University of TokyoTokyoJapan
- Life Science NetworkThe University of TokyoTokyoJapan
| | - Akira Yamashita
- Department of Life Sciences, Graduate School of Arts and SciencesThe University of TokyoTokyoJapan
| | - Emi Mishiro‐Sato
- Institute of Transformative bio‐MoleculesTokai National Higher Education and Research System, Nagoya UniversityNagoyaJapan
| | - Keiko Kuwata
- Institute of Transformative bio‐MoleculesTokai National Higher Education and Research System, Nagoya UniversityNagoyaJapan
| | - Hirofumi Aiba
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Laboratory of Molecular MicrobiologyTokai National Higher Education and Research System, Nagoya UniversityNagoyaJapan
| |
Collapse
|
4
|
Böttger EC, Santhosh Kumar H, Steiner A, Sotirakis E, Thiam K, Isnard Petit P, Seebeck P, Wolfer DP, Shcherbakov D, Akbergenov R. Translational error in mice increases with ageing in an organ-dependent manner. Nat Commun 2025; 16:2069. [PMID: 40021653 PMCID: PMC11871305 DOI: 10.1038/s41467-025-57203-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 02/10/2025] [Indexed: 03/03/2025] Open
Abstract
The accuracy of protein synthesis and its relation to ageing has been of long-standing interest. To study whether spontaneous changes in the rate of ribosomal error occur as a function of age, we first determined that stop-codon readthrough is a more sensitive read-out of mistranslation due to codon-anticodon mispairing than missense amino acid incorporation. Subsequently, we developed knock-in mice for in-vivo detection of stop-codon readthrough using a gain-of-function Kat2-TGA-Fluc readthrough reporter which combines fluorescent and sensitive bioluminescent imaging techniques. We followed expression of reporter proteins in-vivo over time, and assessed Kat2 and Fluc expression in tissue extracts and by whole organ ex-vivo imaging. Collectively, our results provide evidence for an organ-dependent, age-related increase in translational error: stop-codon readthrough increases with age in muscle (+ 75%, p < 0.001) and brain (+ 50%, p < 0.01), but not in liver (p > 0.5). Together with recent data demonstrating premature ageing in mice with an error-prone ram mutation, our findings highlight age-related decline of translation fidelity as a possible contributor to ageing.
Collapse
Affiliation(s)
- Erik C Böttger
- Institut für Medizinische Mikrobiologie, Universität Zürich, Zurich, Switzerland
| | | | - Adrian Steiner
- Anatomisches Institut, Universität Zürich, and Institut für Bewegungswissenschaften und Sport, ETH Zürich, Zurich, Switzerland
| | | | | | | | - Petra Seebeck
- Zurich Integrative Rodent Physiology (ZIRP), University of Zurich, Zurich, Switzerland
| | - David P Wolfer
- Anatomisches Institut, Universität Zürich, and Institut für Bewegungswissenschaften und Sport, ETH Zürich, Zurich, Switzerland
| | - Dimitri Shcherbakov
- Institut für Medizinische Mikrobiologie, Universität Zürich, Zurich, Switzerland
- Anatomisches Institut, Universität Zürich, and Institut für Bewegungswissenschaften und Sport, ETH Zürich, Zurich, Switzerland
| | - Rashid Akbergenov
- Institut für Medizinische Mikrobiologie, Universität Zürich, Zurich, Switzerland.
- Biozentrum University of Basel, Basel, Switzerland.
| |
Collapse
|
5
|
Hartmann M, Neher L, Grupp B, Cao Z, Chiew C, Iben S. Development of a highly sensitive method to detect translational infidelity. Biol Methods Protoc 2025; 10:bpaf008. [PMID: 39925782 PMCID: PMC11805343 DOI: 10.1093/biomethods/bpaf008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/20/2025] [Accepted: 01/23/2025] [Indexed: 02/11/2025] Open
Abstract
Protein homeostasis (proteostasis) is the balance of protein synthesis, protein maintenance, and degradation. Loss of proteostasis contributes to the aging process and characterizes neurodegenerative diseases. It is well established that the processes of protein maintenance and degradation are declining with aging; however, the contribution of a declining quality of protein synthesis to the loss of proteostasis is less well understood. In fact, protein synthesis at the ribosome is an error-prone process and challenges the cell with misfolded proteins. Here, we present the development of a highly sensitive and reproducible reporter assay for the detection of translational errors and the measurement of translational fidelity. Using Nano-luciferase, an enzyme 3 times smaller and 50 times more sensitive than the hitherto used Firefly-luciferase, we introduced stop-codon and amino-acid exchanges that inactivate the enzyme. Erroneous re-activation of luciferase activity indicates ribosomal inaccuracy and translational infidelity. This highly sensitive and reproducible method has broad applications for studying the molecular mechanisms underlying diseases associated with defective protein synthesis and can be used for drug screening to modulate translational fidelity.
Collapse
Affiliation(s)
- Max Hartmann
- Department of Dermatology and Allergic Diseases, Ulm University, 89081 Ulm, Germany
| | - Lisa Neher
- Department of Dermatology and Allergic Diseases, Ulm University, 89081 Ulm, Germany
| | - Benjamin Grupp
- Department of Molecular Genetics, Ulm University, 89081 Ulm, Germany
| | - Zhouli Cao
- Department of Dermatology and Allergic Diseases, Ulm University, 89081 Ulm, Germany
| | - Chloe Chiew
- Department of Dermatology and Allergic Diseases, Ulm University, 89081 Ulm, Germany
| | - Sebastian Iben
- Department of Dermatology and Allergic Diseases, Ulm University, 89081 Ulm, Germany
| |
Collapse
|
6
|
Kok G, Schene IF, Ilcken EF, Alcaraz PS, Mendes M, Smith DEC, Salomons G, Shehata S, Jans JJM, Maroofian R, Hoek TA, van Es RM, Rehmann H, Nieuwenhuis ES, Vos HR, Fuchs SA. Isoleucine-to-valine substitutions support cellular physiology during isoleucine deprivation. Nucleic Acids Res 2025; 53:gkae1184. [PMID: 39657787 PMCID: PMC11724295 DOI: 10.1093/nar/gkae1184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/08/2024] [Accepted: 11/13/2024] [Indexed: 12/12/2024] Open
Abstract
Aminoacyl-tRNA synthetases (ARSs) couple tRNAs with their corresponding amino acids. While ARSs can bind structurally similar amino acids, extreme specificity is ensured by subsequent editing activity. Yet, we found that upon isoleucine (I) restriction, healthy fibroblasts consistently incorporated valine (V) into proteins at isoleucine codons, resulting from misacylation of tRNAIle with valine by wildtype IARS1. Using a dual-fluorescent reporter of translation, we found that valine supplementation could fully compensate for isoleucine depletion and restore translation to normal levels in healthy, but not IARS1 deficient cells. Similarly, the antiproliferative effects of isoleucine deprivation could be fully restored by valine supplementation in healthy, but not IARS1 deficient cells. This indicates I > V substitutions help prevent translational termination and maintain cellular function in human primary cells during isoleucine deprivation. We suggest that this is an example of a more general mechanism in mammalian cells to preserve translational speed at the cost of translational fidelity in response to (local) amino acid deficiencies.
Collapse
Affiliation(s)
- Gautam Kok
- Department of Metabolic Diseases, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Lundlaan 6, 3584 EA Utrecht, The Netherlands
| | - Imre F Schene
- Department of Metabolic Diseases, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Lundlaan 6, 3584 EA Utrecht, The Netherlands
| | - Eveline F Ilcken
- Department of Metabolic Diseases, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Lundlaan 6, 3584 EA Utrecht, The Netherlands
| | - Paula Sobrevals Alcaraz
- Center for Molecular Medicine, University Medical Center Utrecht, Oncode Institute, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Marisa I Mendes
- Laboratory Genetic Metabolic Diseases, Amsterdam University Medical Centers, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Desiree E C Smith
- Laboratory Genetic Metabolic Diseases, Amsterdam University Medical Centers, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Gajja Salomons
- Laboratory Genetic Metabolic Diseases, Amsterdam University Medical Centers, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Sawsan Shehata
- Department of Metabolic Diseases, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Lundlaan 6, 3584 EA Utrecht, The Netherlands
| | - Judith J M Jans
- Laboratory of Metabolic Diseases, University Medical Center Utrecht, Lundlaan 6, 3584 EA Utrecht, The Netherlands
| | - Reza Maroofian
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, United Kingdom
| | - Tim A Hoek
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Robert M van Es
- Center for Molecular Medicine, University Medical Center Utrecht, Oncode Institute, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Holger Rehmann
- Department Energy and Biotechnology, Flensburg University of Applied Sciences, Kanzleistraße 91–93 24943 Flensburg, Germany
| | - Edward E S Nieuwenhuis
- Department of Metabolic Diseases, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Lundlaan 6, 3584 EA Utrecht, The Netherlands
| | - Harmjan R Vos
- Center for Molecular Medicine, University Medical Center Utrecht, Oncode Institute, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Sabine A Fuchs
- Department of Metabolic Diseases, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Lundlaan 6, 3584 EA Utrecht, The Netherlands
| |
Collapse
|
7
|
Shovlin CL, Aldred MA. When "loss-of-function" means proteostasis burden: Thinking again about coding DNA variants. Am J Hum Genet 2025; 112:3-10. [PMID: 39753117 PMCID: PMC11739917 DOI: 10.1016/j.ajhg.2024.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 12/02/2024] [Accepted: 12/03/2024] [Indexed: 01/20/2025] Open
Abstract
Each human genome has approximately 5 million DNA variants. Even for complete loss-of-function variants causing inherited, monogenic diseases, current understanding based on gene-specific molecular function does not adequately predict variability observed between people with identical mutations or fluctuating disease trajectories. We present a parallel paradigm for loss-of-function variants based on broader consequences to the cell when aberrant polypeptide chains of amino acids are translated from mutant RNA to generate mutated proteins. Missense variants that modify primary amino acid sequence, and nonsense/frameshift variants that generate premature termination codons (PTCs), are placed in context alongside emergent themes of chaperone binding, protein quality control capacity, and cellular adaptation to stress. Relatively stable proteostasis burdens are contrasted with rapid changes after induction of gene expression, or stress responses that suppress nonsense mediated decay (NMD) leading to higher PTC transcript levels where mutant proteins can augment cellular stress. For known disease-causal mutations, an adjunctive variant categorization system enhances clinical predictive power and precision therapeutic opportunities. Additionally, with typically more than 100 nonsense and frameshift variants, and ∼10,000 missense variants per human DNA, the paradigm focuses attention on all protein-coding DNA variants, and their potential contributions to multimorbid states beyond classically designated inherited diseases. Experimental testing in clinically relevant systems is encouraged to augment current atlases of protein expression at single-cell resolution, and high-throughput experimental data and deep-learning models that predict which amino acid substitutions generate enhanced degradative burdens. Incorporating additional dimensions such as pan-proteome competition for chaperones, and age-related loss of proteostasis capacity, should further accelerate health impacts.
Collapse
Affiliation(s)
- Claire L Shovlin
- National Heart and Lung Institute, Imperial College London, London, UK.
| | - Micheala A Aldred
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
8
|
Taheri F, Hou C. Life History Differences Between Lepidoptera Larvae and Blattodea Nymphs Lead to Different Energy Allocation Strategies and Cellular Qualities. INSECTS 2024; 15:991. [PMID: 39769593 PMCID: PMC11676388 DOI: 10.3390/insects15120991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/09/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025]
Abstract
Different life histories result in different strategies to allocate energy in biosynthesis, including growth and reproduction, and somatic maintenance. One of the most notable life history differences between Lepidoptera and Blattodea species is that the former grow much faster than the latter, and during metamorphosis, a large amount of tissue in Lepidoptera species disintegrates. In this review, using Lepidoptera caterpillars and cockroach nymphs as examples, we show that, due to these differences in growth processes, cockroach nymphs spend 20 times more energy on synthesizing one unit of biomass (indirect cost of growth) than butterfly caterpillars. Because of the low indirect cost of growth in caterpillars, the fraction of metabolic energy allocated to growth is six times lower, and that for maintenance is seven times higher in caterpillars, compared to cockroach nymphs, despite caterpillar's higher growth rates. Moreover, due to the higher biosynthetic energy cost in cockroach nymphs, they have better cellular qualities, including higher proteasomal activity for protein quality control and higher resistance to oxidative stress. We also show that under food restriction conditions, the fraction of assimilated energy allocated to growth was reduced by 120% in cockroach nymphs, as they lost body weight under food restriction, while this reduction was only 14% in hornworms, and the body mass increased at a lower rate. Finaly, we discuss future research, especially the difference in adult lifespans associated with the energetic differences.
Collapse
Affiliation(s)
| | - Chen Hou
- Department of Biology, Missouri University of Science and Technology, Rolla, MO 65409, USA;
| |
Collapse
|
9
|
Ibrahim R, Bahilo Martinez M, Dobson AJ. Rapamycin's lifespan effect is modulated by mito-nuclear epistasis in Drosophila. Aging Cell 2024; 23:e14328. [PMID: 39225061 PMCID: PMC11634709 DOI: 10.1111/acel.14328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 08/02/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024] Open
Abstract
The macrolide drug rapamycin is a benchmark anti-ageing drug, which robustly extends lifespan of diverse organisms. For any health intervention, it is paramount to establish whether benefits are distributed equitably among individuals and populations, and ideally to match intervention to recipients' needs. However, how responses to rapamycin vary is surprisingly understudied. Here we investigate how among-population variation in both mitochondrial and nuclear genetics shapes rapamycin's effects on lifespan. We show that epistatic "mito-nuclear" interactions, between mitochondria and nuclei, modulate the response to rapamycin treatment. Differences manifest as differential demographic effects of rapamycin, with altered age-specific mortality rate. However, a fitness cost of rapamycin early in life does not show a correlated response, suggesting that mito-nuclear epistasis can decouple costs and benefits of treatment. These findings suggest that a deeper understanding of how variation in mitochondrial and nuclear genomes shapes physiology may facilitate tailoring of anti-ageing therapy to individual need.
Collapse
Affiliation(s)
- Rita Ibrahim
- School of Molecular BiosciencesUniversity of GlasgowGlasgowUK
| | | | - Adam J. Dobson
- School of Molecular BiosciencesUniversity of GlasgowGlasgowUK
| |
Collapse
|
10
|
Luo JF, Wang S, Fu J, Xu P, Shao N, Lu JH, Ming C. Integration of transcriptional and epigenetic regulation of TFEB reveals its dual functional roles in Pan-cancer. NAR Cancer 2024; 6:zcae043. [PMID: 39554489 PMCID: PMC11567160 DOI: 10.1093/narcan/zcae043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/03/2024] [Accepted: 10/28/2024] [Indexed: 11/19/2024] Open
Abstract
Transcription factor EB (TFEB) mainly regulates the autophagy-lysosomal pathway, associated with many diseases, including cancer. However, the role of TFEB in pan-cancer has not been investigated systematically. In this study, we comprehensively analyzed TFEB targets under three stresses in Hela cells by cross-validation of RNA-seq and ChIP-seq. 1712 novel TFEB targets have not been reported in the Gene Set Enrichment Analysis and ChIP Enrichment Analysis databases. We further investigated their distributions and roles among the pan-cancer co-expression networks across 32 cancers constructed by multiscale embedded gene co-expression network analysis (MEGENA) based on the Cancer Genome Atlas (TCGA) cohort. Specifically, TFEB might serve as a hidden player with multifaceted functions in regulating pan-cancer risk factors, e.g. CXCL2, PKMYT1 and BUB1, associated with cell cycle and immunosuppression. TFEB might also regulate protective factors, e.g. CD79A, related to immune promotion in the tumor microenvironment. We further developed a Shiny app website to present the comprehensive regulatory targets of TFEB under various stimuli, intending to support further research on TFEB functions. Summarily, we provided references for the TFEB downstream targets responding to three stresses and the dual roles of TFEB and its targets in pan-cancer, which are promising anticancer targets that warrant further exploration.
Collapse
Affiliation(s)
- Jing-Fang Luo
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR999078, China
- Department of Public Health and Medicinal Administration, Faculty of Health Sciences, University of Macau, Macao SAR999078, China
- Ministry of Education Frontiers Science Centre for Precision Oncology, Faculty of Health Sciences, University of Macau, Macau SAR999078, China
| | - Shijia Wang
- Department of Public Health and Medicinal Administration, Faculty of Health Sciences, University of Macau, Macao SAR999078, China
- Ministry of Education Frontiers Science Centre for Precision Oncology, Faculty of Health Sciences, University of Macau, Macau SAR999078, China
| | - Jiajing Fu
- Department of Public Health and Medicinal Administration, Faculty of Health Sciences, University of Macau, Macao SAR999078, China
- Ministry of Education Frontiers Science Centre for Precision Oncology, Faculty of Health Sciences, University of Macau, Macau SAR999078, China
| | - Peng Xu
- Centre of Clinical Laboratory Medicine, Zhongda Hospital, School of Medicine, Advanced Institute for Life and Health, Southeast University, Nanjing 210096, China
| | - Ningyi Shao
- Ministry of Education Frontiers Science Centre for Precision Oncology, Faculty of Health Sciences, University of Macau, Macau SAR999078, China
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Macao SAR999078, China
| | - Jia-Hong Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR999078, China
| | - Chen Ming
- Department of Public Health and Medicinal Administration, Faculty of Health Sciences, University of Macau, Macao SAR999078, China
- Ministry of Education Frontiers Science Centre for Precision Oncology, Faculty of Health Sciences, University of Macau, Macau SAR999078, China
- Centre for Cognitive and Brain Sciences, University of Macau, Macao SAR 999078, China
| |
Collapse
|
11
|
Solyga M, Majumdar A, Besse F. Regulating translation in aging: from global to gene-specific mechanisms. EMBO Rep 2024; 25:5265-5276. [PMID: 39562712 PMCID: PMC11624266 DOI: 10.1038/s44319-024-00315-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/23/2024] [Accepted: 10/29/2024] [Indexed: 11/21/2024] Open
Abstract
Aging is characterized by a decline in various biological functions that is associated with changes in gene expression programs. Recent transcriptome-wide integrative studies in diverse organisms and tissues have revealed a gradual uncoupling between RNA and protein levels with aging, which highlights the importance of post-transcriptional regulatory processes. Here, we provide an overview of multi-omics analyses that show the progressive uncorrelation of transcriptomes and proteomes during the course of healthy aging. We then describe the molecular changes leading to global downregulation of protein synthesis with age and review recent work dissecting the mechanisms involved in gene-specific translational regulation in complementary model organisms. These mechanisms include the recognition of regulated mRNAs by trans-acting factors such as miRNA and RNA-binding proteins, the condensation of mRNAs into repressive cytoplasmic RNP granules, and the pausing of ribosomes at specific residues. Lastly, we mention future challenges of this emerging field, possible buffering functions as well as potential links with disease.
Collapse
Affiliation(s)
- Mathilde Solyga
- Université Côte d'Azur, CNRS, Inserm, Institut de Biologie Valrose, Nice, France
| | - Amitabha Majumdar
- National Centre for Cell Science, Savitribai Phule Pune University Campus, Pune, Maharashtra, India
| | - Florence Besse
- Université Côte d'Azur, CNRS, Inserm, Institut de Biologie Valrose, Nice, France.
| |
Collapse
|
12
|
Ghosh A, Singh J. Translation initiation or elongation inhibition triggers contrasting effects on Caenorhabditis elegans survival during pathogen infection. mBio 2024; 15:e0248524. [PMID: 39347574 PMCID: PMC11559039 DOI: 10.1128/mbio.02485-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 09/11/2024] [Indexed: 10/01/2024] Open
Abstract
Diverse microbial pathogens are known to attenuate host protein synthesis. Consequently, the host mounts a defense response against protein translation inhibition, leading to increased transcript levels of immune genes. The seemingly paradoxical upregulation of immune gene transcripts in response to blocked protein synthesis suggests that the defense mechanism against translation inhibition may not universally benefit host survival. However, a comprehensive assessment of host survival on pathogens upon blockage of different stages of protein synthesis is currently lacking. Here, we investigate the impact of knockdown of various translation initiation and elongation factors on the survival of Caenorhabditis elegans exposed to Pseudomonas aeruginosa. Intriguingly, we observe opposing effects on C. elegans survival depending on whether translation initiation or elongation is inhibited. While translation initiation inhibition enhances survival, elongation inhibition decreases it. Transcriptomic studies reveal that translation initiation inhibition activates a bZIP transcription factor ZIP-2-dependent innate immune response that protects C. elegans from P. aeruginosa infection. In contrast, inhibiting translation elongation triggers both ZIP-2-dependent and ZIP-2-independent immune responses that, while effective in clearing the infection, are detrimental to the host. Thus, our findings reveal the opposing roles of translation initiation and elongation inhibition in C. elegans survival during P. aeruginosa infection, highlighting distinct transcriptional reprogramming that may underlie these differences. IMPORTANCE Several microbial pathogens target host protein synthesis machinery, potentially limiting the innate immune responses of the host. In response, hosts trigger a defensive response, elevating immune gene transcripts. This counterintuitive response can have either beneficial or harmful effects on host survival. In this study, we conduct a comprehensive analysis of the impact of knocking down various translation initiation and elongation factors on the survival of Caenorhabditis elegans exposed to Pseudomonas aeruginosa. Intriguingly, inhibiting initiation and elongation factors has contrasting effects on C. elegans survival. Inhibiting translation initiation activates immune responses that protect the host from bacterial infection, while inhibiting translation elongation induces aberrant immune responses that, although clear the infection, are detrimental to the host. Our study reveals divergent roles of translation initiation and elongation inhibition in C. elegans survival during P. aeruginosa infection and identifies differential transcriptional reprogramming that could underlie these differences.
Collapse
Affiliation(s)
- Annesha Ghosh
- Department of Biological Sciences, Indian Institute of Science Education and Research, Mohali, Punjab, India
| | - Jogender Singh
- Department of Biological Sciences, Indian Institute of Science Education and Research, Mohali, Punjab, India
| |
Collapse
|
13
|
Fluke KA, Dai N, Wolf EJ, Fuchs RT, Ho PS, Talbott V, Elkins L, Tsai YL, Schiltz J, Febvre HP, Czarny R, Robb GB, Corrêa IR, Santangelo TJ. A novel N4, N4-dimethylcytidine in the archaeal ribosome enhances hyperthermophily. Proc Natl Acad Sci U S A 2024; 121:e2405999121. [PMID: 39471227 PMCID: PMC11551388 DOI: 10.1073/pnas.2405999121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 09/26/2024] [Indexed: 11/01/2024] Open
Abstract
Ribosome structure and activity are challenged at high temperatures, often demanding modifications to ribosomal RNAs (rRNAs) to retain translation fidelity. LC-MS/MS, bisulfite-sequencing, and high-resolution cryo-EM structures of the archaeal ribosome identified an RNA modification, N4,N4-dimethylcytidine (m42C), at the universally conserved C918 in the 16S rRNA helix 31 loop. Here, we characterize and structurally resolve a class of RNA methyltransferase that generates m42C whose function is critical for hyperthermophilic growth. m42C is synthesized by the activity of a unique family of RNA methyltransferase containing a Rossman-fold that targets only intact ribosomes. The phylogenetic distribution of the newly identified m42C synthase family implies that m42C is biologically relevant in each domain. Resistance of m42C to bisulfite-driven deamination suggests that efforts to capture m5C profiles via bisulfite sequencing are also capturing m42C.
Collapse
Affiliation(s)
- Kristin A. Fluke
- Cell and Molecular Biology Graduate Program, Colorado State University, Fort Collins, CO80523
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO80523
| | - Nan Dai
- New England Biolabs Inc., Beverly, MA01915
| | | | | | - P. Shing Ho
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO80523
| | - Victoria Talbott
- Cell and Molecular Biology Graduate Program, Colorado State University, Fort Collins, CO80523
| | - Liam Elkins
- Cell and Molecular Biology Graduate Program, Colorado State University, Fort Collins, CO80523
| | | | - Jackson Schiltz
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO80523
| | - Hallie P. Febvre
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO80523
| | - Ryan Czarny
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO80523
| | | | | | - Thomas J. Santangelo
- Cell and Molecular Biology Graduate Program, Colorado State University, Fort Collins, CO80523
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO80523
| |
Collapse
|
14
|
Anver S, Sumit AF, Sun XM, Hatimy A, Thalassinos K, Marguerat S, Alic N, Bähler J. Ageing-associated long non-coding RNA extends lifespan and reduces translation in non-dividing cells. EMBO Rep 2024; 25:4921-4949. [PMID: 39358553 PMCID: PMC11549352 DOI: 10.1038/s44319-024-00265-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/07/2024] [Accepted: 09/11/2024] [Indexed: 10/04/2024] Open
Abstract
Genomes produce widespread long non-coding RNAs (lncRNAs) of largely unknown functions. We characterize aal1 (ageing-associated lncRNA), which is induced in quiescent fission yeast cells. Deletion of aal1 shortens the chronological lifespan of non-dividing cells, while ectopic overexpression prolongs their lifespan, indicating that aal1 acts in trans. Overexpression of aal1 represses ribosomal-protein gene expression and inhibits cell growth, and aal1 genetically interacts with coding genes functioning in protein translation. The aal1 lncRNA localizes to the cytoplasm and associates with ribosomes. Notably, aal1 overexpression decreases the cellular ribosome content and inhibits protein translation. The aal1 lncRNA binds to the rpl1901 mRNA, encoding a ribosomal protein. The rpl1901 levels are reduced ~2-fold by aal1, which is sufficient to extend lifespan. Remarkably, the expression of the aal1 lncRNA in Drosophila boosts fly lifespan. We propose that aal1 reduces the ribosome content by decreasing Rpl1901 levels, thus attenuating the translational capacity and promoting longevity. Although aal1 is not conserved, its effect in flies suggests that animals feature related mechanisms that modulate ageing, based on the conserved translational machinery.
Collapse
Affiliation(s)
- Shajahan Anver
- Institute of Healthy Ageing, Research Department of Genetics, Evolution and Environment, University College London, London, WC1E 6BT, UK
| | - Ahmed Faisal Sumit
- Institute of Healthy Ageing, Research Department of Genetics, Evolution and Environment, University College London, London, WC1E 6BT, UK
| | - Xi-Ming Sun
- Institute of Clinical Sciences, Imperial College London, London, W12 0NN, UK
- MRC London Institute of Medical Sciences (LMS), London, W12 0NN, UK
| | - Abubakar Hatimy
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, WC1E 6BT, UK
| | - Konstantinos Thalassinos
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, WC1E 6BT, UK
- Institute of Structural and Molecular Biology, Birkbeck College, University of London, London, WC1E 7HX, UK
| | - Samuel Marguerat
- Institute of Clinical Sciences, Imperial College London, London, W12 0NN, UK
- MRC London Institute of Medical Sciences (LMS), London, W12 0NN, UK
- UCL Cancer Institute, University College London, London, WC1E 6BT, UK
| | - Nazif Alic
- Institute of Healthy Ageing, Research Department of Genetics, Evolution and Environment, University College London, London, WC1E 6BT, UK
| | - Jürg Bähler
- Institute of Healthy Ageing, Research Department of Genetics, Evolution and Environment, University College London, London, WC1E 6BT, UK.
| |
Collapse
|
15
|
Takaya K, Kishi K. Identification of a new human senescent skin cell marker ribonucleoside-diphosphate reductase subunit M2 B. Biogerontology 2024; 25:1239-1251. [PMID: 39261410 DOI: 10.1007/s10522-024-10135-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 08/26/2024] [Indexed: 09/13/2024]
Abstract
In skin aging, it has been hypothesized that aging fibroblasts accumulate within the epidermal basal layer, dermis, and subcutaneous fat, causing abnormal tissue remodeling and extracellular matrix dysfunction, thereby inducing an aging-related secretory phenotype (SASP). A new treatment for skin aging involves the specific elimination of senescent skin cells, especially fibroblasts within the dermis and keratinocytes in the basal layer. This requires the identification of specific protein markers of senescent cells, such as ribonucleoside-diphosphate reductase subunit M2 B (RRM2B), which is upregulated in various malignancies in response to DNA stress damage. However, the behavior and role of RRM2B in skin aging remain unclear. Therefore, we examined whether RRM2B functions as a senescence marker using a human dermal fibroblast model of aging. In a model of cellular senescence induced by replicative aging and exposure to ionizing radiation or UVB, RRM2B was upregulated at the gene and protein levels. This was correlated with decreased uptake of the senescence-associated β-galactosidase activity and proliferation marker bromodeoxyuridine. RRM2B upregulation was concurrent with the increased expression of SASP factor genes. Furthermore, using fluorescence flow cytometry, RRM2B-positive cells were recovered more frequently in the aging cell population. In aging human skin, RRM2B was also found to be more abundant in the dermis and epidermal basal layer than other proteins. Therefore, RRM2B may serve as a clinical marker to identify senescent skin cells.
Collapse
Affiliation(s)
- Kento Takaya
- Department of Plastic and Reconstructive Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.
| | - Kazuo Kishi
- Department of Plastic and Reconstructive Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| |
Collapse
|
16
|
Vu TV, Nguyen NT, Kim J, Song YJ, Nguyen TH, Kim JY. Optimized dicot prime editing enables heritable desired edits in tomato and Arabidopsis. NATURE PLANTS 2024; 10:1502-1513. [PMID: 39242983 DOI: 10.1038/s41477-024-01786-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 08/11/2024] [Indexed: 09/09/2024]
Abstract
Prime editing (PE) enables almost all types of precise genome editing in animals and plants. It has been successfully adapted to edit several plants with variable efficiency and versatility. However, this technique is inefficient for dicots for unknown reasons. Here, using new combinations of PE components, including an RNA chaperone and altered engineered prime editing guide RNAs driven by a PolII-PolIII composite promoter and a viral replicon system, we obtained up to 9.7% of the desired PE efficiency at the callus stage as assessed by targeted deep sequencing. Subsequently, we identified that up to 38.2% of transformants contained desired PE alleles in tomatoes and Arabidopsis, marking successful heritable PE transmission. Our PE tools also showed high accuracy, specificity and multiplexing capability, which unlocked the potential for practical PE applications in dicots, paving the way for transformative advancements in plant sciences.
Collapse
Affiliation(s)
- Tien Van Vu
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea.
| | - Ngan Thi Nguyen
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea
| | - Jihae Kim
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea
| | - Young Jong Song
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea
| | - Thu Hoai Nguyen
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea
- Forest Protection Research Centre, Vietnamese Academy of Forest Sciences, Hanoi, Vietnam
| | - Jae-Yean Kim
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea.
- Division of Life Science, Gyeongsang National University, Jinju, Republic of Korea.
- Nulla Bio R&D Center, Nulla Bio Inc, Jinju, Republic of Korea.
| |
Collapse
|
17
|
Stemwedel K, Haase N, Christ S, Bogdanova N, Rudorf S. Synonymous rpsH variants: the common denominator in Escherichia coli adapting to ionizing radiation. NAR Genom Bioinform 2024; 6:lqae110. [PMID: 39184377 PMCID: PMC11344242 DOI: 10.1093/nargab/lqae110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/18/2024] [Accepted: 08/08/2024] [Indexed: 08/27/2024] Open
Abstract
Ionizing radiation (IR) in high doses is generally lethal to most organisms. Investigating mechanisms of radiation resistance is crucial for gaining insights into the underlying cellular responses and understanding the damaging effects of IR. In this study, we conducted a comprehensive analysis of sequencing data from an evolutionary experiment aimed at understanding the genetic adaptations to ionizing radiation in Escherichia coli. By including previously neglected synonymous mutations, we identified the rpsH c.294T > G variant, which emerged in all 17 examined isolates across four subpopulations. The identified variant is a synonymous mutation affecting the 30S ribosomal protein S8, and consistently exhibited high detection and low allele frequencies in all subpopulations. This variant, along with two additional rpsH variants, potentially influences translational control of the ribosomal spc operon. The early emergence and stability of these variants suggest their role in adapting to environmental stress, possibly contributing to radiation resistance. Our findings shed light on the dynamics of ribosomal variants during the evolutionary process and their potential role in stress adaptation, providing valuable implications for understanding clinical radiation sensitivity and improving radiotherapy.
Collapse
Affiliation(s)
- Katharina Stemwedel
- Leibniz University Hannover, Institute of Cell Biology and Biophysics, Hannover, 30167, Germany
| | - Nadin Haase
- Leibniz University Hannover, Institute of Cell Biology and Biophysics, Hannover, 30167, Germany
| | - Simon Christ
- Leibniz University Hannover, Institute of Cell Biology and Biophysics, Hannover, 30167, Germany
| | | | - Sophia Rudorf
- Leibniz University Hannover, Institute of Cell Biology and Biophysics, Hannover, 30167, Germany
| |
Collapse
|
18
|
Fuentes P, Pelletier J, Gentilella A. Decoding ribosome complexity: role of ribosomal proteins in cancer and disease. NAR Cancer 2024; 6:zcae032. [PMID: 39045153 PMCID: PMC11263879 DOI: 10.1093/narcan/zcae032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 05/31/2024] [Accepted: 07/02/2024] [Indexed: 07/25/2024] Open
Abstract
The ribosome is a remarkably complex machinery, at the interface with diverse cellular functions and processes. Evolutionarily conserved, yet intricately regulated, ribosomes play pivotal roles in decoding genetic information into the synthesis of proteins and in the generation of biomass critical for cellular physiological functions. Recent insights have revealed the existence of ribosome heterogeneity at multiple levels. Such heterogeneity extends to cancer, where aberrant ribosome biogenesis and function contribute to oncogenesis. This led to the emergence of the concept of 'onco-ribosomes', specific ribosomal variants with altered structural dynamics, contributing to cancer initiation and progression. Ribosomal proteins (RPs) are involved in many of these alterations, acting as critical factors for the translational reprogramming of cancer cells. In this review article, we highlight the roles of RPs in ribosome biogenesis, how mutations in RPs and their paralogues reshape the translational landscape, driving clonal evolution and therapeutic resistance. Furthermore, we present recent evidence providing new insights into post-translational modifications of RPs, such as ubiquitylation, UFMylation and phosphorylation, and how they regulate ribosome recycling, translational fidelity and cellular stress responses. Understanding the intricate interplay between ribosome complexity, heterogeneity and RP-mediated regulatory mechanisms in pathology offers profound insights into cancer biology and unveils novel therapeutic avenues targeting the translational machinery in cancer.
Collapse
Affiliation(s)
- Pedro Fuentes
- Laboratory of Cancer Metabolism, ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), 08908, L'Hospitalet de Llpbregat, Barcelona, Spain
| | - Joffrey Pelletier
- Laboratory of Cancer Metabolism, ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), 08908, L'Hospitalet de Llpbregat, Barcelona, Spain
- Department of Physiological Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, 08908, L’Hospitalet de Llobregat, Barcelona, Spain
| | - Antonio Gentilella
- Laboratory of Cancer Metabolism, ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), 08908, L'Hospitalet de Llpbregat, Barcelona, Spain
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona, 08028, Barcelona, Spain
| |
Collapse
|
19
|
Llewellyn J, Hubbard SJ, Swift J. Translation is an emerging constraint on protein homeostasis in ageing. Trends Cell Biol 2024; 34:646-656. [PMID: 38423854 DOI: 10.1016/j.tcb.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 01/23/2024] [Accepted: 02/01/2024] [Indexed: 03/02/2024]
Abstract
Proteins are molecular machines that provide structure and perform vital transport, signalling and enzymatic roles. Proteins expressed by cells require tight regulation of their concentration, folding, localisation, and modifications; however, this state of protein homeostasis is continuously perturbed by tissue-level stresses. While cells in healthy tissues are able to buffer against these perturbations, for example, by expression of chaperone proteins, protein homeostasis is lost in ageing, and can lead to protein aggregation characteristic of protein folding diseases. Here, we review reports of a progressive disconnect between transcriptomic and proteomic regulation during cellular ageing. We discuss how age-associated changes to cellular responses to specific stressors in the tissue microenvironment are exacerbated by loss of ribosomal proteins, ribosomal pausing, and mistranslation.
Collapse
Affiliation(s)
- Jack Llewellyn
- Wellcome Centre for Cell-Matrix Research, Oxford Road, Manchester, M13 9PT, UK; Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, M13 9PT, UK
| | - Simon J Hubbard
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, M13 9PT, UK.
| | - Joe Swift
- Wellcome Centre for Cell-Matrix Research, Oxford Road, Manchester, M13 9PT, UK; Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, M13 9PT, UK.
| |
Collapse
|
20
|
Wang X, Zhang C, Su J, Ren S, Wang X, Zhang Y, Yuan Z, He X, Wu X, Li M, Du F, Chen Y, Deng S, Zhao Y, Wang X, Sun Y, Shen J, Ji H, Hou Y, Xiao Z. Rejuvenation Strategy for Inducing and Enhancing Autoimmune Response to Eliminate Senescent Cells. Aging Dis 2024:AD.2024.0579. [PMID: 39122450 DOI: 10.14336/ad.2024.0579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/17/2024] [Indexed: 08/12/2024] Open
Abstract
The process of aging, which involves progressive changes in the body over time, is closely associated with the development of age-related diseases. Cellular senescence is a pivotal hallmark and mechanism of the aging process. The accumulation of senescent cells can significantly contribute to the onset of age-related diseases, thereby compromising overall health. Conversely, the elimination of senescent cells enhances the body's regenerative and reparative capacity, thereby retarding the aging process. Here, we present a brief overview of 12 Hallmarks of aging and subsequently emphasize the potential of immune checkpoint blockade, innate immune cell therapy (including T cells, iNKT cells, macrophages, and NK cells), as well as CAR-T cell therapy for inducing and augmenting immune responses aimed at eliminating senescent cells. In addition to CAR-T cells, we also explore the possibility of engineered immune cells such as CAR-NK and CAR-M cells to eliminate senescent cells. In summary, immunotherapy, as an emerging strategy for the treatment of aging, offers new prospects for age-related research.
Collapse
Affiliation(s)
- Xingyue Wang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Chengyu Zhang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Jiahong Su
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Siqi Ren
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Xiang Wang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Yinping Zhang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Zijun Yuan
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Xinyu He
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy &;amp Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy &;amp Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Fukuan Du
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy &;amp Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Yu Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy &;amp Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Shuai Deng
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy &;amp Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy &;amp Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Xiaodong Wang
- Department of Hepatobiliary Disease, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Yuhong Sun
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy &;amp Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Huijiao Ji
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Yunqing Hou
- LongmaTan District People's Hospital of Luzhou City, Luzhou 646600, China
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy &;amp Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
- Department of Pharmacology, School of Pharmacy, Sichuan College of Traditional Chinese Medicine, Mianyang 621000, China
| |
Collapse
|
21
|
Lewis CJ, de Grey AD. Combining rejuvenation interventions in rodents: a milestone in biomedical gerontology whose time has come. Expert Opin Ther Targets 2024; 28:501-511. [PMID: 38477630 DOI: 10.1080/14728222.2024.2330425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 03/11/2024] [Indexed: 03/14/2024]
Abstract
INTRODUCTION Longevity research has matured to the point where significantly postponing age-related decline in physical and mental function is now achievable in the laboratory and foreseeable in the clinic. The most promising strategies involve rejuvenation, i.e. reducing biological age, not merely slowing its progression. AREAS COVERED We discuss therapeutic strategies for rejuvenation and results achieved thus far, with a focus on in vivo studies. We discuss the implications of interventions which act on mean or maximum lifespan and those showing effects in accelerated disease models. While the focus is on work conducted in mice, we also highlight notable insights in the field from studies in other model organisms. EXPERT OPINION Rejuvenation was originally proposed as easier than slowing aging because it targets initially inert changes to tissue structure and composition, rather than trying to disentangle processes that both create aging damage and maintain life. While recent studies support this hypothesis, a true test requires a panel of rejuvenation interventions targeting multiple damage categories simultaneously. Considerations of cost, profitability, and academic significance have dampened enthusiasm for such work, but it is vital. Now is the time for the field to take this key step toward the medical control of aging.
Collapse
Affiliation(s)
- Caitlin J Lewis
- Longevity Escape Velocity Foundation, San Francisco, CA, USA
| | | |
Collapse
|
22
|
Ohtsuka H, Shimasaki T, Aiba H. Low-Molecular Weight Compounds that Extend the Chronological Lifespan of Yeasts, Saccharomyces cerevisiae, and Schizosaccharomyces pombe. Adv Biol (Weinh) 2024; 8:e2400138. [PMID: 38616173 DOI: 10.1002/adbi.202400138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/04/2024] [Indexed: 04/16/2024]
Abstract
Yeast is an excellent model organism for research for regulating aging and lifespan, and the studies have made many contributions to date, including identifying various factors and signaling pathways related to aging and lifespan. More than 20 years have passed since molecular biological perspectives are adopted in this research field, and intracellular factors and signal pathways that control aging and lifespan have evolutionarily conserved from yeast to mammals. Furthermore, these findings have been applied to control the aging and lifespan of various model organisms by adjustment of the nutritional environment, genetic manipulation, and drug treatment using low-molecular weight compounds. Among these, drug treatment is easier than the other methods, and research into drugs that regulate aging and lifespan is consequently expected to become more active. Chronological lifespan, a definition of yeast lifespan, refers to the survival period of a cell population under nondividing conditions. Herein, low-molecular weight compounds are summarized that extend the chronological lifespan of Saccharomyces cerevisiae and Schizosaccharomyces pombe, along with their intracellular functions. The low-molecular weight compounds are also discussed that extend the lifespan of other model organisms. Compounds that have so far only been studied in yeast may soon extend lifespan in other organisms.
Collapse
Affiliation(s)
- Hokuto Ohtsuka
- Laboratory of Molecular Microbiology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Aichi, Japan
| | - Takafumi Shimasaki
- Laboratory of Molecular Microbiology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Aichi, Japan
| | - Hirofumi Aiba
- Laboratory of Molecular Microbiology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Aichi, Japan
| |
Collapse
|
23
|
Hamazaki J, Murata S. Relationships between protein degradation, cellular senescence, and organismal aging. J Biochem 2024; 175:473-480. [PMID: 38348509 PMCID: PMC11058314 DOI: 10.1093/jb/mvae016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 02/01/2024] [Accepted: 02/07/2024] [Indexed: 05/01/2024] Open
Abstract
Aging is a major risk factor for many diseases. Recent studies have shown that age-related disruption of proteostasis leads to the accumulation of abnormal proteins and that dysfunction of the two major intracellular proteolytic pathways, the ubiquitin-proteasome pathway, and the autophagy-lysosome pathway, is largely responsible for this process. Conversely, it has been shown that activation of these proteolytic pathways may contribute to lifespan extension and suppression of pathological conditions, making it a promising intervention for anti-aging. This review provides an overview of the important role of intracellular protein degradation in aging and summarizes how the disruption of proteostasis is involved in age-related diseases.
Collapse
Affiliation(s)
- Jun Hamazaki
- Laboratory of Protein Metabolism, Graduate School of Pharmaceutical Sciences, the University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 1130033, Japan
| | - Shigeo Murata
- Laboratory of Protein Metabolism, Graduate School of Pharmaceutical Sciences, the University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 1130033, Japan
| |
Collapse
|
24
|
Kamada Y, Umeda C, Mukai Y, Ohtsuka H, Otsubo Y, Yamashita A, Kosugi T. Structure-based engineering of Tor complexes reveals that two types of yeast TORC1 produce distinct phenotypes. J Cell Sci 2024; 137:jcs261625. [PMID: 38415789 PMCID: PMC10941655 DOI: 10.1242/jcs.261625] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 01/18/2024] [Indexed: 02/29/2024] Open
Abstract
Certain proteins assemble into diverse complex states, each having a distinct and unique function in the cell. Target of rapamycin (Tor) complex 1 (TORC1) plays a central role in signalling pathways that allow cells to respond to the environment, including nutritional status signalling. TORC1 is widely recognised for its association with various diseases. The budding yeast Saccharomyces cerevisiae has two types of TORC1, Tor1-containing TORC1 and Tor2-containing TORC1, which comprise different constituent proteins but are considered to have the same function. Here, we computationally modelled the relevant complex structures and then, based on the structures, rationally engineered a Tor2 mutant that could form Tor complex 2 (TORC2) but not TORC1, resulting in a redesign of the complex states. Functional analysis of the Tor2 mutant revealed that the two types of TORC1 induce different phenotypes, with changes observed in rapamycin, caffeine and pH dependencies of cell growth, as well as in replicative and chronological lifespan. These findings uncovered by a general approach with huge potential - model structure-based engineering - are expected to provide further insights into various fields such as molecular evolution and lifespan.
Collapse
Affiliation(s)
- Yoshiaki Kamada
- Interdisciplinary Research Unit, National Institute for Basic Biology (NIBB), National Institutes of Natural Sciences (NINS), Okazaki, Aichi, 444-8585, Japan
- Basic Biology Program, SOKENDAI (The Graduate University for Advanced Studies), Hayama, Kanagawa, 240-0193, Japan
| | - Chiharu Umeda
- Department of Frontier Bioscience, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga, 526-0829, Japan
| | - Yukio Mukai
- Department of Frontier Bioscience, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga, 526-0829, Japan
| | - Hokuto Ohtsuka
- Laboratory of Molecular Microbiology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Aichi, 464-8601, Japan
| | - Yoko Otsubo
- Interdisciplinary Research Unit, National Institute for Basic Biology (NIBB), National Institutes of Natural Sciences (NINS), Okazaki, Aichi, 444-8585, Japan
| | - Akira Yamashita
- Interdisciplinary Research Unit, National Institute for Basic Biology (NIBB), National Institutes of Natural Sciences (NINS), Okazaki, Aichi, 444-8585, Japan
| | - Takahiro Kosugi
- Research Center of Integrative Molecular Systems (CIMoS), Institute for Molecular Science (IMS), National Institutes of Natural Sciences (NINS), Okazaki, Aichi, 444-8585, Japan
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences (NINS), Okazaki, Aichi, 444-8585, Japan
- Molecular Science Program, SOKENDAI (The Graduate University for Advanced Studies), Hayama, Kanagawa, 240-0193, Japan
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency, Kawaguchi, Saitama, 332-0012, Japan
| |
Collapse
|
25
|
Abstract
About a year ago, members of the editorial board of Biogerontology were requested to respond to a query by the editor-in-chief of the journal as to what one question within their field of ageing research still needs to be asked and answered. This editorial is inspired by the wide range and variety of questions, ideas, comments and suggestions received in response to that query. The seven knowledge gaps identified in this article are arranged into three main categories: evolutionary aspects of longevity, biological survival and death aspects, and heterogeneity in the progression and phenotype of ageing. This is not an exhaustive and exclusive list, and may be modified and expanded. Implications of these knowledge gaps, especially in the context of ongoing attempts to develop effective interventions in ageing and longevity are also discussed.
Collapse
Affiliation(s)
- Suresh I S Rattan
- Department of Molecular Biology and Genetics, Aarhus University, 8000, Aarhus C, Denmark.
| |
Collapse
|
26
|
de Magalhães JP. Distinguishing between driver and passenger mechanisms of aging. Nat Genet 2024; 56:204-211. [PMID: 38242993 DOI: 10.1038/s41588-023-01627-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 11/28/2023] [Indexed: 01/21/2024]
Abstract
Understanding why we age is a long-standing question, and many mechanistic theories of aging have been proposed. Owing to limitations in studying the aging process, including a lack of adequate quantitative measurements, its mechanistic basis remains a subject of debate. Here, I explore theories of aging from the perspective of causal relationships. Many aging-related changes have been observed and touted as drivers of aging, including molecular changes in the genome, telomeres, mitochondria, epigenome and proteins and cellular changes affecting stem cells, the immune system and senescent cell buildup. Determining which changes are drivers and not passengers of aging remains a challenge, however, and I discuss how animal models and human genetic studies have been used empirically to infer causality. Overall, our understanding of the drivers of human aging is still inadequate; yet with a global aging population, elucidating the causes of aging has the potential to revolutionize biomedical research.
Collapse
Affiliation(s)
- João Pedro de Magalhães
- Genomics of Ageing and Rejuvenation Lab, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK.
| |
Collapse
|
27
|
Ureña E, Xu B, Regan JC, Atilano ML, Minkley LJ, Filer D, Lu YX, Bolukbasi E, Khericha M, Alic N, Partridge L. Trametinib ameliorates aging-associated gut pathology in Drosophila females by reducing Pol III activity in intestinal stem cells. Proc Natl Acad Sci U S A 2024; 121:e2311313121. [PMID: 38241436 PMCID: PMC10823232 DOI: 10.1073/pnas.2311313121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 11/17/2023] [Indexed: 01/21/2024] Open
Abstract
Pharmacological therapies are promising interventions to slow down aging and reduce multimorbidity in the elderly. Studies in animal models are the first step toward translation of candidate molecules into human therapies, as they aim to elucidate the molecular pathways, cellular mechanisms, and tissue pathologies involved in the anti-aging effects. Trametinib, an allosteric inhibitor of MEK within the Ras/MAPK (Ras/Mitogen-Activated Protein Kinase) pathway and currently used as an anti-cancer treatment, emerged as a geroprotector candidate because it extended lifespan in the fruit fly Drosophila melanogaster. Here, we confirm that trametinib consistently and robustly extends female lifespan, and reduces intestinal stem cell (ISC) proliferation, tumor formation, tissue dysplasia, and barrier disruption in guts in aged flies. In contrast, pro-longevity effects of trametinib are weak and inconsistent in males, and it does not influence gut homeostasis. Inhibition of the Ras/MAPK pathway specifically in ISCs is sufficient to partially recapitulate the effects of trametinib. Moreover, in ISCs, trametinib decreases the activity of the RNA polymerase III (Pol III), a conserved enzyme synthesizing transfer RNAs and other short, non-coding RNAs, and whose inhibition also extends lifespan and reduces gut pathology. Finally, we show that the pro-longevity effect of trametinib in ISCs is partially mediated by Maf1, a repressor of Pol III, suggesting a life-limiting Ras/MAPK-Maf1-Pol III axis in these cells. The mechanism of action described in this work paves the way for further studies on the anti-aging effects of trametinib in mammals and shows its potential for clinical application in humans.
Collapse
Affiliation(s)
- Enric Ureña
- Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, University College London, LondonWC1E 7JE, United Kingdom
| | - Bowen Xu
- Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, University College London, LondonWC1E 7JE, United Kingdom
| | - Jennifer C. Regan
- Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, University College London, LondonWC1E 7JE, United Kingdom
| | - Magda L. Atilano
- Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, University College London, LondonWC1E 7JE, United Kingdom
| | - Lucy J. Minkley
- Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, University College London, LondonWC1E 7JE, United Kingdom
| | - Danny Filer
- Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, University College London, LondonWC1E 7JE, United Kingdom
| | - Yu-Xuan Lu
- Max Planck Institute for Biology of Ageing, CologneD-50931, Germany
| | - Ekin Bolukbasi
- Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, University College London, LondonWC1E 7JE, United Kingdom
| | - Mobina Khericha
- Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, University College London, LondonWC1E 7JE, United Kingdom
| | - Nazif Alic
- Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, University College London, LondonWC1E 7JE, United Kingdom
| | - Linda Partridge
- Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, University College London, LondonWC1E 7JE, United Kingdom
- Max Planck Institute for Biology of Ageing, CologneD-50931, Germany
| |
Collapse
|
28
|
Pereira M, Ribeiro DR, Berg M, Tsai AP, Dong C, Nho K, Kaiser S, Moutinho M, Soares AR. Amyloid pathology reduces ELP3 expression and tRNA modifications leading to impaired proteostasis. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166857. [PMID: 37640114 DOI: 10.1016/j.bbadis.2023.166857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/09/2023] [Accepted: 08/22/2023] [Indexed: 08/31/2023]
Abstract
Alzheimer's Disease (AD) is a neurodegenerative disorder characterized by accumulation of β-amyloid aggregates and loss of proteostasis. Transfer RNA (tRNA) modifications play a crucial role in maintaining proteostasis, but their impact in AD remains unclear. Here, we report that expression of the tRNA modifying enzyme ELP3 is reduced in the brain of AD patients and amyloid mouse models and negatively correlates with amyloid plaque mean density. We further show that SH-SY5Y neuronal cells carrying the amyloidogenic Swedish familial AD mutation (SH-SWE) display reduced ELP3 levels, tRNA hypomodifications and proteostasis impairments when compared to cells not carrying the mutation (SH-WT). Additionally, exposing SH-WT cells to the secretome of SH-SWE cells led to reduced ELP3 expression, wobble uridine tRNA hypomodification, and increased protein aggregation. Importantly, correcting tRNA deficits due to ELP3 reduction reverted proteostasis impairments. These findings suggest that amyloid pathology dysregulates proteostasis by reducing ELP3 expression and tRNA modification levels, and that targeting tRNA modifications may be a potential therapeutic avenue to restore neuronal proteostasis in AD and preserve neuronal function.
Collapse
Affiliation(s)
- Marisa Pereira
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Diana R Ribeiro
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Maximilian Berg
- Institute of Pharmaceutical Chemistry, Goethe-University, Frankfurt, 60438, Germany
| | - Andy P Tsai
- Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Chuanpeng Dong
- Department of Medical and Molecular Genetics, Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kwangsik Nho
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Stefanie Kaiser
- Institute of Pharmaceutical Chemistry, Goethe-University, Frankfurt, 60438, Germany
| | - Miguel Moutinho
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Ana R Soares
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Aveiro, Portugal.
| |
Collapse
|
29
|
Yu D, Li M, Linghu G, Hu Y, Hajdarovic KH, Wang A, Singh R, Webb AE. CellBiAge: Improved single-cell age classification using data binarization. Cell Rep 2023; 42:113500. [PMID: 38032797 PMCID: PMC10791072 DOI: 10.1016/j.celrep.2023.113500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 10/20/2023] [Accepted: 11/13/2023] [Indexed: 12/02/2023] Open
Abstract
Aging is a major risk factor for many diseases. Accurate methods for predicting age in specific cell types are essential to understand the heterogeneity of aging and to assess rejuvenation strategies. However, classifying organismal age at single-cell resolution using transcriptomics is challenging due to sparsity and noise. Here, we developed CellBiAge, a robust and easy-to-implement machine learning pipeline, to classify the age of single cells in the mouse brain using single-cell transcriptomics. We show that binarization of gene expression values for the top highly variable genes significantly improved test performance across different models, techniques, sexes, and brain regions, with potential age-related genes identified for model prediction. Additionally, we demonstrate CellBiAge's ability to capture exercise-induced rejuvenation in neural stem cells. This study provides a broadly applicable approach for robust classification of organismal age of single cells in the mouse brain, which may aid in understanding the aging process and evaluating rejuvenation methods.
Collapse
Affiliation(s)
- Doudou Yu
- Molecular Biology, Cell Biology, and Biochemistry Graduate Program, Brown University, Providence, RI 02912, USA; Data Science Institute, Brown University, Providence, RI 02912, USA
| | - Manlin Li
- Data Science Institute, Brown University, Providence, RI 02912, USA
| | - Guanjie Linghu
- Data Science Institute, Brown University, Providence, RI 02912, USA
| | - Yihuan Hu
- Data Science Institute, Brown University, Providence, RI 02912, USA
| | | | - An Wang
- Department of Applied Mathematics & Statistics, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Ritambhara Singh
- Department of Computer Science, Brown University, Providence, RI 02912, USA; Center for Computational Molecular Biology, Brown University, Providence, RI 02912, USA.
| | - Ashley E Webb
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI 02912, USA; Center on the Biology of Aging, Brown University, Providence, RI 02912, USA; Carney Institute for Brain Science, Brown University, Providence, RI 02912, USA; Center for Translational Neuroscience, Brown University, Providence, RI 02912, USA.
| |
Collapse
|
30
|
Ohtsuka H, Otsubo Y, Shimasaki T, Yamashita A, Aiba H. ecl family genes: Factors linking starvation and lifespan extension in Schizosaccharomyces pombe. Mol Microbiol 2023; 120:645-657. [PMID: 37525511 DOI: 10.1111/mmi.15134] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 08/02/2023]
Abstract
In the fission yeast Schizosaccharomyces pombe, the duration of survival in the stationary phase, termed the chronological lifespan (CLS), is affected by various environmental factors and the corresponding gene activities. The ecl family genes were identified in the genomic region encoding non-coding RNA as positive regulators of CLS in S. pombe, and subsequently shown to encode relatively short proteins. Several studies revealed that ecl family genes respond to various nutritional starvation conditions via different mechanisms, and they are additionally involved in stress resistance, autophagy, sexual differentiation, and cell cycle control. Recent studies reported that Ecl family proteins strongly suppress target of rapamycin complex 1, which is a conserved eukaryotic nutrient-sensing kinase complex that also regulates longevity in a variety of organisms. In this review, we introduce the regulatory mechanisms of Ecl family proteins and discuss their emerging findings.
Collapse
Affiliation(s)
- Hokuto Ohtsuka
- Laboratory of Molecular Microbiology, Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| | - Yoko Otsubo
- Interdisciplinary Research Unit, National Institute for Basic Biology, Okazaki, Japan
| | - Takafumi Shimasaki
- Laboratory of Molecular Microbiology, Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| | - Akira Yamashita
- Interdisciplinary Research Unit, National Institute for Basic Biology, Okazaki, Japan
| | - Hirofumi Aiba
- Laboratory of Molecular Microbiology, Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| |
Collapse
|
31
|
Iannello M, Forni G, Piccinini G, Xu R, Martelossi J, Ghiselli F, Milani L. Signatures of Extreme Longevity: A Perspective from Bivalve Molecular Evolution. Genome Biol Evol 2023; 15:evad159. [PMID: 37647860 PMCID: PMC10646442 DOI: 10.1093/gbe/evad159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 08/04/2023] [Accepted: 08/25/2023] [Indexed: 09/01/2023] Open
Abstract
Among Metazoa, bivalves have the highest lifespan disparity, ranging from 1 to 500+ years, making them an exceptional testing ground to understand mechanisms underlying aging and the evolution of extended longevity. Nevertheless, comparative molecular evolution has been an overlooked approach in this instance. Here, we leveraged transcriptomic resources spanning 30 bivalve species to unravel the signatures of convergent molecular evolution in four long-lived species: Margaritifera margaritifera, Elliptio complanata, Lampsilis siliquoidea, and Arctica islandica (the latter represents the longest-lived noncolonial metazoan known so far). We applied a comprehensive approach-which included inference of convergent dN/dS, convergent positive selection, and convergent amino acid substitution-with a strong focus on the reduction of false positives. Genes with convergent evolution in long-lived bivalves show more physical and functional interactions to each other than expected, suggesting that they are biologically connected; this interaction network is enriched in genes for which a role in longevity has been experimentally supported in other species. This suggests that genes in the network are involved in extended longevity in bivalves and, consequently, that the mechanisms underlying extended longevity are-at least partially-shared across Metazoa. Although we believe that an integration of different genes and pathways is required for the extended longevity phenotype, we highlight the potential central roles of genes involved in cell proliferation control, translational machinery, and response to hypoxia, in lifespan extension.
Collapse
Affiliation(s)
- Mariangela Iannello
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Giobbe Forni
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Giovanni Piccinini
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Ran Xu
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Jacopo Martelossi
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Fabrizio Ghiselli
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Liliana Milani
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
32
|
Lyu Z, Villanueva P, O’Malley L, Murphy P, Augenstreich J, Briken V, Singh A, Ling J. Genome-wide screening reveals metabolic regulation of stop-codon readthrough by cyclic AMP. Nucleic Acids Res 2023; 51:9905-9919. [PMID: 37670559 PMCID: PMC10570021 DOI: 10.1093/nar/gkad725] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/12/2023] [Accepted: 08/21/2023] [Indexed: 09/07/2023] Open
Abstract
Translational fidelity is critical for microbial fitness, survival and stress responses. Much remains unknown about the genetic and environmental control of translational fidelity and its single-cell heterogeneity. In this study, we used a high-throughput fluorescence-based assay to screen a knock-out library of Escherichia coli and identified over 20 genes critical for stop-codon readthrough. Most of these identified genes were not previously known to affect translational fidelity. Intriguingly, we show that several genes controlling metabolism, including cyaA and crp, enhance stop-codon readthrough. CyaA catalyzes the synthesis of cyclic adenosine monophosphate (cAMP). Combining RNA sequencing, metabolomics and biochemical analyses, we show that deleting cyaA impairs amino acid catabolism and production of ATP, thus repressing the transcription of rRNAs and tRNAs to decrease readthrough. Single-cell analyses further show that cAMP is a major driver of heterogeneity in stop-codon readthrough and rRNA expression. Our results highlight that carbon metabolism is tightly coupled with stop-codon readthrough.
Collapse
Affiliation(s)
- Zhihui Lyu
- Department of Cell Biology and Molecular Genetics, The University of Maryland, College Park, MD, USA
| | - Patricia Villanueva
- Department of Cell Biology and Molecular Genetics, The University of Maryland, College Park, MD, USA
| | - Liam O’Malley
- Department of Cell Biology and Molecular Genetics, The University of Maryland, College Park, MD, USA
| | - Parker Murphy
- Department of Cell Biology and Molecular Genetics, The University of Maryland, College Park, MD, USA
| | - Jacques Augenstreich
- Department of Cell Biology and Molecular Genetics, The University of Maryland, College Park, MD, USA
| | - Volker Briken
- Department of Cell Biology and Molecular Genetics, The University of Maryland, College Park, MD, USA
| | - Abhyudai Singh
- Department of Electrical and Computer Engineering and Biomedical Engineering, University of Delaware, Newark, DE, USA
| | - Jiqiang Ling
- Department of Cell Biology and Molecular Genetics, The University of Maryland, College Park, MD, USA
| |
Collapse
|
33
|
Fuqua JD, Lawrence MM, Hettinger ZR, Borowik AK, Brecheen PL, Szczygiel MM, Abbott CB, Peelor FF, Confides AL, Kinter M, Bodine SC, Dupont‐Versteegden EE, Miller BF. Impaired proteostatic mechanisms other than decreased protein synthesis limit old skeletal muscle recovery after disuse atrophy. J Cachexia Sarcopenia Muscle 2023; 14:2076-2089. [PMID: 37448295 PMCID: PMC10570113 DOI: 10.1002/jcsm.13285] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/10/2023] [Accepted: 05/22/2023] [Indexed: 07/15/2023] Open
Abstract
BACKGROUND Skeletal muscle mass and strength diminish during periods of disuse but recover upon return to weight bearing in healthy adults but are incomplete in old muscle. Efforts to improve muscle recovery in older individuals commonly aim at increasing myofibrillar protein synthesis via mammalian target of rapamycin (mTOR) stimulation despite evidence demonstrating that old muscle has chronically elevated levels of mammalian target of rapamycin complex 1 (mTORC1) activity. We hypothesized that protein synthesis is higher in old muscle than adult muscle, which contributes to a proteostatic stress that impairs recovery. METHODS We unloaded hindlimbs of adult (10-month) and old (28-month) F344BN rats for 14 days to induce atrophy, followed by reloading up to 60 days with deuterium oxide (D2 O) labelling to study muscle regrowth and proteostasis. RESULTS We found that old muscle has limited recovery of muscle mass during reloading despite having higher translational capacity and myofibrillar protein synthesis (0.029 k/day ± 0.002 vs. 0.039 k/day ± 0.002, P < 0.0001) than adult muscle. We showed that collagen protein synthesis was not different (0.005 k (1/day) ± 0.0005 vs. 0.004 k (1/day) ± 0.0005, P = 0.15) in old compared to adult, but old muscle had higher collagen concentration (4.5 μg/mg ± 1.2 vs. 9.8 μg/mg ± 0.96, P < 0.01), implying that collagen breakdown was slower in old muscle than adult muscle. This finding was supported by old muscle having more insoluble collagen (4.0 ± 1.1 vs. 9.2 ± 0.9, P < 0.01) and an accumulation of advanced glycation end products (1.0 ± 0.06 vs. 1.5 ± 0.08, P < 0.001) than adult muscle during reloading. Limited recovery of muscle mass during reloading is in part due to higher protein degradation (0.017 1/t ± 0.002 vs. 0.028 1/t ± 0.004, P < 0.05) and/or compromised proteostasis as evidenced by accumulation of ubiquitinated insoluble proteins (1.02 ± 0.06 vs. 1.22 ± 0.06, P < 0.05). Last, we showed that synthesis of individual proteins related to protein folding/refolding, protein degradation and neural-related biological processes was higher in old muscle during reloading than adult muscle. CONCLUSIONS Our data suggest that the failure of old muscle to recover after disuse is not due to limitations in the ability to synthesize myofibrillar proteins but because of other impaired proteostatic mechanisms (e.g., protein folding and degradation). These data provide novel information on individual proteins that accumulate in protein aggregates after disuse and certain biological processes such as protein folding and degradation that likely play a role in impaired recovery. Therefore, interventions to enhance regrowth of old muscle after disuse should be directed towards the identified impaired proteostatic mechanisms and not aimed at increasing protein synthesis.
Collapse
Affiliation(s)
- Jordan D. Fuqua
- Aging & Metabolism Research ProgramOklahoma Medical Research FoundationOklahoma CityOKUSA
| | - Marcus M. Lawrence
- Aging & Metabolism Research ProgramOklahoma Medical Research FoundationOklahoma CityOKUSA
- Department of Kinesiology and Outdoor RecreationSouthern Utah UniversityCedar CityUTUSA
| | - Zachary R. Hettinger
- Department of Physical Therapy, College of Health SciencesUniversity of KentuckyLexingtonKYUSA
- Center for Muscle BiologyUniversity of KentuckyLexingtonKYUSA
| | - Agnieszka K. Borowik
- Aging & Metabolism Research ProgramOklahoma Medical Research FoundationOklahoma CityOKUSA
| | - Parker L. Brecheen
- Aging & Metabolism Research ProgramOklahoma Medical Research FoundationOklahoma CityOKUSA
| | - Marcelina M. Szczygiel
- Aging & Metabolism Research ProgramOklahoma Medical Research FoundationOklahoma CityOKUSA
| | - Claire B. Abbott
- Aging & Metabolism Research ProgramOklahoma Medical Research FoundationOklahoma CityOKUSA
| | - Frederick F. Peelor
- Aging & Metabolism Research ProgramOklahoma Medical Research FoundationOklahoma CityOKUSA
| | - Amy L. Confides
- Department of Physical Therapy, College of Health SciencesUniversity of KentuckyLexingtonKYUSA
- Center for Muscle BiologyUniversity of KentuckyLexingtonKYUSA
| | - Michael Kinter
- Aging & Metabolism Research ProgramOklahoma Medical Research FoundationOklahoma CityOKUSA
| | - Sue C. Bodine
- Aging & Metabolism Research ProgramOklahoma Medical Research FoundationOklahoma CityOKUSA
- Department of Internal MedicineUniversity of IowaIowa CityIAUSA
- Fraternal Order of Eagles Diabetes Research CenterUniversity of IowaIowa CityIAUSA
- Iowa City Veterans Affairs Medical CenterIowa CityIAUSA
| | - Esther E. Dupont‐Versteegden
- Department of Physical Therapy, College of Health SciencesUniversity of KentuckyLexingtonKYUSA
- Center for Muscle BiologyUniversity of KentuckyLexingtonKYUSA
| | - Benjamin F. Miller
- Aging & Metabolism Research ProgramOklahoma Medical Research FoundationOklahoma CityOKUSA
- Oklahoma City Veterans Affairs Medical CenterOklahoma CityOKUSA
| |
Collapse
|
34
|
Paukštytė J, López Cabezas RM, Feng Y, Tong K, Schnyder D, Elomaa E, Gregorova P, Doudin M, Särkkä M, Sarameri J, Lippi A, Vihinen H, Juutila J, Nieminen A, Törönen P, Holm L, Jokitalo E, Krisko A, Huiskonen J, Sarin LP, Hietakangas V, Picotti P, Barral Y, Saarikangas J. Global analysis of aging-related protein structural changes uncovers enzyme-polymerization-based control of longevity. Mol Cell 2023; 83:3360-3376.e11. [PMID: 37699397 DOI: 10.1016/j.molcel.2023.08.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 05/18/2023] [Accepted: 08/11/2023] [Indexed: 09/14/2023]
Abstract
Aging is associated with progressive phenotypic changes. Virtually all cellular phenotypes are produced by proteins, and their structural alterations can lead to age-related diseases. However, we still lack comprehensive knowledge of proteins undergoing structural-functional changes during cellular aging and their contributions to age-related phenotypes. Here, we conducted proteome-wide analysis of early age-related protein structural changes in budding yeast using limited proteolysis-mass spectrometry (LiP-MS). The results, compiled in online ProtAge catalog, unraveled age-related functional changes in regulators of translation, protein folding, and amino acid metabolism. Mechanistically, we found that folded glutamate synthase Glt1 polymerizes into supramolecular self-assemblies during aging, causing breakdown of cellular amino acid homeostasis. Inhibiting Glt1 polymerization by mutating the polymerization interface restored amino acid levels in aged cells, attenuated mitochondrial dysfunction, and led to lifespan extension. Altogether, this comprehensive map of protein structural changes enables identifying mechanisms of age-related phenotypes and offers opportunities for their reversal.
Collapse
Affiliation(s)
- Jurgita Paukštytė
- Helsinki Institute of Life Science, HiLIFE, University of Helsinki, 00790 Helsinki, Finland; Faculty of Biological and Environmental Sciences, University of Helsinki, 00790 Helsinki, Finland
| | - Rosa María López Cabezas
- Helsinki Institute of Life Science, HiLIFE, University of Helsinki, 00790 Helsinki, Finland; Faculty of Biological and Environmental Sciences, University of Helsinki, 00790 Helsinki, Finland
| | - Yuehan Feng
- Institute of Biochemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Kai Tong
- Helsinki Institute of Life Science, HiLIFE, University of Helsinki, 00790 Helsinki, Finland; Faculty of Biological and Environmental Sciences, University of Helsinki, 00790 Helsinki, Finland; School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA; Interdisciplinary Graduate Program in Quantitative Biosciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | | | - Ellinoora Elomaa
- Helsinki Institute of Life Science, HiLIFE, University of Helsinki, 00790 Helsinki, Finland; Faculty of Biological and Environmental Sciences, University of Helsinki, 00790 Helsinki, Finland
| | - Pavlina Gregorova
- Faculty of Biological and Environmental Sciences, University of Helsinki, 00790 Helsinki, Finland
| | - Matteo Doudin
- Helsinki Institute of Life Science, HiLIFE, University of Helsinki, 00790 Helsinki, Finland; Faculty of Biological and Environmental Sciences, University of Helsinki, 00790 Helsinki, Finland
| | - Meeri Särkkä
- Helsinki Institute of Life Science, HiLIFE, University of Helsinki, 00790 Helsinki, Finland; Faculty of Biological and Environmental Sciences, University of Helsinki, 00790 Helsinki, Finland
| | - Jesse Sarameri
- Helsinki Institute of Life Science, HiLIFE, University of Helsinki, 00790 Helsinki, Finland; Faculty of Biological and Environmental Sciences, University of Helsinki, 00790 Helsinki, Finland
| | - Alice Lippi
- Department of Experimental Neurodegeneration, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Helena Vihinen
- Institute of Biotechnology, HiLIFE, University of Helsinki, 00790 Helsinki, Finland
| | - Juhana Juutila
- Faculty of Biological and Environmental Sciences, University of Helsinki, 00790 Helsinki, Finland; Institute of Biotechnology, HiLIFE, University of Helsinki, 00790 Helsinki, Finland
| | - Anni Nieminen
- Faculty of Biological and Environmental Sciences, University of Helsinki, 00790 Helsinki, Finland; Institute of Biotechnology, HiLIFE, University of Helsinki, 00790 Helsinki, Finland
| | - Petri Törönen
- Faculty of Biological and Environmental Sciences, University of Helsinki, 00790 Helsinki, Finland; Institute of Biotechnology, HiLIFE, University of Helsinki, 00790 Helsinki, Finland
| | - Liisa Holm
- Faculty of Biological and Environmental Sciences, University of Helsinki, 00790 Helsinki, Finland; Institute of Biotechnology, HiLIFE, University of Helsinki, 00790 Helsinki, Finland
| | - Eija Jokitalo
- Institute of Biotechnology, HiLIFE, University of Helsinki, 00790 Helsinki, Finland
| | - Anita Krisko
- Department of Experimental Neurodegeneration, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Juha Huiskonen
- Institute of Biotechnology, HiLIFE, University of Helsinki, 00790 Helsinki, Finland
| | - L Peter Sarin
- Faculty of Biological and Environmental Sciences, University of Helsinki, 00790 Helsinki, Finland
| | - Ville Hietakangas
- Faculty of Biological and Environmental Sciences, University of Helsinki, 00790 Helsinki, Finland; Institute of Biotechnology, HiLIFE, University of Helsinki, 00790 Helsinki, Finland
| | - Paola Picotti
- Institute of Biochemistry, ETH Zurich, 8093 Zurich, Switzerland; Institute of Molecular Systems Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Yves Barral
- Institute of Biochemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Juha Saarikangas
- Helsinki Institute of Life Science, HiLIFE, University of Helsinki, 00790 Helsinki, Finland; Faculty of Biological and Environmental Sciences, University of Helsinki, 00790 Helsinki, Finland.
| |
Collapse
|
35
|
Liu W, Zhu P, Li M, Li Z, Yu Y, Liu G, Du J, Wang X, Yang J, Tian R, Seim I, Kaya A, Li M, Li M, Gladyshev VN, Zhou X. Large-scale across species transcriptomic analysis identifies genetic selection signatures associated with longevity in mammals. EMBO J 2023; 42:e112740. [PMID: 37427458 PMCID: PMC10476176 DOI: 10.15252/embj.2022112740] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 05/12/2023] [Accepted: 05/22/2023] [Indexed: 07/11/2023] Open
Abstract
Lifespan varies significantly among mammals, with more than 100-fold difference between the shortest and longest living species. This natural difference may uncover the evolutionary forces and molecular features that define longevity. To understand the relationship between gene expression variation and longevity, we conducted a comparative transcriptomics analysis of liver, kidney, and brain tissues of 103 mammalian species. We found that few genes exhibit common expression patterns with longevity in the three organs analyzed. However, pathways related to translation fidelity, such as nonsense-mediated decay and eukaryotic translation elongation, correlated with longevity across mammals. Analyses of selection pressure found that selection intensity related to the direction of longevity-correlated genes is inconsistent across organs. Furthermore, expression of methionine restriction-related genes correlated with longevity and was under strong selection in long-lived mammals, suggesting that a common strategy is utilized by natural selection and artificial intervention to control lifespan. Our results indicate that lifespan regulation via gene expression is driven through polygenic and indirect natural selection.
Collapse
Affiliation(s)
- Weiqiang Liu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of ZoologyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Pingfen Zhu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of ZoologyChinese Academy of SciencesBeijingChina
| | - Meng Li
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of ZoologyChinese Academy of SciencesBeijingChina
| | - Zihao Li
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of ZoologyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yang Yu
- School of Life SciencesUniversity of Science and Technology of ChinaAnhuiChina
| | - Gaoming Liu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of ZoologyChinese Academy of SciencesBeijingChina
| | - Juan Du
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of ZoologyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Xiao Wang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of ZoologyChinese Academy of SciencesBeijingChina
| | - Jing Yang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of ZoologyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Ran Tian
- Integrative Biology Laboratory, College of Life SciencesNanjing Normal UniversityNanjingChina
| | - Inge Seim
- Integrative Biology Laboratory, College of Life SciencesNanjing Normal UniversityNanjingChina
- School of Biology and Environmental ScienceQueensland University of TechnologyBrisbaneQLDAustralia
| | - Alaattin Kaya
- Department of BiologyVirginia Commonwealth UniversityRichmondVAUSA
| | - Mingzhou Li
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural UniversityChengduChina
| | - Ming Li
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of ZoologyChinese Academy of SciencesBeijingChina
| | - Vadim N Gladyshev
- Division of Genetics, Department of Medicine, Brigham and Women's HospitalHarvard Medical SchoolBostonMAUSA
| | - Xuming Zhou
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of ZoologyChinese Academy of SciencesBeijingChina
| |
Collapse
|
36
|
Phua CZJ, Zhao X, Turcios-Hernandez L, McKernan M, Abyadeh M, Ma S, Promislow D, Kaeberlein M, Kaya A. Genetic perturbation of mitochondrial function reveals functional role for specific mitonuclear genes, metabolites, and pathways that regulate lifespan. GeroScience 2023; 45:2161-2178. [PMID: 37086368 PMCID: PMC10651825 DOI: 10.1007/s11357-023-00796-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/08/2023] [Indexed: 04/23/2023] Open
Abstract
Altered mitochondrial function is tightly linked to lifespan regulation, but underlying mechanisms remain unclear. Here, we report the chronological and replicative lifespan variation across 167 yeast knock-out strains, each lacking a single nuclear-coded mitochondrial gene, including 144 genes with human homologs, many associated with diseases. We dissected the signatures of observed lifespan differences by analyzing profiles of each strain's proteome, lipidome, and metabolome under fermentative and respiratory culture conditions, which correspond to the metabolic states of replicative and chronologically aging cells, respectively. Examination of the relationships among extended longevity phenotypes, protein, and metabolite levels revealed that although many of these nuclear-encoded mitochondrial genes carry out different functions, their inhibition attenuates a common mechanism that controls cytosolic ribosomal protein abundance, actin dynamics, and proteasome function to regulate lifespan. The principles of lifespan control learned through this work may be applicable to the regulation of lifespan in more complex organisms, since many aspects of mitochondrial function are highly conserved among eukaryotes.
Collapse
Affiliation(s)
- Cheryl Zi Jin Phua
- Genome Institute of Singapore, Agency for Science, Technology, and Research (A* STAR), Singapore, Singapore
| | - Xiaqing Zhao
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195, USA
| | - Lesly Turcios-Hernandez
- Department of Biology, Virginia Commonwealth University, Room 126, 1000 West Cary St. , Richmond, VA, 23284, USA
| | - Morrigan McKernan
- Department of Biology, Virginia Commonwealth University, Room 126, 1000 West Cary St. , Richmond, VA, 23284, USA
| | - Morteza Abyadeh
- Department of Biology, Virginia Commonwealth University, Room 126, 1000 West Cary St. , Richmond, VA, 23284, USA
| | - Siming Ma
- Genome Institute of Singapore, Agency for Science, Technology, and Research (A* STAR), Singapore, Singapore
| | - Daniel Promislow
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195, USA
- Department of Biology, University of Washington, Seattle, WA, 98195, USA
| | - Matt Kaeberlein
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195, USA
| | - Alaattin Kaya
- Department of Biology, Virginia Commonwealth University, Room 126, 1000 West Cary St. , Richmond, VA, 23284, USA.
| |
Collapse
|
37
|
Vila-Sanjurjo A, Mallo N, Atkins JF, Elson JL, Smith PM. Our current understanding of the toxicity of altered mito-ribosomal fidelity during mitochondrial protein synthesis: What can it tell us about human disease? Front Physiol 2023; 14:1082953. [PMID: 37457031 PMCID: PMC10349377 DOI: 10.3389/fphys.2023.1082953] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 02/28/2023] [Indexed: 07/18/2023] Open
Abstract
Altered mito-ribosomal fidelity is an important and insufficiently understood causative agent of mitochondrial dysfunction. Its pathogenic effects are particularly well-known in the case of mitochondrially induced deafness, due to the existence of the, so called, ototoxic variants at positions 847C (m.1494C) and 908A (m.1555A) of 12S mitochondrial (mt-) rRNA. It was shown long ago that the deleterious effects of these variants could remain dormant until an external stimulus triggered their pathogenicity. Yet, the link from the fidelity defect at the mito-ribosomal level to its phenotypic manifestation remained obscure. Recent work with fidelity-impaired mito-ribosomes, carrying error-prone and hyper-accurate mutations in mito-ribosomal proteins, have started to reveal the complexities of the phenotypic manifestation of mito-ribosomal fidelity defects, leading to a new understanding of mtDNA disease. While much needs to be done to arrive to a clear picture of how defects at the level of mito-ribosomal translation eventually result in the complex patterns of disease observed in patients, the current evidence indicates that altered mito-ribosome function, even at very low levels, may become highly pathogenic. The aims of this review are three-fold. First, we compare the molecular details associated with mito-ribosomal fidelity to those of general ribosomal fidelity. Second, we gather information on the cellular and organismal phenotypes associated with defective translational fidelity in order to provide the necessary grounds for an understanding of the phenotypic manifestation of defective mito-ribosomal fidelity. Finally, the results of recent experiments directly tackling mito-ribosomal fidelity are reviewed and future paths of investigation are discussed.
Collapse
Affiliation(s)
- Antón Vila-Sanjurjo
- Grupo GIBE, Departamento de Bioloxía e Centro de Investigacións Científicas Avanzadas (CICA), Universidade da Coruña (UDC), A Coruña, Spain
| | - Natalia Mallo
- Grupo GIBE, Departamento de Bioloxía e Centro de Investigacións Científicas Avanzadas (CICA), Universidade da Coruña (UDC), A Coruña, Spain
| | - John F Atkins
- Schools of Biochemistry and Microbiology, University College Cork, Cork, Ireland
| | - Joanna L Elson
- The Bioscience Institute, Newcastle University, Newcastle uponTyne, United Kingdom
- Human Metabolomics, North-West University, Potchefstroom, South Africa
| | - Paul M Smith
- Department of Paediatrics, Raigmore Hospital, Inverness, Scotland, United Kingdom
| |
Collapse
|
38
|
Zhu H, Chen J, Liu K, Gao L, Wu H, Ma L, Zhou J, Liu Z, Han JDJ. Human PBMC scRNA-seq-based aging clocks reveal ribosome to inflammation balance as a single-cell aging hallmark and super longevity. SCIENCE ADVANCES 2023; 9:eabq7599. [PMID: 37379396 DOI: 10.1126/sciadv.abq7599] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 05/23/2023] [Indexed: 06/30/2023]
Abstract
Quantifying aging rate is important for evaluating age-associated decline and mortality. A blood single-cell RNA sequencing dataset for seven supercentenarians (SCs) was recently generated. Here, we generate a reference 28-sample aging cohort to compute a single-cell level aging clock and to determine the biological age of SCs. Our clock model placed the SCs at a blood biological age to between 80.43 and 102.67 years. Compared to the model-expected aging trajectory, SCs display increased naive CD8+ T cells, decreased cytotoxic CD8+ T cells, memory CD4+ T cells, and megakaryocytes. As the most prominent molecular hallmarks at the single-cell level, SCs contain more cells and cell types with high ribosome level, which is associated with and, according to Bayesian network inference, contributes to a low inflammation state and slow aging of SCs. Inhibiting ribosomal activity or translation in monocytes validates such translation against inflammation balance revealed by our single-cell aging clock.
Collapse
Affiliation(s)
- Hongming Zhu
- Translational Medical Center for Stem Cell Therapy & Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, P.R. China
| | - Jiawei Chen
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Quantitative Biology (CQB), Peking University, Beijing 100871, P.R. China
| | - Kangping Liu
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Quantitative Biology (CQB), Peking University, Beijing 100871, P.R. China
| | - Lei Gao
- Translational Medical Center for Stem Cell Therapy & Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, P.R. China
- Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), Hefei, Anhui 230001, P.R. China
| | - Haiyan Wu
- Translational Medical Center for Stem Cell Therapy & Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, P.R. China
| | - Liangliang Ma
- Department of Health Management, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, P.R. China
| | - Jieru Zhou
- Department of Health Management, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, P.R. China
| | - Zhongmin Liu
- Translational Medical Center for Stem Cell Therapy & Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, P.R. China
| | - Jing-Dong J Han
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Quantitative Biology (CQB), Peking University, Beijing 100871, P.R. China
| |
Collapse
|
39
|
Jorgensen A, Brandslund I, Ellervik C, Henriksen T, Weimann A, Andersen PK, Poulsen HE. Specific prediction of mortality by oxidative stress-induced damage to RNA vs. DNA in humans. Aging Cell 2023:e13839. [PMID: 37190886 DOI: 10.1111/acel.13839] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/13/2023] [Accepted: 03/21/2023] [Indexed: 05/17/2023] Open
Abstract
Modifications of nucleic acids (DNA and RNA) from oxidative stress is a potential driver of aging per se and of mortality in age-associated medical disorders such as type 2 diabetes (T2D). In a human cohort, we found a strong prediction of all-cause mortality by a marker of systemic oxidation of RNA in patients with T2D (n = 2672) and in nondiabetic control subjects (n = 4079). The finding persisted after the adjustment of established modifiers of oxidative stress (including BMI, smoking, and glycated hemoglobin). In contrast, systemic levels of DNA damage from oxidation, which traditionally has been causally linked to both T2D and aging, failed to predict mortality. Strikingly, these findings were subsequently replicated in an independent general population study (n = 3649). The data demonstrate a specific importance of RNA damage from oxidation in T2D and general aging.
Collapse
Affiliation(s)
- Anders Jorgensen
- Psychiatric Center Copenhagen, Mental Health Services, Copenhagen, Denmark
- Institute of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ivan Brandslund
- Department of Clinical Immunology and Biochemistry, Lillebaelt Hospital, Vejle, Denmark
- Faculty of Health Science, Institute of Regional Health Research, University of Southern Denmark, Odense, Denmark
| | - Christina Ellervik
- Institute of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Laboratory Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Data Support, Region Zealand, Sorø, Denmark
| | - Trine Henriksen
- Department of Clinical Pharmacology, University Hospital Copenhagen, Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Allan Weimann
- Department of Clinical Pharmacology, University Hospital Copenhagen, Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | | | - Henrik E Poulsen
- Department of Cardiology, Copenhagen University Hospital Hillerød, Hillerød, Denmark
- Department of Endocrinology, Copenhagen University Hospital Bispebjerg-Frederiksberg, Copenhagen, Denmark
| |
Collapse
|
40
|
Zhang D, Zhu L, Wang F, Li P, Wang Y, Gao Y. Molecular mechanisms of eukaryotic translation fidelity and their associations with diseases. Int J Biol Macromol 2023; 242:124680. [PMID: 37141965 DOI: 10.1016/j.ijbiomac.2023.124680] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 04/27/2023] [Indexed: 05/06/2023]
Abstract
Converting genetic information into functional proteins is a complex, multi-step process, with each step being tightly regulated to ensure the accuracy of translation, which is critical to cellular health. In recent years, advances in modern biotechnology, especially the development of cryo-electron microscopy and single-molecule techniques, have enabled a clearer understanding of the mechanisms of protein translation fidelity. Although there are many studies on the regulation of protein translation in prokaryotes, and the basic elements of translation are highly conserved in prokaryotes and eukaryotes, there are still great differences in the specific regulatory mechanisms. This review describes how eukaryotic ribosomes and translation factors regulate protein translation and ensure translation accuracy. However, a certain frequency of translation errors does occur in translation, so we describe diseases that arise when the rate of translation errors reaches or exceeds a threshold of cellular tolerance.
Collapse
Affiliation(s)
- Dejiu Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Lei Zhu
- College of Basic Medical, Qingdao Binhai University, Qingdao, China
| | - Fei Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Peifeng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Yin Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China.
| | - Yanyan Gao
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China.
| |
Collapse
|
41
|
Matai L, Slack FJ. MicroRNAs in Age-Related Proteostasis and Stress Responses. Noncoding RNA 2023; 9:26. [PMID: 37104008 PMCID: PMC10143298 DOI: 10.3390/ncrna9020026] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/27/2023] [Accepted: 03/30/2023] [Indexed: 04/28/2023] Open
Abstract
Aging is associated with the accumulation of damaged and misfolded proteins through a decline in the protein homeostasis (proteostasis) machinery, leading to various age-associated protein misfolding diseases such as Huntington's or Parkinson's. The efficiency of cellular stress response pathways also weakens with age, further contributing to the failure to maintain proteostasis. MicroRNAs (miRNAs or miRs) are a class of small, non-coding RNAs (ncRNAs) that bind target messenger RNAs at their 3'UTR, resulting in the post-transcriptional repression of gene expression. From the discovery of aging roles for lin-4 in C. elegans, the role of numerous miRNAs in controlling the aging process has been uncovered in different organisms. Recent studies have also shown that miRNAs regulate different components of proteostasis machinery as well as cellular response pathways to proteotoxic stress, some of which are very important during aging or in age-related pathologies. Here, we present a review of these findings, highlighting the role of individual miRNAs in age-associated protein folding and degradation across different organisms. We also broadly summarize the relationships between miRNAs and organelle-specific stress response pathways during aging and in various age-associated diseases.
Collapse
Affiliation(s)
| | - Frank J. Slack
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
42
|
Nugumanova G, Ponomarev ED, Askarova S, Fasler-Kan E, Barteneva NS. Freshwater Cyanobacterial Toxins, Cyanopeptides and Neurodegenerative Diseases. Toxins (Basel) 2023; 15:toxins15030233. [PMID: 36977124 PMCID: PMC10057253 DOI: 10.3390/toxins15030233] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/13/2023] [Accepted: 03/19/2023] [Indexed: 03/30/2023] Open
Abstract
Cyanobacteria produce a wide range of structurally diverse cyanotoxins and bioactive cyanopeptides in freshwater, marine, and terrestrial ecosystems. The health significance of these metabolites, which include genotoxic- and neurotoxic agents, is confirmed by continued associations between the occurrence of animal and human acute toxic events and, in the long term, by associations between cyanobacteria and neurodegenerative diseases. Major mechanisms related to the neurotoxicity of cyanobacteria compounds include (1) blocking of key proteins and channels; (2) inhibition of essential enzymes in mammalian cells such as protein phosphatases and phosphoprotein phosphatases as well as new molecular targets such as toll-like receptors 4 and 8. One of the widely discussed implicated mechanisms includes a misincorporation of cyanobacterial non-proteogenic amino acids. Recent research provides evidence that non-proteinogenic amino acid BMAA produced by cyanobacteria have multiple effects on translation process and bypasses the proof-reading ability of the aminoacyl-tRNA-synthetase. Aberrant proteins generated by non-canonical translation may be a factor in neuronal death and neurodegeneration. We hypothesize that the production of cyanopeptides and non-canonical amino acids is a more general mechanism, leading to mistranslation, affecting protein homeostasis, and targeting mitochondria in eukaryotic cells. It can be evolutionarily ancient and initially developed to control phytoplankton communities during algal blooms. Outcompeting gut symbiotic microorganisms may lead to dysbiosis, increased gut permeability, a shift in blood-brain-barrier functionality, and eventually, mitochondrial dysfunction in high-energy demanding neurons. A better understanding of the interaction between cyanopeptides metabolism and the nervous system will be crucial to target or to prevent neurodegenerative diseases.
Collapse
Affiliation(s)
- Galina Nugumanova
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Astana 010000, Kazakhstan
| | - Eugene D Ponomarev
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Astana 010000, Kazakhstan
| | - Sholpan Askarova
- Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana 010000, Kazakhstan
| | - Elizaveta Fasler-Kan
- Department of Pediatric Surgery, Children's Hospital, Inselspital Bern, University of Bern, 3010 Bern, Switzerland
| | - Natasha S Barteneva
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Astana 010000, Kazakhstan
- The Environment & Resource Efficiency Cluster (EREC), Nazarbayev University, Astana 010000, Kazakhstan
| |
Collapse
|
43
|
Khalid F, Phan T, Qiang M, Maity P, Lasser T, Wiese S, Penzo M, Alupei M, Orioli D, Scharffetter-Kochanek K, Iben S. TFIIH mutations can impact on translational fidelity of the ribosome. Hum Mol Genet 2023; 32:1102-1113. [PMID: 36308430 PMCID: PMC10026254 DOI: 10.1093/hmg/ddac268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/11/2022] [Accepted: 10/25/2022] [Indexed: 11/14/2022] Open
Abstract
TFIIH is a complex essential for transcription of protein-coding genes by RNA polymerase II, DNA repair of UV-lesions and transcription of rRNA by RNA polymerase I. Mutations in TFIIH cause the cancer prone DNA-repair disorder xeroderma pigmentosum (XP) and the developmental and premature aging disorders trichothiodystrophy (TTD) and Cockayne syndrome. A total of 50% of the TTD cases are caused by TFIIH mutations. Using TFIIH mutant patient cells from TTD and XP subjects we can show that the stress-sensitivity of the proteome is reduced in TTD, but not in XP. Using three different methods to investigate the accuracy of protein synthesis by the ribosome, we demonstrate that translational fidelity of the ribosomes of TTD, but not XP cells, is decreased. The process of ribosomal synthesis and maturation is affected in TTD cells and can lead to instable ribosomes. Isolated ribosomes from TTD patients show an elevated error rate when challenged with oxidized mRNA, explaining the oxidative hypersensitivity of TTD cells. Treatment of TTD cells with N-acetyl cysteine normalized the increased translational error-rate and restored translational fidelity. Here we describe a pathomechanism that might be relevant for our understanding of impaired development and aging-associated neurodegeneration.
Collapse
Affiliation(s)
- Fatima Khalid
- Department of Dermatology and Allergic Diseases, Ulm University Medical Center, 89081 Ulm, Germany
| | - Tamara Phan
- Department of Dermatology and Allergic Diseases, Ulm University Medical Center, 89081 Ulm, Germany
| | - Mingyue Qiang
- Department of Dermatology and Allergic Diseases, Ulm University Medical Center, 89081 Ulm, Germany
| | - Pallab Maity
- Department of Dermatology and Allergic Diseases, Ulm University Medical Center, 89081 Ulm, Germany
| | - Theresa Lasser
- Department of Dermatology and Allergic Diseases, Ulm University Medical Center, 89081 Ulm, Germany
| | - Sebastian Wiese
- Core Unit of Mass Spectrometry and Proteomics, Ulm University Medical Center, 89081 Ulm, Germany
| | - Marianna Penzo
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40138 Bologna, Italy
| | - Marius Alupei
- Department of Dermatology and Allergic Diseases, Ulm University Medical Center, 89081 Ulm, Germany
| | - Donata Orioli
- Institute of Molecular Genetics, Consiglio Nazionale delle Ricerche, 27100 Pavia, Italy
| | | | - Sebastian Iben
- Department of Dermatology and Allergic Diseases, Ulm University Medical Center, 89081 Ulm, Germany
| |
Collapse
|
44
|
Manjunath LE, Singh A, Som S, Eswarappa SM. Mammalian proteome expansion by stop codon readthrough. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1739. [PMID: 35570338 DOI: 10.1002/wrna.1739] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 04/11/2022] [Accepted: 04/16/2022] [Indexed: 12/20/2022]
Abstract
Recognition of a stop codon by translation machinery as a sense codon results in translational readthrough instead of termination. This recoding process, termed stop codon readthrough (SCR) or translational readthrough, is found in all domains of life including mammals. The context of the stop codon, local mRNA topology, and molecules that interact with the mRNA region downstream of the stop codon determine SCR. The products of SCR can have localization, stability, and function different from those of the canonical isoforms. In this review, we discuss how recent technological and computational advances have increased our understanding of the SCR process in the mammalian system. Based on the known molecular events that occur during SCR of multiple mRNAs, we propose transient molecular roadblocks on an mRNA downstream of the stop codon as a possible mechanism for the induction of SCR. We argue, with examples, that the insights gained from the natural SCR events can guide us to develop novel strategies for the treatment of diseases caused by premature stop codons. This article is categorized under: Translation > Regulation.
Collapse
Affiliation(s)
- Lekha E Manjunath
- Department of Biochemistry, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Anumeha Singh
- Department of Biochemistry, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Saubhik Som
- Department of Biochemistry, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Sandeep M Eswarappa
- Department of Biochemistry, Indian Institute of Science, Bengaluru, Karnataka, India
| |
Collapse
|
45
|
Wang K, Wang S, Zhang Y, Xie L, Song X, Song X. SNORD88C guided 2'-O-methylation of 28S rRNA regulates SCD1 translation to inhibit autophagy and promote growth and metastasis in non-small cell lung cancer. Cell Death Differ 2023; 30:341-355. [PMID: 36376383 PMCID: PMC9950066 DOI: 10.1038/s41418-022-01087-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 11/16/2022] Open
Abstract
Small nucleolar RNAs (snoRNAs) have been shown to play critical regulatory roles in cancer development. SNORD88C, which located at the intronic region of C19orf48 in chromosome 19q.33 with a 97-nt length was screened through database and snoRNA-sequencing. We firstly verified this snoRNA was up-regulated in tissue and plasma and served as a non-invasive diagnostic biomarker; then confirmed that SNORD88C promoted proliferation and metastasis of NSCLC in vitro and in vivo. Mechanistically, SNORD88C promoted 2'-O-methylation modification at the C3680 site on 28S rRNA and in turn enhanced downstream SCD1 translation, a central lipogenic enzyme for the synthesis of MUFA that can inhibit autophagy by regulating lipid peroxidation and mTOR, providing the novel insight into the regulation of SNORD88C in NSCLC.
Collapse
Affiliation(s)
- Kangyu Wang
- Department of Clinical Laboratory, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Shiwen Wang
- Department of Clinical Laboratory, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Yue Zhang
- Department of Clinical Laboratory, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Li Xie
- Department of Clinical Laboratory, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Xingguo Song
- Department of Clinical Laboratory, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China.
| | - Xianrang Song
- Department of Clinical Laboratory, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China.
- Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China.
| |
Collapse
|
46
|
Alcantud R, Weiss J, Terry MI, Bernabé N, Verdú-Navarro F, Fernández-Breis JT, Egea-Cortines M. Flower transcriptional response to long term hot and cold environments in Antirrhinum majus. FRONTIERS IN PLANT SCIENCE 2023; 14:1120183. [PMID: 36778675 PMCID: PMC9911551 DOI: 10.3389/fpls.2023.1120183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 01/13/2023] [Indexed: 06/18/2023]
Abstract
Short term experiments have identified heat shock and cold response elements in many biological systems. However, the effect of long-term low or high temperatures is not well documented. To address this gap, we grew Antirrhinum majus plants from two-weeks old until maturity under control (normal) (22/16°C), cold (15/5°C), and hot (30/23°C) conditions for a period of two years. Flower size, petal anthocyanin content and pollen viability obtained higher values in cold conditions, decreasing in middle and high temperatures. Leaf chlorophyll content was higher in cold conditions and stable in control and hot temperatures, while pedicel length increased under hot conditions. The control conditions were optimal for scent emission and seed production. Scent complexity was low in cold temperatures. The transcriptomic analysis of mature flowers, followed by gene enrichment analysis and CNET plot visualization, showed two groups of genes. One group comprised genes controlling the affected traits, and a second group appeared as long-term adaptation to non-optimal temperatures. These included hypoxia, unsaturated fatty acid metabolism, ribosomal proteins, carboxylic acid, sugar and organic ion transport, or protein folding. We found a differential expression of floral organ identity functions, supporting the flower size data. Pollinator-related traits such as scent and color followed opposite trends, indicating an equilibrium for rendering the organs for pollination attractive under changing climate conditions. Prolonged heat or cold cause structural adaptations in protein synthesis and folding, membrane composition, and transport. Thus, adaptations to cope with non-optimal temperatures occur in basic cellular processes.
Collapse
Affiliation(s)
- Raquel Alcantud
- Genética Molecular, Instituto de Biotecnología Vegetal, Edificio I+D+I, Plaza del Hospital s/n, Universidad Politécnica de Cartagena, Cartagena, Spain
| | - Julia Weiss
- Genética Molecular, Instituto de Biotecnología Vegetal, Edificio I+D+I, Plaza del Hospital s/n, Universidad Politécnica de Cartagena, Cartagena, Spain
| | - Marta I. Terry
- Genética Molecular, Instituto de Biotecnología Vegetal, Edificio I+D+I, Plaza del Hospital s/n, Universidad Politécnica de Cartagena, Cartagena, Spain
| | - Nuria Bernabé
- Department of Informatics and Systems, Campus de Espinardo, Universidad de Murcia, Instituto Murciano de Investigaciones Biomédicas (IMIB)-Arrixaca, Murcia, Spain
| | - Fuensanta Verdú-Navarro
- Genética Molecular, Instituto de Biotecnología Vegetal, Edificio I+D+I, Plaza del Hospital s/n, Universidad Politécnica de Cartagena, Cartagena, Spain
- R&D Department, Bionet Engineering, Av/Azul, Parque Tecnológico Fuente Álamo, Murcia, Spain
| | - Jesualdo Tomás Fernández-Breis
- Department of Informatics and Systems, Campus de Espinardo, Universidad de Murcia, Instituto Murciano de Investigaciones Biomédicas (IMIB)-Arrixaca, Murcia, Spain
| | - Marcos Egea-Cortines
- Genética Molecular, Instituto de Biotecnología Vegetal, Edificio I+D+I, Plaza del Hospital s/n, Universidad Politécnica de Cartagena, Cartagena, Spain
| |
Collapse
|
47
|
López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G. Hallmarks of aging: An expanding universe. Cell 2023; 186:243-278. [PMID: 36599349 DOI: 10.1016/j.cell.2022.11.001] [Citation(s) in RCA: 2196] [Impact Index Per Article: 1098.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/19/2022] [Accepted: 11/01/2022] [Indexed: 01/05/2023]
Abstract
Aging is driven by hallmarks fulfilling the following three premises: (1) their age-associated manifestation, (2) the acceleration of aging by experimentally accentuating them, and (3) the opportunity to decelerate, stop, or reverse aging by therapeutic interventions on them. We propose the following twelve hallmarks of aging: genomic instability, telomere attrition, epigenetic alterations, loss of proteostasis, disabled macroautophagy, deregulated nutrient-sensing, mitochondrial dysfunction, cellular senescence, stem cell exhaustion, altered intercellular communication, chronic inflammation, and dysbiosis. These hallmarks are interconnected among each other, as well as to the recently proposed hallmarks of health, which include organizational features of spatial compartmentalization, maintenance of homeostasis, and adequate responses to stress.
Collapse
Affiliation(s)
- Carlos López-Otín
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo, Oviedo, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.
| | - Maria A Blasco
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Madrid, Spain
| | - Linda Partridge
- Department of Genetics, Evolution and Environment, Institute of Healthy Ageing, University College London, London, UK; Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Manuel Serrano
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain; Altos Labs, Cambridge, UK
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, INSERM U1138, Institut Universitaire de France, Paris, France; Metabolomics and Cell Biology Platforms, Gustave Roussy, Villejuif, France; Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.
| |
Collapse
|
48
|
Characterization and Evaluation of Rapamycin-Loaded Nano-Micelle Ophthalmic Solution. J Funct Biomater 2023; 14:jfb14010049. [PMID: 36662096 PMCID: PMC9862165 DOI: 10.3390/jfb14010049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/01/2023] [Accepted: 01/09/2023] [Indexed: 01/18/2023] Open
Abstract
Rapamycin-loaded nano-micelle ophthalmic solution (RAPA-NM) offers a promising application for preventing corneal allograft rejection; however, RAPA-NM has not yet been fully characterized. This study aimed to evaluate the physicochemical properties, biocompatibility, and underlying mechanism of RAPA-NM in inhibiting corneal allograft rejection. An optimized RAPA-NM was successfully prepared using a polyvinyl caprolactam-polyvinyl acetate-polyethylene glycol (PVCL-PVA-PEG) graft copolymer as the excipient at a PVCL-PVA-PEG/RAPA weight ratio of 18:1. This formulation exhibited high encapsulation efficiency (99.25 ± 0.55%), small micelle size (64.42 ± 1.18 nm), uniform size distribution (polydispersity index = 0.076 ± 0.016), and a zeta potential of 1.67 ± 0.93 mV. The storage stability test showed that RAPA-NM could be stored steadily for 12 weeks. RAPA-NM also displayed satisfactory cytocompatibility and high membrane permeability. Moreover, topical administration of RAPA-NM could effectively prevent corneal allograft rejection. Mechanistically, a transcriptomic analysis revealed that several immune- and inflammation-related Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were significantly enriched in the downregulated genes in the RAPA-NM-treated allografts compared with the rejected allogenic corneal grafts. Taken together, these findings highlight the potential of RAPA-NM in treating corneal allograft rejection and other ocular inflammatory diseases.
Collapse
|
49
|
Lu B. Translation stalling and ribosome collision leading to proteostasis failure: implications for neurodegenerative diseases. Neural Regen Res 2023; 18:111-112. [PMID: 35799519 PMCID: PMC9241430 DOI: 10.4103/1673-5374.340404] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/18/2021] [Accepted: 01/11/2022] [Indexed: 11/04/2022] Open
Affiliation(s)
- Bingwei Lu
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
50
|
Mota-Martorell N, Jové M, Berdún R, Òbis È, Barja G, Pamplona R. Methionine Metabolism Is Down-Regulated in Heart of Long-Lived Mammals. BIOLOGY 2022; 11:biology11121821. [PMID: 36552330 PMCID: PMC9775425 DOI: 10.3390/biology11121821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/11/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
Methionine constitutes a central hub of intracellular metabolic adaptations leading to an extended longevity (maximum lifespan). The present study follows a comparative approach analyzing methionine and related metabolite and amino acid profiles using an LC-MS/MS platform in the hearts of seven mammalian species with a longevity ranging from 3.8 to 57 years. Our findings demonstrate the existence of species-specific heart phenotypes associated with high longevity characterized by: (i) low concentration of methionine and its related sulphur-containing metabolites; (ii) low amino acid pool; and (iii) low choline concentration. Our results support the existence of heart metabotypes characterized by a down-regulation in long-lived species, supporting the idea that in longevity, less is more.
Collapse
Affiliation(s)
- Natalia Mota-Martorell
- Department of Experimental Medicine, University of Lleida-Biomedical Research Institute of Lleida (UdL-IRBLleida), 25008 Lleida, Spain
| | - Mariona Jové
- Department of Experimental Medicine, University of Lleida-Biomedical Research Institute of Lleida (UdL-IRBLleida), 25008 Lleida, Spain
| | - Rebeca Berdún
- Department of Experimental Medicine, University of Lleida-Biomedical Research Institute of Lleida (UdL-IRBLleida), 25008 Lleida, Spain
| | - Èlia Òbis
- Department of Experimental Medicine, University of Lleida-Biomedical Research Institute of Lleida (UdL-IRBLleida), 25008 Lleida, Spain
| | - Gustavo Barja
- Department of Genetics, Physiology and Microbiology, Complutense University, 28040 Madrid, Spain
| | - Reinald Pamplona
- Department of Experimental Medicine, University of Lleida-Biomedical Research Institute of Lleida (UdL-IRBLleida), 25008 Lleida, Spain
- Correspondence:
| |
Collapse
|