1
|
Rahim M, Bednarski TK, Hasenour CM, Banerjee DR, Trenary I, Young JD. Simultaneous in vivo multi-organ fluxomics reveals divergent metabolic adaptations in liver, heart, and skeletal muscle during obesity. Cell Rep 2025; 44:115591. [PMID: 40244853 PMCID: PMC12167616 DOI: 10.1016/j.celrep.2025.115591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 02/23/2025] [Accepted: 03/28/2025] [Indexed: 04/19/2025] Open
Abstract
We present an isotope-based metabolic flux analysis (MFA) approach to simultaneously quantify metabolic fluxes in the liver, heart, and skeletal muscle of individual mice. The platform was scaled to examine metabolic flux adaptations in age-matched cohorts of mice exhibiting varying levels of chronic obesity. We found that severe obesity increases hepatic gluconeogenesis and citric acid cycle flux, accompanied by elevated glucose oxidation in the heart that compensates for impaired fatty acid oxidation. In contrast, skeletal muscle fluxes exhibit an overall reduction in substrate oxidation. These findings demonstrate the dichotomy in fuel utilization between cardiac and skeletal muscle during worsening metabolic disease and demonstrate the divergent effects of obesity on metabolic fluxes in different organs. This multi-tissue MFA technology can be extended to address important questions about in vivo regulation of metabolism and its dysregulation in disease, which cannot be fully answered through studies of single organs or isolated cells/tissues.
Collapse
Affiliation(s)
- Mohsin Rahim
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
| | - Tomasz K Bednarski
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
| | - Clinton M Hasenour
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
| | - Deveena R Banerjee
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Irina Trenary
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
| | - Jamey D Young
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA; Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
2
|
He X, Chen H, Chen F, Su W, Wang Y, Hu D, Hu J, Zhou X. Characterization of Fecal Microbial Communities in Patients With Type 2 Diabetes Mellitus Combined With Helicobacter pylori Infection. Helicobacter 2025; 30:e70041. [PMID: 40338991 DOI: 10.1111/hel.70041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 04/17/2025] [Accepted: 04/23/2025] [Indexed: 05/10/2025]
Abstract
BACKGROUND Helicobacter pylori (H. pylori) infection has the capacity to alter the gut microbiota composition. There is a significant correlation between H. pylori infection and type 2 diabetes mellitus (T2DM). Further research is necessary to explore whether gut microbiota plays a role in the relationship between H. pylori and T2DM. METHOD Fecal samples were obtained from 44 patients with T2DM, including 20 who tested positive for H. pylori and 24 who tested negative. Intestinal microbiota composition was analyzed via 16S rRNA V3-V4 amplicon sequencing. Differences in microbial distribution and significant microbial biomarkers were identified between H. pylori positive and negative groups. A Spearman correlation analysis assessed the relationship between intestinal microbiota and glycemic parameters. Additionally, PICRUSt2 was used to predict intestinal bacterial functions. RESULTS Results indicate that in H. pylori (+) T2DM patients, HbA1c levels were significantly higher (8.9% vs. 8.1%, p = 0.021), while both the C-peptide peak (3.70 vs. 5.98 ng/mL, p = 0.040) and fasting C-peptide levels (1.42 vs. 2.31 ng/mL, p = 0.008) were significantly lower compared to H. pylori (-) T2DM groups. A total of 11 colonic phyla and 100 genera were identified in all fecal samples. In groups positive for H. pylori, there was a significant enrichment of the phylum Proteobacteria, while the genera Lactobacillus, Butyricimonas, and Akkermansia were significantly reduced (all p < 0.05). Correlation analysis showed that the abundance of the genera Butyricimonas (p = 0.01) and Akkermansia (p = 0.048) were negatively correlated with fasting plasma glucose. KEGG pathway analysis indicated a significant enrichment of methylmalonyl-CoA mutase and succinyl-CoA in H. pylori-infected T2DM patients. CONCLUSIONS This study suggests that T2DM patients with H. pylori infection exhibit more impaired pancreatic islet function potentially due to H. pylori-induced alterations in the gut microbiota.
Collapse
Affiliation(s)
- Xiaoyan He
- Department of Gastroenterology, Dongyang Hospital Affiliated to Wenzhou Medical University, Dongyang, China
| | - Han Chen
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Fengdan Chen
- Department of Endocrinology, Dongyang Hospital Affiliated to Wenzhou Medical University, Dongyang, China
| | - Wei Su
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yan Wang
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Die Hu
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jianwen Hu
- Department of Gastroenterology, Dongyang Hospital Affiliated to Wenzhou Medical University, Dongyang, China
| | - Xiaoying Zhou
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
3
|
Velasco‐Silva JN, Wilkerson JL, Ramos D, Low HK, Bowman F, Evason KJ, Boudina S, Holland WL, Ducker GS. Loss of hepatic autophagy induces α-cell proliferation through impaired glutamine-dependent gluconeogenesis. Physiol Rep 2025; 13:e70381. [PMID: 40420631 PMCID: PMC12106947 DOI: 10.14814/phy2.70381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 05/08/2025] [Accepted: 05/08/2025] [Indexed: 05/28/2025] Open
Abstract
Autophagy, the highly conserved process of protein and organelle degradation, is suppressed in the liver by obesity and metabolic dysfunction-associated fatty liver disease and associated with the development of insulin resistance. We generated adult liver-inducible ATG3 knockout mice (Atg3iLKO) to characterize pathways linking hepatic autophagy with metabolic homeostasis. Genetic loss of hepatic autophagy leads to a reduction in 16-h fasted glucose levels, a decrease in endogenous glucose production rates, and an increase in serum amino acids across the fed and fasted states. These changes collectively reflect a loss of hepatic gluconeogenic enzyme activity and not a general inability to degrade amino acids in the liver. Increased circulating glutamine levels resulting from this are associated with an induction of α-cell hyperplasia, leading to constitutively elevated glucagon levels. However, the loss of hepatic gluconeogenesis renders these animals highly glucagon resistant. Collectively, our data demonstrate that loss of hepatic autophagy is sufficient to activate the hepatic α-islet cell axis, leading to hyperglucagonemia with impaired glucose production.
Collapse
Affiliation(s)
| | - Joseph L. Wilkerson
- Department of Nutrition and Integrative PhysiologyUniversity of UtahSalt Lake CityUtahUSA
| | - Daniela Ramos
- Department of Nutrition and Integrative PhysiologyUniversity of UtahSalt Lake CityUtahUSA
| | - Hayden K. Low
- Department of BiochemistryUniversity of UtahSalt Lake CityUtahUSA
| | - Faith Bowman
- Department of BiochemistryUniversity of UtahSalt Lake CityUtahUSA
- Department of Nutrition and Integrative PhysiologyUniversity of UtahSalt Lake CityUtahUSA
| | | | - Sihem Boudina
- Department of Nutrition and Integrative PhysiologyUniversity of UtahSalt Lake CityUtahUSA
| | - William L. Holland
- Department of Nutrition and Integrative PhysiologyUniversity of UtahSalt Lake CityUtahUSA
| | | |
Collapse
|
4
|
Park JM, Lin SH, Baxter JD, Harrison CE, Leary J, Mozingo C, Liticker J, Malloy CR, Jin ES. Disrupted metabolic flux balance between pyruvate dehydrogenase and pyruvate carboxylase in human fatty liver. Metabolism 2025; 165:156151. [PMID: 39890055 PMCID: PMC11955189 DOI: 10.1016/j.metabol.2025.156151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/24/2025] [Accepted: 01/28/2025] [Indexed: 02/03/2025]
Abstract
Hepatic metabolism involving pyruvate carboxylase (PC) and pyruvate dehydrogenase (PDH) may be abnormal in fatty livers. In this study, [13C]bicarbonate production from [1-13C1]pyruvate in the liver and glycerol glyceroneogenesis were examined in relation to hepatic fat content using hyperpolarized [1-13C1]pyruvate and oral [U-13C3]glycerol. After an overnight fast, 15 subjects with a range of hepatic fat content received hyperpolarized [1-13C1]pyruvate intravenously to assess its conversion to [1-13C1]lactate and [13C]bicarbonate in the liver. They also received oral [U-13C3]glycerol, followed by venous blood sampling to examine glucose and the glycerol backbone of the triglycerides released primarily from the liver. From hyperpolarized [1-13C1]pyruvate, participants with high intrahepatic fat fraction produced higher [1-13C1]lactate and lower [13C]bicarbonate than those with low liver fat. The fraction of plasma triglycerides derived from oral [U-13C3]glycerol via the TCA cycle was similar between groups. The fraction of plasma [5,6-13C2]glucose, which reflects PC flux, decreased in subjects with fatty liver. In contrast, the fraction of [4,5-13C2]glucose + [6-13C1]glucose, which can be produced via either PC or PDH, was comparable between groups. The study results suggest a shift in pyruvate metabolism in fatty liver, with a decreased metabolic flux ratio of PC/PDH. The methodology in this study provides insights into fatty liver metabolism of human subjects inaccessible previously and is applicable to advanced liver diseases such as cirrhosis and hepatomas.
Collapse
Affiliation(s)
- Jae Mo Park
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas 75390, TX, USA; Department of Biomedical Engineering, The University of Texas Southwestern Medical Center, Dallas 75390, TX, USA; Department of Radiology, The University of Texas Southwestern Medical Center, Dallas 75390, TX, USA.
| | - Sung-Han Lin
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas 75390, TX, USA
| | - Jeannie D Baxter
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas 75390, TX, USA
| | - Crystal E Harrison
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas 75390, TX, USA
| | - Jennine Leary
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas 75390, TX, USA
| | - Corey Mozingo
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas 75390, TX, USA
| | - Jeff Liticker
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas 75390, TX, USA
| | - Craig R Malloy
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas 75390, TX, USA; Department of Radiology, The University of Texas Southwestern Medical Center, Dallas 75390, TX, USA; Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas 75390, TX, USA; VA North Texas Healthcare System, Dallas 75216, TX, USA.
| | - Eunsook S Jin
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas 75390, TX, USA; Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas 75390, TX, USA.
| |
Collapse
|
5
|
Valeros J, Jerome M, Tseyang T, Vo P, Do T, Fajardo Palomino D, Grotehans N, Kunala M, Jerrett AE, Hathiramani NR, Mireku M, Magesh RY, Yenilmez B, Rosen PC, Mann JL, Myers JW, Kunchok T, Manning TL, Boercker LN, Carr PE, Munim MB, Lewis CA, Sabatini DM, Kelly M, Xie J, Czech MP, Gao G, Shepherd JN, Walker AK, Kim H, Watson EV, Spinelli JB. Rhodoquinone carries electrons in the mammalian electron transport chain. Cell 2025; 188:1084-1099.e27. [PMID: 39909039 PMCID: PMC11845293 DOI: 10.1016/j.cell.2024.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/19/2024] [Accepted: 12/09/2024] [Indexed: 02/07/2025]
Abstract
Ubiquinone (UQ), the only known electron carrier in the mammalian electron transport chain (ETC), preferentially delivers electrons to the terminal electron acceptor oxygen (O2). In hypoxia, ubiquinol (UQH2) diverts these electrons onto fumarate instead. Here, we identify rhodoquinone (RQ), an electron carrier detected in mitochondria purified from certain mouse and human tissues that preferentially delivers electrons to fumarate through the reversal of succinate dehydrogenase, independent of environmental O2 levels. The RQ/fumarate ETC is strictly present in vivo and is undetectable in cultured mammalian cells. Using genetic and pharmacologic tools that reprogram the ETC from the UQ/O2 to the RQ/fumarate pathway, we establish that these distinct ETCs support unique programs of mitochondrial function and that RQ confers protection upon hypoxia exposure in vitro and in vivo. Thus, in discovering the presence of RQ in mammals, we unveil a tractable therapeutic strategy that exploits flexibility in the ETC to ameliorate hypoxia-related conditions.
Collapse
Affiliation(s)
- Jonathan Valeros
- Program in Molecular Medicine, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Madison Jerome
- Program in Molecular Medicine, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Tenzin Tseyang
- Program in Molecular Medicine, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Paula Vo
- Program in Molecular Medicine, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Thang Do
- Program in Molecular Medicine, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Diana Fajardo Palomino
- Program in Molecular Medicine, UMass Chan Medical School, Worcester, MA 01605, USA; Morningside Graduate School of Biomedical Sciences, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Nils Grotehans
- Program in Molecular Medicine, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Manisha Kunala
- Program in Molecular Medicine, UMass Chan Medical School, Worcester, MA 01605, USA; Morningside Graduate School of Biomedical Sciences, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Alexandra E Jerrett
- Program in Molecular Medicine, UMass Chan Medical School, Worcester, MA 01605, USA; Morningside Graduate School of Biomedical Sciences, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Nicolai R Hathiramani
- Program in Molecular Medicine, UMass Chan Medical School, Worcester, MA 01605, USA; Morningside Graduate School of Biomedical Sciences, UMass Chan Medical School, Worcester, MA 01605, USA; Diabetes Center of Excellence, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Michael Mireku
- Program in Molecular Medicine, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Rayna Y Magesh
- Department of Systems Biology, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Batuhan Yenilmez
- Program in Molecular Medicine, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Paul C Rosen
- Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Jessica L Mann
- Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Jacob W Myers
- Program in Molecular Medicine, UMass Chan Medical School, Worcester, MA 01605, USA
| | | | - Tanner L Manning
- Department of Chemistry and Biochemistry, Gonzaga University, Spokane, WA 99258, USA
| | - Lily N Boercker
- Department of Chemistry and Biochemistry, Gonzaga University, Spokane, WA 99258, USA
| | - Paige E Carr
- Department of Chemistry and Biochemistry, Gonzaga University, Spokane, WA 99258, USA
| | | | - Caroline A Lewis
- Program in Molecular Medicine, UMass Chan Medical School, Worcester, MA 01605, USA
| | - David M Sabatini
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo n. 2, 166 10 Prague, Czech Republic; Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences Boston Branch, 840 Memorial Drive, Cambridge, MA 02139, USA
| | - Mark Kelly
- Program in Molecular Medicine, UMass Chan Medical School, Worcester, MA 01605, USA; Division of Cardiovascular Medicine, Department of Medicine, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Jun Xie
- Horae Gene Therapy Center, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Michael P Czech
- Program in Molecular Medicine, UMass Chan Medical School, Worcester, MA 01605, USA; Diabetes Center of Excellence, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Guangping Gao
- Horae Gene Therapy Center, UMass Chan Medical School, Worcester, MA 01605, USA; Li Weibo Institute for Rare Disease Research, UMass Chan Medical School, Worcester, MA 01655, USA; Department of Microbiology and Physiological Systems, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Jennifer N Shepherd
- Department of Chemistry and Biochemistry, Gonzaga University, Spokane, WA 99258, USA
| | - Amy K Walker
- Program in Molecular Medicine, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Hahn Kim
- Small Molecule Screening Center, Princeton University, Princeton, NJ 08544, USA; Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - Emma V Watson
- Diabetes Center of Excellence, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Jessica B Spinelli
- Program in Molecular Medicine, UMass Chan Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
6
|
Mammucari C. The intricacies of mitochondrial calcium and enzyme regulation in liver metabolism. Cell Calcium 2024; 124:102958. [PMID: 39393193 DOI: 10.1016/j.ceca.2024.102958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 10/03/2024] [Indexed: 10/13/2024]
Abstract
Mitochondrial Ca2+ plays a positive role in regulating pyruvate dehydrogenase, as well as the TCA cycle enzymes isocitrate dehydrogenase and α-ketoglutarate dehydrogenase. This regulation boosts the production of reducing equivalents that fuel the electron transport chain, ultimately driving ATP production. The Mitochondrial Calcium Uniporter (MCU) is the highly selective channel responsible for mitochondrial Ca2+ uptake when local Ca2+ levels reach the threshold for channel activation. In a recent study, LaMoia et al. used an innovative [13C5]glutamine-based metabolic flux analysis method (Q-flux) to measure in vivo hepatic metabolic fluxes in liver-specific MCU-/- mice. Surprisingly, they observed increased flux through isocitrate dehydrogenase and α-ketoglutarate dehydrogenase. Metabolic pathways are continuously reorganized in response to intrinsic cellular signals, as well as hormonal and nutritional inputs. Integrating metabolic flux analysis into complex systems can provide deeper insights into how metabolic adaptations occur under different conditions.
Collapse
Affiliation(s)
- Cristina Mammucari
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy; Myology Center (CIR-Myo), University of Padova, 35131, Padova, Italy.
| |
Collapse
|
7
|
LaMoia TE, Hubbard BT, Guerra MT, Nasiri A, Sakuma I, Kahn M, Zhang D, Goodman RP, Nathanson MH, Sancak Y, Perelis M, Mootha VK, Shulman GI. Cytosolic calcium regulates hepatic mitochondrial oxidation, intrahepatic lipolysis, and gluconeogenesis via CAMKII activation. Cell Metab 2024; 36:2329-2340.e4. [PMID: 39153480 PMCID: PMC11446666 DOI: 10.1016/j.cmet.2024.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 05/06/2024] [Accepted: 07/19/2024] [Indexed: 08/19/2024]
Abstract
To examine the roles of mitochondrial calcium Ca2+ ([Ca2+]mt) and cytosolic Ca2+ ([Ca2+]cyt) in the regulation of hepatic mitochondrial fat oxidation, we studied a liver-specific mitochondrial calcium uniporter knockout (MCU KO) mouse model with reduced [Ca2+]mt and increased [Ca2+]cyt content. Despite decreased [Ca2+]mt, deletion of hepatic MCU increased rates of isocitrate dehydrogenase flux, α-ketoglutarate dehydrogenase flux, and succinate dehydrogenase flux in vivo. Rates of [14C16]palmitate oxidation and intrahepatic lipolysis were increased in MCU KO liver slices, which led to decreased hepatic triacylglycerol content. These effects were recapitulated with activation of CAMKII and abrogated with CAMKII knockdown, demonstrating that [Ca2+]cyt activation of CAMKII may be the primary mechanism by which MCU deletion promotes increased hepatic mitochondrial oxidation. Together, these data demonstrate that hepatic mitochondrial oxidation can be dissociated from [Ca2+]mt and reveal a key role for [Ca2+]cyt in the regulation of hepatic fat mitochondrial oxidation, intrahepatic lipolysis, gluconeogenesis, and lipid accumulation.
Collapse
Affiliation(s)
- Traci E LaMoia
- Departments of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA; Departments of Cellular & Molecular Physiology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Brandon T Hubbard
- Departments of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA; Departments of Cellular & Molecular Physiology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Mateus T Guerra
- Departments of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA
| | - Ali Nasiri
- Departments of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA
| | - Ikki Sakuma
- Departments of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA
| | - Mario Kahn
- Departments of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA
| | - Dongyan Zhang
- Departments of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA
| | - Russell P Goodman
- Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Michael H Nathanson
- Departments of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA; Departments of Cellular & Molecular Physiology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Yasemin Sancak
- Department of Pharmacology, University of Washington School of Medicine, Seattle, WA 98195, USA
| | | | - Vamsi K Mootha
- Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Gerald I Shulman
- Departments of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA; Departments of Cellular & Molecular Physiology, Yale School of Medicine, New Haven, CT 06510, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.
| |
Collapse
|
8
|
Rietjens RG, Wang G, van den Berg BM, Rabelink TJ. Spatial metabolomics in tissue injury and regeneration. Curr Opin Genet Dev 2024; 87:102223. [PMID: 38901101 DOI: 10.1016/j.gde.2024.102223] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 06/04/2024] [Accepted: 06/04/2024] [Indexed: 06/22/2024]
Abstract
Tissue homeostasis is intricately linked to cellular metabolism and metabolite exchange within the tissue microenvironment. The orchestration of adaptive cellular responses during injury and repair depends critically upon metabolic adaptation. This adaptation, in turn, shapes cell fate decisions required for the restoration of tissue homeostasis. Understanding the nuances of metabolic processes within the tissue context and comprehending the intricate communication between cells is therefore imperative for unraveling the complexity of tissue homeostasis and the processes of injury and repair. In this review, we focus on mass spectrometry imaging as an advanced platform with the potential to provide such comprehensive insights into the metabolic instruction governing tissue function. Recent advances in this technology allow to decipher the intricate metabolic networks that determine cellular behavior in the context of tissue resilience, injury, and repair. These insights not only advance our fundamental understanding of tissue biology but also hold implications for therapeutic interventions by targeting metabolic pathways critical for maintaining tissue homeostasis.
Collapse
Affiliation(s)
- Rosalie Gj Rietjens
- Department of Internal Medicine (Nephrology) & Einthoven Laboratory of Vascular and Regenerative Medicine & The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden University Medical Center, Leiden, The Netherlands. https://twitter.com/@RietjensRosalie
| | - Gangqi Wang
- Department of Internal Medicine (Nephrology) & Einthoven Laboratory of Vascular and Regenerative Medicine & The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden University Medical Center, Leiden, The Netherlands. https://twitter.com/@GangqiW
| | - Bernard M van den Berg
- Department of Internal Medicine (Nephrology) & Einthoven Laboratory of Vascular and Regenerative Medicine & The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden University Medical Center, Leiden, The Netherlands
| | - Ton J Rabelink
- Department of Internal Medicine (Nephrology) & Einthoven Laboratory of Vascular and Regenerative Medicine & The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
9
|
de Haan MJA, Jacobs ME, Witjas FMR, de Graaf AMA, Sánchez-López E, Kostidis S, Giera M, Calderon Novoa F, Chu T, Selzner M, Maanaoui M, de Vries DK, Kers J, Alwayn IPJ, van Kooten C, Heijs B, Wang G, Engelse MA, Rabelink TJ. A cell-free nutrient-supplemented perfusate allows four-day ex vivo metabolic preservation of human kidneys. Nat Commun 2024; 15:3818. [PMID: 38740760 DOI: 10.1038/s41467-024-47106-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 03/20/2024] [Indexed: 05/16/2024] Open
Abstract
The growing disparity between the demand for transplants and the available donor supply, coupled with an aging donor population and increasing prevalence of chronic diseases, highlights the urgent need for the development of platforms enabling reconditioning, repair, and regeneration of deceased donor organs. This necessitates the ability to preserve metabolically active kidneys ex vivo for days. However, current kidney normothermic machine perfusion (NMP) approaches allow metabolic preservation only for hours. Here we show that human kidneys discarded for transplantation can be preserved in a metabolically active state up to 4 days when perfused with a cell-free perfusate supplemented with TCA cycle intermediates at subnormothermia (25 °C). Using spatially resolved isotope tracing we demonstrate preserved metabolic fluxes in the kidney microenvironment up to Day 4 of perfusion. Beyond Day 4, significant changes were observed in renal cell populations through spatial lipidomics, and increases in injury markers such as LDH, NGAL and oxidized lipids. Finally, we demonstrate that perfused kidneys maintain functional parameters up to Day 4. Collectively, these findings provide evidence that this approach enables metabolic and functional preservation of human kidneys over multiple days, establishing a solid foundation for future clinical investigations.
Collapse
Affiliation(s)
- Marlon J A de Haan
- Department of Internal Medicine (Nephrology) & Einthoven Laboratory of Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden University Medical Center, Leiden, The Netherlands
| | - Marleen E Jacobs
- Department of Internal Medicine (Nephrology) & Einthoven Laboratory of Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden University Medical Center, Leiden, The Netherlands
| | - Franca M R Witjas
- Department of Internal Medicine (Nephrology) & Einthoven Laboratory of Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Annemarie M A de Graaf
- Department of Internal Medicine (Nephrology) & Einthoven Laboratory of Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Elena Sánchez-López
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Sarantos Kostidis
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Martin Giera
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden University Medical Center, Leiden, The Netherlands
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Tunpang Chu
- Ajmera Transplant Centre, Department of Surgery, University Health Network, Toronto, ON, Canada
| | - Markus Selzner
- Ajmera Transplant Centre, Department of Surgery, University Health Network, Toronto, ON, Canada
| | - Mehdi Maanaoui
- University of Lille, Institut National de la Santé et de la Recherche Médicale (INSERM), Centre Hospitalier Universitaire de Lille (CHU Lille), Institute Pasteur Lille, Lille, France
| | - Dorottya K de Vries
- Transplant Center, Leiden University Medical Center, Leiden, The Netherlands
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Jesper Kers
- Department of Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Ian P J Alwayn
- Transplant Center, Leiden University Medical Center, Leiden, The Netherlands
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Cees van Kooten
- Department of Internal Medicine (Nephrology) & Einthoven Laboratory of Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Bram Heijs
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden University Medical Center, Leiden, The Netherlands
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Gangqi Wang
- Department of Internal Medicine (Nephrology) & Einthoven Laboratory of Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands.
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden University Medical Center, Leiden, The Netherlands.
| | - Marten A Engelse
- Department of Internal Medicine (Nephrology) & Einthoven Laboratory of Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands.
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden University Medical Center, Leiden, The Netherlands.
| | - Ton J Rabelink
- Department of Internal Medicine (Nephrology) & Einthoven Laboratory of Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands.
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
10
|
Moon SJ, Hu Y, Dzieciatkowska M, Kim AR, Chen PL, Asara JM, D’Alessandro A, Perrimon N. Identification of high sugar diet-induced dysregulated metabolic pathways in muscle using tissue-specific metabolic models in Drosophila. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.24.591006. [PMID: 38712132 PMCID: PMC11071505 DOI: 10.1101/2024.04.24.591006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Individual tissues perform highly specialized metabolic functions to maintain whole-body homeostasis. Although Drosophila serves as a powerful model for studying human metabolic diseases, a lack of tissue-specific metabolic models makes it challenging to quantitatively assess the metabolic processes of individual tissues and disease models in this organism. To address this issue, we reconstructed 32 tissue-specific genome-scale metabolic models (GEMs) using pseudo-bulk single cell transcriptomics data, revealing distinct metabolic network structures across tissues. Leveraging enzyme kinetics and flux analyses, we predicted tissue-dependent metabolic pathway activities, recapitulating known tissue functions and identifying tissue-specific metabolic signatures, as supported by metabolite profiling. Moreover, to demonstrate the utility of tissue-specific GEMs in a disease context, we examined the effect of a high sugar diet (HSD) on muscle metabolism. Together with 13C-glucose isotopic tracer studies, we identified glyceraldehyde 3-phosphate dehydrogenase (GAPDH) as a rate-limiting enzyme in response to HSD. Mechanistically, the decreased GAPDH activity was linked to elevated NADH/NAD+ ratio, caused by disturbed NAD+ regeneration rates, and oxidation of GAPDH. Furthermore, we introduced a pathway flux index to predict and validate additionally perturbed pathways, including fructose and butanoate metabolism. Altogether, our results represent a significant advance in generating quantitative tissue-specific GEMs and flux analyses in Drosophila, highlighting their use for identifying dysregulated metabolic pathways and their regulation in a human disease model.
Collapse
Affiliation(s)
- Sun Jin Moon
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115
| | - Yanhui Hu
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115
| | - Monika Dzieciatkowska
- Department of Biochemistry and Molecular Genetics, Anschutz Medical Campus, University of Colorado School of Medicine, Aurora, CO 80045
| | - Ah-Ram Kim
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115
| | - Po-Lin Chen
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115
| | - John M. Asara
- Division of Signal Transduction, Beth Israel Deaconess Medical Center, Boston, MA 02115
- Department of Medicine, Harvard Medical School, Boston, MA 02115
| | - Angelo D’Alessandro
- Department of Biochemistry and Molecular Genetics, Anschutz Medical Campus, University of Colorado School of Medicine, Aurora, CO 80045
| | - Norbert Perrimon
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
11
|
Speck SL, Bhatt DP, Zhang Q, Adak S, Yin L, Dong G, Feng C, Zhang W, Ben Major M, Wei X, Semenkovich CF. Hepatic palmitoyl-proteomes and acyl-protein thioesterase protein proximity networks link lipid modification and mitochondria. Cell Rep 2023; 42:113389. [PMID: 37925639 PMCID: PMC10872372 DOI: 10.1016/j.celrep.2023.113389] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/24/2023] [Accepted: 10/23/2023] [Indexed: 11/07/2023] Open
Abstract
Acyl-protein thioesterases 1 and 2 (APT1 and APT2) reverse S-acylation, a potential regulator of systemic glucose metabolism in mammals. Palmitoylation proteomics in liver-specific knockout mice shows that APT1 predominates over APT2, primarily depalmitoylating mitochondrial proteins, including proteins linked to glutamine metabolism. miniTurbo-facilitated determination of the protein-protein proximity network of APT1 and APT2 in HepG2 cells reveals APT proximity networks encompassing mitochondrial proteins including the major translocases Tomm20 and Timm44. APT1 also interacts with Slc1a5 (ASCT2), the only glutamine transporter known to localize to mitochondria. High-fat-diet-fed male mice with dual (but not single) hepatic deletion of APT1 and APT2 have insulin resistance, fasting hyperglycemia, increased glutamine-driven gluconeogenesis, and decreased liver mass. These data suggest that APT1 and APT2 regulation of hepatic glucose metabolism and insulin signaling is functionally redundant. Identification of substrates and protein-protein proximity networks for APT1 and APT2 establishes a framework for defining mechanisms underlying metabolic disease.
Collapse
Affiliation(s)
- Sarah L Speck
- Division of Endocrinology, Metabolism & Lipid Research, Washington University, St. Louis, MO 63110, USA
| | - Dhaval P Bhatt
- Department of Cell Biology & Physiology, Washington University, St. Louis, MO 63110, USA
| | - Qiang Zhang
- Division of Endocrinology, Metabolism & Lipid Research, Washington University, St. Louis, MO 63110, USA
| | - Sangeeta Adak
- Division of Endocrinology, Metabolism & Lipid Research, Washington University, St. Louis, MO 63110, USA
| | - Li Yin
- Division of Endocrinology, Metabolism & Lipid Research, Washington University, St. Louis, MO 63110, USA
| | - Guifang Dong
- Division of Endocrinology, Metabolism & Lipid Research, Washington University, St. Louis, MO 63110, USA; Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
| | - Chu Feng
- Division of Endocrinology, Metabolism & Lipid Research, Washington University, St. Louis, MO 63110, USA
| | - Wei Zhang
- Division of Endocrinology, Metabolism & Lipid Research, Washington University, St. Louis, MO 63110, USA
| | - M Ben Major
- Department of Cell Biology & Physiology, Washington University, St. Louis, MO 63110, USA; Department of Otolaryngology, Washington University, St. Louis, MO 63110, USA
| | - Xiaochao Wei
- Division of Endocrinology, Metabolism & Lipid Research, Washington University, St. Louis, MO 63110, USA.
| | - Clay F Semenkovich
- Division of Endocrinology, Metabolism & Lipid Research, Washington University, St. Louis, MO 63110, USA; Department of Cell Biology & Physiology, Washington University, St. Louis, MO 63110, USA.
| |
Collapse
|
12
|
Xiao Y, Yu TJ, Xu Y, Ding R, Wang YP, Jiang YZ, Shao ZM. Emerging therapies in cancer metabolism. Cell Metab 2023; 35:1283-1303. [PMID: 37557070 DOI: 10.1016/j.cmet.2023.07.006] [Citation(s) in RCA: 91] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 06/20/2023] [Accepted: 07/17/2023] [Indexed: 08/11/2023]
Abstract
Metabolic reprogramming in cancer is not only a biological hallmark but also reveals treatment vulnerabilities. Numerous metabolic molecules have shown promise as treatment targets to impede tumor progression in preclinical studies, with some advancing to clinical trials. However, the intricacy and adaptability of metabolic networks hinder the effectiveness of metabolic therapies. This review summarizes the metabolic targets for cancer treatment and provides an overview of the current status of clinical trials targeting cancer metabolism. Additionally, we decipher crucial factors that limit the efficacy of metabolism-based therapies and propose future directions. With advances in integrating multi-omics, single-cell, and spatial technologies, as well as the ability to track metabolic adaptation more precisely and dynamically, clinicians can personalize metabolic therapies for improved cancer treatment.
Collapse
Affiliation(s)
- Yi Xiao
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Tian-Jian Yu
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Ying Xu
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Rui Ding
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yi-Ping Wang
- Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Yi-Zhou Jiang
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| | - Zhi-Ming Shao
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| |
Collapse
|