1
|
Gan X, Li J, Jiang Y, Wang X, Zeng Y, Chen X, Huang H, Min J, Li G, Nie M, Kang H. Vaccarin ameliorates osteoarthritis by suppressing the c-Jun N-terminal kinase (JNK)-serum amyloid A2 (SAA2) pathway mediating chondrocyte senescence. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 141:156697. [PMID: 40215820 DOI: 10.1016/j.phymed.2025.156697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 03/20/2025] [Accepted: 03/25/2025] [Indexed: 04/29/2025]
Abstract
BACKGROUND Osteoarthritis is a chronic degenerative joint disease marked by chondrocyte senescence and extracellular matrix degradation. Vaccarin, a flavonoid with anti-inflammatory and antioxidant properties, has not been previously investigated for its therapeutic potential in osteoarthritis. PURPOSE To evaluate the therapeutic potential of Vaccarin in osteoarthritis and elucidate its underlying mechanisms. DESIGN AND METHOD This study utilized in vitro chondrocyte cultures and RNA sequencing to identify relevant pathways, followed by validation at the genetic, protein, and metabolic levels using multiple approaches. Additionally, the therapeutic effects of Vaccarin were assessed in vivo using a destabilization of the medial meniscus (DMM)-induced osteoarthritis mouse model and human cartilage samples from osteoarthritis patients. RESULTS Vaccarin effectively ameliorated osteoarthritis both in vivo and in vitro. Transcriptomic sequencing indicated a significant downregulation of serum amyloid A2 (SAA2) expression following Vaccarin treatment. Multi-omics analysis, validated by human specimens, indicated that SAA2 is minimally secreted in healthy articular cartilage but serves as a crucial osteoarthritis biomarker in Asian populations. Mechanistically, Vaccarin inhibits c-Jun N-terminal kinase (JNK) phosphorylation, thereby reducing SAA2 expression and mitigating chondrocyte inflammation and senescence. Notably, inflammatory conditions upregulate SAA2 expression in chondrocytes via the JNK pathway. Elevated SAA2 levels contribute to mitochondrial dysfunction in chondrocytes, leading to increased reactive oxygen species (ROS) production and exacerbating osteoarthritis progression. CONCLUSION This study identifies SAA2 as a potential therapeutic target for osteoarthritis and suggests that Vaccarin presents a promising treatment avenue.
Collapse
Affiliation(s)
- Xin Gan
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Jianwen Li
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Yongqiao Jiang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Xiaohui Wang
- The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Yunqian Zeng
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Xin Chen
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Hui Huang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Juan Min
- Institutional Center for Shared Technologies and Facilities of Wuhan, Institute of Virology, Chinese Academy of Sciences, Wuhan 430010, PR China
| | - Guanghao Li
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China.
| | - Mingbo Nie
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China.
| | - Hao Kang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China.
| |
Collapse
|
2
|
Yang X, Rong K, Fu S, Yang Y, Liu S, Zhang C, Xu K, Zhang K, Zhu Y, Hao Y, Zhao J, Fu J. Engineered Spirulina platensis for treating rheumatoid arthritis and restoring bone homeostasis. Nat Commun 2025; 16:4434. [PMID: 40360534 PMCID: PMC12075783 DOI: 10.1038/s41467-025-59579-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 04/29/2025] [Indexed: 05/15/2025] Open
Abstract
Rheumatoid arthritis (RA) is characterized by massive intra-articular infiltration of pro-inflammatory macrophages, leading to articular immune dysfunction, severe synovitis, and ultimately joint erosion. Comprehensive remodeling of articular immune homeostasis and bone homeostasis is essential for alleviating RA. Here we report on Spirulina platensis (SP), a natural microorganism commercially farmed worldwide as a food, as an efficient regulator of both synovial inflammation and osteoclast differentiation in male RA mouse models. SP reduces excessive reactive oxygen species and downregulates pro-inflammatory cytokines in synovial macrophages. Moreover, SP reprograms pro-inflammatory M1-like macrophages to anti-inflammatory M2-like phenotype, suppressing synovitis and remodeling redox balance. Notably, SP inhibits osteoclast activation effectively and blocks the progression of bone erosion. SP is then engineered with macrophage membranes (SP@M) to enable immune evasion and RA-targeting in vivo. SP@M increases LC3-mediated autophagy as well as strengthens ubiquitin-mediated proteasomal degradation toward KEAP1, which promotes the expression and nuclear translocation of NRF2. The NRF2 further activates antioxidant enzymes to terminate macrophages-initiated pathological cascades and reestablish intra-articular immune homeostasis, conferring a bone recovery and chondroprotective effect in collagen-induced arthritis mouse models. This work shows the therapeutic activity of FDA-approved functional food of SP in suppressing synovial inflammation and osteoclast differentiation, offering an off-the-shelf strategy for RA treatment.
Collapse
Affiliation(s)
- Xiao Yang
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedics, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, 200011, Shanghai, China
| | - Kewei Rong
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedics, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, 200011, Shanghai, China
| | - Shaotian Fu
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedics, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, 200011, Shanghai, China
| | - Yangzi Yang
- Department of Orthopedic Surgery, Spine Center, Changzheng Hospital, Navy Medical University, No. 415 Fengyang Road, 200003, Shanghai, China
| | - Shasha Liu
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedics, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, 200011, Shanghai, China
- Department of Rehabilitation Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chenyu Zhang
- Shanghai Engineering Research Center of Innovative Orthopaedic Instruments and Personalized Medicine, Clinical and Translational Research Center for 3D Printing Technology, 200011, Shanghai, China
- School of Medicine, Shanghai University, Shanghai, China
| | - Kang Xu
- The Third Affiliated Hospital of Yunnan University of Chinese Medicine, Kunming, China
| | - Kai Zhang
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedics, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, 200011, Shanghai, China
| | - Yingchun Zhu
- Key Laboratory of Inorganic Coating Materials, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 200050, Shanghai, China
| | - Yongqiang Hao
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedics, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, 200011, Shanghai, China
- Shanghai Engineering Research Center of Innovative Orthopaedic Instruments and Personalized Medicine, Clinical and Translational Research Center for 3D Printing Technology, 200011, Shanghai, China
| | - Jie Zhao
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedics, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, 200011, Shanghai, China.
| | - Jingke Fu
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedics, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, 200011, Shanghai, China.
- Shanghai Engineering Research Center of Innovative Orthopaedic Instruments and Personalized Medicine, Clinical and Translational Research Center for 3D Printing Technology, 200011, Shanghai, China.
| |
Collapse
|
3
|
Zheng J, Liu Y, Zhu F, Liu S, Cai Z, Liu M, An X, Yao Y, Chen N, Guo D. Picropodophyllin induces ferroptosis via blockage of AKT/NRF2/SLC7A11 and AKT/NRF2/SLC40A1 axes in hepatocellular carcinoma as a natural IGF1R inhibitor. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 143:156840. [PMID: 40412057 DOI: 10.1016/j.phymed.2025.156840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Revised: 04/15/2025] [Accepted: 05/10/2025] [Indexed: 05/27/2025]
Abstract
BACKGROUND Ferroptosis represents a distinct form of regulated cell death characterized by intracellular iron overload and extensive lipid peroxidation. Targeting ferroptosis-related signaling pathways and inducing ferroptosis have emerged as promising therapeutic strategies for hepatocellular carcinoma (HCC). Recent studies have highlighted the involvement of insulin-like growth factor 1 receptor (IGF1R) signaling in cancer progression and antioxidant defense mechanisms. Picropodophyllin (PPP), a natural IGF1R inhibitor isolated from Dysosma versipellis, exhibits anticancer effects against several solid tumors. However, the impact of PPP on ferroptosis in HCC and the underlying molecular mechanisms remain unclear. PURPOSE The current study aims to evaluate the anti-tumor effects of PPP on HCC progression in vitro and in vivo, and to investigate the actions and mechanisms of PPP as a novel ferroptosis inducer. METHODS Clinical sample from HCC patients were applied to analyze the correlation of IGF1R with malignancy of HCC. Docking simulations, molecular dynamics simulation and cellular thermal shift assay were performed to verify the interaction between PPP and IGF1R. CCK-8 cell viability assay, colony formation, Calcein-AM/PI staining, wound healing and transwell assays were conducted to determine the effects of PPP on cell viability, proliferation, migration and invasion. Intracellular Fe2+, GSH, MDA and lipid ROS levels were measured to evaluate the degree of ferroptosis induced by PPP. GO functional annotation and KEGG enrichment analysis, quantitative real-time PCR, western blot and immunofluorescence (IF) assay were performed to investigate the mechanisms underlying the action of PPP. Nude mice xenograft model and immunohistochemistry (IHC) assay were utilized to observe the impact of PPP on tumor growth in vivo. RESULTS Upregulation of IGF1R were confirmed to positively correlated with malignant progression of HCC and PPP were verified to act as a specific inhibitor of IGF1R in HCC. PPP exhibited dose-dependent anti-proliferative and anti-metastasis effects on HCC cells, and inhibited HCC growth in a subcutaneous xenograft murine model. Meanwhile, PPP remarkably increased intracellular Fe2+, lipid ROS and MDA levels, but decreased ROS scavenger GSH content and glutathione peroxidase 4 (GPX4) activity significantly, which suggested that PPP stimulated ferroptosis relying on iron-dependent lipid peroxidation. The ferroptosis inhibitor deferoxamine mesylate (DFO) nearly abolished the anti-cancer and ferroptosis-inducing effects of PPP both in vitro and in vivo. Mechanistically, PPP inhibited the phosphorylation of IGF1R, PI3K and AKT, thus suppressed the protein stability of NRF2 by facilitating ubiquitination, and consequently decreased expression of its target gene SLC7A11 and SLC40A1. CONCLUSION The natural IGF1R inhibitor PPP induced ferroptosis through blockage of PI3K/AKT/NRF2 signaling pathway and subsequent inhibition of downstream gene expression of SLC7A11 and SLC40A1 in hepatocellular carcinoma. Consequently, our findings provide a novel action and mechanism of PPP, as well as offer innovative and promising ferroptosis-inducing agents for the clinical treatment of HCC.
Collapse
Affiliation(s)
- Jiahui Zheng
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, No. 1838, Guangzhou Boulevard (North), Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Guangzhou 510515, China
| | - Yixin Liu
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, No. 1838, Guangzhou Boulevard (North), Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Guangzhou 510515, China
| | - Fengchi Zhu
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, No. 1838, Guangzhou Boulevard (North), Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Guangzhou 510515, China
| | - Sha Liu
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, No. 1838, Guangzhou Boulevard (North), Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Guangzhou 510515, China
| | - Zhuo Cai
- NHC Key Laboratory of Male Reproduction and Genetics, Guangdong Provincial Reproductive Science Institute (Guangdong Provincial Fertility Hospital), Guangzhou 510600, China
| | - Mengting Liu
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, No. 1838, Guangzhou Boulevard (North), Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Guangzhou 510515, China
| | - Xiangping An
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, No. 1838, Guangzhou Boulevard (North), Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Guangzhou 510515, China
| | - Yan Yao
- Department of Anaesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| | - Nana Chen
- Laboratory of Anti-inflammatory and Immunomodulatory Pharmacology, School of Pharmaceutical Sciences, Southern Medical University, Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou, 510515, China.
| | - Dan Guo
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, No. 1838, Guangzhou Boulevard (North), Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Guangzhou 510515, China.
| |
Collapse
|
4
|
Zhang H, Zhou LQ, Yang S, Dong MH, Chen L, Lu YL, Zhang LY, Zhang L, Chu YH, Xu LL, Pang XW, Zhu LF, Xu T, Yong TY, Wang W, Tian DS, Qin C. The foam cell-derived exosomes exacerbate ischemic white matter injury via transmitting metabolic defects to microglia. Cell Metab 2025:S1550-4131(25)00219-0. [PMID: 40345179 DOI: 10.1016/j.cmet.2025.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 02/25/2025] [Accepted: 04/16/2025] [Indexed: 05/11/2025]
Abstract
Atherosclerosis (AS) has been shown to be an independent risk factor for vascular cognitive impairment (VCI), but the mechanisms remain unclear. Here, we found that AS circulating exosomes exacerbated ischemic white matter injury and VCI. Exosomes originating from macrophage-derived foam cells targeted microglia. Mechanistically, foam cell-derived exosomes transmitted redox imbalance, mitochondrial dysfunction, and metabolic defects to microglia via the miR-101-3p-Nrf2-Slc2a1 axis. Anti-miR-101-3p or activation of Nrf2, both genetically and pharmacologically, could antagonize AS exosomes and ameliorate VCI. In conclusion, our findings reveal a distant connection between peripheral macrophages and brain microglia, which provides new insights and potential targets of AS-induced VCI.
Collapse
Affiliation(s)
- Hang Zhang
- Department of Neurology, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Luo-Qi Zhou
- Department of Neurology, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Sheng Yang
- Department of Neurology, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ming-Hao Dong
- Department of Neurology, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Lian Chen
- Department of Neurology, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yi-Lin Lu
- Department of Neurology, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Lu-Yang Zhang
- Department of Neurology, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Lan Zhang
- Department of Neurology, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yun-Hui Chu
- Department of Neurology, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Lu-Lu Xu
- Department of Neurology, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiao-Wei Pang
- Department of Neurology, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Li-Fang Zhu
- Department of Neurology, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ting Xu
- Guangdong Province Key Laboratory of Brain Function and Disease, Department of Physiology and Pain Research Center, Zhongshan Medical School, Sun Yat-Sen University, 74 Zhongshan Road, Guangzhou 510080, China
| | - Tu-Ying Yong
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Wei Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Dai-Shi Tian
- Department of Neurology, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Chuan Qin
- Department of Neurology, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
5
|
Bian DD, Zhang X, Zhu XR, Tang WH, Peng Q, Chen YH, Wang G, Zhang DZ, Tang BP, Liu QN. The Nrf2-Keap1/ARE signaling pathway in aquatic animals. Int J Biol Macromol 2025; 308:142595. [PMID: 40158560 DOI: 10.1016/j.ijbiomac.2025.142595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 03/12/2025] [Accepted: 03/22/2025] [Indexed: 04/02/2025]
Abstract
The complex and fluctuating conditions of aquatic ecosystems make aquatic organisms vulnerable to oxidative stress. The Nrf2-Keap1/ARE signaling pathway serves as an important intracellular defense mechanism, particularly for aquatic organisms exposed to environmental stressors and toxic substances. Environmental stimuli can disrupt an organism's internal redox balance, leading to cellular oxidative stress responses. To counteract these effects, cells develop intricate defense mechanisms, with the Nrf2-Keap1/ARE signaling pathway is playing a crucial role. In this pathway, the nuclear transcription factor Nrf2 translocates into the nucleus to initiate the transcription of antioxidant genes, thereby reducing reactive oxygen species (ROS)-induced cellular damage and maintaining the organism's oxidative-antioxidative equilibrium. While research on this pathway in mammals is well-established, studies on aquatic organisms are still limited. This review provides a comprehensive analysis of the regulatory functions of the Nrf2-Keap1/ARE pathway on oxidative stress and delves into the molecular structures of Nrf2, Keap1, and ARE, offering insights into the physiological regulation of antioxidant defenses in aquatic organisms.
Collapse
Affiliation(s)
- Dan-Dan Bian
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224007, People's Republic of China; Anhui Key Laboratory of Resource Insect Biology and Innovative Utilization, College of Life Sciences, Anhui Agricultural University, Hefei 230036, People's Republic of China
| | - Xue Zhang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224007, People's Republic of China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, College of Aquaculture and Life Science, Shanghai Ocean University, Shanghai 201306, People's Republic of China
| | - Xi-Rong Zhu
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224007, People's Republic of China
| | - Wen-Hui Tang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224007, People's Republic of China
| | - Qin Peng
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224007, People's Republic of China
| | - Yao-Hui Chen
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224007, People's Republic of China
| | - Gang Wang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224007, People's Republic of China
| | - Dai-Zhen Zhang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224007, People's Republic of China
| | - Bo-Ping Tang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224007, People's Republic of China
| | - Qiu-Ning Liu
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224007, People's Republic of China.
| |
Collapse
|
6
|
Bai B, Tu P, Weng J, Zhang Y, Lin Q, Muskat MN, Wang J, Tang X, Cheng X. Identification of Food-Derived Electrophilic Chalcones as Nrf2 Activators Using Comprehensive Virtual Screening Techniques. Antioxidants (Basel) 2025; 14:546. [PMID: 40427428 PMCID: PMC12108417 DOI: 10.3390/antiox14050546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2025] [Revised: 04/28/2025] [Accepted: 04/28/2025] [Indexed: 05/29/2025] Open
Abstract
Electrophilic compounds are bioactive components commonly found in foods that are capable of covalently modifying nucleophilic sites on biologically functional macromolecules. These compounds may elicit positive bioactivity or negative biotoxicity, posing significant challenges in terms of time and resource expenditure in the de novo characterization of their biological activity. In this study, we developed a database of 332 food-derived electrophilic compounds and used a semi-supervised k-nearest neighbors (KNN) machine learning model to predict their bioactivity. Molecular docking analysis identified the three chalcone compounds with the highest potential positive activity-4-hydroxyderricin (4HD), isoliquiritigenin (ISO), and butein. Furthermore, in cell experiments, treatment with 4HD, ISO, and butein significantly reduced reactive oxygen species (ROS) levels. An RT-qPCR analysis demonstrated that these chalcones significantly upregulated the mRNA expression of Nrf2 and its downstream antioxidant genes, including Nqo1, HO-1, Gsr, Gclc, and Gclm. ISO's cytoprotective and antioxidant effects were abolished following these findings, which highlight that 4HD, ISO, and butein are effective Nrf2 activators and suggest that comprehensive virtual technology is a promising strategy for identifying functional bioactive compounds.
Collapse
Affiliation(s)
- Bingyu Bai
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (B.B.); (Y.Z.); (Q.L.); (J.W.); (X.T.)
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Piaohan Tu
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (B.B.); (Y.Z.); (Q.L.); (J.W.); (X.T.)
- Beilun Market Supervision Administration, Ningbo 315800, China
| | - Jiayi Weng
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (B.B.); (Y.Z.); (Q.L.); (J.W.); (X.T.)
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Yan Zhang
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (B.B.); (Y.Z.); (Q.L.); (J.W.); (X.T.)
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Quan Lin
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (B.B.); (Y.Z.); (Q.L.); (J.W.); (X.T.)
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | | | - Jie Wang
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (B.B.); (Y.Z.); (Q.L.); (J.W.); (X.T.)
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Xue Tang
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (B.B.); (Y.Z.); (Q.L.); (J.W.); (X.T.)
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Xiangrong Cheng
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (B.B.); (Y.Z.); (Q.L.); (J.W.); (X.T.)
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
7
|
Dong Y, Zheng M, Ding W, Guan H, Xiao J, Li F. Nrf2 activators for the treatment of rare iron overload diseases: From bench to bedside. Redox Biol 2025; 81:103551. [PMID: 39965404 PMCID: PMC11876910 DOI: 10.1016/j.redox.2025.103551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/02/2025] [Accepted: 02/13/2025] [Indexed: 02/20/2025] Open
Abstract
Iron overload and related oxidative damage are seen in many rare diseases, due to mutation of iron homeostasis-related genes. As a core regulator on cellular antioxidant reaction, Nrf2 can also decrease systemic and cellular iron levels by regulating iron-related genes and pathways, making Nrf2 activators very good candidates for the treatment of iron overload disorders. Successful examples include the clinical use of omaveloxolone for Friedreich's Ataxia and dimethyl fumarate for relapsing-remitting multiple sclerosis. Despite these uses, the therapeutic potentials of Nrf2 activators for iron overload disorders may be overlooked in clinical practice. Therefore, this study talks about the potential use, possible mechanisms, and precautions of Nrf2 activators in treating rare iron overload diseases. In addition, a combination therapy with Nrf2 activators and iron chelators is proposed for clinical reference, aiming to facilitate the clinical use of Nrf2 activators for more iron overload disorders.
Collapse
Affiliation(s)
- Yimin Dong
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Meng Zheng
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weizhong Ding
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hanfeng Guan
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Jun Xiao
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Feng Li
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
8
|
Luo Y, Yang Z, Zhang Y, Jiang S, Zhu J, Li X, You Q, Lu M. Patenting perspective on Keap1 inhibitors (2019-2024). Expert Opin Ther Pat 2025; 35:325-356. [PMID: 39909720 DOI: 10.1080/13543776.2025.2462844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 12/20/2024] [Accepted: 01/29/2025] [Indexed: 02/07/2025]
Abstract
INTRODUCTION Kelch-like ECH-associated protein 1 (Keap1), an E3 ligase negatively regulating the nuclear factor erythroid 2-related factor 2 (Nrf2), has emerged as an auspicious drug target for treating ailments associated with oxidative stress and inflammation. Discovery of Keap1 inhibitors have attracted significant interest. AREAS COVERED This review covers patents on Keap1 inhibitors from 2019 to 2024, providing a comprehensive analysis of their structural characteristics, optimization strategies, pharmacological properties and clinical progress. EXPERT OPINION Extensive efforts have been devoted to enhance potency and drug-like properties of Keap1 inhibitors. Strategies such as ROS-cleavable prodrug design, bivalent inhibition and PROTACs are emerging. As the range of drug types and applications expands, Keap1 inhibitors are becoming a sagacious option for disease treating.
Collapse
Affiliation(s)
- Yongfu Luo
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University Medical College, Suzhou, China
| | - Ziyu Yang
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University Medical College, Suzhou, China
| | - Yuan Zhang
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University Medical College, Suzhou, China
| | - Shutong Jiang
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University Medical College, Suzhou, China
| | - Jingyu Zhu
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University Medical College, Suzhou, China
| | - Xiangyang Li
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University Medical College, Suzhou, China
- Department of Research and development, Microcell Pharmaceutical (Suzhou) Co., Ltd, Suzhou, China
| | - Qidong You
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University Medical College, Suzhou, China
- Jiangsu Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Mengchen Lu
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University Medical College, Suzhou, China
| |
Collapse
|
9
|
Xu J, Wei H, Sun Z, Li W, Long J, Liu J, Feng Z, Cao K. Hydroxytyrosol as a Mitochondrial Homeostasis Regulator: Implications in Metabolic Syndrome and Related Diseases. Antioxidants (Basel) 2025; 14:398. [PMID: 40298640 PMCID: PMC12024272 DOI: 10.3390/antiox14040398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 03/18/2025] [Accepted: 03/25/2025] [Indexed: 04/30/2025] Open
Abstract
Hydroxytyrosol (HT), a principal bioactive phytochemical abundant in Mediterranean dietary sources, has emerged as a molecule of significant scientific interest owing to its multifaceted health-promoting properties. Accumulating evidence suggests that HT's therapeutic potential in metabolic disorders extends beyond conventional antioxidant capacity to encompass mitochondrial regulatory networks. This review synthesizes contemporary evidence from our systematic investigations and the existing literature to delineate HT's comprehensive modulatory effects on mitochondrial homeostasis. We systematically summarized the impact of HT on mitochondrial dynamics (fusion/fission equilibrium), biogenesis and energy metabolism, mitophagy, inter-organellar communication with the endoplasmic reticulum, and microbiota-mitochondria crosstalk. Through this multidimensional analysis, we established HT as a mitochondrial homeostasis modulator with potential therapeutic applications in metabolic syndrome (MetS) and its related pathologies including type 2 diabetes mellitus, obesity-related metabolic dysfunction, dyslipidemia, non-alcoholic steatohepatitis, and hypertension-related complications. Moreover, we further discussed translational challenges in HT research, emphasizing the imperative for direct target identification, mitochondrial-targeted delivery system development, and combinatorial therapeutic strategies. Collectively, this review provides a mechanistic framework for advancing HT research and accelerating its clinical implementation in MetS and its related diseases.
Collapse
Affiliation(s)
- Jie Xu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (J.X.); (H.W.); (Z.S.); (W.L.); (J.L.); (J.L.)
| | - Huanglong Wei
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (J.X.); (H.W.); (Z.S.); (W.L.); (J.L.); (J.L.)
| | - Zhenyu Sun
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (J.X.); (H.W.); (Z.S.); (W.L.); (J.L.); (J.L.)
| | - Wankang Li
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (J.X.); (H.W.); (Z.S.); (W.L.); (J.L.); (J.L.)
| | - Jiangang Long
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (J.X.); (H.W.); (Z.S.); (W.L.); (J.L.); (J.L.)
| | - Jiankang Liu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (J.X.); (H.W.); (Z.S.); (W.L.); (J.L.); (J.L.)
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao 266071, China
| | - Zhihui Feng
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao 266071, China
- Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Ke Cao
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (J.X.); (H.W.); (Z.S.); (W.L.); (J.L.); (J.L.)
| |
Collapse
|
10
|
Huang L, Zhou Y, Xiao H, Li Y, Zhou Z, Xiao Z, Tong Y, Hu K, Kuang Y, Shen M, Xiao Y, Chen X. Emerging Contaminants: An Important But Ignored Risk Factor for Psoriasis. Clin Rev Allergy Immunol 2025; 68:33. [PMID: 40121604 DOI: 10.1007/s12016-025-09043-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2025] [Indexed: 03/25/2025]
Abstract
Industrialization and modernization have changed the environment. A group of emerging contaminants (ECs) has been defined recently. Psoriasis, whose incidence has increased in recent years, is a relapsing immune-mediated disease carrying a heavy disease burden. The erythematous scaly plaque is a typical symptom and occurs on several parts of the body. In addition, psoriasis has many comorbidities, such as psoriatic arthritis, diabetes, and depression, damaging the quality of life of patients. IL-17, IL-12, IL-23, and TNF-alpha are important related cytokines. ECs can influence psoriasis through the immune system and inflammatory responses. Specific mechanisms include increasing pro-inflammatory cytokines such as TNF-α and IL-17, and activating immune cells such as macrophages. And for psoriasis patients, it is suggested to reduce the exposure of most ECs. However, the complex mechanisms involved have not been discussed together and concluded. In this review, we summarize the relationship between ECs and psoriasis, focusing on the immune system, especially the immune cells and cytokines. These results can help guide clinical treatment and long-term management of psoriasis.
Collapse
Affiliation(s)
- Leyi Huang
- Department of Dermatology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China
- Hunan Engineering Research Center of Skin Health and Disease, Changsha, 410008, China
| | - Yinli Zhou
- Department of Dermatology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, 410008, China
| | - Hui Xiao
- Department of Dermatology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China
- Hunan Engineering Research Center of Skin Health and Disease, Changsha, 410008, China
| | - Yajia Li
- Department of Dermatology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China
- Hunan Engineering Research Center of Skin Health and Disease, Changsha, 410008, China
| | - Zhiru Zhou
- Department of Dermatology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, 410008, China
| | - Ziyi Xiao
- Department of Dermatology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, 410008, China
| | - Yixuan Tong
- Department of Dermatology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China
- Hunan Engineering Research Center of Skin Health and Disease, Changsha, 410008, China
| | - Kun Hu
- Department of Dermatology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Changsha, 410008, China
| | - Yehong Kuang
- Department of Dermatology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, 410008, China
| | - Minxue Shen
- Department of Dermatology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China
- Department of Social Medicine and Health Management, Xiangya School of Public Health, Central South University, Changsha, 410008, China
| | - Yi Xiao
- Department of Dermatology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China.
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, 410008, China.
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China.
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, 410008, China.
| |
Collapse
|
11
|
Wang H, Yuan T, Wang J, Li D, Lee WYW, Li Z, Sun S. Quercetagetin alleviates inflammatory osteoclastogenesis and collagen antibody-induced arthritis via Nrf2 signaling and Pten/AKT/Nfatc1 axis. Arthritis Res Ther 2025; 27:54. [PMID: 40057805 PMCID: PMC11889843 DOI: 10.1186/s13075-025-03522-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 02/26/2025] [Indexed: 05/13/2025] Open
Abstract
PURPOSE Quercetagetin, a flavonoid derived from the natural herb Flos eriocauli, is used in traditional Chinese medicine for its fire-purging (anti-inflammation) and wind-expelling (pain-alleviating) properties. However, its potential effects concerning rheumatoid arthritis (RA) remain underexplored. This study was designed to elucidate the potential associations between Quercetagetin and RA, establishing the therapeutic potential of Quercetagetin and related mechanisms in RA treatment. METHODS Network pharmacology was conducted to decipher related targets and signaling pathways between Quercetagetin and RA. In vitro assays were then conducted to explore the effects of Quercetagetin on osteoclast cell behaviors and corresponding signaling pathways. In vivo study further validated the therapeutic effect of Quercetagetin in collagen antibody-induced arthritis (CAIA) mice. RESULTS The network pharmacological analysis indicated an intimate correlation of Quercetagetin with RA-related inflammatory osteolysis treatment. Pertaining to biological validations, 2 µM of Quercetagetin successfully inhibited LPS-driven osteoclast differentiation and function. qPCR assay and Western blot analyses denoted parallel changes in osteoclastic marker genes and proteins. Further mechanism study uncovered the effect of Quercetagetin in stimulating the Nrf2/Keap1 signaling pathway and moderating the Pten/AKT/Nfatc1 axis in osteoclasts. In vivo study revealed 40 mg/kg Quercetagetin every day could significantly relief joint destruction in CAIA mice. CONCLUSIONS Our study presents Quercetagetin 's therapeutic potential in treating RA, outlining its effects and potential mechanisms in suppressing LPS-induced osteoclast activity, and alleviating inflammatory bone destruction in CAIA model, thereby laying the groundwork for further translational research on Quercetagetin and Flos eriocauli in RA treatment.
Collapse
Affiliation(s)
- Haojue Wang
- Department of Joint Surgery, Cheeloo College of Medicine, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250012, China
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Tao Yuan
- Department of Joint Surgery, Cheeloo College of Medicine, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250012, China
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | | | - Dengju Li
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
- Orthopaedic Research Laboratory, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Wayne Yuk-Wai Lee
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China.
- SH Ho Scoliosis Research Laboratory, Joint Scoliosis Research Centre of the Chinese University of Hong Kong and Nanjing University, The Chinese University of Hong Kong, Hong Kong, China.
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China.
| | - Ziqing Li
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China.
- Orthopaedic Research Laboratory, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China.
| | - Shui Sun
- Department of Joint Surgery, Cheeloo College of Medicine, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250012, China.
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China.
- Orthopaedic Research Laboratory, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China.
| |
Collapse
|
12
|
Li B, Ming H, Qin S, Nice EC, Dong J, Du Z, Huang C. Redox regulation: mechanisms, biology and therapeutic targets in diseases. Signal Transduct Target Ther 2025; 10:72. [PMID: 40050273 PMCID: PMC11885647 DOI: 10.1038/s41392-024-02095-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/09/2024] [Accepted: 11/21/2024] [Indexed: 03/09/2025] Open
Abstract
Redox signaling acts as a critical mediator in the dynamic interactions between organisms and their external environment, profoundly influencing both the onset and progression of various diseases. Under physiological conditions, oxidative free radicals generated by the mitochondrial oxidative respiratory chain, endoplasmic reticulum, and NADPH oxidases can be effectively neutralized by NRF2-mediated antioxidant responses. These responses elevate the synthesis of superoxide dismutase (SOD), catalase, as well as key molecules like nicotinamide adenine dinucleotide phosphate (NADPH) and glutathione (GSH), thereby maintaining cellular redox homeostasis. Disruption of this finely tuned equilibrium is closely linked to the pathogenesis of a wide range of diseases. Recent advances have broadened our understanding of the molecular mechanisms underpinning this dysregulation, highlighting the pivotal roles of genomic instability, epigenetic modifications, protein degradation, and metabolic reprogramming. These findings provide a foundation for exploring redox regulation as a mechanistic basis for improving therapeutic strategies. While antioxidant-based therapies have shown early promise in conditions where oxidative stress plays a primary pathological role, their efficacy in diseases characterized by complex, multifactorial etiologies remains controversial. A deeper, context-specific understanding of redox signaling, particularly the roles of redox-sensitive proteins, is critical for designing targeted therapies aimed at re-establishing redox balance. Emerging small molecule inhibitors that target specific cysteine residues in redox-sensitive proteins have demonstrated promising preclinical outcomes, setting the stage for forthcoming clinical trials. In this review, we summarize our current understanding of the intricate relationship between oxidative stress and disease pathogenesis and also discuss how these insights can be leveraged to optimize therapeutic strategies in clinical practice.
Collapse
Affiliation(s)
- Bowen Li
- Department of Biotherapy, Institute of Oxidative Stress Medicine, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, PR China
| | - Hui Ming
- Department of Biotherapy, Institute of Oxidative Stress Medicine, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, PR China
| | - Siyuan Qin
- Department of Biotherapy, Institute of Oxidative Stress Medicine, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, PR China
- Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, PR China
| | - Edouard C Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Jingsi Dong
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
- Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Zhongyan Du
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.
- Key Laboratory of Blood-stasis-toxin Syndrome of Zhejiang Province, Hangzhou, China.
| | - Canhua Huang
- Department of Biotherapy, Institute of Oxidative Stress Medicine, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, PR China.
- Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, PR China.
| |
Collapse
|
13
|
Kang H, Peng R, Dong Y, Liao F, Zhu M, Wang P, Hu SA, Hu P, Wang J, Liu Z, Song K, Li F. TRAF1 promotes osteoclastogenesis by enhancing metabolic adaptation to oxidative phosphorylation in an AKT-dependent manner. Mol Ther 2025; 33:933-949. [PMID: 39863932 PMCID: PMC11897774 DOI: 10.1016/j.ymthe.2025.01.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 12/01/2024] [Accepted: 01/22/2025] [Indexed: 01/27/2025] Open
Abstract
Tumor necrosis factor receptor-associated factor 1 (TRAF1) is a crucial signaling adaptor involved in multiple cellular events. However, its role in regulating osteoclastogenesis and energy metabolism remains unclear. Here, we report that TRAF1 promotes osteoclastogenesis and oxidative phosphorylation (OXPHOS). Employing RNA sequencing, we found that TRAF1 is markedly upregulated during osteoclastogenesis and is positively associated with osteoporosis. TRAF1 knockout inhibits osteoclastogenesis and increases bone mass in both normal and ovariectomized adult mice without affecting bone mass in childhood. Furthermore, TRAF1 promotes osteoclast OXPHOS by increasing the phosphorylation level of AKT. Mechanistically, TRAF1 functions to inhibit TRAF2-induced ubiquitination of Gβl, a known activator of AKT, and further upregulates AKT phosphorylation. Rescue experiments revealed that the inhibitory effects of TRAF1 knockout on osteoclastogenesis, OXPHOS, and bone mass are dependent on AKT. Collectively, our findings uncover a previously unrecognized function of TRAF1 in regulating osteoclastogenesis and energy metabolism, and establish a novel TRAF1-AKT-OXPHOS axis in osteoclasts.
Collapse
Affiliation(s)
- Honglei Kang
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Research Institute of Shenzhen Huazhong University of Science and Technology, Shen Zhen, China
| | - Renpeng Peng
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yimin Dong
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fuben Liao
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China; Hubei Provincial Research Center for Precision Medicine of Cancer, Wuhan, China
| | - Meipeng Zhu
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pengju Wang
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shi-An Hu
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peixuan Hu
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jia Wang
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Zheming Liu
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China; Hubei Provincial Research Center for Precision Medicine of Cancer, Wuhan, China.
| | - Kehan Song
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Provincial Research Center for Precision Medicine of Cancer, Wuhan, China.
| | - Feng Li
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
14
|
Yang T, Zhang S, Nie K, Peng X, Huo J, Fu X, Zhang Y. WWOX-mediated p53/SAT1 and NRF2/FPN1 axis contribute to toosendanin-induced ferroptosis in hepatocellular carcinoma. Biochem Pharmacol 2025; 233:116790. [PMID: 39894307 DOI: 10.1016/j.bcp.2025.116790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 01/16/2025] [Accepted: 01/30/2025] [Indexed: 02/04/2025]
Abstract
Although ferroptosis as an emerging way exhibits tremendous promising in the therapy of hepatocellular carcinoma (HCC), the novel therapeutic agents targeting ferroptosis are still scarce. In our previous study, we found that the natural products toosendanin (TSN) possessed significant anti-proliferative efficacy by regulating WW domain-containing oxidoreductase (WWOX) in HCC. However, there is very limited understanding about TSN-induced ferroptosis, and the role of WWOX in ferroptosis has not been studied. In present study, we investigated the effect and underlying molecular mechanisms of TSN in WWOX-mediated ferroptosis in HCC. We found that TSN induced ferroptosis in HCC cells and its effect was dependent on WWOX. RNA-seq and RT-qPCR assay identified that TSN significantly increased spermidine/spermine N1-acetyltransferase 1 (SAT1) expression while decreased solute carrier family 40 member 1 (SLC40A1) expression, which play vital roles in ferrous ion transport. Further dual-luciferase reporter assay and Co-IP assay revealed that TSN-induced WWOX activation controlled the transcriptional activity of p53 and NF-E2-related factor 2 (NRF2) by regulating their interaction. Meanwhile, IF assay and WB assay confirmed that TSN increased the nuclear distribution of p-WWOX and p-p53 dimers, but impeded the nuclear translocation of NRF2 by inducing its ubiquitination degradation, ultimately regulating the transcription of their downstream target genes. In addition, the results from cell viability assay and the tumor xenograft model verified that co-treatment of TSN, ML385 (NRF2 inhibitor), and MIRA-1 (p53 activator) could effectively inhibit HCC cells growth in the presence of Fer-1 (ferroptosis inhibitor) in vitro and in vivo. Overall, our study contributes to the necessary understanding of the molecular mechanisms of WWOX-mediated ferroptosis regulation, and identifies TSN as a potential therapeutic agent targeting ferroptosis for HCC.
Collapse
Affiliation(s)
- Tianfeng Yang
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061 P.R. China; School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061 P.R. China; State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering Xi'an 710061 P.R. China
| | - Suyu Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061 P.R. China; State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering Xi'an 710061 P.R. China
| | - Kun Nie
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061 P.R. China; State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering Xi'an 710061 P.R. China
| | - Xiuhong Peng
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061 P.R. China; State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering Xi'an 710061 P.R. China
| | - Jian Huo
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061 P.R. China; State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering Xi'an 710061 P.R. China
| | - Xiao Fu
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061 P.R. China
| | - Yanmin Zhang
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061 P.R. China; School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061 P.R. China; State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering Xi'an 710061 P.R. China.
| |
Collapse
|
15
|
Zhang H, Yang S, Lu YL, Zhou LQ, Dong MH, Chu YH, Pang XW, Chen L, Xu LL, Zhang LY, Zhu LF, Xu T, Wang W, Shang K, Tian DS, Qin C. Microglial Nrf2-mediated lipid and iron metabolism reprogramming promotes remyelination during white matter ischemia. Redox Biol 2025; 79:103473. [PMID: 39718294 PMCID: PMC11728325 DOI: 10.1016/j.redox.2024.103473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/06/2024] [Accepted: 12/16/2024] [Indexed: 12/25/2024] Open
Abstract
BACKGROUND Oxidative stress and microglial activation are critical pathomechanisms in ischemic white matter injury. Microglia, as resident immune cells in the brain, are the main cells undergoing oxidative stress response. However, the role and molecular mechanism of oxidative stress in microglia have not been clearly elucidated during white matter ischemia. METHODS Extensive histological analysis of the corpus callosum was performed in BCAS mice at different time points to assess white matter injury, oxidative stress and microglial activation. Flow cytometric sorting and transcriptomic sequencing were combined to explore the underlying mechanisms regulating microglial oxidative stress and functional phenotypes. The expression of critical molecule in microglia was regulated using Cx3cr1CreER mice and clinical-stage drugs to assess its effect on white matter injury and cognitive function. RESULTS Our study identified nuclear factor erythroid-2 related factor 2 (Nrf2) as a key transcription factor regulating oxidative stress and functional phenotype in microglia. Interestingly, we found that the sustained decrease in transiently upregulated expression of Nrf2 following chronic cerebral hypoperfusion resulted in abnormal microglial activation and white matter injury. In addition, high loads of myelin debris promoted lipid peroxidation and ferroptosis in microglia with diminished antioxidant function. Microglia with pharmacologically or genetically stimulated Nrf2 expression exhibited enhanced resistance to ferroptosis and pro-regenerative properties to myelination due to lipid and iron metabolism reprogramming. CONCLUSION Weakened Nrf2-mediated antioxidant responses in microglia induced metabolic disturbances and ferroptosis during chronic cerebral hypoperfusion. Targeted enhancement of Nrf2 expression in microglia may be a potential therapeutic strategy for ischemic white matter injury.
Collapse
Affiliation(s)
- Hang Zhang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China; Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, 430030, PR China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Sheng Yang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China; Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, 430030, PR China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Yi-Lin Lu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China; Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, 430030, PR China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Luo-Qi Zhou
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China; Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, 430030, PR China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Ming-Hao Dong
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China; Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, 430030, PR China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Yun-Hui Chu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China; Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, 430030, PR China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Xiao-Wei Pang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China; Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, 430030, PR China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Lian Chen
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China; Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, 430030, PR China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Lu-Lu Xu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China; Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, 430030, PR China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Lu-Yang Zhang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China; Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, 430030, PR China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Li-Fang Zhu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China; Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, 430030, PR China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Ting Xu
- Guangdong Province Key Laboratory of Brain Function and Disease, Department of Physiology and Pain Research Center, Zhongshan Medical School, Sun Yat-sen University, 74 Zhongshan Road 2, Guangzhou, 510080, PR China
| | - Wei Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China; Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, 430030, PR China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Ke Shang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China; Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, 430030, PR China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China.
| | - Dai-Shi Tian
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China; Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, 430030, PR China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China.
| | - Chuan Qin
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China; Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, 430030, PR China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China.
| |
Collapse
|
16
|
Zou P, He Q, Xia H, Zhong W. Ferroptosis and its impact on common diseases. PeerJ 2024; 12:e18708. [PMID: 39713140 PMCID: PMC11663406 DOI: 10.7717/peerj.18708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 11/23/2024] [Indexed: 12/24/2024] Open
Abstract
Ferroptosis is a novel form of programmed cell death characterized by iron accumulation, lipid peroxidation, and a decline in antioxidant capacity, all of which are regulated by gene expression. The onset of numerous diseases is closely associated with ferroptosis. Common diseases affect a large population, reduce the quality of life, and impose an increased burden on the healthcare system. The role of ferroptosis in common diseases, its therapeutic potential, and even its translation into clinical drug treatments are currently significant research topics worldwide. This study preliminarily explores the theoretical basis of ferroptosis, its mechanism and treatment prospect in common diseases including ischaemia-reperfusion injury, inflammatory bowel diseases, liver fibrosis, acute kidney injury, diabetic kidney disease, stroke, Alzheimer's disease, cardiovascular disease, immune and cancer. This review provides a theoretical foundation for the further study and development of ferroptosis, as well as for the prevention and treatment of common diseases.
Collapse
Affiliation(s)
- Pengjian Zou
- Department of Pediatric Surgery, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Qiuming He
- Department of Pediatric Surgery, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Huimin Xia
- Department of Pediatric Surgery, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Wei Zhong
- Department of Pediatric Surgery, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
17
|
Wang K, Lin Y, Zhou D, Li P, Zhao X, Han Z, Chen H. Unveiling ferroptosis: a new frontier in skin disease research. Front Immunol 2024; 15:1485523. [PMID: 39430757 PMCID: PMC11486644 DOI: 10.3389/fimmu.2024.1485523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 09/20/2024] [Indexed: 10/22/2024] Open
Abstract
Ferroptosis, a form of regulated cell death distinct from apoptosis, necrosis, and autophagy, is increasingly recognized for its role in skin disease pathology. Characterized by iron accumulation and lipid peroxidation, ferroptosis has been implicated in the progression of various skin conditions, including psoriasis, photosensitive dermatitis, and melanoma. This review provides an in-depth analysis of the molecular mechanisms underlying ferroptosis and compares its cellular effects with other forms of cell death in the context of skin health and disease. We systematically examine the role of ferroptosis in five specific skin diseases, including ichthyosis, psoriasis, polymorphous light eruption (PMLE), vitiligo, and melanoma, detailing its influence on disease pathogenesis and progression. Moreover, we explore the current clinical landscape of ferroptosis-targeted therapies, discussing their potential in managing and treating skin diseases. Our aim is to shed light on the therapeutic potential of modulating ferroptosis in skin disease research and practice.
Collapse
Affiliation(s)
- Ke Wang
- Deyang Hospital Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Deyang, China
| | - Yumeng Lin
- Health Management Center, Naniing Tongren Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Dan Zhou
- School of Smart Health Care (School of Health & Medical), Zhejiang Dongfang Polytechnic, Zhejiang, China
| | - Peipei Li
- Department of Obstetrics and Gynecology, People’s Hospital of Ningxia Hui Autonomous Region, Yinchuan, Ningxia, China
- Science Education Department, Chengdu Xinhua Hospital Affiliated to North Sichuan Medical College, Chengdu, China
| | - Xiaoying Zhao
- Department of Gerontology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Zhongyu Han
- Science Education Department, Chengdu Xinhua Hospital Affiliated to North Sichuan Medical College, Chengdu, China
| | - Haoran Chen
- Science Education Department, Chengdu Xinhua Hospital Affiliated to North Sichuan Medical College, Chengdu, China
| |
Collapse
|
18
|
Li S, Tian Q, Zheng L, Zhou Y. Functional Amino Acids in the Regulation of Bone and Its Diseases. Mol Nutr Food Res 2024; 68:e2400094. [PMID: 39233531 DOI: 10.1002/mnfr.202400094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 08/11/2024] [Indexed: 09/06/2024]
Abstract
Bone as a vigorous tissue is constantly undergoing bone remodeling. The homeostasis of bone remodeling requires combined efforts of multifarious bone cells. Amino acids (AA), known as essential components of life support, are closely related to the regulation of bone homeostasis. In recent years, the concept of functional amino acids (FAAs) has been proposed, which is defined as AA that regulate key metabolic pathways to improve health, survival, growth, development, lactation, and reproduction of organisms, to highlight their outstanding contributions in the body. In the hope of exploring new therapeutic strategies, this review focus on summarizing recent progress in the vital role of FAAs in bone homeostasis maintaining and potential implications of FAAs in bone-related diseases, and discussing related mechanisms. The results showed that FAAs are closely related to bone metabolism and therapeutic strategy targeting FAAs metabolism is one of the future trends for bone disorders, while the explorations about possible impact of FAAs-based diets are still limited.
Collapse
Affiliation(s)
- Siying Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Qinglu Tian
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Liwei Zheng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yachuan Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| |
Collapse
|
19
|
Yao H, Jiang W, Liao X, Wang D, Zhu H. Regulatory mechanisms of amino acids in ferroptosis. Life Sci 2024; 351:122803. [PMID: 38857653 DOI: 10.1016/j.lfs.2024.122803] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/19/2024] [Accepted: 06/04/2024] [Indexed: 06/12/2024]
Abstract
Ferroptosis, an iron-dependent non-apoptotic regulated cell death process, is associated with the pathogenesis of various diseases. Amino acids, which are indispensable substrates of vital activities, significantly regulate ferroptosis. Amino acid metabolism is involved in maintaining iron and lipid homeostasis and redox balance. The regulatory effects of amino acids on ferroptosis are complex. An amino acid may exert contrasting effects on ferroptosis depending on the context. This review systematically and comprehensively summarized the distinct roles of amino acids in regulating ferroptosis and highlighted the emerging opportunities to develop clinical therapeutic strategies targeting amino acid-mediated ferroptosis.
Collapse
Affiliation(s)
- Heying Yao
- Institute of Medical Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang 212001, China
| | - Wei Jiang
- Institute of Medical Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang 212001, China
| | - Xiang Liao
- Institute of Medical Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang 212001, China
| | - Dongqing Wang
- Institute of Medical Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang 212001, China; Department of Medical Imaging, The Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China.
| | - Haitao Zhu
- Institute of Medical Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang 212001, China; Department of Medical Imaging, The Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China.
| |
Collapse
|
20
|
Ti G, He Y, Xiao Y, Yan J, Ding R, Cheng P, Wu W, Ye D, Wang J, Li L. Global prevalence of diet low in calcium and the disease burden: results from the Global Burden of Disease Study 2019. Nutr Diabetes 2024; 14:59. [PMID: 39097595 PMCID: PMC11297965 DOI: 10.1038/s41387-024-00321-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 07/15/2024] [Accepted: 07/24/2024] [Indexed: 08/05/2024] Open
Abstract
BACKGROUND Due to the essential role of calcium in vital biological functions, diet low in calcium (DLC) is associated with various diseases. However, there is a lack of study about the current prevalence and health burden due to DLC using reliable data sources. METHODS We used data from the Global Burden of Disease study 2019 (GBD 2019) to estimate the prevalence and health burden of DLC in 204 countries from 1990 to 2019, by age, sex, and sociodemographic index (SDI). The estimates were produced in DisMod-MR 2.1, a Bayesian meta-regression tool. Summary exposure value (SEV) was used to show the prevalence of DLC, while diseases adjusted life year (DALY) was used to represent the disease burden. The disease burden was estimated for DLC-induced colorectal cancer. Spearman Rank Order correlation was used for correlation analysis, and estimated annual percentage (EAPC) was used to reflect the temporal trends. RESULTS From 1990 to 2019, the global prevalence of DLC decreased (EAPC of SEV, -0.47; 95% CI, -0.5 to -0.43), but have increased in Oceania region and in many countries, such as United Arab Emirates, New Zealand, Japan, and France. The global DALYs associated with low in calcium were estimated to be 3.14 million (95% uncertainty interval (UI), 2.25-4.26 million) in 2019, with an age standardized rate of 38.2 (95% UI, 27.2-51.8) per 100,000. Unlike the prevalence, the global age standardized DALY rates has remained unchanged (EAPC, -0.03; 95% CI, -0.12 to 0.07), but has increased in over 80 of the 204 countries, located mainly in Asia, Africa, and South America. In all years and regions, the age standardized SEV and DALY rates were higher in male people than that in female people. The prevalence (rho = -0.823; P < 0.001) and disease burden (rho = -0.433; P < 0.001) associated with diet in low calcium were strongly correlated to SDI. The prevalence decreased with age, but the DALY rates increased with age and peaked at about 90 years. The prevalence of DLC has decreased worldwide and in most countries, but the disease burden of DLC induced colorectal cancer has increased in over 40% of countries worldwide. CONCLUSION Countries with low sociodemographic level and male people are more likely to experience the risk of DLC and related disease burden. Related measures in improve dietary calcium intake are in need to address diet in low calcium related health problems.
Collapse
Affiliation(s)
- Gang Ti
- Department of Medical Record, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, Shanxi, China
| | - Yuan He
- Department of Hepatobiliary Surgery, Baogang Hospital of Inner Mongolia, Baotou, 014010, China
| | - Youde Xiao
- Department of Oncology, Taikang Tongji (Wuhan) Hospital, Sixin North Road No.322, Hanyang District, Wuhan, 430050, China
| | - Jiyuan Yan
- Department of Orthopaedics, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Rong Ding
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pengfei Cheng
- Department of General Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, Shanxi, China
| | - Wei Wu
- Department of Orthopaedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dawei Ye
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Jinxi Wang
- Department of General Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, Shanxi, China.
| | - Lili Li
- Department of Radiotherapy, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, 030012, China.
| |
Collapse
|