1
|
Chen A, Wang H, Yan Z, Dong N, Zhang R, Huang Y, Zhou H. Phylogenetic insights of a human-derived optrA-positive Staphylococcus aureus isolated from a person with chronic diarrhea in China. Int J Antimicrob Agents 2025; 65:107493. [PMID: 40096921 DOI: 10.1016/j.ijantimicag.2025.107493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 02/25/2025] [Accepted: 03/11/2025] [Indexed: 03/19/2025]
Affiliation(s)
- Aoxiao Chen
- Clinical Microbiology Laboratory, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Hanyu Wang
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Zelin Yan
- Clinical Microbiology Laboratory, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Ning Dong
- School of Public Health, Zhejiang University School of Medicine, Hangzhou,China
| | - Rong Zhang
- Clinical Microbiology Laboratory, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Yonglu Huang
- Clinical Microbiology Laboratory, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Hongwei Zhou
- Clinical Microbiology Laboratory, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
2
|
Li Y, Jiang T, Mao J, Xu F, Zhang R, Yan J, Cai J, Xie Y. Prevalence and genetic diversity of optrA-positive enterococci isolated from patients in an anorectal surgery ward of a Chinese hospital. Front Microbiol 2024; 15:1481162. [PMID: 39583545 PMCID: PMC11581948 DOI: 10.3389/fmicb.2024.1481162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 10/09/2024] [Indexed: 11/26/2024] Open
Abstract
Linezolid-resistant enterococci have increased in recent years due to the worldwide spread of acquired resistance genes (cfr, optrA, and poxtA) in clinical, animal, and environmental settings. This study investigated the carriage of optrA-positive enterococci among patients in the anorectal surgery ward in Hangzhou, China, and characterized the genetic context of optrA. A total of 173 wound secretion samples were obtained to screen optrA-positive enterococci. Of the 173 samples, 15 (8.67%) were positive for optrA, including 12 Enterococcus faecalis, two E. faecium, and one E. hirae. Multilocus sequence type analysis revealed that 12 optrA-positive E. faecalis isolates belonged to eight different sequence types (STs), of which ST16 was the main type. Eight optrA variants were identified, whose optrA flanking regions with a fexA gene downstream were bounded by different mobile genetic elements. Furthermore, the optrA gene in 8 out of 15 optrA-positive enterococci could be successfully transferred through conjugation. The findings revealed a high carriage rate of optrA in enterococci from one anorectal surgery ward in China. The dissemination of optrA-positive enterococci isolates in clinical settings should be continually monitored.
Collapse
Affiliation(s)
- Yuanyuan Li
- Department of Clinical Laboratory, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
| | - Tao Jiang
- Department of Clinical Laboratory, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
| | - Jianfeng Mao
- Department of Clinical Laboratory, Affiliated Xiaoshan Hospital, Hangzhou Normal University, Hangzhou, China
| | - Fangyi Xu
- Department of Clinical Laboratory, Affiliated Xiaoshan Hospital, Hangzhou Normal University, Hangzhou, China
| | - Rong Zhang
- Department of Clinical Laboratory, Second Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Jing Yan
- Department of Clinical Laboratory, Affiliated Xiaoshan Hospital, Hangzhou Normal University, Hangzhou, China
| | - Jiachang Cai
- Department of Clinical Laboratory, Second Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Yanjun Xie
- Department of Clinical Laboratory, Affiliated Xiaoshan Hospital, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
3
|
Zaidi SEZ, Zaheer R, Zovoilis A, McAllister TA. Enterococci as a One Health indicator of antimicrobial resistance. Can J Microbiol 2024; 70:303-335. [PMID: 38696839 DOI: 10.1139/cjm-2024-0024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2024]
Abstract
The rapid increase of antimicrobial-resistant bacteria in humans and livestock is concerning. Antimicrobials are essential for the treatment of disease in modern day medicine, and their misuse in humans and food animals has contributed to an increase in the prevalence of antimicrobial-resistant bacteria. Globally, antimicrobial resistance is recognized as a One Health problem affecting humans, animals, and environment. Enterococcal species are Gram-positive bacteria that are widely distributed in nature. Their occurrence, prevalence, and persistence across the One Health continuum make them an ideal candidate to study antimicrobial resistance from a One Health perspective. The objective of this review was to summarize the role of enterococci as an indicator of antimicrobial resistance across One Health sectors. We also briefly address the prevalence of enterococci in human, animal, and environmental settings. In addition, a 16S RNA gene-based phylogenetic tree was constructed to visualize the evolutionary relationship among enterococcal species and whether they segregate based on host environment. We also review the genomic basis of antimicrobial resistance in enterococcal species across the One Health continuum.
Collapse
Affiliation(s)
- Sani-E-Zehra Zaidi
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive, Lethbridge, AB T1K 3M4, Canada
- University of Manitoba, Department of Biochemistry and Medical Genetics, 745 Bannatyne Ave, Winnipeg
| | - Rahat Zaheer
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada
| | - Athanasios Zovoilis
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive, Lethbridge, AB T1K 3M4, Canada
- University of Manitoba, Department of Biochemistry and Medical Genetics, 745 Bannatyne Ave, Winnipeg
| | - Tim A McAllister
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada
| |
Collapse
|
4
|
Mullally CA, Fahriani M, Mowlaboccus S, Coombs GW. Non- faecium non- faecalis enterococci: a review of clinical manifestations, virulence factors, and antimicrobial resistance. Clin Microbiol Rev 2024; 37:e0012123. [PMID: 38466110 PMCID: PMC11237509 DOI: 10.1128/cmr.00121-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024] Open
Abstract
SUMMARYEnterococci are a diverse group of Gram-positive bacteria that are typically found as commensals in humans, animals, and the environment. Occasionally, they may cause clinically relevant diseases such as endocarditis, septicemia, urinary tract infections, and wound infections. The majority of clinical infections in humans are caused by two species: Enterococcus faecium and Enterococcus faecalis. However, there is an increasing number of clinical infections caused by non-faecium non-faecalis (NFF) enterococci. Although NFF enterococcal species are often overlooked, studies have shown that they may harbor antimicrobial resistance (AMR) genes and virulence factors that are found in E. faecium and E. faecalis. In this review, we present an overview of the NFF enterococci with a particular focus on human clinical manifestations, epidemiology, virulence genes, and AMR genes.
Collapse
Affiliation(s)
- Christopher A Mullally
- Antimicrobial Resistance and Infectious Diseases (AMRID) Research Laboratory, Murdoch University, Murdoch, Western Australia, Australia
- The Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Marhami Fahriani
- Antimicrobial Resistance and Infectious Diseases (AMRID) Research Laboratory, Murdoch University, Murdoch, Western Australia, Australia
| | - Shakeel Mowlaboccus
- Antimicrobial Resistance and Infectious Diseases (AMRID) Research Laboratory, Murdoch University, Murdoch, Western Australia, Australia
- The Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, Australia
- PathWest Laboratory Medicine-WA, Department of Microbiology, Fiona Stanley Hospital, Murdoch, Western Australia, Australia
| | - Geoffrey W Coombs
- Antimicrobial Resistance and Infectious Diseases (AMRID) Research Laboratory, Murdoch University, Murdoch, Western Australia, Australia
- The Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, Australia
- PathWest Laboratory Medicine-WA, Department of Microbiology, Fiona Stanley Hospital, Murdoch, Western Australia, Australia
| |
Collapse
|
5
|
Baciu AP, Baciu C, Baciu G, Gurau G. The burden of antibiotic resistance of the main microorganisms causing infections in humans - review of the literature. J Med Life 2024; 17:246-260. [PMID: 39044924 PMCID: PMC11262613 DOI: 10.25122/jml-2023-0404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 02/21/2024] [Indexed: 07/25/2024] Open
Abstract
One of the biggest threats to human well-being and public health is antibiotic resistance. If allowed to spread unchecked, it might become a major health risk and trigger another pandemic. This proves the need to develop antibiotic resistance-related global health solutions that take into consideration microdata from various global locations. Establishing positive social norms, guiding individual and group behavioral habits that support global human health, and ultimately raising public awareness of the need for such action could all have a positive impact. Antibiotic resistance is not just a growing clinical concern but also complicates therapy, making adherence to current guidelines for managing antibiotic resistance extremely difficult. Numerous genetic components have been connected to the development of resistance; some of these components have intricate paths of transfer between microorganisms. Beyond this, the subject of antibiotic resistance is becoming increasingly significant in medical microbiology as new mechanisms underpinning its development are identified. In addition to genetic factors, behaviors such as misdiagnosis, exposure to broad-spectrum antibiotics, and delayed diagnosis contribute to the development of resistance. However, advancements in bioinformatics and DNA sequencing technology have completely transformed the diagnostic sector, enabling real-time identification of the components and causes of antibiotic resistance. This information is crucial for developing effective control and prevention strategies to counter the threat.
Collapse
Key Words
- AOM, acute otitis media
- CDC, Centers for Disease Control and Prevention
- CRE, carbapenem-resistant Enterobacterales
- ESBL, extended-spectrum beta-lactamase
- Hib, Haemophilus influenzae type b
- LVRE, linezolid/vancomycin -resistant enterococci
- MBC, minimum bactericidal concentration
- MBL, metallo-beta-lactamases
- MDR, multidrug-resistant
- MIC, minimum inhibitor concentration
- MRSA, methicillin-resistant Staphylococcus aureus
- PBP, penicillin-binding protein
- SCCmec staphylococcal chromosomal cassette mec
- VRE, vancomycin-resistant enterococci
- XDR, extensively drug-resistant
- antibiotic resistance
- antibiotics
- beta-lactamase
- cIAI, complicated intra-abdominal infection
- cUTI, complicated urinary tract infection
- carbapenems
- methicillin-resistant Staphylococcus aureus
- vancomycin
Collapse
Affiliation(s)
| | - Carmen Baciu
- MedLife Hyperclinic Nicolae Balcescu, Galati, Romania
| | - Ginel Baciu
- Sf. Ioan Emergency Clinical Hospital for Children, Galati, Romania
- Faculty of Medicine and Pharmacy, Dunarea de Jos University, Galati, Romania
| | - Gabriela Gurau
- Sf. Ioan Emergency Clinical Hospital for Children, Galati, Romania
- Faculty of Medicine and Pharmacy, Dunarea de Jos University, Galati, Romania
| |
Collapse
|
6
|
Lin C, Feng Y, Xie X, Zhang H, Wu J, Zhu Y, Yu J, Feng J, Su W, Lai S, Zhang A. Antimicrobial resistance characteristics and phylogenetic relationships of pleuromutilin-resistant Enterococcus isolates from different environmental samples along a laying hen production chain. J Environ Sci (China) 2024; 137:195-205. [PMID: 37980008 DOI: 10.1016/j.jes.2023.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 11/20/2023]
Abstract
Antimicrobial resistance in the laying hen production industry has become a serious public health problem. The antimicrobial resistance and phylogenetic relationships of the common conditional pathogen Enterococcus along the laying hen production chain have not been systematically clarified. 105 Enterococcus isolates were obtained from 115 environmental samples (air, dust, feces, flies, sewage, and soil) collected along the laying hen production chain (breeding chicken, chick, young chicken, and commercial laying hen). These Enterococcus isolates exhibited resistance to some clinically relevant antibiotics, such as tetracycline (92.4%), streptomycin (92.4%), and erythromycin (91.4%), and all strains had multidrug resistance phenotypes. Whole genome sequencing characterized 29 acquired antibiotic resistance genes (ARGs) that conferred resistance to 11 classes of antibiotics in 51 pleuromutilin-resistant Enterococcus isolates, and lsa(E), which mediates resistance to pleuromutilins, always co-occurred with lnu(B). Alignments with the Mobile Genetic Elements database identified four transposons (Tn554, Tn558, Tn6261, and Tn6674) with several ARGs (erm(A), ant(9)-la, fex(A), and optrA) that mediated resistance to many clinically important antibiotics. Moreover, we identified two new transposons that carried ARGs in the Tn554 family designated as Tn7508 and Tn7492. A complementary approach based on conventional multi-locus sequence typing and whole genome single nucleotide polymorphism analysis showed that phylogenetically related pleuromutilin-resistant Enterococcus isolates were widely distributed in various environments on different production farms. Our results indicate that environmental contamination by antimicrobial-resistant Enterococcus requires greater attention, and they highlight the risk of pleuromutilin-resistant Enterococcus and ARGs disseminating along the laying hen production chain, thereby warranting effective disinfection.
Collapse
Affiliation(s)
- Cong Lin
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Yuxuan Feng
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Xianjun Xie
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Haoyu Zhang
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Jie Wu
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Yixiao Zhu
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Jing Yu
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Jingyi Feng
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Wen Su
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Shanming Lai
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Anyun Zhang
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
7
|
Gagetti P, Faccone D, Ceriana P, Lucero C, Menocal A, Argentina GL, Corso A. Emergence of optrA-mediated linezolid resistance in clinical isolates of Enterococcus faecalis from Argentina. J Glob Antimicrob Resist 2023; 35:335-341. [PMID: 37923130 DOI: 10.1016/j.jgar.2023.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/17/2023] [Accepted: 10/24/2023] [Indexed: 11/07/2023] Open
Abstract
OBJECTIVES The aim of this study was to characterize the first 14 optrA-carrying linezolid resistant E. faecalis clinical isolates recovered in seven Argentinian hospitals between 2016 and 2021. The epidemiology of optrA-carrying isolates and the optrA genetic context were determined. METHODS The isolates were phenotypically and genotypically characterized. Susceptibility to 13 antimicrobial agents was performed; clonal relationship was assessed by pulsed field gel electrophoresis (PFGE) and multilocus sequence typing (MLST). Data provided by the whole-genome sequencing were used for identification of sequence types, antimicrobial resistance genes, optrA variants, phylogenetic tree, and mobile genetic elements responsible to the dissemination of these strains. RESULTS All the optrA-carrying E. faecalis isolates were multidrug-resistant and harboured several antimicrobial resistance genes. They carried three optrA variants and belonged to different lineages; however, three of them belonged to the hyperepidemic CC16. Mobile genetic elements were detected in all the isolates. The analysis of the optrA flanking region suggests the plasmidic localization in most of the isolates. CONCLUSIONS To the best of our knowledge, this is the first report of optrA-mediated linezolid resistance in Argentina. The emergence and dissemination of the optrA genes in clinical E. faecalis isolates are of concern and highlights the importance of initiating the antimicrobial surveillance of Enterococcus spp. under a One Health strategy.
Collapse
Affiliation(s)
- Paula Gagetti
- Antimicrobial Agents Division, National and Regional Reference Laboratory in Antimicrobial Resistance, National Institute of Infectious Diseases - ANLIS "Dr. Carlos G. Malbrán", Buenos Aires, Argentina
| | - Diego Faccone
- Antimicrobial Agents Division, National and Regional Reference Laboratory in Antimicrobial Resistance, National Institute of Infectious Diseases - ANLIS "Dr. Carlos G. Malbrán", Buenos Aires, Argentina
| | - Paola Ceriana
- Antimicrobial Agents Division, National and Regional Reference Laboratory in Antimicrobial Resistance, National Institute of Infectious Diseases - ANLIS "Dr. Carlos G. Malbrán", Buenos Aires, Argentina
| | - Celeste Lucero
- Antimicrobial Agents Division, National and Regional Reference Laboratory in Antimicrobial Resistance, National Institute of Infectious Diseases - ANLIS "Dr. Carlos G. Malbrán", Buenos Aires, Argentina
| | - Alejandra Menocal
- Antimicrobial Agents Division, National and Regional Reference Laboratory in Antimicrobial Resistance, National Institute of Infectious Diseases - ANLIS "Dr. Carlos G. Malbrán", Buenos Aires, Argentina
| | - Grupo Lre Argentina
- Antimicrobial Agents Division, National and Regional Reference Laboratory in Antimicrobial Resistance, National Institute of Infectious Diseases - ANLIS "Dr. Carlos G. Malbrán", Buenos Aires, Argentina
| | - Alejandra Corso
- Antimicrobial Agents Division, National and Regional Reference Laboratory in Antimicrobial Resistance, National Institute of Infectious Diseases - ANLIS "Dr. Carlos G. Malbrán", Buenos Aires, Argentina.
| |
Collapse
|
8
|
Ngbede EO, Sy I, Akwuobu CA, Nanven MA, Adikwu AA, Abba PO, Adah MI, Becker SL. Carriage of linezolid-resistant enterococci (LRE) among humans and animals in Nigeria: coexistence of the cfr, optrA, and poxtA genes in Enterococcus faecium of animal origin. J Glob Antimicrob Resist 2023; 34:234-239. [PMID: 37516354 DOI: 10.1016/j.jgar.2023.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 07/09/2023] [Accepted: 07/25/2023] [Indexed: 07/31/2023] Open
Abstract
OBJECTIVES In contrast to increasing reports of the emergence of linezolid-resistant enterococci (LRE) emanating from many countries in Europe, Asia, and North America, data on its status and dissemination from the African continent remain scarce, with the information available limited to countries in North Africa. This study investigated the carriage of LRE and the genetic mechanism of resistance among Enterococcus faecium and Enterococcus faecalis strains recovered from humans and animals in Makurdi, Nigeria. METHODS We conducted a cross-sectional study between June 2020 and July 2021 during which 630 non-duplicate human and animal faecal samples were collected and processed for the recovery of LRE. The genetic mechanisms for resistance were investigated using polymerase chain reaction (PCR) and Sanger sequencing. RESULTS Linezolid-resistant enterococci were recovered from 5.87% (37/630; 95% CI: 4.17-8.00) of the samples, with the prevalence in animals and humans being 6.22% [(28/450); 95% CI: 4.17-8.87] and 5.00% [(9/180); 95% CI: 2.31-9.28], respectively. All isolates remained susceptible to vancomycin. No known point mutation mediating linezolid resistance was detected in the 23S rRNA and ribosomal protein genes; however, acquisition of one or more potentially transferable genes (cfr, optrA, and poxtA) was observed in 26 of the 37 LRE isolates. Co-existence of all three transferable genes in a single isolate was found in four E. faecium strains of animal origin. CONCLUSION This study provides baseline evidence for the emergence and active circulation of LRE driven majorly by the acquisition of the optrA gene in Nigeria. To the best of our knowledge, our study is the first to report a co-carriage of all three transferable linezolid resistance determinants in E. faecium. Active LRE surveillance is urgently required to understand the extent of LRE spread across sub-Saharan Africa and to develop tailored mitigation strategies.
Collapse
Affiliation(s)
- Emmanuel O Ngbede
- Institute of Medical Microbiology and Hygiene, Saarland University, Kirrberger Straße, Gebäude 43D-66421 Homburg/Saar, Germany; Department of Veterinary Microbiology, Federal University of Agriculture, Makurdi, Nigeria; Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124 Braunschweig, Germany.
| | - Issa Sy
- Institute of Medical Microbiology and Hygiene, Saarland University, Kirrberger Straße, Gebäude 43D-66421 Homburg/Saar, Germany
| | - Chinedu A Akwuobu
- Department of Veterinary Microbiology, Federal University of Agriculture, Makurdi, Nigeria; Amadu Ali Centre for Public Health and Comparative Medicine, Federal University of Agriculture, Makurdi, Nigeria
| | - Maurice A Nanven
- National Veterinary Research Institute, Vom, Plateau State, Nigeria
| | - Alex A Adikwu
- Department of Veterinary Public Health and Preventive Medicine, Federal University of Agriculture, Makurdi, Nigeria
| | - Paul O Abba
- Department of Medical Microbiology and Parasitology, Benue State University Teaching Hospital, Makurdi, Nigeria
| | - Mohammed I Adah
- Amadu Ali Centre for Public Health and Comparative Medicine, Federal University of Agriculture, Makurdi, Nigeria; Department of Veterinary Medicine, Federal University of Agriculture, Makurdi, Nigeria
| | - Sören L Becker
- Institute of Medical Microbiology and Hygiene, Saarland University, Kirrberger Straße, Gebäude 43D-66421 Homburg/Saar, Germany; Swiss Tropical and Public Health Institute, CH-4002 Allschwil, Switzerland; University of Basel, CH-4003 Basel, Switzerland.
| |
Collapse
|
9
|
Tian T, Yang X, Liu S, Han Z, Qiao W, Li J, Yang M, Zhang Y. Hyper-thermophilic anaerobic pretreatment enhances the removal of transferable oxazolidinone and phenicol cross-resistance gene optrA in enterococci. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 167:92-102. [PMID: 37245400 DOI: 10.1016/j.wasman.2023.05.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 05/08/2023] [Accepted: 05/18/2023] [Indexed: 05/30/2023]
Abstract
The extensive use of florfenicol in poultry industry results in the emergence of optrA gene, which also confers resistance to clinically important antibiotic linezolid. This study investigated the occurrence, genetic environments, and removal of optrA in enterococci in mesophilic (37 °C) and thermophilic (55 °C) anaerobic digestion systems, and a hyper-thermophilic (70 °C) anaerobic pretreatment system for chicken waste. A total of 331 enterococci were isolated and analyzed for antibiotic resistance against linezolid and florfenicol. The optrA gene was frequently detected in enterococci from chicken waste (42.7%) and effluents from mesophilic (72%) and thermophilic (56.8%) reactors, but rarely detected in the hyper-thermophilic (5.8%) effluent. Whole-genome sequencing revealed that optrA-carrying Enterococcus faecalis sequence type (ST) 368 and ST631 were the dominant clones in chicken waste, and they remained dominant in mesophilic and thermophilic effluents, respectively. The plasmid-borne IS1216E-fexA-optrA-erm(A)-IS1216E was the core genetic element for optrA in ST368, whereas chromosomal Tn554-fexA-optrA was the key one in ST631. IS1216E might play a key role in horizontal transfer of optrA due to its presence in different clones. Hyper-thermophilic pretreatment removed enterococci with plasmid-borne IS1216E-fexA-optrA-erm(A)-IS1216E. A hyper-thermophilic pretreatment is recommended for chicken waste to mitigate dissemination of optrA from animal waste to the environment.
Collapse
Affiliation(s)
- Tiantian Tian
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoxiao Yang
- Department of Municipal and Environmental Engineering, Beijing Jiaotong University, Beijing 100044, China
| | - Shihai Liu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ziming Han
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Qiao
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - Jiuyi Li
- Department of Municipal and Environmental Engineering, Beijing Jiaotong University, Beijing 100044, China
| | - Min Yang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Zhang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
10
|
Nüesch-Inderbinen M, Heyvaert L, Treier A, Zurfluh K, Cernela N, Biggel M, Stephan R. High occurrence of Enterococcus faecalis, Enterococcus faecium, and Vagococcus lutrae harbouring oxazolidinone resistance genes in raw meat-based diets for companion animals - a public health issue, Switzerland, September 2018 to May 2020. Euro Surveill 2023; 28:2200496. [PMID: 36757316 PMCID: PMC9912375 DOI: 10.2807/1560-7917.es.2023.28.6.2200496] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
Abstract
IntroductionEnterococci harbouring genes encoding resistance to florfenicol and the oxazolidinone antimicrobial linezolid have emerged among food-producing animals and meat thereof, but few studies have analysed their occurrence in raw meat-based diets (RMBDs) for pets.AimWe aimed to examine how far RMBDs may represent a source of bacteria with oxazolidinone resistance genes.MethodsFifty-nine samples of different types of RMBDs from 10 suppliers (three based in Germany, seven in Switzerland) were screened for florfenicol-resistant Gram-positive bacteria using a selective culture medium. Isolates were phenotypically and genotypically characterised.ResultsA total of 27 Enterococcus faecalis, Enterococcus faecium, and Vagococcus lutrae isolates were obtained from 24 of the 59 samples. The optrA, poxtA, and cfr genes were identified in 24/27, 6/27 and 5/27 isolates, respectively. Chloramphenicol and linezolid minimum inhibitory concentrations (MICs) ranged from 24.0 mg/L-256.0 mg/L, and 1.5 mg/L-8.0 mg/L, respectively. According to the Clinical and Laboratory Standards Institute (CLSI) breakpoints, 26 of 27 isolates were resistant to chloramphenicol (MICs ≥ 32 mg/L), and two were resistant to linezolid (MICs ≥ 8 mg/L). Multilocus sequence typing analysis of the 17 E. faecalis isolates identified 10 different sequence types (ST)s, with ST593 (n = 4 isolates) and ST207 (n = 2 isolates) occurring more than once, and two novel STs (n = 2 isolates). E. faecium isolates belonged to four different STs (168, 264, 822, and 1846).ConclusionThe high occurrence in our sample of Gram-positive bacteria harbouring genes encoding resistance to the critical antimicrobial linezolid is of concern since such bacteria may spread from companion animals to humans upon close contact between pets and their owners.
Collapse
Affiliation(s)
| | - Lore Heyvaert
- Department Veterinary and Biosciences, Faculty Veterinary Medicine, University of Ghent, Ghent, Belgium
| | - Andrea Treier
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Katrin Zurfluh
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Nicole Cernela
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Michael Biggel
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Roger Stephan
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| |
Collapse
|
11
|
Xuan H, Xia L, Schwarz S, Jia H, Yao X, Wang S, Li R, Wei J, Li Z, Shao D, Liu K, Qiu Y, Ma Z, Li B. Various mobile genetic elements carrying optrA in Enterococcus faecium and Enterococcus faecalis isolates from swine within the same farm. J Antimicrob Chemother 2023; 78:504-511. [PMID: 36508313 DOI: 10.1093/jac/dkac421] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 11/20/2022] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVES In this study, the distribution of the oxazolidinone/phenicol resistance gene optrA and the mobile genetic elements involved in its dissemination were analysed among enterococcal isolates from a farrow-to-finish swine farm. METHODS Enterococcus faecium and Enterococcus faecalis isolates were obtained from all pig production stages in the farm. The optrA-carrying E. faecium and E. faecalis isolates were subjected to PFGE and antimicrobial susceptibility testing. Complete sequences of the genetically unrelated optrA-carrying E. faecium and E. faecalis isolates were determined using Illumina HiSeq and MinION platforms. RESULTS The optrA gene was present in 12.2% (23/188) of the E. faecium and E. faecalis isolates, most of which originated from nursery and finishing stages. The 23 optrA-positive Enterococcus isolates represented 15 PFGE types. WGS of representative isolates of the 15 PFGE types showed that optrA was carried by diverse genetic elements either located in the chromosomal DNA or on plasmids. A novel optrA-bearing genetic element was identified on two distinct multi-resistance plasmids from E. faecium. Two new hybrid plasmids carrying several resistance genes were found in two E. faecalis isolates. pC25-1-like plasmids and chromosomally integrated Tn6674 and Tn6823-like transposons were prevalent in the remaining Enterococcus isolates. CONCLUSIONS The gene optrA was found in genetically unrelated E. faecium and E. faecalis isolates from the same farm. Analysis of the genetic contexts of optrA suggested that horizontal transfer including different plasmids and transposons played a key role in the dissemination of optrA in this farm.
Collapse
Affiliation(s)
- Huiyong Xuan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China.,College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| | - Lining Xia
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| | - Stefan Schwarz
- Department of Veterinary Medicine, Institute of Microbiology and Epizootics, Centre for Infection Medicine, Freie Universität Berlin, Berlin, Germany.,Department of Veterinary Medicine, Veterinary Centre for Resistance Research (TZR), Freie Universität Berlin, Berlin, Germany
| | - Haiyan Jia
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Xiaohui Yao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China.,College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| | - Shufeng Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China.,College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| | - Ruichao Li
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Jianchao Wei
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Zongjie Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Donghua Shao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Ke Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Yafeng Qiu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Zhiyong Ma
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Beibei Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| |
Collapse
|
12
|
Aung MS, Urushibara N, Kawaguchiya M, Ohashi N, Hirose M, Kudo K, Tsukamoto N, Ito M, Kobayashi N. Antimicrobial Resistance, Virulence Factors, and Genotypes of Enterococcus faecalis and Enterococcus faecium Clinical Isolates in Northern Japan: Identification of optrA in ST480 E. faecalis. Antibiotics (Basel) 2023; 12:antibiotics12010108. [PMID: 36671309 PMCID: PMC9855154 DOI: 10.3390/antibiotics12010108] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/10/2023] Open
Abstract
Enterococcus faecalis and E. faecium are the major pathogens causing community- and healthcare-associated infections, with an ability to acquire resistance to multiple antimicrobials. The present study was conducted to determine the prevalence of virulence factors, drug resistance and its genetic determinants, and clonal lineages of E. faecalis and E. faecium clinical isolates in northern Japan. A total of 480 (426 E. faecalis and 54 E. faecium) isolates collected over a four-month period were analyzed. Three virulence factors promoting bacterial colonization (asa1, efaA, and ace) were more prevalent among E. faecalis (46-59%) than E. faecium, while a similar prevalence of enterococcal surface protein gene (esp) was found in these species. Between E. faecalis and E. faecium, an evident difference was noted for resistance to erythromycin, gentamicin, and levofloxacin and its responsible resistance determinants. Oxazolidinone resistance gene optrA and phenicol exporter gene fexA were identified in an isolate of E. faecalis belonging to ST480 and revealed to be located on a cluster similar to those of isolates reported in other Asian countries. The E. faecalis isolates analyzed were differentiated into 12 STs, among which ST179 and ST16 of clonal complex (CC) 16 were the major lineage. Nearly all the E. faecium isolates were assigned into CC17, which consisted of 10 different sequence types (STs), including a dominant ST17 containing multidrug resistant isolates and ST78 with isolates harboring the hyaluronidase gene (hyl). The present study revealed the genetic profiles of E. faecalis and E. faecium clinical isolates, with the first identification of optrA in ST480 E. faecalis in Japan.
Collapse
Affiliation(s)
- Meiji Soe Aung
- Department of Hygiene, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
- Correspondence: ; Tel.: +81-11-611-2111
| | - Noriko Urushibara
- Department of Hygiene, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
| | - Mitsuyo Kawaguchiya
- Department of Hygiene, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
| | - Nobuhide Ohashi
- Department of Hygiene, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
| | - Mina Hirose
- Division of Pediatric Dentistry, Department of Oral Growth and Development, School of Dentistry, Health Sciences University of Hokkaido, Ishikari-Tobetsu 061-0293, Japan
| | - Kenji Kudo
- Sapporo Mirai Laboratory, Co., Ltd., Sapporo 060-0003, Japan
| | | | - Masahiko Ito
- Sapporo Mirai Laboratory, Co., Ltd., Sapporo 060-0003, Japan
| | - Nobumichi Kobayashi
- Department of Hygiene, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
| |
Collapse
|
13
|
Shen W, Huang Y, Cai J. An Optimized Screening Approach for the Oxazolidinone Resistance Gene optrA Yielded a Higher Fecal Carriage Rate among Healthy Individuals in Hangzhou, China. Microbiol Spectr 2022; 10:e0297422. [PMID: 36377960 PMCID: PMC9769644 DOI: 10.1128/spectrum.02974-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 11/05/2022] [Indexed: 11/16/2022] Open
Abstract
The linezolid resistance mediated by optrA has exhibited an increasing trend among Gram-positive bacteria, which greatly limits the treatment options for severe bacterial infections. However, the prevalence of optrA was usually underestimated based on the existing screening methods. In this study, we used a traditional method and an improved method that included a high-salinity condition treatment after enrichment to screen for optrA-carrying bacteria from stool samples from 1,018 healthy donors in Hangzhou, China. The fecal carriage rate of optrA-carrying bacteria was 19.25% when screened by the improved method (196/1,018), which was much higher than that of the traditional method at 5.89% (60/1,018). Enterococci were the majority of the optrA-positive isolates, while five nonenterococcal isolates were also obtained, including two Streptococcus gallolyticus, one Vagococcus lutrae, one Lactococcus garvieae, and one Lactococcus formosensis isolate. Whole-genome sequencing analysis identified four novel OptrA variants, IDKKGPM, IDKKGP, KLDK, and EYDDI, in these isolates, whose optrA-flanking regions with a fexA gene downstream were bounded by different insertion sequences. In conclusion, our optimized method displayed high sensitivity in the detection of optrA-positive bacteria in fecal samples and revealed a high carriage rate in a healthy population. Although enterococci are dominant, multiple optrA-carrying Gram-positive bacteria were also found. IMPORTANCE This study represented an optimized screening approach for the optrA gene, which is an important mechanism of antimicrobial resistance to linezolid as a last resort for the treatment of infections caused by multiresistant Gram-positive bacteria. We revealed a high fecal carriage rate of the optrA gene among adults by this method and reported the first identification of optrA in Lactococcus formosensis as well as the identification of this gene in Vagococcus lutrae and of the poxtA gene in Ligilactobacillus salivarius of human origin, suggesting the wide spread of the optrA gene in the Gram-positive bacterial community.
Collapse
Affiliation(s)
- Weiyi Shen
- Clinical Microbiology Laboratory, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Yonglu Huang
- Clinical Microbiology Laboratory, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Jiachang Cai
- Clinical Microbiology Laboratory, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
14
|
Salam LB, Obayori OS. Functional characterization of the ABC transporters and transposable elements of an uncultured Paracoccus sp. recovered from a hydrocarbon-polluted soil metagenome. Folia Microbiol (Praha) 2022; 68:299-314. [PMID: 36329216 DOI: 10.1007/s12223-022-01012-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022]
Abstract
Environmental microorganisms usually exhibit a high level of genomic plasticity and metabolic versatility that allow them to be well-adapted to diverse environmental challenges. This study used shotgun metagenomics to decipher the functional and metabolic attributes of an uncultured Paracoccus recovered from a polluted soil metagenome and determine whether the detected attributes are influenced by the nature of the polluted soil. Functional and metabolic attributes of the uncultured Paracoccus were elucidated via functional annotation of the open reading frames (ORFs) of its contig. Functional tools deployed for the analysis include KEGG, KEGG KofamKOALA, Clusters of Orthologous Groups of proteins (COG), Comprehensive Antibiotic Resistance Database (CARD), and the Antibiotic Resistance Gene-ANNOTation (ARG-ANNOT V6) for antibiotic resistance genes, TnCentral for transposable element, Transporter Classification Database (TCDB) for transporter genes, and FunRich for gene enrichment analysis. Analyses revealed the preponderance of ABC transporter genes responsible for the transport of oligosaccharides (malK, msmX, msmK, lacK, smoK, aglK, togA, thuK, treV, msiK), monosaccharides (glcV, malK, rbsC, rbsA, araG, ytfR, mglA), amino acids (thiQ, ynjD, thiZ, glnQ, gluA, gltL, peb1C, artP, aotP, bgtA, artQ, artR), and several others. Also detected are transporter genes for inorganic/organic nutrients like phosphate/phosphonate, nitrate/nitrite/cyanate, sulfate/sulfonate, bicarbonate, and heavy metals such as nickel/cobalt, molybdate/tungstate, and iron, among others. Antibiotic resistance genes that mediate efflux, inactivation, and target protection were detected, while transposable elements carrying resistance phenotypes for antibiotics and heavy metals were also annotated. The findings from this study have established the resilience, adaptability, and survivability of the uncultured Paracoccus in the hydrocarbon-polluted soil.
Collapse
Affiliation(s)
- Lateef Babatunde Salam
- Department of Biological Sciences, Microbiology Unit, Elizade University, Ilara-Mokin, Ondo State, Nigeria.
| | | |
Collapse
|
15
|
Brenciani A, Morroni G, Schwarz S, Giovanetti E. Oxazolidinones: mechanisms of resistance and mobile genetic elements involved. J Antimicrob Chemother 2022; 77:2596-2621. [PMID: 35989417 DOI: 10.1093/jac/dkac263] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The oxazolidinones (linezolid and tedizolid) are last-resort antimicrobial agents used for the treatment of severe infections in humans caused by MDR Gram-positive bacteria. They bind to the peptidyl transferase centre of the bacterial ribosome inhibiting protein synthesis. Even if the majority of Gram-positive bacteria remain susceptible to oxazolidinones, resistant isolates have been reported worldwide. Apart from mutations, affecting mostly the 23S rDNA genes and selected ribosomal proteins, acquisition of resistance genes (cfr and cfr-like, optrA and poxtA), often associated with mobile genetic elements [such as non-conjugative and conjugative plasmids, transposons, integrative and conjugative elements (ICEs), prophages and translocatable units], plays a critical role in oxazolidinone resistance. In this review, we briefly summarize the current knowledge on oxazolidinone resistance mechanisms and provide an overview on the diversity of the mobile genetic elements carrying oxazolidinone resistance genes in Gram-positive and Gram-negative bacteria.
Collapse
Affiliation(s)
- Andrea Brenciani
- Unit of Microbiology, Department of Biomedical Sciences and Public Health, Polytechnic University of Marche Medical School, Ancona, Italy
| | - Gianluca Morroni
- Unit of Microbiology, Department of Biomedical Sciences and Public Health, Polytechnic University of Marche Medical School, Ancona, Italy
| | - Stefan Schwarz
- Institute of Microbiology and Epizootics, Centre for Infection Medicine, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany.,Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing, People's Republic of China.,Veterinary Centre for Resistance Research (TZR), Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Eleonora Giovanetti
- Unit of Microbiology, Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| |
Collapse
|
16
|
Li P, Gao M, Feng C, Yan T, Sheng Z, Shi W, Liu S, Zhang L, Li A, Lu J, Lin X, Li K, Xu T, Bao Q, Sun C. Molecular characterization of florfenicol and oxazolidinone resistance in Enterococcus isolates from animals in China. Front Microbiol 2022; 13:811692. [PMID: 35958123 PMCID: PMC9360786 DOI: 10.3389/fmicb.2022.811692] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 07/07/2022] [Indexed: 11/24/2022] Open
Abstract
Florfenicol is widely used for the treatment of bacterial infections in domestic animals. The aim of this study was to analyze the molecular mechanisms of florfenicol and oxazolidinone resistance in Enterococcus isolates from anal feces of domestic animals. The minimum inhibitory concentration (MIC) levels were determined by the agar dilution method. Polymerase chain reaction (PCR) was performed to analyze the distribution of the resistance genes. Whole-genome sequencing and comparative plasmid analysis was conducted to analyze the resistance gene environment. A total of 351 non-duplicated enteric strains were obtained. Among these isolates, 22 Enterococcus isolates, including 19 Enterococcus. faecium and 3 Enterococcus. faecalis, were further studied. 31 florfenicol resistance genes (13 fexA, 3 fexB, 12 optrA, and 3 poxtA genes) were identified in 15 of the 19 E. faecium isolates, and no florfenicol or oxazolidinone resistance genes were identified in 3 E. faecalis isolates. Whole-genome sequencing of E. faecium P47, which had all four florfenicol and oxazolidinone resistance genes and high MIC levels for both florfenicol (256 mg/L) and linezolid (8 mg/L), revealed that it contained a chromosome and 3 plasmids (pP47-27, pP47-61, and pP47-180). The four florfenicol and oxazolidinone resistance genes were all related to the insertion sequences IS1216 and located on two smaller plasmids. The genes fexB and poxtA encoded in pP47-27, while fexA and optrA encoded in the conjugative plasmid pP47-61. Comparative analysis of homologous plasmids revealed that the sequences with high identities were plasmid sequences from various Enterococcus species except for the Tn6349 sequence from a Staphylococcus aureus chromosome (MH746818.1). The current study revealed that florfenicol and oxazolidinone resistance genes (fexA, fexB, poxtA, and optrA) were widely distributed in Enterococcus isolates from animal in China. The mobile genetic elements, including the insertion sequences and conjugative plasmid, played an important role in the horizontal transfer of florfenicol and oxazolidinone resistance.
Collapse
Affiliation(s)
- Pingping Li
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
- Nursing Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Institute of Biomedical Informatics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
- Department of Clinical Laboratory, Zhoukou Maternal and Child Health Hospital, Zhoukou, China
| | - Mengdi Gao
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
- Institute of Biomedical Informatics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Chunlin Feng
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
- Institute of Biomedical Informatics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Tielun Yan
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
- Institute of Biomedical Informatics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Zhiqiong Sheng
- School of Nursing, Wenzhou Medical University, Wenzhou, China
| | - Weina Shi
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
- Institute of Biomedical Informatics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Shuang Liu
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
- Institute of Biomedical Informatics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Lei Zhang
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
- Institute of Biomedical Informatics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Anqi Li
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
- Institute of Biomedical Informatics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Junwan Lu
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
- Institute of Biomedical Informatics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xi Lin
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
- Institute of Biomedical Informatics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Kewei Li
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
- Institute of Biomedical Informatics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Teng Xu
- Institute of Translational Medicine, Baotou Central Hospital, Baotou, China
- Teng Xu,
| | - Qiyu Bao
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
- Institute of Biomedical Informatics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
- Qiyu Bao,
| | - Caixia Sun
- Nursing Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Institute of Biomedical Informatics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
- *Correspondence: Caixia Sun,
| |
Collapse
|
17
|
Rodríguez-Lucas C, Fernández J, Vázquez X, de Toro M, Ladero V, Fuster C, Rodicio R, Rodicio MR. Detection of the optrA Gene Among Polyclonal Linezolid-Susceptible Isolates of Enterococcus faecalis Recovered from Community Patients. Microb Drug Resist 2022; 28:773-779. [PMID: 35727074 DOI: 10.1089/mdr.2021.0402] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Dispersion of transferable oxazolidinone resistance genes among enterococci poses a serious problem to human health. Prompt detection of bacteria carrying these genes is crucial to avoid their spread to multidrug-resistant bacteria. The aim of the study was to describe the presence of optrA-positive isolates among enterococci in a Spanish hospital, and to determine their genetic context and location through whole genome sequencing. All enterococci recovered in a Spanish hospital (Hospital El Bierzo; HEB) from February to December 2018 (n = 443), with minimal inhibitory concentrations (MICs) to linezolid (LZD) ≥4 mg/L, were tested by polymerase chain reaction for the presence of cfr, optrA, and poxtA transferable genes. Only four Enterococcus faecalis isolates (0.9%) had LZD MICs ≥4 mg/L and none of them was positive for cfr or poxtA genes. However, the optrA gene was detected in three isolates collected from urine samples of community patients, whose genomes were sequenced and subjected to bioinformatics analysis. These isolates belonged to different clones: ST7, ST480, and ST585. In these three isolates, the optrA gene was located on plasmids, associated with IS1216 in different arrays. In one isolate, the optrA plasmid coexists with a second plasmid, which carried multiple resistance genes for different classes of antibiotics. Detection of optrA-positive E. faecalis isolates in the community is a matter of concern. The spread of these bacteria into hospital settings, particularly in those, such as the HEB, where vancomycin-resistant enterococci are endemic, should be avoided, to preserve the efficacy of the last-resort oxazolidinones.
Collapse
Affiliation(s)
- Carlos Rodríguez-Lucas
- Servicio de Microbiología, Hospital Universitario de Cabueñes, Gijón, Spain.,Grupo de Microbiología Traslacional. Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Javier Fernández
- Grupo de Microbiología Traslacional. Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain.,Servicio de Microbiología, Hospital Universitario Central de Asturias (HUCA), Oviedo, Spain.,Research & Innovation, Artificial Intelligence and Statistical Department, Pragmatech AI Solutions, Oviedo, Spain
| | - Xenia Vázquez
- Grupo de Microbiología Traslacional. Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain.,Área de Microbiología, Departamento de Biología Funcional, Universidad de Oviedo, Oviedo, Spain
| | - María de Toro
- Plataforma de Genómica y Bioinformática, Centro de Investigación Biomédica de La Rioja (CIBIR), Logroño, Spain
| | - Víctor Ladero
- Insituto de Productos Lácteos de Asturias (IPLA-CSIC), Villaviciosa, Spain.,Grupo de Microbiología Molecular, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Carlos Fuster
- Unidad de Microbiología, Hospital El Bierzo (HEB), Ponferrada, Spain
| | - Rosaura Rodicio
- Grupo de Microbiología Traslacional. Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain.,Departamento de Bioquímica y Biología Molecular, Universidad de Oviedo, Oviedo, Spain
| | - María Rosario Rodicio
- Grupo de Microbiología Traslacional. Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain.,Área de Microbiología, Departamento de Biología Funcional, Universidad de Oviedo, Oviedo, Spain
| |
Collapse
|
18
|
Gião J, Leão C, Albuquerque T, Clemente L, Amaro A. Antimicrobial Susceptibility of Enterococcus Isolates from Cattle and Pigs in Portugal: Linezolid Resistance Genes optrA and poxtA. Antibiotics (Basel) 2022; 11:615. [PMID: 35625259 PMCID: PMC9137492 DOI: 10.3390/antibiotics11050615] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 04/22/2022] [Accepted: 04/26/2022] [Indexed: 11/16/2022] Open
Abstract
Enterococci are part of the commensal gut microbiota of mammals, with Enterococcus faecalis and Enterococcus faecium being the most clinically relevant species. This study assesses the prevalence and diversity of enterococcal species in cattle (n = 201) and pig (n = 249) cecal samples collected in 2017. Antimicrobial susceptibility profiles of E. faecium (n = 48) and E. faecalis (n = 84) were assessed by agar and microdilution methods. Resistance genes were screened through PCR and nine strains were analyzed by Whole Genome Sequencing. A wide range of enterococci species was found colonizing the intestines of pigs and cattle. Overall, the prevalence of resistance to critically important antibiotics was low (except for erythromycin), and no glycopeptide-resistant isolates were identified. Two daptomycin-resistant E. faecalis ST58 and ST93 were found. Linezolid-resistant strains of E. faecalis (n = 3) and E. faecium (n = 1) were detected. Moreover, oxazolidinone resistance determinants optrA (n = 8) and poxtA (n = 2) were found in E. faecalis (ST16, ST58, ST207, ST474, ST1178) and E. faecium (ST22, ST2138). Multiple variants of optrA were found in different genetic contexts, either in the chromosome or plasmids. We highlight the importance of animals as reservoirs of resistance genes to critically important antibiotics.
Collapse
Affiliation(s)
- Joana Gião
- Laboratory of Bacteriology and Mycology, INIAV—National Institute of Agrarian and Veterinary Research, 2780-157 Oeiras, Portugal; (J.G.); (C.L.); (T.A.); (L.C.)
- Department of Veterinary Medicine, University of Évora, 7002-554 Évora, Portugal
| | - Célia Leão
- Laboratory of Bacteriology and Mycology, INIAV—National Institute of Agrarian and Veterinary Research, 2780-157 Oeiras, Portugal; (J.G.); (C.L.); (T.A.); (L.C.)
- MED—Mediterranean Institute for Agriculture, Environment and Development, 7006-554 Évora, Portugal
| | - Teresa Albuquerque
- Laboratory of Bacteriology and Mycology, INIAV—National Institute of Agrarian and Veterinary Research, 2780-157 Oeiras, Portugal; (J.G.); (C.L.); (T.A.); (L.C.)
| | - Lurdes Clemente
- Laboratory of Bacteriology and Mycology, INIAV—National Institute of Agrarian and Veterinary Research, 2780-157 Oeiras, Portugal; (J.G.); (C.L.); (T.A.); (L.C.)
- CIISA—Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Science, University of Lisbon, 1300-477 Lisboa, Portugal
| | - Ana Amaro
- Laboratory of Bacteriology and Mycology, INIAV—National Institute of Agrarian and Veterinary Research, 2780-157 Oeiras, Portugal; (J.G.); (C.L.); (T.A.); (L.C.)
| |
Collapse
|
19
|
Crowe-McAuliffe C, Murina V, Turnbull KJ, Huch S, Kasari M, Takada H, Nersisyan L, Sundsfjord A, Hegstad K, Atkinson GC, Pelechano V, Wilson DN, Hauryliuk V. Structural basis for PoxtA-mediated resistance to phenicol and oxazolidinone antibiotics. Nat Commun 2022; 13:1860. [PMID: 35387982 PMCID: PMC8987054 DOI: 10.1038/s41467-022-29274-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 03/02/2022] [Indexed: 12/27/2022] Open
Abstract
PoxtA and OptrA are ATP binding cassette (ABC) proteins of the F subtype (ABCF). They confer resistance to oxazolidinone and phenicol antibiotics, such as linezolid and chloramphenicol, which stall translating ribosomes when certain amino acids are present at a defined position in the nascent polypeptide chain. These proteins are often encoded on mobile genetic elements, facilitating their rapid spread amongst Gram-positive bacteria, and are thought to confer resistance by binding to the ribosome and dislodging the bound antibiotic. However, the mechanistic basis of this resistance remains unclear. Here we refine the PoxtA spectrum of action, demonstrate alleviation of linezolid-induced context-dependent translational stalling, and present cryo-electron microscopy structures of PoxtA in complex with the Enterococcus faecalis 70S ribosome. PoxtA perturbs the CCA-end of the P-site tRNA, causing it to shift by ∼4 Å out of the ribosome, corresponding to a register shift of approximately one amino acid for an attached nascent polypeptide chain. We postulate that the perturbation of the P-site tRNA by PoxtA thereby alters the conformation of the attached nascent chain to disrupt the drug binding site.
Collapse
Affiliation(s)
- Caillan Crowe-McAuliffe
- Institute for Biochemistry and Molecular Biology, University of Hamburg, Martin-Luther-King-Platz 6, 20146, Hamburg, Germany
| | - Victoriia Murina
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, 90187, Umeå, Sweden
- Umeå Centre for Microbial Research (UCMR), Umeå University, 901 87, Umeå, Sweden
- Department of Molecular Biology, Umeå University, 90187, Umeå, Sweden
| | - Kathryn Jane Turnbull
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, 90187, Umeå, Sweden
- Department of Clinical Microbiology, Rigshospitalet, 2200, Copenhagen, Denmark
| | - Susanne Huch
- SciLifeLab, Department of Microbiology, Tumor and Cell Biology. Karolinska Institutet, 171 65, Solna, Sweden
| | - Marje Kasari
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, 90187, Umeå, Sweden
- Umeå Centre for Microbial Research (UCMR), Umeå University, 901 87, Umeå, Sweden
- University of Tartu, Institute of Technology, 50411, Tartu, Estonia
| | - Hiraku Takada
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, 90187, Umeå, Sweden
- Umeå Centre for Microbial Research (UCMR), Umeå University, 901 87, Umeå, Sweden
- Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo, Motoyama, Kita-ku, Kyoto, 603-8555, Japan
| | - Lilit Nersisyan
- SciLifeLab, Department of Microbiology, Tumor and Cell Biology. Karolinska Institutet, 171 65, Solna, Sweden
| | - Arnfinn Sundsfjord
- Department of Microbiology and Infection Control, Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, University Hospital of North Norway, Tromsø, Norway
- Research Group for Host-Microbe Interactions, Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, NO-9037, Tromsø, Norway
| | - Kristin Hegstad
- Department of Microbiology and Infection Control, Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, University Hospital of North Norway, Tromsø, Norway
- Research Group for Host-Microbe Interactions, Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, NO-9037, Tromsø, Norway
| | - Gemma C Atkinson
- Umeå Centre for Microbial Research (UCMR), Umeå University, 901 87, Umeå, Sweden
- Department of Experimental Medical Science, Lund University, 221 00, Lund, Sweden
| | - Vicent Pelechano
- SciLifeLab, Department of Microbiology, Tumor and Cell Biology. Karolinska Institutet, 171 65, Solna, Sweden
| | - Daniel N Wilson
- Institute for Biochemistry and Molecular Biology, University of Hamburg, Martin-Luther-King-Platz 6, 20146, Hamburg, Germany.
| | - Vasili Hauryliuk
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, 90187, Umeå, Sweden.
- Umeå Centre for Microbial Research (UCMR), Umeå University, 901 87, Umeå, Sweden.
- Department of Molecular Biology, Umeå University, 90187, Umeå, Sweden.
- University of Tartu, Institute of Technology, 50411, Tartu, Estonia.
- Department of Experimental Medical Science, Lund University, 221 00, Lund, Sweden.
| |
Collapse
|
20
|
Linezolid-Resistant Enterococcus spp. Isolates from Foods of Animal Origin-The Genetic Basis of Acquired Resistance. Foods 2022; 11:foods11070975. [PMID: 35407062 PMCID: PMC8998034 DOI: 10.3390/foods11070975] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/23/2022] [Accepted: 03/23/2022] [Indexed: 02/01/2023] Open
Abstract
Enterococci are important opportunistic pathogens with the capacity to acquire and spread antibiotic resistance. At present, linezolid-resistant enterococci (LRE) pose a great challenge. Linezolid is considered as a last resort antibiotic in the treatment of enterococcal infections, so it is important to monitor the occurrence of LRE in various environments. The aim of this study was to define the genetic mechanisms of linezolid resistance in enterococci (E. faecalis, E. faecium, E. hirae, E. casseliflavus) isolated from foods of animal origin (n = 104). Linezolid resistance (LR) was shown by 26.9% of isolates. All of them displayed linezolid MICs of 8–32 µg/mL, and 96.4% of them were multidrug multidrug-resistant. The most common acquired linezolid resistance gene in LR isolates was poxtA (64%), followed by optrA (28%) and cfr (12%). According to the authors’ knowledge, this research is the first to indicate the presence of the cfr gene among isolates from food. In 28.6% of the isolates, the point mutation G2576T in the V domain of the 23S rRNA was responsible for linezolid resistance. All isolates harbored the wild-type rplC, rplD and rplV genes. The obtained results indicate that linezolid resistance among enterococci in animal-derived food may result from various genetic mechanisms. The most worrying is that this resistance is encoded on mobile genetic elements, so there is a risk of its rapid transmission, even despite the lack of selective pressure resulting from the use of antibiotics.
Collapse
|
21
|
Jiang F, Kong Z, Liu K, Cheng C, Jiang T, Ma P, Li R. Phenotypic and Genotypic Characterization of Linezolid Resistance Coagulase-negative Staphylococci Possessing cfr-Carrying Plasmid. J Glob Antimicrob Resist 2022; 28:226-232. [PMID: 35041999 DOI: 10.1016/j.jgar.2022.01.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 01/06/2022] [Accepted: 01/10/2022] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVES Linezolidine-dependent growth contributed to wide dissemination of Staphylococcus epidermidis throuthout hospitals. This study aimed to characterize 13 linezolid resistant coagulase-negative Staphylococci (CoNS) isolates and possibility of dependence on linezolid in China. METHODS Resistance phenotypic and genotypic of thirteen CoNS isolates were investigated by antimicrobial susceptibility testing and polymerase chain reaction (PCR). Similarity of isolates was estimated by pulsed field gel electrophoresis (PFGE). Characterization of cfr plasmid was carried out by S1 nuclease-PFGE, southern blotting and whole-genome sequencing (WGS). Phylogenetic analysis was conducted by constructing a maximum-likelihood phylogenetic tree. Growth curve analysis was conducted with and without linezolid to determinate possibility contribution of linezolid dependence to linezolid resistance CoNS isolates dissemination. RESULTS Thirteen CoNS isolates showed linezolid MICs of 8mg/L to >256mg/L and were typed into three PFGE profiles. Southern blotting and WGS indicated that cfr gene was located on a plasmid of 39.5 kb, revealing 99% identity to the sequence of the cfr-harbouring plasmid pSR01, pLRSA417 and pH46-29. The cfr gene was flanked by two copies of an IS256-like element ISEnfa4 family transposase, indicating the transferability of linezolid resistance conferred by the cfr gene. Comparative phylogenetic analysis revealed that S. capitis XZ03 share high similarity with linezolid-resistant S.capitis isolates (17-758, 17-396, 18-857, 15-72 and 15-101) in Huashan Hospital, Shanghai. Thirteen CoNS isolates did not exhibit linezolid-dependent upon exposure from 8mg/L to 32mg/L. CONCLUSIONS The endemic CoNS clone carrying cfr gene in our hospital showed high level of linezolid resistance, which threatened the utilization of linezolid. Linezolidine-dependent growth under linezolid selective pressure was not observed in our study, indicating that it may be not a common phenotype in Staphylococcus spp. at present.
Collapse
Affiliation(s)
- Fei Jiang
- Department of Laboratory Medicine, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Ziyan Kong
- Department of Laboratory Medicine, Changzhou Hospital of Traditional Chinese Medicine, Changzhou, China
| | - Ke Liu
- Xuzhou Administration for Market Regulation, Xuzhou, China
| | - Chen Cheng
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Tingting Jiang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, China
| | - Ping Ma
- Department of Laboratory Medicine, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Rongpeng Li
- School of Life Sciences, Jiangsu Normal University, Xuzhou, China.
| |
Collapse
|
22
|
Wang L, Zhang Y, Liu S, Huang N, Zeng W, Xu W, Zhou T, Shen M. Comparison of Anti-Microbic and Anti-Biofilm Activity Among Tedizolid and Radezolid Against Linezolid-Resistant Enterococcus faecalis Isolates. Infect Drug Resist 2021; 14:4619-4627. [PMID: 34764658 PMCID: PMC8577528 DOI: 10.2147/idr.s331345] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 10/13/2021] [Indexed: 12/24/2022] Open
Abstract
Background The emergence and spread of linezolid-resistant Enterococcus faecalis (E. faecalis) have emerged as a serious threat to human health globally. Therefore, this study aims to compare the anti-microbic as well as the anti-biofilm activity of linezolid, tedizolid, and radezolid against linezolid-resistant E. faecalis. Methods A total of 2128 E. faecalis isolates were assessed from the First Affiliated Hospital of Wenzhou Medical University from 2011 to 2019. Antibiotic sensitivity was evaluated using the micro broth dilution method. Oxazolidinone-resistant chromosomal and plasmid-borne genes such as cfr, cfr(A), cfr(B), cfr(C), cfr(D), optrA, and poxtA were detected by PCR and then sequenced to detect the presence of mutations in the domain V of the 23S rRNA and the ribosomal proteins L3, L4, and L22. Conjugation experiments were conducted using the broth method. The inhibition and eradication of biofilm were evaluated through crystal violet staining, whereas the efflux pump activities were detected by agar dilution. Results Out of 2128 isolated E. faecalis, 71 (3.34%) were linezolid-resistant isolates in which the MICs of tedizolid and radezolid ranged from 1 to 4 μg/mL and 0.5–1 μg/mL, respectively. The MIC50/MIC90 of tedizolid and radezolid were 4 and 8-fold lower than the linezolid, respectively. Out of 71 resistant isolates, 57 (80.28%) carried optrA, 1 (1.41%) carried cfr, 4 (5.63%) carried optrA and cfr, and 6 (8.45%) carried optrA and cfr(D), with no mutations of 23S rRNA gene and ribosomal proteins L3, L4, and L22. Besides, the transfer rate of the optrA, cfr, and cfr(D) was 17.91%, 0% and 0%, respectively. Radezolid showed more effectiveness in eradicating biofilm (8 × MIC). However, tedizolid was more effective than radezolid and linezolid in inhibiting the biofilm formation (1/4 MIC, 1/8MIC, and 1/16MIC). Additionally, in combination with CCCP, the MICs of radezolid in all linezolid-resistant isolates decreased ≥4-fold. Conclusion Radezolid showed greater antimicrobial activity than tedizolid and linezolid against linezolid-resistant E. faecalis. However, both tedizolid and radezolid showed differential activity on biofilm inhibition, eradication, and efflux pump compared to linezolid. Thus, our study might bring important clinical value in the application of these drugs for resistant pathogenic strains.
Collapse
Affiliation(s)
- Lingbo Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, People's Republic of China
| | - Ying Zhang
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang Province, People's Republic of China
| | - Shixing Liu
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, People's Republic of China
| | - Na Huang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, People's Republic of China
| | - Weiliang Zeng
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, People's Republic of China
| | - Wenya Xu
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, People's Republic of China
| | - Tieli Zhou
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, People's Republic of China
| | - Mo Shen
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, People's Republic of China
| |
Collapse
|
23
|
Kim YB, Yoon S, Seo KW, Shim JB, Noh EB, Lee YJ. Detection of Linezolid-Resistant Enterococcus faecalis and Enterococcus faecium Isolates from the Layer Operation System in Korea. Microb Drug Resist 2021; 27:1443-1449. [PMID: 34297629 DOI: 10.1089/mdr.2020.0028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Linezolid (LNZ) is one of the most important antimicrobial agents against infections caused by gram-positive bacteria, including enterococci. In a layer operation system, antimicrobial resistance can be transferred to commercial layers via the fecal-oral route. This study investigated the presence and distribution of LNZ-resistant Enterococcus faecalis and Enterococcus faecium in a layer operation system. Among 117 E. faecalis and 154 E. faecium, 10 (8.5%) E. faecalis and 5 (3.2%) E. faecium isolates showed resistance to LNZ and chloramphenicol, and they exhibited multidrug resistance against 5 or more classes of antimicrobial agents. Among the resistant isolates, 9 (90.0%) and 2 (20.0%) E. faecalis harbored optrA and cfr genes, respectively. The optrA and fexA genes were not detected in five LNZ-resistant E. faecium. None of the 15 LNZ-resistant isolates harbored the fexA gene, and no mutations were observed in the genes encoding domain V of 23S ribosomal RNA (rRNA) and ribosomal proteins L3 (rplC) and L4 (rplD). Transferability was identified in three of the nine optrA-positive LNZ-resistant isolates. The tetM, tetL, and ermB genes were cotransferred with the optrA gene in all optrA-positive transconjugants. The results indicate that optrA is well-distributed in E. faecalis, implying a greater level of transferability. Thus, enhanced surveillance efforts are needed to monitor the emergence and spread of optrA in enterococci in layer operation system.
Collapse
Affiliation(s)
- Yeong Bin Kim
- College of Veterinary Medicine & Zoonoses Research Institute, Kyungpook National University, Daegu, Republic of Korea
| | - Sunghyun Yoon
- College of Veterinary Medicine & Zoonoses Research Institute, Kyungpook National University, Daegu, Republic of Korea
| | - Kwang Won Seo
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, Mississippi State, USA
| | - Jong Bo Shim
- Korean Poultry TS Co., Ltd., Incheon, Republic of Korea
| | - Eun Bi Noh
- College of Veterinary Medicine & Zoonoses Research Institute, Kyungpook National University, Daegu, Republic of Korea
| | - Young Ju Lee
- College of Veterinary Medicine & Zoonoses Research Institute, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
24
|
Egan SA, Shore AC, O'Connell B, Brennan GI, Coleman DC. Linezolid resistance in Enterococcus faecium and Enterococcus faecalis from hospitalized patients in Ireland: high prevalence of the MDR genes optrA and poxtA in isolates with diverse genetic backgrounds. J Antimicrob Chemother 2021; 75:1704-1711. [PMID: 32129849 PMCID: PMC7303821 DOI: 10.1093/jac/dkaa075] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 01/21/2020] [Accepted: 02/06/2020] [Indexed: 01/02/2023] Open
Abstract
OBJECTIVES To investigate the prevalence of the optrA, poxtA and cfr linezolid resistance genes in linezolid-resistant enterococci from Irish hospitals and to characterize associated plasmids. METHODS One hundred and fifty-four linezolid-resistant isolates recovered in 14 hospitals between June 2016 and August 2019 were screened for resistance genes by PCR. All isolates harbouring resistance genes, and 20 without, underwent Illumina MiSeq WGS. Isolate relatedness was assessed using enterococcal whole-genome MLST. MinION sequencing (Oxford Nanopore) and hybrid assembly were used to resolve genetic environments/plasmids surrounding resistance genes. RESULTS optrA and/or poxtA were identified in 35/154 (22.7%) isolates, the highest prevalence reported to date. Fifteen isolates with diverse STs harboured optrA only; one Enterococcus faecium isolate harboured optrA (chromosome) and poxtA (plasmid). Seven Enterococcus faecalis and one E. faecium harboured optrA on a 36 331 bp plasmid with 100% identity to the previously described optrA-encoding conjugative plasmid pE349. Variations around optrA were also observed, with optrA located on plasmids in five isolates and within the chromosome in three isolates. Nine E. faecium and 10 E. faecalis harboured poxtA, flanked by IS1216E, within an identical 4001 bp region on plasmids exhibiting 72.9%-100% sequence coverage to a 21 849 bp conjugative plasmid. E. faecalis isolates belonged to ST480, whereas E. faecium isolates belonged to diverse STs. Of the remaining 119 linezolid-resistant isolates without linezolid resistance genes, 20 investigated representatives all harboured the G2576T 23S RNA gene mutation associated with linezolid resistance. CONCLUSIONS This high prevalence of optrA and poxtA in diverse enterococcal lineages in Irish hospitals indicates significant selective pressure(s) for maintenance.
Collapse
Affiliation(s)
- Sarah A Egan
- Microbiology Research Unit, Division of Oral Biosciences, Dublin Dental University Hospital, University of Dublin, Trinity College, Lincoln Place, Dublin 2, Ireland
| | - Anna C Shore
- Microbiology Research Unit, Division of Oral Biosciences, Dublin Dental University Hospital, University of Dublin, Trinity College, Lincoln Place, Dublin 2, Ireland
| | - Brian O'Connell
- Department of Clinical Microbiology, School of Medicine, University of Dublin, Trinity College Dublin, St. James's Hospital, Dublin 8, Ireland.,National MRSA Reference Laboratory, St. James's Hospital, James's Street, Dublin 8, Ireland
| | - Grainne I Brennan
- National MRSA Reference Laboratory, St. James's Hospital, James's Street, Dublin 8, Ireland
| | - David C Coleman
- Microbiology Research Unit, Division of Oral Biosciences, Dublin Dental University Hospital, University of Dublin, Trinity College, Lincoln Place, Dublin 2, Ireland
| |
Collapse
|
25
|
Zhu Y, Zhang W, Wang C, Liu W, Yang Q, Luan T, Wang L, Schwarz S, Liu S. Identification of a novel optrA-harbouring transposon, Tn6823, in Staphylococcus aureus. J Antimicrob Chemother 2021; 75:3395-3397. [PMID: 32728701 DOI: 10.1093/jac/dkaa323] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Yao Zhu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Wanjiang Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Changzhen Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Wenyu Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Qin Yang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Tian Luan
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Lingli Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Stefan Schwarz
- Institute of Microbiology and Epizootics, Centre for Infection Medicine, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Siguo Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| |
Collapse
|
26
|
Schwarz S, Zhang W, Du XD, Krüger H, Feßler AT, Ma S, Zhu Y, Wu C, Shen J, Wang Y. Mobile Oxazolidinone Resistance Genes in Gram-Positive and Gram-Negative Bacteria. Clin Microbiol Rev 2021; 34:e0018820. [PMID: 34076490 PMCID: PMC8262807 DOI: 10.1128/cmr.00188-20] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Seven mobile oxazolidinone resistance genes, including cfr, cfr(B), cfr(C), cfr(D), cfr(E), optrA, and poxtA, have been identified to date. The cfr genes code for 23S rRNA methylases, which confer a multiresistance phenotype that includes resistance to phenicols, lincosamides, oxazolidinones, pleuromutilins, and streptogramin A compounds. The optrA and poxtA genes code for ABC-F proteins that protect the bacterial ribosomes from the inhibitory effects of oxazolidinones. The optrA gene confers resistance to oxazolidinones and phenicols, while the poxtA gene confers elevated MICs or resistance to oxazolidinones, phenicols, and tetracycline. These oxazolidinone resistance genes are most frequently found on plasmids, but they are also located on transposons, integrative and conjugative elements (ICEs), genomic islands, and prophages. In these mobile genetic elements (MGEs), insertion sequences (IS) most often flanked the cfr, optrA, and poxtA genes and were able to generate translocatable units (TUs) that comprise the oxazolidinone resistance genes and occasionally also other genes. MGEs and TUs play an important role in the dissemination of oxazolidinone resistance genes across strain, species, and genus boundaries. Most frequently, these MGEs also harbor genes that mediate resistance not only to antimicrobial agents of other classes, but also to metals and biocides. Direct selection pressure by the use of antimicrobial agents to which the oxazolidinone resistance genes confer resistance, but also indirect selection pressure by the use of antimicrobial agents, metals, or biocides (the respective resistance genes against which are colocated on cfr-, optrA-, or poxtA-carrying MGEs) may play a role in the coselection and persistence of oxazolidinone resistance genes.
Collapse
Affiliation(s)
- Stefan Schwarz
- Institute of Microbiology and Epizootics, Centre for Infection Medicine, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| | - Wanjiang Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Xiang-Dang Du
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, People’s Republic of China
| | - Henrike Krüger
- Institute of Microbiology and Epizootics, Centre for Infection Medicine, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Andrea T. Feßler
- Institute of Microbiology and Epizootics, Centre for Infection Medicine, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Shizhen Ma
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| | - Yao Zhu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Congming Wu
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| | - Jianzhong Shen
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| | - Yang Wang
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| |
Collapse
|
27
|
Elghaieb H, Tedim AP, Abbassi MS, Novais C, Duarte B, Hassen A, Peixe L, Freitas AR. From farm to fork: identical clones and Tn6674-like elements in linezolid-resistant Enterococcus faecalis from food-producing animals and retail meat. J Antimicrob Chemother 2021; 75:30-35. [PMID: 31605129 DOI: 10.1093/jac/dkz419] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 09/06/2019] [Accepted: 09/07/2019] [Indexed: 01/05/2023] Open
Abstract
OBJECTIVES Increasing numbers of linezolid-resistant Enterococcus carrying optrA are being reported across different niches worldwide. We aimed to characterize the first optrA-carrying Enterococcus faecalis obtained from food-producing animals and retail meat samples in Tunisia. METHODS Seven optrA-carrying E. faecalis obtained from chicken faeces (n=3, August 2017) and retail chicken meat (n=4, August 2017) in Tunisia were analysed. Antimicrobial susceptibility was determined by disc diffusion, broth microdilution and Etest against 13 antibiotics, linezolid and tedizolid, respectively (EUCAST/CLSI). optrA stability (∼600 bacterial generations), transfer (filter mating) and location (S1-PFGE/hybridization) were characterized. WGS (Illumina-HiSeq) was done for four representatives that were analysed through in silico and genomic mapping tools. RESULTS Four MDR clones carrying different virulence genes were identified in chicken faeces (ST476) and retail meat (the same ST476 clone plus ST21 and ST859) samples. MICs of linezolid and tedizolid were stably maintained at 8 and 1-2 mg/L, respectively. optrA was located in the same transferable chromosomal Tn6674-like element in ST476 and ST21 clones, similar to isolates from pigs in Malaysia and humans in China. ST859 carried a non-conjugative plasmid of ∼40 kb with an impB-fexA-optrA segment, similar to plasmids from pigs and humans in China. CONCLUSIONS The same chromosomal and transferable Tn6674-like element was identified in different E. faecalis clones from humans and animals. The finding of retail meat contaminated with the same linezolid-resistant E. faecalis strain obtained from a food-producing animal highlights the potential role of the food chain in the worrisome dissemination of optrA that can be stably maintained without selective pressure over generations.
Collapse
Affiliation(s)
- Houyem Elghaieb
- Université de Tunis El Manar, Institut de la Recherche Vétérinaire de Tunisie, 20 rue Jebel Lakhdhar, Bab Saadoun, Tunis, Tunisia
| | - Ana P Tedim
- UCIBIO/REQUIMTE, Departamento de Ciências Biológicas, Laboratório de Microbiologia, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal.,Grupo de Investigación Biomédica en Sepsis - BioSepsis, Hospital Universitario Río Hortega, Instituto de Investigación Biomédica de Salamanca (IBSAL), Valladollid, Spain
| | - Mohamed S Abbassi
- Université de Tunis El Manar, Institut de la Recherche Vétérinaire de Tunisie, 20 rue Jebel Lakhdhar, Bab Saadoun, Tunis, Tunisia
| | - Carla Novais
- UCIBIO/REQUIMTE, Departamento de Ciências Biológicas, Laboratório de Microbiologia, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Bárbara Duarte
- UCIBIO/REQUIMTE, Departamento de Ciências Biológicas, Laboratório de Microbiologia, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal.,Departamento de Ciências Biológicas, Unidade de Análises Clínicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Abdennaceur Hassen
- Laboratoire de Traitement des Eaux Usées, Centre des Recherches et des Technologies des Eaux (CERTE), Technopole Borj Cédria, Soliman, Tunisia
| | - Luísa Peixe
- UCIBIO/REQUIMTE, Departamento de Ciências Biológicas, Laboratório de Microbiologia, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Ana R Freitas
- UCIBIO/REQUIMTE, Departamento de Ciências Biológicas, Laboratório de Microbiologia, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| |
Collapse
|
28
|
Ma X, Zhang F, Bai B, Lin Z, Xu G, Chen Z, Sun X, Zheng J, Deng Q, Yu Z. Linezolid Resistance in Enterococcus faecalis Associated With Urinary Tract Infections of Patients in a Tertiary Hospitals in China: Resistance Mechanisms, Virulence, and Risk Factors. Front Public Health 2021; 9:570650. [PMID: 33614576 PMCID: PMC7893085 DOI: 10.3389/fpubh.2021.570650] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 01/13/2021] [Indexed: 11/18/2022] Open
Abstract
Background:Enterococcus faecalis has been commonly considered as one of the major pathogens of the urinary tract infection (UTI) in human host worldwide, whereas the molecular characteristics of E. faecalis clinical isolates from the patients with UTI in China remains seldomly reported. This study aimed to investigate the resistance mechanism, molecular characteristics and risk factors of E. faecalis clinical isolates from patients with UTI in China. Methods: A total of 115 non-duplicated E. faecalis clinical isolates from patients with UTI were retrospectively collected in a tertiary hospital in China and their clinical data was further analyzed. The linezolid and tedizolid susceptibility were determined by agar dilution. The resistance genes, including erm(A), erm(B), erm(C), tet(M), optrA, cfr, cfr(B), poxtA, and MLST-based housekeeping genes were investigated by PCR. Results: In 115 non-duplicated E. faecalis clinical isolates from the patients with UTI in this hospital setting, the frequency of linezolid or tedizolid-resistant/intermediate isolates were 22.61 and 13.04%, respectively, and the frequency of linezolid-resistant/intermediate E. faecalis clinical isolates carrying with erm(A) were 86%. Among the five linezolid-resistant E. faecalis strains found in this study, three optrA-positive isolates and the other two linezolid-resistant strains were G2576U genetic mutations in the V domain of the 23S rRNA genes. The ST clonality analysis indicated that 31.42% (11/35) of ST16 E. faecalis UTI isolates were not susceptible to linezolid. Moreover, the univariable analysis indicated that the high risk factors of linezolid-resistant/intermediate E. faecalis infections involved the indwelling catheter, trachea cannula catheter and the carriage of erm(A) or optrA. Furthermore, the indwelling catheter and trachea cannula catheter were demonstrated as the independent predictors of linezolid-resistant/intermediate E. faecalis strains in patients with UTI by multivariable analysis. Conclusion: Linezolid-resistant/intermediate E. faecalis associated with urinary tract infections of patients in this hospital setting from China might be explained by the high carriage frequency of optrA genes and moreover, indwelling catheter and trachea cannula should be considered as the independent predictors of linezolid-resistant/intermediate E. faecalis infections. The transmission mechanism of linezolid-resistant/intermediate E. faecalis in this hospital setting should be further studied.
Collapse
Affiliation(s)
- Xiaoyu Ma
- Department of Infectious Diseases and Quality Control Center of Hospital Infection Management of Shenzhen, Shenzhen Nanshan People's Hospital and the 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China.,Shenzhen Key Laboratory for Endogenous Infections, Guang Dong Medical University, Shenzhen, China
| | - Fan Zhang
- Department of Infectious Diseases and Quality Control Center of Hospital Infection Management of Shenzhen, Shenzhen Nanshan People's Hospital and the 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China.,Department of Tuberculosis, Shenzhen Nanshan Center for Chronic Disease Control, Shenzhen, China
| | - Bing Bai
- Department of Infectious Diseases and Quality Control Center of Hospital Infection Management of Shenzhen, Shenzhen Nanshan People's Hospital and the 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China.,Shenzhen Key Laboratory for Endogenous Infections, Guang Dong Medical University, Shenzhen, China
| | - Zhiwei Lin
- Department of Infectious Diseases and Quality Control Center of Hospital Infection Management of Shenzhen, Shenzhen Nanshan People's Hospital and the 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China.,Shenzhen Key Laboratory for Endogenous Infections, Guang Dong Medical University, Shenzhen, China
| | - Guangjian Xu
- Department of Infectious Diseases and Quality Control Center of Hospital Infection Management of Shenzhen, Shenzhen Nanshan People's Hospital and the 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China.,Shenzhen Key Laboratory for Endogenous Infections, Guang Dong Medical University, Shenzhen, China
| | - Zhong Chen
- Department of Infectious Diseases and Quality Control Center of Hospital Infection Management of Shenzhen, Shenzhen Nanshan People's Hospital and the 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Xiang Sun
- Department of Infectious Diseases and Quality Control Center of Hospital Infection Management of Shenzhen, Shenzhen Nanshan People's Hospital and the 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China.,Shenzhen Key Laboratory for Endogenous Infections, Guang Dong Medical University, Shenzhen, China
| | - Jinxin Zheng
- Department of Infectious Diseases and Quality Control Center of Hospital Infection Management of Shenzhen, Shenzhen Nanshan People's Hospital and the 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China.,Shenzhen Key Laboratory for Endogenous Infections, Guang Dong Medical University, Shenzhen, China
| | - Qiwen Deng
- Department of Infectious Diseases and Quality Control Center of Hospital Infection Management of Shenzhen, Shenzhen Nanshan People's Hospital and the 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China.,Shenzhen Key Laboratory for Endogenous Infections, Guang Dong Medical University, Shenzhen, China
| | - Zhijian Yu
- Department of Infectious Diseases and Quality Control Center of Hospital Infection Management of Shenzhen, Shenzhen Nanshan People's Hospital and the 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China.,Shenzhen Key Laboratory for Endogenous Infections, Guang Dong Medical University, Shenzhen, China
| |
Collapse
|
29
|
Jung YH, Cha MH, Woo GJ, Chi YM. Characterization of oxazolidinone and phenicol resistance genes in non-clinical enterococcal isolates from Korea. J Glob Antimicrob Resist 2021; 24:363-369. [PMID: 33515778 DOI: 10.1016/j.jgar.2021.01.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 11/29/2020] [Accepted: 01/18/2021] [Indexed: 10/22/2022] Open
Abstract
OBJECTIVES To investigate the distribution and genetic characteristics of linezolid-resistant enterococci. METHODS Enterococcus faecalis and Enterococcus faecium strains were isolated from pigs, equipment, grounds, and employees of 19 Korean swine farms in 2017. Antimicrobial susceptibility testing was then performed and linezolid resistance genes were detected via PCR. For genetic epidemiological characterization, multilocus sequence typing and whole-genome sequencing data were analysed. RESULTS Twenty-eightE. faecalis and five E. faecium strains were isolated from 1026 samples obtained from the 19 farms. Ten sequence types were identified among the E. faecalis strains, of which ST256 (42.9%) and ST86 (25%) were the most abundant. The oxazolidinone and phenicol resistance genes poxtA, optrA, and fexA were detected in isolates of E. faecalis (100%, 85.7%, and 67.9%, respectively) and E. faecium (100%, 60%, and 80%, respectively). The minimum inhibitory concentrations of linezolid in these isolates ranged from 2 mg/L to 12 mg/L. The whole-genome sequencing data indicated that fexA was located upstream of poxtA. CONCLUSIONS This is the first study to report the detection of poxtA in isolates that were both susceptible and resistant to linezolid in Korea. These results demonstrate the importance of antimicrobial resistance monitoring programmes, including regular antimicrobial susceptibility testing and resistance gene expression analysis, to facilitate the control of the spread of antibiotic resistance in non-clinical settings in Korea.
Collapse
Affiliation(s)
- Young-Hee Jung
- Division of Biotechnology, College of Life Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Min-Hyeok Cha
- Laboratory of Food Safety and Evaluation, Department of Biotechnology, Korea University Graduate School, Seoul, 02841, Republic of Korea
| | - Gun-Jo Woo
- Laboratory of Food Safety and Evaluation, Department of Biotechnology, Korea University Graduate School, Seoul, 02841, Republic of Korea.
| | - Young-Min Chi
- Division of Biotechnology, College of Life Sciences, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
30
|
Yang XX, Tian TT, Qiao W, Tian Z, Yang M, Zhang Y, Li JY. Prevalence and characterization of oxazolidinone and phenicol cross-resistance gene optrA in enterococci obtained from anaerobic digestion systems treating swine manure. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 267:115540. [PMID: 32898731 DOI: 10.1016/j.envpol.2020.115540] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 08/21/2020] [Accepted: 08/24/2020] [Indexed: 06/11/2023]
Abstract
The use of the phenicol antibiotic florfenicol in livestock can select for the optrA gene, which also confers resistance to the critically important oxazolidinone antibiotic linezolid. However, the occurrence and dissemination of florfenicol and linezolid cross-resistance genes in anaerobic treatment systems for livestock waste are unknown. Herein, the phenotypes and genotypes (optrA, fexA, fexB, and cfr) of florfenicol and linezolid cross-resistance were investigated in 339 enterococci strains isolated from lab- and full-scale mesophilic anaerobic digestion systems treating swine waste. It was found that optrA, fexA, and fexB were frequently detected in isolated enterococci in both systems by PCR screening, whereas cfr was not detected. The most abundant gene was optrA, which was detected in 73.5% (n = 50) and 38.9% (n = 23) of enterococci isolates in the full-scale influent and effluent, respectively. Most strains carried more than two resistance genes, and the average percentage of co-occurrence of optrA/fexA was 16.6%. Based on minimum inhibitory concentrations of the enterococci strain phenotypes, 85.7%, 77.5%, and 77.5% of strains in influent were resistant to chloramphenicol, florfenicol, and linezolid, respectively, while 56.3%, 65.2%, and 13% in the effluent isolates were found, respectively, which was consistent with the genotype results. The phenotypes and genotypes of florfenicol and linezolid resistance were relative stable in the enterococci isolated from the influent and effluent in lab-scale anaerobic digestion system. The findings signify the enterococci isolates harboring the optrA gene remained in effluents of both full- and lab-scale swine waste anaerobic digestion system; hence, effective management strategies should be implemented to prevent the discharge of antibiotic resistance from the livestock waste treatment systems.
Collapse
Affiliation(s)
- Xiao-Xiao Yang
- Department of Municipal and Environmental Engineering, Beijing Jiaotong University, Beijing, 100044, China; State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Tian-Tian Tian
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Wei Qiao
- College of Engineering, China Agricultural University, Beijing, 100083, China
| | - Zhe Tian
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Min Yang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Yu Zhang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| | - Jiu-Yi Li
- Department of Municipal and Environmental Engineering, Beijing Jiaotong University, Beijing, 100044, China.
| |
Collapse
|
31
|
Almeida LM, Gaca A, Bispo PM, Lebreton F, Saavedra JT, Silva RA, Basílio-Júnior ID, Zorzi FM, Filsner PH, Moreno AM, Gilmore MS. Coexistence of the Oxazolidinone Resistance-Associated Genes cfr and optrA in Enterococcus faecalis From a Healthy Piglet in Brazil. Front Public Health 2020; 8:518. [PMID: 33102417 PMCID: PMC7546817 DOI: 10.3389/fpubh.2020.00518] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 08/11/2020] [Indexed: 12/15/2022] Open
Abstract
Oxazolidinones are one of the most important antimicrobials potentially active against glycopeptide- and β-lactam-resistant Gram-positive pathogens. Linezolid—the first oxazolidinone to be approved for clinical use in 2000 by the US Food and Drug Administration—and the newer molecule in the class, tedizolid, inhibit protein synthesis by suppressing the formation of the 70S ribosomal complex in bacteria. Over the past two decades, transferable oxazolidinone resistance genes, in particular cfr and optrA, have been identified in Firmicutes isolated from healthcare-related infections, livestock, and the environment. Our goals in this study were to investigate the genetic contexts and the transferability of the cfr and optrA genes and examine genomic features, such as antimicrobial resistance genes, plasmid incompatibility types, and CRISPR-Cas defenses of a linezolid-resistant Enterococcus faecalis isolated in feces from a healthy pig during an antimicrobial surveillance program for animal production in Brazil. The cfr gene was found to be integrated into a transposon-like structure of 7,759 nt flanked by IS1216E and capable of excising and circularizing, distinguishing it from known genetic contexts for cfr in Enterococcus spp., while optrA was inserted into an Inc18 broad host-range plasmid of >58 kb. Conjugal transfer of cfr and optrA was shown by filter mating. The coexistence of cfr and optrA in an E. faecalis isolated from a healthy nursery pig highlights the need for monitoring the use of antibiotics in the Brazilian swine production system for controlling spread and proliferation of antibiotic resistance.
Collapse
Affiliation(s)
- Lara M Almeida
- Institute of Pharmaceutical Sciences, Federal University of Alagoas, Maceió, Brazil.,Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Anthony Gaca
- Department of Ophthalmology and Department of Microbiology, Harvard Medical School, Boston, MA, United States
| | - Paulo M Bispo
- Department of Ophthalmology and Department of Microbiology, Harvard Medical School, Boston, MA, United States
| | - François Lebreton
- Department of Ophthalmology and Department of Microbiology, Harvard Medical School, Boston, MA, United States
| | - Jose T Saavedra
- Department of Ophthalmology and Department of Microbiology, Harvard Medical School, Boston, MA, United States
| | - Rafael A Silva
- Institute of Pharmaceutical Sciences, Federal University of Alagoas, Maceió, Brazil
| | | | - Felipe M Zorzi
- School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Pedro H Filsner
- School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Andrea M Moreno
- School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Michael S Gilmore
- Department of Ophthalmology and Department of Microbiology, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
32
|
Drug Resistance Determinants in Clinical Isolates of Enterococcus faecalis in Bangladesh: Identification of Oxazolidinone Resistance Gene optrA in ST59 and ST902 Lineages. Microorganisms 2020; 8:microorganisms8081240. [PMID: 32824090 PMCID: PMC7463919 DOI: 10.3390/microorganisms8081240] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/06/2020] [Accepted: 08/13/2020] [Indexed: 12/11/2022] Open
Abstract
Enterococcus faecalis is one of the major causes of urinary tract infection, showing acquired resistance to various classes of antimicrobials. The objective of this study was to determine the prevalence of drug resistance and its genetic determinants for E. faecalis clinical isolates in north-central Bangladesh. Among a total of 210 E. faecalis isolates, isolated from urine, the resistance rates to erythromycin, levofloxacin, and gentamicin (high level) were 85.2, 45.7, and 11.4%, respectively, while no isolates were resistant to ampicillin, vancomycin and teicoplanin. The most prevalent resistance gene was erm(B) (97%), and any of the four genes encoding aminoglycoside modifying enzyme (AME) were detected in 99 isolates (47%). The AME gene aac(6′)-Ie-aph(2”)-Ia was detected in 46 isolates (21.9%) and was diverse in terms of IS256-flanking patterns, which were associated with resistance level to gentamicin. Tetracycline resistance was ascribable to tet(M) (61%) and tet(L) (38%), and mutations in the quinolone resistance-determining region of both GyrA and ParC were identified in 44% of isolates. Five isolates (2.4%) exhibited non-susceptibility to linezolide (MIC, 4 μg/mL), and harbored the oxazolidinone resistance gene optrA, which was located in a novel genetic cluster containing the phenicol exporter gene fexA. The optrA-positive isolates belonged to ST59, ST902, and ST917 (CC59), while common lineages of other multiple drug-resistant isolates were ST6, ST28, CC16, and CC116. The present study first revealed the prevalence of drug resistance determinants of E. faecalis and their genetic profiles in Bangladesh.
Collapse
|
33
|
Mechanisms of Linezolid Resistance Among Enterococci of Clinical Origin in Spain-Detection of optrA- and cfr(D)-Carrying E. faecalis. Microorganisms 2020; 8:microorganisms8081155. [PMID: 32751552 PMCID: PMC7464793 DOI: 10.3390/microorganisms8081155] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 07/24/2020] [Accepted: 07/28/2020] [Indexed: 12/12/2022] Open
Abstract
The mechanisms of linezolid resistance among 13 E. faecalis and 6 E. faecium isolates, recovered from six Spanish hospitals during 2017–2018, were investigated. The presence of acquired linezolid resistance genes and mutations in 23S rDNA and in genes encoding for ribosomal proteins was analyzed by PCR and amplicon sequencing. Moreover, the susceptibility to 18 antimicrobial agents was investigated, and the respective molecular background was elucidated by PCR-amplicon sequencing and whole genome sequencing. The transferability of the linezolid resistance genes was evaluated by filter-mating experiments. The optrA gene was detected in all 13 E. faecalis isolates; and one optrA-positive isolate also carried the recently described cfr(D) gene. Moreover, one E. faecalis isolate displayed the nucleotide mutation G2576T in the 23S rDNA. This mutation was also present in all six E. faecium isolates. All linezolid-resistant enterococci showed a multiresistance phenotype and harbored several antimicrobial resistance genes, as well as many virulence determinants. The fexA gene was located upstream of the optrA gene in 12 of the E. faecalis isolates. Moreover, an erm(A)-like gene was located downstream of optrA in two isolates recovered from the same hospital. The optrA gene was transferable in all but one E. faecalis isolates, in all cases along with the fexA gene. The cfr(D) gene was not transferable. The presence of optrA and mutations in the 23S rDNA are the main mechanisms of linezolid resistance among E. faecalis and E. faecium, respectively. We report the first description of the cfr(D) gene in E. faecalis. The presence of the optrA and cfr(D) genes in Spanish hospitals is a public health concern.
Collapse
|
34
|
Sassi M, Guérin F, Zouari A, Beyrouthy R, Auzou M, Fines-Guyon M, Potrel S, Dejoies L, Collet A, Boukthir S, Auger G, Bonnet R, Cattoir V. Emergence of optrA-mediated linezolid resistance in enterococci from France, 2006-16. J Antimicrob Chemother 2020; 74:1469-1472. [PMID: 30897199 DOI: 10.1093/jac/dkz097] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 02/11/2019] [Accepted: 02/18/2019] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVES To describe the epidemiological trend of linezolid-resistant enterococci (LRE) collected in France from 2006 to 2016 and to extensively characterize LRE isolates. METHODS The National Reference Center for Enterococci (NRC-Enc) received enterococcal isolates suspected to be VRE and/or LRE from all French hospitals between 2006 and 2016. LRE isolates were phenotypically characterized and their genomes were entirely sequenced by Miseq (Illumina). Transfer of linezolid resistance was attempted by filter mating experiments. RESULTS Out of 3974 clinical isolates of enterococci received at the NRC-Enc over the period, 9 (0.2%) were LRE (MICs 8 to >32 mg/L), including 6 Enterococcus faecium and 3 Enterococcus faecalis. This overall prevalence significantly increased over the study period, reaching 0.8% in 2016. The five LRE isolated before 2016 were vanA-positive E. faecium whereas strains isolated in 2016 (one E. faecium and three E. faecalis) were susceptible to vancomycin. None of these isolates was part of an outbreak, while E. faecium strains were assigned to four different STs [17 (1), 80 (3), 412 (1) and 650 (1)] and all three E. faecalis belonged to ST480. Except for the strain isolated in 2010, all LRE were positive for optrA, which was located on plasmids (5/8) or in the chromosome (3/8). Plasmid transfer of optrA was successful in three cases. CONCLUSIONS There has been a significant increase in the prevalence of LRE in France over time; this is due to the spread of optrA among E. faecium and E. faecalis human clinical isolates (VRE or not).
Collapse
Affiliation(s)
- Mohamed Sassi
- Université de Rennes 1, Inserm U1230, Rennes, France
| | - François Guérin
- CHU de Caen, Service de Microbiologie, Caen, France.,Université de Caen Normandie, EA4655, Caen, France
| | - Asma Zouari
- CNR de la Résistance aux Antibiotiques (laboratoire associé «Entérocoques»), Rennes, France
| | - Racha Beyrouthy
- CHU Clermont-Ferrand, Laboratoire de Bactériologie & CNR de la Résistance aux Antibiotiques, Clermont-Ferrand, France.,CNR de la Résistance aux Antibiotiques (laboratoire associé «Entérobactéries: résistance aux C3G et colistine»), Clermont-Ferrand, France.,Université Clermont Auvergne, UMR INSERM 1071 USC INRA2018, Clermont-Ferrand, France
| | - Michel Auzou
- CHU de Caen, Service de Microbiologie, Caen, France
| | | | - Sophie Potrel
- CNR de la Résistance aux Antibiotiques (laboratoire associé «Entérocoques»), Rennes, France.,CHU de Rennes, Service de Bactériologie-Hygiène hospitalière, Rennes, France
| | - Loren Dejoies
- Université de Rennes 1, Inserm U1230, Rennes, France.,CHU de Rennes, Service de Bactériologie-Hygiène hospitalière, Rennes, France
| | - Anaïs Collet
- CNR de la Résistance aux Antibiotiques (laboratoire associé «Entérocoques»), Rennes, France.,CHU de Rennes, Service de Bactériologie-Hygiène hospitalière, Rennes, France
| | - Sarrah Boukthir
- CHU de Rennes, Service de Bactériologie-Hygiène hospitalière, Rennes, France
| | - Gabriel Auger
- CNR de la Résistance aux Antibiotiques (laboratoire associé «Entérocoques»), Rennes, France.,CHU de Rennes, Service de Bactériologie-Hygiène hospitalière, Rennes, France
| | - Richard Bonnet
- CHU Clermont-Ferrand, Laboratoire de Bactériologie & CNR de la Résistance aux Antibiotiques, Clermont-Ferrand, France.,CNR de la Résistance aux Antibiotiques (laboratoire associé «Entérobactéries: résistance aux C3G et colistine»), Clermont-Ferrand, France.,Université Clermont Auvergne, UMR INSERM 1071 USC INRA2018, Clermont-Ferrand, France
| | - Vincent Cattoir
- Université de Rennes 1, Inserm U1230, Rennes, France.,CNR de la Résistance aux Antibiotiques (laboratoire associé «Entérocoques»), Rennes, France.,CHU de Rennes, Service de Bactériologie-Hygiène hospitalière, Rennes, France
| |
Collapse
|
35
|
Zou J, Tang Z, Yan J, Liu H, Chen Y, Zhang D, Zhao J, Tang Y, Zhang J, Xia Y. Dissemination of Linezolid Resistance Through Sex Pheromone Plasmid Transfer in Enterococcus faecalis. Front Microbiol 2020; 11:1185. [PMID: 32582110 PMCID: PMC7288747 DOI: 10.3389/fmicb.2020.01185] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 05/11/2020] [Indexed: 12/19/2022] Open
Abstract
Despite recent recognition of the ATP-binding cassette protein OptrA as an important mediator of linezolid resistance in Enterococcus faecalis worldwide, the mechanisms of optrA gene acquisition and transfer remain poorly understood. In this study, we performed comprehensive molecular and phenotypic profiling of 44 optrA-carrying E. faecalis clinical isolates with linezolid resistance. Pulse-field gel electrophoresis and DNA hybridization revealed the presence of optrA in the plasmid in 26 (59%) isolates and in the chromosome in 18 (41%) isolates. Conjugation experiments showed a successful transfer of optrA in 88.5% (23/26) of isolates carrying optrA in plasmids while no transfer occurred in any isolates carrying optrA in the chromosome (0/18). All 23 transconjugants exhibited in vitro resistance to linezolid and several other antibiotics and were confirmed to contain optrA and other resistance genes. Plasmid typing demonstrated a predominance (18/23,78%) of rep 9-type plasmids (pCF10 prototype) known to be the best studied sex pheromone responsive plasmids. Full plasmid genome sequencing of one isolate revealed the presence of drug resistance genes (optrA and fexA) and multiple sex pheromone response genes in the same plasmid, which represents the first sex pheromone responsive plasmid carrying optrA from a clinical isolate. PCR-based genotyping revealed the presence of three key sex pheromone response genes (prgA, prgB, and prgC) in 23 optrA-carrying isolates. Finally, functional studies of these isolates by clumping induction assay detected different degrees of clumping in 17 isolates. Our analysis suggests that optrA-mediated linezolid resistance can be widely disseminated through sex pheromone plasmid transfer.
Collapse
Affiliation(s)
- Jiaqi Zou
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhaobing Tang
- Department of Urologic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jia Yan
- Department of Laboratory Medicine, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hang Liu
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yingzhu Chen
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Dawei Zhang
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jinxin Zhao
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yu Tang
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jing Zhang
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yun Xia
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
36
|
Egan SA, Corcoran S, McDermott H, Fitzpatrick M, Hoyne A, McCormack O, Cullen A, Brennan GI, O'Connell B, Coleman DC. Hospital outbreak of linezolid-resistant and vancomycin-resistant ST80 Enterococcus faecium harbouring an optrA-encoding conjugative plasmid investigated by whole-genome sequencing. J Hosp Infect 2020; 105:726-735. [PMID: 32439548 DOI: 10.1016/j.jhin.2020.05.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 05/11/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND Linezolid is an antibiotic used to treat infections caused by multi-drug-resistant Gram-positive bacteria. Linezolid resistance in enterococci has been reported with increasing frequency, with a recent rise in resistance encoded by optrA, poxtA or cfr. AIM To investigate a hospital outbreak of linezolid- and vancomycin-resistant Enterococcus faecium (LVREfm) using whole-genome sequencing (WGS). METHODS Thirty-nine VREfm from patient screening (19 isolates, 17 patients) and environmental sites (20 isolates) recovered in October 2019 were investigated. Isolates were screened using polymerase chain reaction for optrA, poxtA and cfr, and underwent Illumina MiSeq WGS. Isolate relatedness was assessed using E. faecium core genome multi-locus sequence typing (cgMLST). One LVREfm underwent MinION long-read WGS (Oxford Nanopore Technologies) and hybrid assembly with MiSeq short-read sequences to resolve an optrA-encoding plasmid. FINDINGS Twenty isolates (51.3%) were LVREfm and optrA-positive, including the LVREfm from the index patient. A closely related cluster of 28 sequence type (ST) 80 isolates was identified by cgMLST, including all 20 LVREfm and eight linezolid-susceptible VREfm, with an average allelic difference of two (range 0-10), indicating an outbreak. Nineteen (95%) LVREfm harboured a 56,684-bp conjugative plasmid (pEfmO_03). The remaining LVREfm exhibited 44.1% sequence coverage to pEfmO_03. The presence of pEfmO_03 in LVREfm and the close relatedness of the outbreak cluster isolates indicated the spread of a single strain. The outbreak was terminated by enhanced infection prevention and control (IPC) and environmental cleaning measures, ceasing ward admissions and ward-dedicated staff. CONCLUSION WGS was central in investigating an outbreak of ST80 LVREfm. The rapid implementation of enhanced IPC measures terminated the outbreak.
Collapse
Affiliation(s)
- S A Egan
- Microbiology Research Unit, Division of Oral Biosciences, Dublin Dental University Hospital, University of Dublin, Trinity College, Dublin, Ireland
| | - S Corcoran
- Department of Clinical Microbiology, Bon Secours Hospital Dublin, Glasnevin, Dublin, Ireland
| | - H McDermott
- Department of Clinical Microbiology, Bon Secours Hospital Dublin, Glasnevin, Dublin, Ireland
| | - M Fitzpatrick
- Infection Prevention and Control Department, Bon Secours Hospital Dublin, Glasnevin, Dublin, Ireland
| | - A Hoyne
- Department of Clinical Microbiology, Bon Secours Hospital Dublin, Glasnevin, Dublin, Ireland
| | - O McCormack
- Department of Clinical Microbiology, Bon Secours Hospital Dublin, Glasnevin, Dublin, Ireland
| | - A Cullen
- Pharmacy Department, Bon Secours Hospital Dublin, Glasnevin, Dublin, Ireland
| | - G I Brennan
- National MRSA Reference Laboratory, St. James's Hospital, Dublin, Ireland
| | - B O'Connell
- National MRSA Reference Laboratory, St. James's Hospital, Dublin, Ireland; Department of Clinical Microbiology, School of Medicine, University of Dublin, Trinity College, St. James's Hospital, Dublin, Ireland
| | - D C Coleman
- Microbiology Research Unit, Division of Oral Biosciences, Dublin Dental University Hospital, University of Dublin, Trinity College, Dublin, Ireland.
| |
Collapse
|
37
|
Chen L, Han D, Tang Z, Hao J, Xiong W, Zeng Z. Co-existence of the oxazolidinone resistance genes cfr and optrA on two transferable multi-resistance plasmids in one Enterococcus faecalis isolate from swine. Int J Antimicrob Agents 2020; 56:105993. [PMID: 32335280 DOI: 10.1016/j.ijantimicag.2020.105993] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 02/12/2020] [Accepted: 04/15/2020] [Indexed: 02/06/2023]
Abstract
OBJECTIVES To identify and characterize oxazolidinone resistance genes cfr and optrA in enterococcal isolates. METHODS Two hundred and ninety-three enterococcal isolates were screened for the presence of cfr and optrA by polymerase chain reaction. The transferability of cfr and optrA was examined by conjugation. S1 nuclease pulsed-field gel electrophoresis and Southern blotting were used to identify the location of cfr and optrA. One Enterococcus faecalis isolate carrying both cfr and optrA was sequenced in full. RESULTS cfr and optrA were detected in 16 (5.5%) and 170 (58.0%) enterococcal isolates, respectively. Sixteen enterococcal isolates (E. faecalis n=13, Enterococcus avium n=2, Enterococcus mundtii n=1) carried both cfr and optrA. The cfr-carrying fragment between res and theta in plasmid p4 showed 98.9% identity to the corresponding region of plasmid pEF120805 from vancomycin-resistant Enterococcus faecium. The optrA-carrying segment between tnpB and optrA in plasmid p1 showed >99.9% identity to the corresponding region of genomic DNA from E. faecalis A101. Plasmid p4 and plasmid p1 were simultaneously conjugated to E. faecalis JH2-2. CONCLUSIONS One hundred and seventy optrA-positive enterococci were identified in 293 enterococcal isolates from swine and the farm environment. The co-existence of cfr and optrA in E. avium and E. mundtii has been identified previously. cfr and optrA were identified on two new conjugative plasmids from one E. faecalis isolate. The optrA-carrying segment (IS1216E-optrA-IS1216E) was reported initially. Among different types of enterococcal plasmids, ISEnfa5 and IS1216E elements may play a vital role in the dissemination of cfr and optrA, respectively.
Collapse
Affiliation(s)
- Lin Chen
- Guangdong Provincial Key Laboratory of Veterinary Drugs Development and Safety Evaluation, South China Agricultural University, Guangzhou, Guangdong, China; National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou, Guangdong, China; National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
| | - Dongdong Han
- Guangdong Provincial Key Laboratory of Veterinary Drugs Development and Safety Evaluation, South China Agricultural University, Guangzhou, Guangdong, China; National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou, Guangdong, China; National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
| | - Ziyun Tang
- Guangdong Provincial Key Laboratory of Veterinary Drugs Development and Safety Evaluation, South China Agricultural University, Guangzhou, Guangdong, China; National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou, Guangdong, China; National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
| | - Jie Hao
- Guangdong Provincial Key Laboratory of Veterinary Drugs Development and Safety Evaluation, South China Agricultural University, Guangzhou, Guangdong, China; National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou, Guangdong, China; National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
| | - Wenguang Xiong
- Guangdong Provincial Key Laboratory of Veterinary Drugs Development and Safety Evaluation, South China Agricultural University, Guangzhou, Guangdong, China; National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou, Guangdong, China; National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China.
| | - Zhenling Zeng
- Guangdong Provincial Key Laboratory of Veterinary Drugs Development and Safety Evaluation, South China Agricultural University, Guangzhou, Guangdong, China; National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou, Guangdong, China; National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China.
| |
Collapse
|
38
|
Moure Z, Lara N, Marín M, Sola-Campoy PJ, Bautista V, Gómez-Bertomeu F, Gómez-Dominguez C, Pérez-Vázquez M, Aracil B, Campos J, Cercenado E, Oteo-Iglesias J. Interregional spread in Spain of linezolid-resistant Enterococcus spp. isolates carrying the optrA and poxtA genes. Int J Antimicrob Agents 2020; 55:105977. [PMID: 32330583 DOI: 10.1016/j.ijantimicag.2020.105977] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 03/11/2020] [Accepted: 04/06/2020] [Indexed: 12/12/2022]
Abstract
The emergence of linezolid-resistant Enterococcus spp. (LRE) due to transferable resistance determinants is a matter of concern. To understand the contribution of the plasmid-encoded optrA and poxtA genes to the emergence of LRE, clinical isolates from different Spanish hospitals submitted to the Spanish Reference Laboratory from 2015-2018 were analysed. Linezolid resistance mechanisms were screened in all isolates by PCR and sequencing. Genetic relatedness of Enterococcus spp. carrying optrA and poxtA was studied by PFGE and MLST. Antimicrobial susceptibility was tested by broth microdilution using EUCAST standards. A total of 97 LRE isolates were studied, in 94 (96.9%) of which at least one resistance determinant was detected; 84/97 isolates (86.6%) presented a single resistance mechanism as follows: 45/84 (53.6%) carried the optrA gene, 38/84 (45.2%) carried the G2576T mutation and 1/84 (1.2%) carried the poxtA gene. In addition, 5/97 isolates (5.2%) carried both optrA and the G2576T mutation and 5/97 (5.2%) carried both optrA and poxtA. The optrA gene was more frequent in Enterococcus faecalis (83.6%) than Enterococcus faecium (11.1%) and was mainly associated with community-acquired urinary tract infections. Carriage of the poxtA gene was more frequent in E. faecium (13.9%) than E. faecalis (1.6%). Among the optrA-positive E. faecalis isolates, two main clusters were detected by PFGE. These two clusters belonged to ST585 and ST480 and were distributed throughout 11 and 6 Spanish provinces, respectively. This is the first description of LRE carrying the poxtA gene in Spain, including the co-existence of optrA and poxtA in five isolates.
Collapse
Affiliation(s)
- Zaira Moure
- Laboratorio de Referencia e Investigación en Resistencia a Antibióticos e Infecciones Relacionadas con la Asistencia Sanitaria, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain; Spanish Network for Research in Infectious Diseases (REIPI RD16/0016), Instituto de Salud Carlos III, Madrid, Spain
| | - Noelia Lara
- Laboratorio de Referencia e Investigación en Resistencia a Antibióticos e Infecciones Relacionadas con la Asistencia Sanitaria, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Mercedes Marín
- Microbiology Department, Hospital Gregorio Marañón, Madrid, Spain
| | - Pedro J Sola-Campoy
- Laboratorio de Referencia e Investigación en Resistencia a Antibióticos e Infecciones Relacionadas con la Asistencia Sanitaria, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Verónica Bautista
- Laboratorio de Referencia e Investigación en Resistencia a Antibióticos e Infecciones Relacionadas con la Asistencia Sanitaria, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | | | - Cristina Gómez-Dominguez
- Laboratorio de Referencia e Investigación en Resistencia a Antibióticos e Infecciones Relacionadas con la Asistencia Sanitaria, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - María Pérez-Vázquez
- Laboratorio de Referencia e Investigación en Resistencia a Antibióticos e Infecciones Relacionadas con la Asistencia Sanitaria, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain; Spanish Network for Research in Infectious Diseases (REIPI RD16/0016), Instituto de Salud Carlos III, Madrid, Spain
| | - Belén Aracil
- Laboratorio de Referencia e Investigación en Resistencia a Antibióticos e Infecciones Relacionadas con la Asistencia Sanitaria, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain; Spanish Network for Research in Infectious Diseases (REIPI RD16/0016), Instituto de Salud Carlos III, Madrid, Spain
| | - José Campos
- Laboratorio de Referencia e Investigación en Resistencia a Antibióticos e Infecciones Relacionadas con la Asistencia Sanitaria, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain; Spanish Network for Research in Infectious Diseases (REIPI RD16/0016), Instituto de Salud Carlos III, Madrid, Spain
| | - Emilia Cercenado
- Microbiology Department, Hospital Gregorio Marañón, Madrid, Spain
| | - Jesús Oteo-Iglesias
- Laboratorio de Referencia e Investigación en Resistencia a Antibióticos e Infecciones Relacionadas con la Asistencia Sanitaria, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain; Spanish Network for Research in Infectious Diseases (REIPI RD16/0016), Instituto de Salud Carlos III, Madrid, Spain.
| | | |
Collapse
|
39
|
Analysis of combined resistance to oxazolidinones and phenicols among bacteria from dogs fed with raw meat/vegetables and the respective food items. Sci Rep 2019; 9:15500. [PMID: 31664106 PMCID: PMC6820769 DOI: 10.1038/s41598-019-51918-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 10/08/2019] [Indexed: 12/30/2022] Open
Abstract
The gene optrA is the first gene that confers resistance to the oxazolidinone tedizolid, a last resort antimicrobial agent in human medicine. In this study we investigated the presence of optrA and the multi-resistance genes poxtA and cfr in enterococci and staphylococci from (i) pet animals known to be fed raw meat and vegetables and (ii) the respective food items. We examined 341 bacterial isolates from cats and dogs, 195 bacterial isolates from supermarket food items and only one E. faecium collected from industrial food in Beijing during 2016. Thirty-five (6.5%) of the 537 isolates, including 31/376 (8.2%) enterococci and 4/161 (2.5%) staphylococci, were positive for optrA, while all isolates were negative for poxtA and cfr. S1-nuclease pulsed-field gel electrophoresis (PFGE) and Southern blotting confirmed that optrA was located in the chromosomal DNA of 19 isolates and on a plasmid in the remaining 16 isolates. Whole genome sequencing revealed several different genetic environments of optrA in plasmid- or chromosome-borne optrA genes. PFGE, multilocus sequence typing (MLST) and/or SNP analysis demonstrated that the optrA-carrying Staphylococcus and Enterococcus isolates were genetically heterogeneous. However, in single cases, groups of related isolates were identified which might suggest a transfer of closely related optrA-positive E. faecalis isolates between food items and dogs.
Collapse
|
40
|
Mendes RE, Deshpande L, Streit JM, Sader HS, Castanheira M, Hogan PA, Flamm RK. ZAAPS programme results for 2016: an activity and spectrum analysis of linezolid using clinical isolates from medical centres in 42 countries. J Antimicrob Chemother 2019; 73:1880-1887. [PMID: 29659858 DOI: 10.1093/jac/dky099] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 03/02/2018] [Indexed: 12/11/2022] Open
Abstract
Objectives To report the linezolid activity, resistance mechanisms and epidemiological typing of selected isolates observed during the 2016 Zyvox® Annual Appraisal of Potency and Spectrum (ZAAPS) programme. Methods A total of 8325 organisms were consecutively collected from 76 centres in 42 countries (excluding the USA). Broth microdilution susceptibility testing was performed and isolates displaying linezolid MICs of ≥4 mg/L were molecularly characterized. Results Linezolid inhibited 99.8% of all Gram-positive pathogens at the respective susceptible breakpoints and showed a modal MIC of 1 mg/L, except for CoNS, for which the modal MIC result was 0.5 mg/L. Among isolates displaying linezolid MICs of ≥4 mg/L, one Staphylococcus aureus (linezolid MIC of 4 mg/L) harboured cfr and belonged to ST72, while four CoNS (MICs of 16-32 mg/L; ST2) showed drug target alterations. Two Enterococcus faecium (ST117) from a single site in Rome were linezolid non-susceptible (MICs of 8 mg/L) and had G2576T mutations. Eight linezolid-non-susceptible Enterococcus faecalis (MICs of 4 mg/L; 4 sites in 4 countries; ST256, ST480, ST766 and ST775) carried optrA and isolates carrying optrA from the same medical centre were genetically related. One Streptococcus gallolyticus (MIC of 4 mg/L) and one Streptococcus mitis (MIC of 16 mg/L) carried optrA and G2576T mutations, respectively. Conclusions These results document the continued long-term in vitro potency of linezolid. Alterations in the 23S rRNA and/or L3/L4 proteins remain the main oxazolidinone resistance mechanisms in E. faecium and CoNS, whereas optrA emerged as the sole mechanism in E. faecalis. Surveillance and infection control will be important strategies to detect optrA and prevent it from disseminating.
Collapse
|
41
|
Bai B, Hu K, Li H, Yao W, Li D, Chen Z, Cheng H, Zheng J, Pan W, Deng M, Liu X, Lin Z, Deng Q, Yu Z. Effect of tedizolid on clinical Enterococcus isolates: in vitro activity, distribution of virulence factor, resistance genes and multilocus sequence typing. FEMS Microbiol Lett 2019; 365:4780295. [PMID: 29390078 DOI: 10.1093/femsle/fnx284] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 12/25/2017] [Indexed: 12/22/2022] Open
Abstract
Enterococcal infections have become one of the most challenging nosocomial problems. Tedizolid, the second oxazolidinone, is 4-fold to 8-fold more potent in vivo and in vitro than linezolid against enterococci. However, the characteristics of tedizolid related to enterococci isolates in China remain elusive. The aim of this study was to evaluate in vitro activity of tedizolid against enterococcal isolates from patients with infections at a teaching hospital in China and to investigate the correlations between in vitro tedizolid activity against enterococci and the distribution of multilocus sequence types (MLST), resistance genes and virulence factors. A total of 289 non-duplicate Enterococcus faecalis strains and 68 E. faecium strains were isolated. Tedizolid inhibited 95.24% of all enterococcal isolates with an MIC ≤ 0.5μg/ml. Seventeen E. faecalis strains had an MIC > 0.5 μg/ml, and all E. faecium were inhibited at MIC ≤ 0.5 μg/ml. The proportion of tedizolid non-susceptible E. faecalis strains with optrA genes was higher than that among tedizolid-susceptible strains. Tedizolid exhibited good in vitro activity against all E. faecium strains, including multidrug-resistant E. faecium carrying tet(M), tet(L), tet(U),erm(A), erm(B) and erm(C) genes. In summary, tedizolid has an advantage (higher sensitivity rate) compared to linezolid among enterococci, except for isolates expressing the plasmid-encoded optrA gene.
Collapse
Affiliation(s)
- Bing Bai
- Department of Infectious Diseases and Shenzhen Key Lab for Endogenous Infection, Shenzhen Nanshan Hospital, Shenzhen University, No 89, Taoyuan Road, Nanshan District, Shenzhen 518052, China.,Quality Control Center of Hospital Infection Management, Shenzhen 518052, China
| | - Kaitao Hu
- Department of Infectious Diseases and Shenzhen Key Lab for Endogenous Infection, Shenzhen Nanshan Hospital, Shenzhen University, No 89, Taoyuan Road, Nanshan District, Shenzhen 518052, China.,Quality Control Center of Hospital Infection Management, Shenzhen 518052, China
| | - Hui Li
- Department of Digestive Diseases, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Weiming Yao
- Department of Infectious Diseases and Shenzhen Key Lab for Endogenous Infection, Shenzhen Nanshan Hospital, Shenzhen University, No 89, Taoyuan Road, Nanshan District, Shenzhen 518052, China.,Quality Control Center of Hospital Infection Management, Shenzhen 518052, China
| | - Duoyun Li
- Department of Infectious Diseases and Shenzhen Key Lab for Endogenous Infection, Shenzhen Nanshan Hospital, Shenzhen University, No 89, Taoyuan Road, Nanshan District, Shenzhen 518052, China.,Quality Control Center of Hospital Infection Management, Shenzhen 518052, China
| | - Zhong Chen
- Department of Infectious Diseases and Shenzhen Key Lab for Endogenous Infection, Shenzhen Nanshan Hospital, Shenzhen University, No 89, Taoyuan Road, Nanshan District, Shenzhen 518052, China.,Quality Control Center of Hospital Infection Management, Shenzhen 518052, China
| | - Hang Cheng
- Department of Infectious Diseases and Shenzhen Key Lab for Endogenous Infection, Shenzhen Nanshan Hospital, Shenzhen University, No 89, Taoyuan Road, Nanshan District, Shenzhen 518052, China.,Quality Control Center of Hospital Infection Management, Shenzhen 518052, China
| | - Jinxin Zheng
- Department of Infectious Diseases and Shenzhen Key Lab for Endogenous Infection, Shenzhen Nanshan Hospital, Shenzhen University, No 89, Taoyuan Road, Nanshan District, Shenzhen 518052, China.,Quality Control Center of Hospital Infection Management, Shenzhen 518052, China.,Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Science and Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Weiguang Pan
- Department of Infectious Diseases and Shenzhen Key Lab for Endogenous Infection, Shenzhen Nanshan Hospital, Shenzhen University, No 89, Taoyuan Road, Nanshan District, Shenzhen 518052, China.,Quality Control Center of Hospital Infection Management, Shenzhen 518052, China
| | - Minggui Deng
- Department of Infectious Diseases and Shenzhen Key Lab for Endogenous Infection, Shenzhen Nanshan Hospital, Shenzhen University, No 89, Taoyuan Road, Nanshan District, Shenzhen 518052, China.,Quality Control Center of Hospital Infection Management, Shenzhen 518052, China
| | - Xiaojun Liu
- Department of Infectious Diseases and Shenzhen Key Lab for Endogenous Infection, Shenzhen Nanshan Hospital, Shenzhen University, No 89, Taoyuan Road, Nanshan District, Shenzhen 518052, China.,Quality Control Center of Hospital Infection Management, Shenzhen 518052, China
| | - Zhiwei Lin
- Department of Infectious Diseases and Shenzhen Key Lab for Endogenous Infection, Shenzhen Nanshan Hospital, Shenzhen University, No 89, Taoyuan Road, Nanshan District, Shenzhen 518052, China.,Quality Control Center of Hospital Infection Management, Shenzhen 518052, China.,Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Science and Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Qiwen Deng
- Department of Infectious Diseases and Shenzhen Key Lab for Endogenous Infection, Shenzhen Nanshan Hospital, Shenzhen University, No 89, Taoyuan Road, Nanshan District, Shenzhen 518052, China.,Quality Control Center of Hospital Infection Management, Shenzhen 518052, China
| | - Zhijian Yu
- Department of Infectious Diseases and Shenzhen Key Lab for Endogenous Infection, Shenzhen Nanshan Hospital, Shenzhen University, No 89, Taoyuan Road, Nanshan District, Shenzhen 518052, China.,Quality Control Center of Hospital Infection Management, Shenzhen 518052, China.,Department of Pharmacy Practice and Translational Research, University of Houston, No. 4849 Calhoun Road, Houston, TX 77204, USA
| |
Collapse
|
42
|
Chen H, Wang X, Yin Y, Li S, Zhang Y, Wang Q, Wang H. Molecular characteristics of oxazolidinone resistance in enterococci from a multicenter study in China. BMC Microbiol 2019; 19:162. [PMID: 31299904 PMCID: PMC6626368 DOI: 10.1186/s12866-019-1537-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 06/30/2019] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Linezolid-resistant enterococci pose great challenges in clinical practice. The aim of this study is to study the mechanisms underlying the resistance and genetic environment of antimicrobial resistance gene of linezolid-resistant enterococci. RESULTS The linezolid MICs of 16 enterococci were 4 mg/L to 16 mg/L. Four strains belonged to multi-drug resistant (MDR) bacteria. The sequence types (STs) of 13 enterococci strains performed WGS were diverse: 3 ST476, 1 ST86, ST116, ST480, ST59, ST416, ST21, ST67, ST16, ST585 and ST18. None of them carried multi-drug resistance gene cfr. Only one strain had the G2658 T mutation of target 23S rRNA gene. Thirteen (13/16, 81.3%) strains harbored the novel oxazolidinone resistance gene optrA. WGS analysis showed that the optrA gene was flanked by sequence IS1216E insertion in 13 strains, and optrA was adjacent to transposons Tn558 in two strains and Tn554 in one strain. The optrA gene was identified to be co-localized with fexA, the resistance genes mediated florfenicol resistance in 13 strains, and ermA1, the resistance genes mediated erythromycin resistance in 9 strains, indicating that linezolid-resistant strains may be selected due to non-oxazolidinone antibiotics (i.e. macrolides and florfenicol) usage. CONCLUSION Our findings demonstrate the high diversity of optrA-carrying genetic platforms. The mobile genetic elements (MGEs) may play an important role in the dissemination of optrA into the enterococci isolates of human origin. The genetic evidence of transferable feature and co-selection of optrA should be gave more attention in clinical practice.
Collapse
Affiliation(s)
- Hongbin Chen
- Department of Clinical Laboratory, Peking University People’s Hospital, Beijing, 100044 People’s Republic of China
| | - Xiaojuan Wang
- Department of Clinical Laboratory, Peking University People’s Hospital, Beijing, 100044 People’s Republic of China
| | - Yuyao Yin
- Department of Clinical Laboratory, Peking University People’s Hospital, Beijing, 100044 People’s Republic of China
| | - Shuguang Li
- Department of Clinical Laboratory, Peking University People’s Hospital, Beijing, 100044 People’s Republic of China
| | - Yawei Zhang
- Department of Clinical Laboratory, Peking University People’s Hospital, Beijing, 100044 People’s Republic of China
| | - Qi Wang
- Department of Clinical Laboratory, Peking University People’s Hospital, Beijing, 100044 People’s Republic of China
| | - Hui Wang
- Department of Clinical Laboratory, Peking University People’s Hospital, Beijing, 100044 People’s Republic of China
| |
Collapse
|
43
|
Kang ZZ, Lei CW, Kong LH, Wang YL, Ye XL, Ma BH, Wang XC, Li C, Zhang Y, Wang HN. Detection of transferable oxazolidinone resistance determinants in Enterococcus faecalis and Enterococcus faecium of swine origin in Sichuan Province, China. J Glob Antimicrob Resist 2019; 19:333-337. [PMID: 31136832 DOI: 10.1016/j.jgar.2019.05.021] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 05/13/2019] [Accepted: 05/17/2019] [Indexed: 02/02/2023] Open
Abstract
OBJECTIVES The aim of this study was to detect transferable oxazolidinone resistance determinants (cfr, optrA and poxtA) in Enterococcus faecalis and Enterococcus faecium isolates of swine origin in Sichuan Province, China. METHODS A total of 158 enterococcal isolates (93 E. faecalis and 65 E. faecium) isolated from 25 large-scale swine farms (2016-2017) were screened for the presence of cfr, optrA and poxtA by PCR. The genetic environments of cfr, optrA and poxtA were characterised by whole-genome sequencing. Transfer of oxazolidinone resistance determinants was determined by conjugation or electrotransformation experiments. RESULTS The transferable oxazolidinone resistance determinants cfr, optrA and poxtA were detected in zero, six and one enterococcal isolates, respectively. The poxtA gene in one E. faecalis isolate was located on a 37 990-bp plasmid that co-harboured fexB, cat, tet(L) and tet(M) and could be conjugated to E. faecalis JH2-2. One E. faecalis isolate harboured two different OptrA variants, including one variant with a single substitution (Q219H) that has not been reported previously. Two optrA-carrying plasmids, pC25-1 (45 581bp) and pC54 (64 500bp), shared a 40 494-bp identical region containing the genetic context IS1216E-fexA-optrA-erm(A)-IS1216E that could be electrotransformed into Staphylococcus aureus. Four different chromosomal optrA gene clusters were found in five strains, in which optrA was associated with Tn554 or Tn558 inserted into the radC gene. CONCLUSION This study highlights the fact that mobile genetic elements, such as plasmids, IS1216E, Tn554 and Tn558, may facilitate the horizontal transmission of optrA and poxtA genes.
Collapse
Affiliation(s)
- Zhuang-Zhuang Kang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, and Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu, China
| | - Chang-Wei Lei
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, and Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu, China
| | - Ling-Han Kong
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, and Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu, China
| | - Yu-Long Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, and Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu, China
| | - Xiao-Lan Ye
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, and Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu, China
| | - Bo-Heng Ma
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, and Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu, China
| | - Xue-Chun Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, and Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu, China
| | - Cui Li
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, and Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu, China
| | - Yu Zhang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, and Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu, China
| | - Hong-Ning Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, and Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu, China.
| |
Collapse
|
44
|
Farman M, Yasir M, Al-Hindi RR, Farraj SA, Jiman-Fatani AA, Alawi M, Azhar EI. Genomic analysis of multidrug-resistant clinical Enterococcus faecalis isolates for antimicrobial resistance genes and virulence factors from the western region of Saudi Arabia. Antimicrob Resist Infect Control 2019; 8:55. [PMID: 30962917 PMCID: PMC6434864 DOI: 10.1186/s13756-019-0508-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 03/13/2019] [Indexed: 02/07/2023] Open
Abstract
Background Enterococcus faecalis is a ubiquitous member of the gut microbiota and has emerged as a life- threatening multidrug-resistant (MDR) nosocomial pathogen. The aim of this study was to survey the prevalence of multidrug-resistant and epidemiologically important strains of E. faecalis in the western region of Saudi Arabia using phenotypic and whole genome sequencing approaches. Methods In total, 155 patients positive for E. faecalis infection were included in this study. The isolates were identified by MALDI-TOF, and screen for antimicrobial resistance using VITEK-2 system. Genome sequencing was performed with paired-end strategy using MiSeq platform. Results Seventeen sequence types (STs) were identified through multilocus sequence typing (MLST) analysis of the E. faecalis genomes, including two novels STs (ST862 and ST863). The most common STs in the Saudi patients were ST179 and ST16 from clonal complex 16 (CC16). Around 96% (n = 149) isolates were MDR. The antibiotics quinupristin/dalfopristin, clindamycin, and erythromycin demonstrated almost no coverage, and high-level streptomycin, gentamycin, and ciprofloxacin demonstrated suboptimal coverage. Low resistance was observed against vancomycin, linezolid, and ampicillin. Moreover, 34 antimicrobial resistance genes and variants, and three families of insertion sequences were found in the E. faecalis genomes, which likely contributed to the observed antimicrobial resistance. Twenty-two virulence factors, which were mainly associated with biofilm formation, endocarditis, cell adherence, and colonization, were detected in the isolates. Conclusions Diverse STs of E. faecalis, including strains associated with common nosocomial infections are circulating in the healthcare facility of Saudi Arabia and carried multi-drug resistance, which has important implications for infection control. Electronic supplementary material The online version of this article (10.1186/s13756-019-0508-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Muhammad Farman
- 1Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, 21589 Saudi Arabia.,2Biology Department, Faculty of Science, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
| | - Muhammad Yasir
- 1Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, 21589 Saudi Arabia.,6Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Rashad R Al-Hindi
- 2Biology Department, Faculty of Science, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
| | - Suha A Farraj
- 1Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
| | - Asif A Jiman-Fatani
- 3Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia.,4Clinical and Molecular Microbiology Laboratories, King Abdulaziz University Hospital, Jeddah, Saudi Arabia
| | - Maha Alawi
- 3Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia.,Infection Control & Environmental Health Unit, King Abdulaziz University Hospital, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Esam I Azhar
- 1Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, 21589 Saudi Arabia.,6Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
45
|
Zheng JX, Sun X, Lin ZW, Qi GB, Tu HP, Wu Y, Jiang SB, Chen Z, Deng QW, Qu D, Yu ZJ. In vitro activities of daptomycin combined with fosfomycin or rifampin on planktonic and adherent linezolid-resistant isolates of Enterococcus faecalis. J Med Microbiol 2019; 68:493-502. [PMID: 30882300 DOI: 10.1099/jmm.0.000945] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
PURPOSE This study aimed to explore daptomycin combined with fosfomycin or rifampin against the planktonic and adherent linezolid-resistant isolates of Enterococcus faecalis. METHODOLOGY Four linezolid-resistant and four linezolid-sensitive isolates of E. faecalis which formed biofilms were collected for this study. Biofilm biomasses were detected by crystal violet staining and the adherent cells in the mature biofilms were quantified by c.f.u. determination. RESULTS Daptomycin alone, or combined with fosfomycin or rifampin (4×MIC) demonstrated bactericidal activities on the planktonic cells, and daptomycin combined with fosfomycin killed more planktonic cells (at least 1-log10 c.f.u. ml-1) than daptomycin or fosfomycin alone. Daptomycin alone (16×MIC) showed anti-biofilm activities against the mature biofilms and bactericidal activities on the adherent cells, while daptomycin combined with fosfomycin (16×MIC) demonstrated significantly more anti-biofilm activities than daptomycin or fosfomycin alone and effectively killed the adherent cells in the mature biofilms. The high concentration of daptomycin (512 mg l-1 ) combined with fosfomycin indicated more bactericidal activities on the adherent cells and more anti-biofilm activities against the mature biofilms than daptomycin 64 mg l-1 (16×MIC) combined with fosfomycin. The addition of rifampin increased the anti-biofilm and bactericidal activities of daptomycin against the mature biofilms and the adherent cells of two isolates, however, which was not observed in other isolates. CONCLUSIONS Daptomycin combined with fosfomycin demonstrated better effect on the planktonic and adherent linezolid-resistant isolates of E. faecalis than daptomycin or fosfomycin alone. The role of rifampin in the treatment of E. faecalis isolates is discrepant and needs more studies.
Collapse
Affiliation(s)
- Jin-Xin Zheng
- 1 Department of Infectious Diseases and the Key Lab of Endogenous Infection, Shenzhen Nanshan People's Hospital and The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen 518052, PR China.,2 Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Science and Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, PR China
| | - Xiang Sun
- 1 Department of Infectious Diseases and the Key Lab of Endogenous Infection, Shenzhen Nanshan People's Hospital and The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen 518052, PR China
| | - Zhi-Wei Lin
- 1 Department of Infectious Diseases and the Key Lab of Endogenous Infection, Shenzhen Nanshan People's Hospital and The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen 518052, PR China
| | - Guo-Bin Qi
- 2 Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Science and Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, PR China
| | - Hao-Peng Tu
- 1 Department of Infectious Diseases and the Key Lab of Endogenous Infection, Shenzhen Nanshan People's Hospital and The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen 518052, PR China
| | - Yang Wu
- 2 Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Science and Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, PR China
| | - Si-Bo Jiang
- 3 Department of Pharmaceutics, University of Florida, Orlando 32827, USA
| | - Zhong Chen
- 2 Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Science and Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, PR China.,1 Department of Infectious Diseases and the Key Lab of Endogenous Infection, Shenzhen Nanshan People's Hospital and The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen 518052, PR China
| | - Qi-Wen Deng
- 1 Department of Infectious Diseases and the Key Lab of Endogenous Infection, Shenzhen Nanshan People's Hospital and The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen 518052, PR China
| | - Di Qu
- 2 Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Science and Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, PR China
| | - Zhi-Jian Yu
- 1 Department of Infectious Diseases and the Key Lab of Endogenous Infection, Shenzhen Nanshan People's Hospital and The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen 518052, PR China
| |
Collapse
|
46
|
Na SH, Moon DC, Choi MJ, Oh SJ, Jung DY, Kang HY, Hyun BH, Lim SK. Detection of oxazolidinone and phenicol resistant enterococcal isolates from duck feces and carcasses. Int J Food Microbiol 2019; 293:53-59. [DOI: 10.1016/j.ijfoodmicro.2019.01.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 11/26/2018] [Accepted: 01/04/2019] [Indexed: 01/08/2023]
|
47
|
Bai B, Hu K, Zeng J, Yao W, Li D, Pu Z, Chen Z, Cheng H, Zheng J, Pan W, Lin Z, Xie L, Deng Q, Yu Z. Linezolid Consumption Facilitates the Development of Linezolid Resistance in Enterococcus faecalis in a Tertiary-Care Hospital: A 5-Year Surveillance Study. Microb Drug Resist 2019; 25:791-798. [PMID: 30762463 DOI: 10.1089/mdr.2018.0005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Although case reports and clinical studies of linezolid (LZD)-resistant Enterococcus faecalis (LREF) have gradually increased in recent years, the relationship between LZD resistance and antibiotic consumption in hospital settings still remains unclear. In this study, we aimed to investigate the dynamic relationship between the yearly detection frequency of LREF clinical isolates and yearly consumption of LZD and vancomycin (VCM) over a 5-year period in a Chinese hospital setting. Antibiotic consumption data (LZD and VCM) from 2011 to 2015 were obtained from a computerized database and recalculated as the defined daily doses (DDDs) per 100 bed-days (DBD). All 268 E. faecalis clinical isolates were retrospectively collected from 2011 to 2015 in this hospital. LZD resistance mechanism and multilocus sequence typing of E. faecalis were determined by PCR. The annual detection frequency of LREF clinical isolates tested in this hospital was shown with 1.89% (1/53), 2% (1/50), 2.04% (1/49), 0% (0/45), and 7.04% (5/71), respectively, and the detection frequency of LZD-nonsusceptible E. faecalis (LNSEF; n = 59, including LZD-resistant and intermediate isolates) was determined with 26.42% (14/53), 34% (17/50), 16.33% (8/49), 22.22% (10/45), and 14.08% (10/71), respectively. Spearman correlation analysis revealed that LZD DBD significantly correlated positively with the detection frequency of LREF (r = 0.886, p = 0.019). Moreover, VCM DBD significantly correlated positively with the frequency of LNSEF (r = 0.943, p = 0.005). Furthermore, the detection frequency of optrA-positive E. faecalis also correlated positively with high LZD consumption load in this hospital setting. Conclusively, high LZD consumption load facilitates the development of LZD resistance and promotes the selection of optrA-positive E. faecalis clinical isolates under antibiotic pressure in a hospital setting.
Collapse
Affiliation(s)
- Bing Bai
- 1 Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Shenzhen Nanshan Hospital of Shenzhen University, Nanshan District, Shenzhen, China.,2 Quality Control Center of Hospital Infection Management of Shenzhen, Shenzhen, China
| | - Kaitao Hu
- 1 Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Shenzhen Nanshan Hospital of Shenzhen University, Nanshan District, Shenzhen, China.,2 Quality Control Center of Hospital Infection Management of Shenzhen, Shenzhen, China
| | - Jun Zeng
- 3 Department of Digestive Diseases, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weiming Yao
- 1 Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Shenzhen Nanshan Hospital of Shenzhen University, Nanshan District, Shenzhen, China.,2 Quality Control Center of Hospital Infection Management of Shenzhen, Shenzhen, China
| | - Duoyun Li
- 1 Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Shenzhen Nanshan Hospital of Shenzhen University, Nanshan District, Shenzhen, China.,2 Quality Control Center of Hospital Infection Management of Shenzhen, Shenzhen, China
| | - Zhangya Pu
- 1 Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Shenzhen Nanshan Hospital of Shenzhen University, Nanshan District, Shenzhen, China.,2 Quality Control Center of Hospital Infection Management of Shenzhen, Shenzhen, China
| | - Zhong Chen
- 1 Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Shenzhen Nanshan Hospital of Shenzhen University, Nanshan District, Shenzhen, China.,2 Quality Control Center of Hospital Infection Management of Shenzhen, Shenzhen, China
| | - Hang Cheng
- 1 Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Shenzhen Nanshan Hospital of Shenzhen University, Nanshan District, Shenzhen, China.,2 Quality Control Center of Hospital Infection Management of Shenzhen, Shenzhen, China
| | - Jinxin Zheng
- 1 Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Shenzhen Nanshan Hospital of Shenzhen University, Nanshan District, Shenzhen, China.,2 Quality Control Center of Hospital Infection Management of Shenzhen, Shenzhen, China.,4 Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Science and Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Weiguang Pan
- 1 Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Shenzhen Nanshan Hospital of Shenzhen University, Nanshan District, Shenzhen, China.,2 Quality Control Center of Hospital Infection Management of Shenzhen, Shenzhen, China
| | - Zhiwei Lin
- 1 Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Shenzhen Nanshan Hospital of Shenzhen University, Nanshan District, Shenzhen, China.,2 Quality Control Center of Hospital Infection Management of Shenzhen, Shenzhen, China.,4 Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Science and Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Lixia Xie
- 1 Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Shenzhen Nanshan Hospital of Shenzhen University, Nanshan District, Shenzhen, China.,2 Quality Control Center of Hospital Infection Management of Shenzhen, Shenzhen, China.,5 Department of Pharmacy Practice and Translational Research, University of Houston, Houston, Texas
| | - Qiwen Deng
- 1 Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Shenzhen Nanshan Hospital of Shenzhen University, Nanshan District, Shenzhen, China.,2 Quality Control Center of Hospital Infection Management of Shenzhen, Shenzhen, China
| | - Zhijian Yu
- 1 Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Shenzhen Nanshan Hospital of Shenzhen University, Nanshan District, Shenzhen, China.,2 Quality Control Center of Hospital Infection Management of Shenzhen, Shenzhen, China.,5 Department of Pharmacy Practice and Translational Research, University of Houston, Houston, Texas
| |
Collapse
|
48
|
Zhou W, Gao S, Xu H, Zhang Z, Chen F, Shen H, Zhang C. Distribution of the optrA gene in Enterococcus isolates at a tertiary care hospital in China. J Glob Antimicrob Resist 2019; 17:180-186. [PMID: 30641287 DOI: 10.1016/j.jgar.2019.01.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 01/02/2019] [Accepted: 01/03/2019] [Indexed: 10/27/2022] Open
Abstract
OBJECTIVES Linezolid-resistant Enterococcus have spread worldwide. This study investigated the prevalence of linezolid-non-susceptible Enterococcus (LNSE) and the potential mechanism and molecular epidemiology of LNSE isolates from Nanjing, China. METHODS Linezolid susceptibility of 2555 Enterococcus was retrospectively determined by Etest. Vancomycin and teicoplanin MICs were determined for LNSE by Etest. PCR and DNA sequencing were used to investigate the potential molecular mechanism. Clonal relatedness between LNSE isolates was analysed by MLST. WGS was also performed. RESULTS A total of 27 Enterococcus isolates (24 Enterococcus faecalis, 3 Enterococcus faecium) with linezolid MICs of 4-48μg/mL were identified, among which 20 E. faecalis and 3 E. faecium were positive for optrA. No mutations were found in genes encoding domain V of 23S rRNA or ribosomal proteins L3/L4; the cfr gene was not found. The 24 linezolid-non-susceptible E. faecalis were classified into eight STs (ST16, ST480, ST476, ST631, ST585, ST428, ST25 and ST689). The three linezolid-non-susceptible E. faecium were classified as ST17, ST400 and ST195. Comparison of the deduced OptrA amino acid sequences of the 23 optrA-positive isolates by PCR-based sequencing and WGS with that of the original OptrA from E. faecalis E349 revealed seven variants (KD, EDP, EDM, D, EDD, RDK and DP) in 16 isolates, with no mutations in the remaining 7 isolates. optrA was found downstream of fexA by searching the pE349 sequence based on WGS data. CONCLUSIONS Emergence of LNSE with optrA-mediated resistance and clonal dissemination of ST16 E. faecalis in our hospital may pose a potential public-health threat.
Collapse
Affiliation(s)
- Wanqing Zhou
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, 321# Zhongshan Road, Gulou District, Nanjing, Jiangsu Province 210008, PR China
| | - Shuo Gao
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, 321# Zhongshan Road, Gulou District, Nanjing, Jiangsu Province 210008, PR China
| | - Hongjing Xu
- Department of Laboratory Medicine, Jiangning District Hospital of Traditional Chinese Medicine, 657# Tianyin Avenue, Jiangning District, Nanjing, Jiangsu Province 211100, PR China
| | - Zhifeng Zhang
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, 321# Zhongshan Road, Gulou District, Nanjing, Jiangsu Province 210008, PR China
| | - Fei Chen
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, 321# Zhongshan Road, Gulou District, Nanjing, Jiangsu Province 210008, PR China
| | - Han Shen
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, 321# Zhongshan Road, Gulou District, Nanjing, Jiangsu Province 210008, PR China.
| | - Chunni Zhang
- Department of Clinical Laboratory, Jinling Hospital, Nanjing University School of Medicine, Nanjing University, 305# East Zhongshan Road, Qinhuai District, Nanjing, Jiangsu Province 210008, PR China.
| |
Collapse
|
49
|
Hua R, Xia Y, Wu W, Yang M, Yan J. Molecular Epidemiology and Mechanisms of 43 Low-Level Linezolid-Resistant Enterococcus faecalis Strains in Chongqing, China. Ann Lab Med 2018; 39:36-42. [PMID: 30215228 PMCID: PMC6143467 DOI: 10.3343/alm.2019.39.1.36] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 04/12/2018] [Accepted: 08/16/2018] [Indexed: 12/02/2022] Open
Abstract
Background Enterococcus faecalis strains with low-level resistance to linezolid (an oxazolidinone antibiotic) have become common. No large-scale study has examined the underlying mechanisms in linezolid-resistant E. faecalis (LRE) strains. We investigated these mechanisms and molecular characteristics in Chongqing, China. Methods A total of 1,120 non-duplicated E. faecalis strains collected from August 2014 to June 2017 underwent drug susceptibility testing. LRE strains were screened for optrA, cfr, and mutations in the 23S rRNA and ribosomal proteins L3 and L4 by PCR amplification and sequencing. Multi-locus sequence typing (MLST) and pulsed-field gel electrophoresis (PFGE) were used for epidemiological analysis. Results All 43 low-level LRE strains (minimum inhibitory concentration: 8–16 mg/L) harbored optrA; cfr and 23S rRNA mutations were not detected. Novel mutations in the ribosomal proteins L3 and L4—one deletion (Q103del) and four substitutions (S113L, T35A, I98V, and N79D)—were identified. Novel amino acid substitutions at positions E60K, G197D, and T285P of the OptrA protein were observed. MLST revealed 20 types of LRE strains; the most common type was ST16 (32.6%). PFGE showed 14 strains of ST16 with unique banding patterns. Eight novel sequence types (ST823 to ST830) and one allele (gki95) were identified for the first time in China. Conclusions optrA plays an important role in linezolid resistance and may serve as a marker for resistance screening. Since the L3 and L4 mutations did not simultaneously occur in the same strain, they play a negligible role in linezolid resistance. Epidemiological investigation suggested that the LRE cases were sporadic.
Collapse
Affiliation(s)
- Ruoyi Hua
- Department of Clinical Laboratory, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yun Xia
- Department of Clinical Laboratory, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Wenyao Wu
- Department of Clinical Laboratory, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Mi Yang
- Department of Clinical Laboratory, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jia Yan
- Department of Clinical Laboratory, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
50
|
Chen M, Pan H, Lou Y, Wu Z, Zhang J, Huang Y, Yu W, Qiu Y. Epidemiological characteristics and genetic structure of linezolid-resistant Enterococcus faecalis. Infect Drug Resist 2018; 11:2397-2409. [PMID: 30538507 PMCID: PMC6251436 DOI: 10.2147/idr.s181339] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Objectives The aim of this study was to investigate the mechanism of linezolid resistance and evaluate the risk factors for linezolid-resistant Enterococcus faecalis (LZR-Efa) infections. Methods A total of 730 E. faecalis isolates were collected, and whole-genome sequencing and bioinformatics analysis were performed. Meanwhile, risk factors related to linezolid resistance were analyzed by binary logistic regression. Results Twenty-six LZR-Efa were isolated from various clinical samples, and 24 isolates were multidrug resistant. Four isolates were daptomycin nonsusceptible, while all LZR-Efa were susceptible to vancomycin. Thirteen different sequence types (STs) were identified, and the most prevalent type was ST16 (23.1%). The genes dfrE, lsaA, and emeA were identified in all isolates. A total of 23 E. faecalis were positive for optrA gene, and six amino acids mutations were identified among 18 LZR-Efa in OptrA. The 23S rRNA mutation was found in 16 LZR-Efa isolates. However, the presence of cfr was not identified. Furthermore, there were 41 virulence genes detected, and 10 genes (ace, bopD, cpsA, cpsB, ebpB, ebpC, efaA, fss1, fss2, and srtC) were found in all isolates. A total of nine isolates were positive for multiple virulent factors (ace, asa1, cylA, efaA, esp, and gelE). There was no difference in the number of virulence factors among different specimens (P=0.825). It is of note that all patients had not been prescribed linezolid or traveled abroad previously. Moreover, previous use of carbapenems was a risk factor for LZR-Efa infections. Conclusion The main trends of LZR-Efa, with lower level of resistance, were sporadic mainly in the department of surgery. optrA and 23S rRNA were the main resistance mechanisms. In addition, carbapenems use was an independent predictor of LZR-Efa infections.
Collapse
Affiliation(s)
- Meijuan Chen
- Department of Infectious Diseases, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China,
| | - Hongying Pan
- Department of Infectious Diseases, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China,
| | - Yaling Lou
- Department of Infectious Diseases, Dongyang People's Hospital, Jinhua, China
| | - Zhe Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China, ,
| | - Jiajie Zhang
- Department of Infectious Diseases, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China,
| | - Yicheng Huang
- Department of Infectious Diseases, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China,
| | - Wei Yu
- Department of Infectious Diseases, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China, .,State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China, ,
| | - Yunqing Qiu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China, ,
| |
Collapse
|