1
|
Sajjad M, Ali S, Baig S, Sharafat S, Khan BA, Khan S, Mughal N, Abidi SH. HBV S antigen evolution in the backdrop of HDV infection affects epitope processing and presentation. J Med Virol 2021; 93:3714-3729. [PMID: 33289144 DOI: 10.1002/jmv.26711] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 11/13/2020] [Accepted: 12/03/2020] [Indexed: 02/06/2023]
Abstract
INTRODUCTION HBV can evolve under selection pressure exerted by drugs and/or host immunity, resulting in accumulation of escape mutations that can affect the drug or the immune activity. Hepatitis delta virus (HDV) coinfection is also known to exert selection pressure on HBV, which leads to selective amplification of certain mutations, especially in genes that are required for HDV pathogenesis, such as HBsAg. However, little is known about the function of these mutations on HBV or HDV life cycle. The purpose of this study is to determine mutations selectively amplified in the backdrop of HDV, and how these mutations affect processing of CD4- and CD8-T cell epitopes. METHODS HBsAg was successfully amplified from 49/50 HBV mono- and 36/50 coinfected samples. The sequences were used to identify mutations specific to each study group, followed by an in silico analysis to determine the effect of these mutations on (1) proteasomal degradation, (2) MHC-I and MHC-II biding, and (3) processing of T-cell epitopes. RESULTS HBV-HDV coinfected sequences exhibited certain unique mutations in HBsAg genes. Some of these mutations affected the generation of proteasomal sites, binding of HBsAg epitopes to MHC-I and -II ligands, and subsequent generation of T- cell epitopes. CONCLUSION These observations suggest that HBV selectively amplifies certain mutations in the backdrop of HDV coinfection. Selective amplification of these mutations at certain strategic locations might not only enable HBV to counteract the inhibitory effects of HDV on HBV replication but also facilitate its survival by escaping the immune response.
Collapse
Affiliation(s)
- Mehwish Sajjad
- Department of Microbiology, Dow University of Health Sciences, Karachi, Pakistan
| | - Syed Ali
- Nazarbayev University School of Medicine, Nur-Sultan, Kazakhstan
| | - Samina Baig
- Department of Microbiology, Dow University of Health Sciences, Karachi, Pakistan
| | - Shaheen Sharafat
- Department of Microbiology, Dow University of Health Sciences, Karachi, Pakistan
| | - Bilal Ahmed Khan
- Department of Pathology, Dow University of Health Sciences, Karachi, Pakistan
| | - Saeed Khan
- Department of Pathology, Dow University of Health Sciences, Karachi, Pakistan
| | - Nouman Mughal
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi, Pakistan
- Department of Surgery, Aga Khan University, Karachi, Pakistan
| | - Syed Hani Abidi
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi, Pakistan
| |
Collapse
|
2
|
Sharafi H, Rezaee-Zavareh MS, Miri SM, Alavian SM. Global Distribution of Hepatitis D Virus Genotypes: A Systematic Review. HEPATITIS MONTHLY 2020; 20. [DOI: 10.5812/hepatmon.102268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
|
3
|
Ye X, Tateno C, Thi EP, Kakuni M, Snead NM, Ishida Y, Barnard TR, Sofia MJ, Shimada T, Lee ACH. Hepatitis B Virus Therapeutic Agent ARB-1740 Has Inhibitory Effect on Hepatitis Delta Virus in a New Dually-Infected Humanized Mouse Model. ACS Infect Dis 2019; 5:738-749. [PMID: 30408957 DOI: 10.1021/acsinfecdis.8b00192] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Hepatitis delta virus (HDV) infects 10-20 million individuals worldwide and causes severe fulminant hepatitis with high likelihood of cirrhosis and hepatocellular carcinoma. HDV infection cannot occur in the absence of the surface antigen (HBsAg) of the hepatitis B virus. RNA interference is an effective mechanism by which to inhibit viral transcripts, and siRNA therapeutics sharing this mechanism have begun to demonstrate clinical efficacy. Here we assessed the outcome of HBV-targeting siRNA intervention against HDV and compared it to a direct anti-HDV siRNA approach in dually infected humanized mice. Treatment with ARB-1740, a clinical stage HBV-targeting siRNA agent delivered using lipid nanoparticle (LNP) technology, effectively reduced HBV viremia by 2.3 log10 and serum HBsAg by 2.6 log10, leading to 1.6 log10 reduction of HDV viremia. In contrast, HDV-targeting siRNA inhibited HDV in both blood and liver compartments without affecting HBV and PEGylated interferon-alpha reduced HBV viremia by 2.0 log10 but had no effect on HDV viremia under these study conditions. These results illustrate the inhibitory effects of siRNAs against these two viral infections and suggest that ARB-1740 may be of therapeutic benefit for hepatitis delta patients, a subpopulation with high unmet medical need.
Collapse
Affiliation(s)
- Xin Ye
- Arbutus Biopharma, 701 Veterans Circle, Warminster, Pennsylvania 18974, United States
| | - Chise Tateno
- PhoenixBio Co., Ltd., 3-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, Japan
| | - Emily P. Thi
- Arbutus Biopharma, 701 Veterans Circle, Warminster, Pennsylvania 18974, United States
| | - Masakazu Kakuni
- PhoenixBio Co., Ltd., 3-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, Japan
| | - Nicholas M. Snead
- Arbutus Biopharma, 701 Veterans Circle, Warminster, Pennsylvania 18974, United States
| | - Yuji Ishida
- PhoenixBio Co., Ltd., 3-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, Japan
| | - Trisha R. Barnard
- Arbutus Biopharma, 701 Veterans Circle, Warminster, Pennsylvania 18974, United States
| | - Michael J. Sofia
- Arbutus Biopharma, 701 Veterans Circle, Warminster, Pennsylvania 18974, United States
| | - Takashi Shimada
- PhoenixBio Co., Ltd., 3-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, Japan
| | - Amy C. H. Lee
- Arbutus Biopharma, 701 Veterans Circle, Warminster, Pennsylvania 18974, United States
| |
Collapse
|
4
|
Baig S, Abidi SH, Azam Z, Majid S, Khan S, Khanani MR, Ali S. Evolution of HBV S-gene in the backdrop of HDV co-infection. J Med Virol 2018; 90:1328-1336. [PMID: 29663447 DOI: 10.1002/jmv.25200] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 03/22/2018] [Indexed: 12/15/2022]
Abstract
HBV-HDV co-infected people have a higher chance of developing cirrhosis, fulminant hepatitis, and hepatocellular carcinoma (HCC) compared to those infected only with HBV. The present study was conducted to investigate HBV genotypes and phylogeny among HBV mono-infected and HBV-HDV co-infected patients, as well as analyze mutations in the surface gene of HBV in mono-infected and co-infected patients. A total of 100 blood samples (50 co-infected with HBV and HDV, and 50 mono-infected with HBV only) were collected for this study. HBV DNA was extracted from patient sera and partial surface antigen gene was amplified from HBV genome using polymerase chain reaction. HBV S gene was sequenced from 49 mono-infected and 36 co-infected patients and analyzed to identify HBV genotypes and phylogenetic patterns. Subsequently, HBV S amino acid sequences were analyzed for mutational differences between sequences from mono- and co-infected patients. HBV genotype D was predominantly found in both mono-infected as well as co-infected patients. Phylogenetic analysis showed the divergence of HBV sequences, between mono- and co-infected patients, into two distinct clusters. HBV S gene mutation analysis revealed certain mutations in HBV-HDV co-infected subjects to be distinct from those found in mono-infected patients. This might indicate the evolution of HBV S gene under selection pressures generated from HDV coinfection.
Collapse
Affiliation(s)
- Samina Baig
- Department of Microbiology, Dow University of Health Sciences, Karachi, Pakistan
| | - Syed H Abidi
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi, Pakistan
| | - Zahid Azam
- National Institute of Liver and Gastrointestinal Diseases, Dow University of Health Sciences, Karachi, Pakistan
| | - Shahid Majid
- National Institute of Liver and Gastrointestinal Diseases, Dow University of Health Sciences, Karachi, Pakistan
| | - Saeed Khan
- Department of Pathology and Dow Institute of Biotechnology and Biomedical Sciences, Dow University of Health Sciences, Karachi, Pakistan
| | - Muhammad R Khanani
- Department of Pathology and Dow Institute of Biotechnology and Biomedical Sciences, Dow University of Health Sciences, Karachi, Pakistan
| | - Syed Ali
- Department of Biomedical Sciences, Nazarbayev School of Medicine, Nazarbayev University, Astana, Kazakhstan.,Department of Pathology, Dow University of Health Sciences, Karachi, Pakistan
| |
Collapse
|
5
|
Shirvani-Dastgerdi E, Winer BY, Celià-Terrassa T, Kang Y, Tabernero D, Yagmur E, Rodríguez-Frías F, Gregori J, Luedde T, Trautwein C, Ploss A, Tacke F. Selection of the highly replicative and partially multidrug resistant rtS78T HBV polymerase mutation during TDF-ETV combination therapy. J Hepatol 2017; 67:246-254. [PMID: 28392234 PMCID: PMC6016549 DOI: 10.1016/j.jhep.2017.03.027] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 03/01/2017] [Accepted: 03/16/2017] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Patients chronically infected with the hepatitis B virus (HBV) and receiving long-term treatment with nucleoside or nucleotide analogues are at risk of selecting HBV strains with complex mutational patterns. We herein report two cases of HBV-infected patients with insufficient viral suppression, despite dual antiviral therapy with entecavir (ETV) and tenofovir (TDF). One patient died from aggressive hepatocellular carcinoma (HCC). METHODS Serum samples from the two patients at different time points were analyzed using ultra-deep pyrosequencing analysis. HBV mutations were identified and transiently transfected into hepatoma cells in vitro using replication-competent HBV vectors, and functionally analyzed. We assessed replication efficacy, resistance to antivirals and potential impact on HBV secretion (viral particles, exosomes). RESULTS Sequencing analyses revealed the selection of the rtS78T HBV polymerase mutation in both cases that simultaneously creates a premature stop codon at sC69 and thereby deletes almost the entire small HBV surface protein. One of the patients had an additional 261bp deletion in the preS1/S2 region. Functional analyses of the mutations in vitro revealed that the rtS78T/sC69∗ mutation, but not the preS1/S2 deletion, significantly enhanced viral replication and conferred reduced susceptibility to ETV and TDF. The sC69∗ mutation caused truncation of HBs protein, leading to impaired detection by commercial HBsAg assay, without causing intracellular HBsAg retention or affecting HBV secretion. CONCLUSIONS The rtS78T/sC69∗ HBV mutation, associated with enhanced replication and insufficient response to antiviral treatment, may favor long-term persistence of these isolates. In addition to the increased production of HBV transcripts and the sustained secretion of viral particles in the absence of antigenic domains of S protein, this HBV mutation may predispose patients to carcinogenic effects. LAY SUMMARY Long-term treatment with antiviral drugs carries the risk of selecting mutations in the hepatitis B virus (HBV). We herein report two cases of patients with insufficient response to dual tenofovir and entecavir therapy. Molecular analyses identified a distinct mutation, rtS78T/sC69∗, that abolishes HBsAg detection, enhances replication, sustains exosome-mediated virion secretion and decreases susceptibility to antivirals, thereby representing a potentially high-risk mutation for HBV-infected individuals.
Collapse
Affiliation(s)
- Elham Shirvani-Dastgerdi
- Department of Medicine III, RWTH-University Hospital Aachen, Aachen, Germany; Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Benjamin Y Winer
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | | | - Yibin Kang
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - David Tabernero
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain; Liver Unit, Vall d'Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Eray Yagmur
- Medical Care Centre, Dr Stein and Colleagues, Mönchengladbach, Germany
| | - Francisco Rodríguez-Frías
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain; Liver Unit, Vall d'Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | | | - Tom Luedde
- Department of Medicine III, RWTH-University Hospital Aachen, Aachen, Germany
| | - Christian Trautwein
- Department of Medicine III, RWTH-University Hospital Aachen, Aachen, Germany
| | - Alexander Ploss
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Frank Tacke
- Department of Medicine III, RWTH-University Hospital Aachen, Aachen, Germany.
| |
Collapse
|
6
|
Sadeghi A, Shirvani-Dastgerdi E, Tacke F, Yagmur E, Poortahmasebi V, Poorebrahim M, Mohraz M, Hajabdolbaghi M, Rasoolinejad M, Abbasian L, Jafari R, Fakhari Z, Norouzi M, Ebrahimian A, Geravand B, Alavian SM, Jazayeri SM. HBsAg mutations related to occult hepatitis B virus infection in HIV-positive patients result in a reduced secretion and conformational changes of HBsAg. J Med Virol 2016; 89:246-256. [DOI: 10.1002/jmv.24623] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/04/2016] [Indexed: 12/17/2022]
Affiliation(s)
- Ahmadreza Sadeghi
- Hepatitis B Molecular Laboratory, Department of Virology; School of Public Health, Tehran University of Medical Sciences; Tehran Iran
| | | | - Frank Tacke
- Department of Medicine III; RWTH-University Hospital Aachen; Aachen Germany
| | - Eray Yagmur
- Laboratory Diagnostics Center; RWTH-University Hospital Aachen and Medical Care Center, Dr. Stein and Colleagues; Moenchengladbach Germany
| | - Vahdat Poortahmasebi
- Hepatitis B Molecular Laboratory, Department of Virology; School of Public Health, Tehran University of Medical Sciences; Tehran Iran
| | - Mansour Poorebrahim
- Department of Medical Biotechnology; School of Advanced Technologies in Medicine, Tehran University of Medical Sciences; Tehran Iran
| | - Minoo Mohraz
- Iranian Research Center for HIV/AIDS; Tehran Iran
| | | | | | | | - Rezvaneh Jafari
- Hepatitis B Molecular Laboratory, Department of Virology; School of Public Health, Tehran University of Medical Sciences; Tehran Iran
| | - Zahra Fakhari
- Hepatitis B Molecular Laboratory, Department of Virology; School of Public Health, Tehran University of Medical Sciences; Tehran Iran
| | - Mehdi Norouzi
- Hepatitis B Molecular Laboratory, Department of Virology; School of Public Health, Tehran University of Medical Sciences; Tehran Iran
| | - Arefeh Ebrahimian
- Hepatitis B Molecular Laboratory, Department of Virology; School of Public Health, Tehran University of Medical Sciences; Tehran Iran
| | - Babak Geravand
- Hepatitis B Molecular Laboratory, Department of Virology; School of Public Health, Tehran University of Medical Sciences; Tehran Iran
| | | | - Seyed Mohammad Jazayeri
- Hepatitis B Molecular Laboratory, Department of Virology; School of Public Health, Tehran University of Medical Sciences; Tehran Iran
| |
Collapse
|