1
|
Bruno PS, Biggers P, Nuru N, Versaci N, Chirila MI, Darie CC, Neagu AN. Small Biological Fighters Against Cancer: Viruses, Bacteria, Archaea, Fungi, Protozoa, and Microalgae. Biomedicines 2025; 13:665. [PMID: 40149641 PMCID: PMC11940145 DOI: 10.3390/biomedicines13030665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/04/2025] [Accepted: 03/06/2025] [Indexed: 03/29/2025] Open
Abstract
Despite the progress made in oncological theranostics, cancer remains a global health problem and a leading cause of death worldwide. Multidrug and radiation therapy resistance is an important challenge in cancer treatment. To overcome this great concern in clinical practice, conventional therapies are more and more used in combination with modern approaches to improve the quality of patients' lives. In this review, we emphasize how small biological entities, such as viruses, bacteria, archaea, fungi, protozoans, and microalgae, as well as their related structural compounds and toxins/metabolites/bioactive molecules, can prevent and suppress cancer or regulate malignant initiation, progression, metastasis, and responses to different therapies. All these small biological fighters are free-living or parasitic in nature and, furthermore, viruses, bacteria, archaea, fungi, and protozoans are components of human and animal microbiomes. Recently, polymorphic microbiomes have been recognized as a new emerging hallmark of cancer. Fortunately, there is no limit to the development of novel approaches in cancer biomedicine. Thus, viral vector-based cancer therapies based on genetically engineered viruses, bacteriotherapy, mycotherapy based on anti-cancer fungal bioactive compounds, use of protozoan parasite-derived proteins, nanoarchaeosomes, and microalgae-based microrobots have been more and more used in oncology, promoting biomimetic approaches and biology-inspired strategies to maximize cancer diagnostic and therapy efficiency, leading to an improved patients' quality of life.
Collapse
Affiliation(s)
- Pathea Shawnae Bruno
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biochemistry, Clarkson University, Potsdam, NY 13699-5810, USA; (P.S.B.); (P.B.); (N.N.); (N.V.)
| | - Peter Biggers
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biochemistry, Clarkson University, Potsdam, NY 13699-5810, USA; (P.S.B.); (P.B.); (N.N.); (N.V.)
| | - Niyogushima Nuru
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biochemistry, Clarkson University, Potsdam, NY 13699-5810, USA; (P.S.B.); (P.B.); (N.N.); (N.V.)
| | - Nicholas Versaci
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biochemistry, Clarkson University, Potsdam, NY 13699-5810, USA; (P.S.B.); (P.B.); (N.N.); (N.V.)
| | - Miruna Ioana Chirila
- Laboratory of Animal Histology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iași, Carol I Bvd. 20A, 700505 Iasi, Romania;
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, University Street No. 16, 700115 Iasi, Romania
| | - Costel C. Darie
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biochemistry, Clarkson University, Potsdam, NY 13699-5810, USA; (P.S.B.); (P.B.); (N.N.); (N.V.)
| | - Anca-Narcisa Neagu
- Laboratory of Animal Histology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iași, Carol I Bvd. 20A, 700505 Iasi, Romania;
| |
Collapse
|
2
|
Yin G, Yin Y, Guo Y, Sun L, Ma S, Chen H, Wang Q, Wang H. Clinical Impact of Plasma Metagenomic Next-Generation Sequencing on Infection Diagnosis and Antimicrobial Therapy in Immunocompromised Patients. J Infect Dis 2025; 231:344-354. [PMID: 39008608 DOI: 10.1093/infdis/jiae343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 04/06/2024] [Accepted: 07/12/2024] [Indexed: 07/17/2024] Open
Abstract
BACKGROUND The clinical impact of plasma metagenomic next-generation sequencing (mNGS) on infection diagnosis and antimicrobial therapy in immunocompromised patients with suspected infection remains unclear. METHODS Between March and December 2022, 424 cases with fever, infection history, mechanical ventilation, or imaging abnormalities underwent plasma mNGS testing at a single center. Eleven patients had received solid organ transplantation, and the remaining patients were categorized into febrile neutropenia (FN), non-neutropenia (NN), and non-transplant and non-hematologic disease (NTHD) groups based on immunosuppression severity. The diagnostic rate of infection and the utilization of antimicrobial agents based on mNGS were assessed. RESULTS The use of mNGS significantly improved the diagnostic rates for fungi in the FN (65.1%, P = .001) and NN (58.8%, P = .008) groups versus the NTHD group (33.3%). Positive impacts associated with therapy were significantly greater than negative impacts across all 3 groups (all P < .001), and the utilization of escalation therapy was significantly more frequent in the FN group than in the NN group (P = .006). More than 70% of cases with negative mNGS results across the 3 groups underwent de-escalation therapy, with more than one-third being discontinued, preventing antimicrobial overuse. CONCLUSIONS Plasma mNGS has a clinically confirmed positive impact in immunocompromised patients with neutropenia, improving the diagnosis of fungal infections and antimicrobial therapy.
Collapse
Affiliation(s)
- Guankun Yin
- Department of Clinical Laboratory, Peking University People's Hospital
| | - Yuyao Yin
- Department of Clinical Laboratory, Peking University People's Hospital
| | - Yifan Guo
- Department of Clinical Laboratory, Peking University People's Hospital
| | - Lingxiao Sun
- Department of Clinical Laboratory, Peking University People's Hospital
| | - Shuai Ma
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China
| | - Hongbin Chen
- Department of Clinical Laboratory, Peking University People's Hospital
| | - Qi Wang
- Department of Clinical Laboratory, Peking University People's Hospital
| | - Hui Wang
- Department of Clinical Laboratory, Peking University People's Hospital
| |
Collapse
|
3
|
Peiffer AL, Dugan AE, Kiessling LL. Soluble Human Lectins at the Host-Microbe Interface. Annu Rev Biochem 2024; 93:565-601. [PMID: 38640018 PMCID: PMC11296910 DOI: 10.1146/annurev-biochem-062917-012322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2024]
Abstract
Human lectins are integral to maintaining microbial homeostasis on the skin, in the blood, and at mucosal barriers. These proteins can recognize microbial glycans and inform the host about its microbial status. In accordance with their roles, their production can vary with tissue type. They also can have unique structural and biochemical properties, and they can influence microbial colonization at sites proximal and distal to their tissue of origin. In line with their classification as innate immune proteins, soluble lectins have long been studied in the context of acute infectious disease, but only recently have we begun to appreciate their roles in maintaining commensal microbial communities (i.e., the human microbiota). This review provides an overview of soluble lectins that operate at host-microbe interfaces, their glycan recognition properties, and their roles in physiological and pathological mechanisms.
Collapse
Affiliation(s)
- Amanda L Peiffer
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA;
| | - A E Dugan
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA;
| | - L L Kiessling
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA;
| |
Collapse
|
4
|
Ma S, Yin Y, Guo Y, Yao C, Xu S, Luo Q, Yin G, Wang S, Wang Q, Chen H, Wang R, Jin L, Liang G, Wang H. The plasma viral communities associate with clinical profiles in a large-scale haematological patients cohort. MICROBIOME 2024; 12:137. [PMID: 39044261 PMCID: PMC11265361 DOI: 10.1186/s40168-024-01855-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 06/03/2024] [Indexed: 07/25/2024]
Abstract
BACKGROUND Haematological patients exhibit immune system abnormalities that make them susceptible to viral infections. Understanding the relationship between the virome in the blood plasma of haematological patients and their clinical characteristic is crucial for disease management. We aimed to explore the presence of viral pathogens and identify close associations between viral infections and various clinical features. RESULTS A total of 21 DNA viruses and 6 RNA viruses from 12 virus families were identified from 1383 patients. Patients with haematological diseases exhibited significantly higher diversity, prevalence, and co-detection rates of viral pathogens. During fever episodes, pathogen detection was notably higher, with Epstein-Barr virus (EBV) and Mucorales infections being the most probable culprits for fever symptoms in non-haematological patients. The detection rate of torque teno virus (TTV) significantly increases in haematological patients after transplantation and during primary lung infections. Additionally, TTV-positive patients demonstrate significantly higher absolute neutrophil counts, while C-reactive protein and procalcitonin levels are notably lower. Furthermore, TTV, cytomegalovirus, and parvovirus B19 (B19V) were found to be more prevalent in non-neutropenic patients, while non-viral pathogenic infections, such as Gram-negative bacteria and Mucorales, were more common in neutropenic patients. Pegivirus C (HPgV-C) infection often occurred post-transplantation, regardless of neutropenia. Additionally, some viruses such as TTV, B19V, EBV, and HPgV-C showed preferences for age and seasonal infections. CONCLUSIONS Analysis of the plasma virome revealed the susceptibility of haematological patients to plasma viral infections at specific disease stages, along with the occurrence of mixed infections with non-viral pathogens. Close associations were observed between the plasma virome and various clinical characteristics, as well as clinical detection parameters. Understanding plasma virome aids in auxiliary clinical diagnosis and treatment, enabling early prevention to reduce infection rates in patients and improve their quality of life. Video Abstract.
Collapse
Affiliation(s)
- Shuai Ma
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, 100044, China
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China
| | - Yuyao Yin
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, 100044, China
| | - Yifan Guo
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, 100044, China
| | - Chaoqun Yao
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, 100044, China
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China
| | - Siqi Xu
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Qingqing Luo
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Guankun Yin
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, 100044, China
| | - Shuyi Wang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, 100044, China
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China
| | - Qi Wang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, 100044, China
| | - Hongbin Chen
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, 100044, China
| | - Ruobing Wang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, 100044, China
| | - Longyang Jin
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, 100044, China
| | - Guanxiang Liang
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Hui Wang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, 100044, China.
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China.
| |
Collapse
|
5
|
Boorse C. Wakefield's Harm-Based Critique of the Biostatistical Theory. THE JOURNAL OF MEDICINE AND PHILOSOPHY 2024; 49:367-388. [PMID: 38885259 DOI: 10.1093/jmp/jhae017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024] Open
Abstract
Jerome Wakefield criticizes my biostatistical analysis of the pathological-as statistically subnormal biological part-functional ability relative to species, sex, and age-for its lack of a harm clause. He first charges me with ignoring two general distinctions: biological versus medical pathology, and disease of a part versus disease of a whole organism. He then offers 10 counterexamples that, he says, are harmless dysfunctions but not medical disorders. Wakefield ends by arguing that we need a harm clause to explain American psychiatry's 1973 decision to declassify homosexuality. I reply, first, that his two distinctions are philosophic fantasies alien to medical usage, invented only to save his own harmful-dysfunction analysis (HDA) from a host of obvious counterexamples. In any case, they do not coincide with the harmless/harmful distinction. In reality, medicine admits countless chronic diseases that are, contrary to Wakefield, subclinical for most of their course, as well as many kinds of typically harmless skin pathology. As for his 10 counterexamples, no medical source he cites describes them as he does. I argue that none of his examples contradicts the biostatistical analysis: all either are not part-dysfunctions (situs inversus, incompetent sperm, normal-flora infection) or are indeed classified as medical disorders (donated kidney, Typhoid Mary's carrier status, latent tuberculosis or HIV, cherry angiomas). And if Wakefield's HDA fits psychiatry, the fact that it does not fit medicine casts doubt on psychiatry's status as a medical specialty.
Collapse
|
6
|
Małaczewska J, Wróbel M, Kaczorek-Łukowska E, Rękawek W. Enterovirus E infects bovine peripheral blood mononuclear cells. Implications for pathogenesis? J Vet Res 2023; 67:517-527. [PMID: 38130447 PMCID: PMC10730555 DOI: 10.2478/jvetres-2023-0061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 10/17/2023] [Indexed: 12/23/2023] Open
Abstract
Introduction Enterovirus E (EV-E) is a common viral pathogen endemic in cattle worldwide. Little is known, however, about its potential interactions with bovine immune cells. Material and Methods The EV-E-permissiveness of bovine peripheral blood mononuclear cells (PBMCs) was evaluated. The infectious titres of extracellular virus were measured and the intracellular viral RNA levels were determined by reverse transcription quantitative PCR after cell inoculation. The effects of EV-E on cell viability and proliferative response were investigated with a methyl thiazolyl tetrazolium bromide reduction assay, the percentages of main lymphocyte subsets and oxidative burst activity of blood phagocytes were determined with flow cytometry, and pro-inflammatory cytokine secretion was measured with an ELISA. Results Enterovirus E productively infected bovine PBMCs. The highest infectious dose of EV-E decreased cell viability and T-cell proliferation. All of the tested doses of virus inhibited the proliferation of high responding to lipopolysaccharide B cells and stimulated the secretion of interleukin 1β, interleukin 6 and tumour necrosis factor α pro-inflammatory cytokines. Conclusion Interactions of EV-E with bovine immune cells may indicate potential evasion mechanisms of the virus. There is also a risk that an infection with this virus can predispose the organism to secondary infections, especially bacterial ones.
Collapse
Affiliation(s)
| | | | | | - Wojciech Rękawek
- Department of Internal Diseases with Clinic, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, 10–719Olsztyn, Poland
| |
Collapse
|
7
|
Arenas-Gómez CM, Garcia-Gutierrez E, Escobar JS, Cotter PD. Human gut homeostasis and regeneration: the role of the gut microbiota and its metabolites. Crit Rev Microbiol 2023; 49:764-785. [PMID: 36369718 DOI: 10.1080/1040841x.2022.2142088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 08/18/2022] [Accepted: 10/26/2022] [Indexed: 11/13/2022]
Abstract
The healthy human gut is a balanced ecosystem where host cells and representatives of the gut microbiota interact and communicate in a bidirectional manner at the gut epithelium. As a result of these interactions, many local and systemic processes necessary for host functionality, and ultimately health, take place. Impairment of the integrity of the gut epithelium diminishes its ability to act as an effective gut barrier, can contribute to conditions associated to inflammation processes and can have other negative consequences. Pathogens and pathobionts have been linked with damage of the integrity of the gut epithelium, but other components of the gut microbiota and some of their metabolites can contribute to its repair and regeneration. Here, we review what is known about the effect of bacterial metabolites on the gut epithelium and, more specifically, on the regulation of repair by intestinal stem cells and the regulation of the immune system in the gut. Additionally, we explore the potential therapeutic use of targeted modulation of the gut microbiota to maintain and improve gut homeostasis as a mean to improve health outcomes.
Collapse
Affiliation(s)
- Claudia Marcela Arenas-Gómez
- Vidarium-Nutrition, Health and Wellness Research Center, Grupo Empresarial Nutresa, Medellin, Colombia
- Dirección Académica, Universidad Nacional de Colombia, Sede de La Paz, La Paz 202017, Colombia
| | - Enriqueta Garcia-Gutierrez
- Teagasc Food Research Centre Moorepark, Fermoy, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- VistaMilk SFI Research Centre, Moorepark, Fermoy, Ireland
| | - Juan S Escobar
- Vidarium-Nutrition, Health and Wellness Research Center, Grupo Empresarial Nutresa, Medellin, Colombia
| | - Paul D Cotter
- Teagasc Food Research Centre Moorepark, Fermoy, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- VistaMilk SFI Research Centre, Moorepark, Fermoy, Ireland
| |
Collapse
|
8
|
Rajput M, Thakur N. Editorial: Advances in host-pathogen interactions for diseases in animals and birds. Front Vet Sci 2023; 10:1282110. [PMID: 37766859 PMCID: PMC10520279 DOI: 10.3389/fvets.2023.1282110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Affiliation(s)
- Mrigendra Rajput
- Department of Biology, University of Dayton, Dayton, OH, United States
| | | |
Collapse
|
9
|
Characterisation of the Upper Respiratory Tract Virome of Feedlot Cattle and Its Association with Bovine Respiratory Disease. Viruses 2023; 15:v15020455. [PMID: 36851669 PMCID: PMC9961997 DOI: 10.3390/v15020455] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 02/10/2023] Open
Abstract
Bovine respiratory disease (BRD) is a major health problem within the global cattle industry. This disease has a complex aetiology, with viruses playing an integral role. In this study, metagenomics was used to sequence viral nucleic acids in the nasal swabs of BRD-affected cattle. The viruses detected included those that are well known for their association with BRD in Australia (bovine viral diarrhoea virus 1), as well as viruses known to be present but not fully characterised (bovine coronavirus) and viruses that have not been reported in BRD-affected cattle in Australia (bovine rhinitis, bovine influenza D, and bovine nidovirus). The nasal swabs from a case-control study were subsequently tested for 10 viruses, and the presence of at least one virus was found to be significantly associated with BRD. Some of the more recently detected viruses had inconsistent associations with BRD. Full genome sequences for bovine coronavirus, a virus increasingly associated with BRD, and bovine nidovirus were completed. Both viruses belong to the Coronaviridae family, which are frequently associated with disease in mammals. This study has provided greater insights into the viral pathogens associated with BRD and highlighted the need for further studies to more precisely elucidate the roles viruses play in BRD.
Collapse
|
10
|
Association of Gut Microbiota with Inflammatory Bowel Disease and COVID-19 Severity: A Possible Outcome of the Altered Immune Response. Curr Microbiol 2022; 79:184. [PMID: 35508737 PMCID: PMC9068506 DOI: 10.1007/s00284-022-02877-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 04/12/2022] [Indexed: 02/07/2023]
Abstract
Inflammatory bowel disease could be induced by SARS-CoV-2, involved in alteration of gut microbiota during the respiratory viral infection. Presence of viral RNA in fecal samples for longer period, even after the clearance of the virus from respiratory tract, is suggestive of dysbiosis leading to the poor prognosis of COVID-19 in hospitalized patients. Gut microbiome (GM) plays a significant role to stimulate the modulated antiviral immune response against invading pathogens regulating the physiological homeostasis. GM profile of COVID-19 patients has revealed the drastic depletion of dominant families of commensals in the gut such as, Bacteroidaceae, Lachnospiraceae and Ruminococcaceae to be replaced with Enterococcus, Staphylococcus, Streptococcus, Serratia etc. Immune dysfunction of Th1–Th17 cells along gut-lung axis impairs the mucosal lining translocating the microorganisms including commensals and metabolites to other body organs like lungs, brain, kidney through circulation. These events may cause hyper inflammations associated with excessive secretion of cytokines and chemokines to form the cytokine storm causing ARDS. Gut virome could interact with microbiome and immune cells, help establishing the antiviral immune signaling, important for health maintenance/ or in disease progression. Essentially, these immunological strategies are needed to use in future prospective therapeutics to control the severity events.
Collapse
|
11
|
Pradier A, Cordey S, Zanella MC, Melotti A, Wang S, Mamez AC, Chalandon Y, Masouridi-Levrat S, Kaiser L, Simonetta F, Vu DL. Human pegivirus-1 replication influences NK cell reconstitution after allogeneic haematopoietic stem cell transplantation. Front Immunol 2022; 13:1060886. [PMID: 36713419 PMCID: PMC9876574 DOI: 10.3389/fimmu.2022.1060886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 12/15/2022] [Indexed: 01/12/2023] Open
Abstract
Introduction Human pegivirus-1 (HPgV-1) is a so-called commensal virus for which no known associated organ disease has been found to date. Yet, it affects immune-reconstitution as previously studied in the HIV population, in whom active co-infection with HPgV-1 can modulate T and NK cell activation and differentiation leading to a protective effect against the evolution of the disease. Little is known on the effect of HPgV-1 on immune-reconstitution in allogeneic hematopoietic stem cell transplant (allo-HSCT) recipients, a patient population in which we and others have previously reported high prevalence of HPgV-1 replication. The aim of this study was to compare the immune reconstitution after allo-HSCT among HPgV-1-viremic and HPgV-1-non-viremic patients. Methods Within a cohort study of 40 allo-HSCT patients, 20 allo-HSCT recipients positive in plasma sample for HPgV-1 by rRT-PCR during the first year (1, 3, 6, 12 months) after transplantation were matched with 20 allo-HSCT recipients negative for HPgV-1. T and NK cell reconstitution was monitored by flow cytometry in peripheral blood samples from allo-HSCT recipients at the same time points. Results We observed no significant difference in the absolute number and subsets proportions of CD4 and CD8 T cells between patient groups at any analysed timepoint. We observed a significantly higher absolute number of NK cells at 3 months among HPgV-1-viremic patients. Immunophenotypic analysis showed a significantly higher proportion of CD56bright NK cells mirrored by a reduced percentage of CD56dim NK cells in HPgV-1-positive patients during the first 6 months after allo-HSCT. At 6 months post-allo-HSCT, NK cell phenotype significantly differed depending on HPgV-1, HPgV-1-viremic patients displaying NK cells with lower CD16 and CD57 expression compared with HPgV-1-negative patients. In accordance with their less differentiated phenotype, we detected a significantly reduced expression of granzyme B in NK cells in HPgV-1-viremic patients at 6 months. Discussion Our study shows that HPgV-1-viremic allo-HSCT recipients displayed an impaired NK cell, but not T cell, immune-reconstitution compared with HPgV-1-non-viremic patients, revealing for the first time a potential association between replication of the non-pathogenic HPgV-1 virus and immunomodulation after allo-HSCT.
Collapse
Affiliation(s)
- Amandine Pradier
- Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Division of Haematology, Department of Oncology, Geneva University Hospitals, Geneva, Switzerland
- Translational Research Center for Oncohematology, Department of Medicine and Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Samuel Cordey
- Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Laboratory of virology, Division of Laboratory Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Marie-Céline Zanella
- Laboratory of virology, Division of Laboratory Medicine, Geneva University Hospitals, Geneva, Switzerland
- Division of Infectious diseases, Geneva University Hospitals, Geneva, Switzerland
| | - Astrid Melotti
- Translational Research Center for Oncohematology, Department of Medicine and Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Sisi Wang
- Translational Research Center for Oncohematology, Department of Medicine and Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Anne-Claire Mamez
- Division of Haematology, Department of Oncology, Geneva University Hospitals, Geneva, Switzerland
| | - Yves Chalandon
- Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Division of Haematology, Department of Oncology, Geneva University Hospitals, Geneva, Switzerland
- Translational Research Center for Oncohematology, Department of Medicine and Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | | | - Laurent Kaiser
- Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Laboratory of virology, Division of Laboratory Medicine, Geneva University Hospitals, Geneva, Switzerland
- Division of Infectious diseases, Geneva University Hospitals, Geneva, Switzerland
- Center for emerging viruses, Geneva University Hospitals, Geneva, Switzerland
| | - Federico Simonetta
- Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Division of Haematology, Department of Oncology, Geneva University Hospitals, Geneva, Switzerland
- Translational Research Center for Oncohematology, Department of Medicine and Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Diem-Lan Vu
- Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Laboratory of virology, Division of Laboratory Medicine, Geneva University Hospitals, Geneva, Switzerland
- Division of Infectious diseases, Geneva University Hospitals, Geneva, Switzerland
- *Correspondence: Diem-Lan Vu, ;
| |
Collapse
|
12
|
Wakefield JC, Conrad JA. Harm as a Necessary Component of the Concept of Medical Disorder: Reply to Muckler and Taylor. THE JOURNAL OF MEDICINE AND PHILOSOPHY 2021; 45:350-370. [PMID: 32437578 DOI: 10.1093/jmp/jhaa008] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Wakefield's harmful dysfunction analysis asserts that the concept of medical disorder includes a naturalistic component of dysfunction (failure of biologically designed functioning) and a value (harm) component, both of which are required for disorder attributions. Muckler and Taylor, defending a purely naturalist, value-free understanding of disorder, argue that harm is not necessary for disorder. They provide three examples of dysfunctions that, they claim, are considered disorders but are entirely harmless: mild mononucleosis, cowpox that prevents smallpox, and minor perceptual deficits. They also reject the proposal that dysfunctions need only be typically harmful to qualify as disorders. We argue that the proposed counterexamples are, in fact, considered harmful; thus, they fail to disconfirm the harm requirement: incapacity for exertion is inherently harmful, whether or not exertion occurs, cowpox is directly harmful irrespective of indirect benefits, and colorblindness and anosmia are considered harmful by those who consider them disorders. We also defend the typicality qualifier as viably addressing some apparently harmless disorders and argue that a dysfunction's harmfulness is best understood in dispositional terms.
Collapse
Affiliation(s)
| | - Jordan A Conrad
- Katholieke Universiteit Leuven, Leuven, BE, and New York University, New York, USA
| |
Collapse
|
13
|
van Rijn AL, Wunderink HF, Sidorov IA, de Brouwer CS, Kroes AC, Putter H, de Vries AP, Rotmans JI, Feltkamp MC. Torque teno virus loads after kidney transplantation predict allograft rejection but not viral infection. J Clin Virol 2021; 140:104871. [PMID: 34089977 DOI: 10.1016/j.jcv.2021.104871] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/16/2021] [Accepted: 05/18/2021] [Indexed: 12/15/2022]
Abstract
The main challenge of immunosuppressive therapy after solid organ transplantation is to create a new immunological balance that prevents organ rejection and does not promote opportunistic infection. Torque teno virus (TTV), a ubiquitous and non-pathogenic single-stranded DNA virus, has been proposed as a marker of functional immunity in immunocompromised patients. Here we investigate whether TTV loads predict the risk of common viral infection and allograft rejection in kidney transplantation recipients. In a retrospective cohort of 389 kidney transplantation recipients, individual TTV loads in were measured by qPCR in consecutive plasma samples during one year follow-up. The endpoints were allograft rejection, BK polyomavirus (BKPyV) viremia and cytomegalovirus (CMV) viremia. Repeated TTV measurements and rejection and infection survival data were analysed in a joint model. During follow-up, TTV DNA detection in the transplant recipients increased from 85 to 100%. The median viral load increased to 107 genome copies/ml within three months after transplantation. Rejection, BKPyV viremia and CMV viremia occurred in 23%, 27% and 17% of the patients, respectively. With every 10-fold TTV load-increase, the risk of rejection decreased considerably (HR: 0.74, CI 95%: 0.71-0.76), while the risk of BKPyV and CMV viremia remained the same (HR: 1.03, CI 95%: 1.03-1.04 and HR: 1.01, CI 95%: 1.01-1.01). In conclusion, TTV load kinetics predict allograft rejection in kidney transplantation recipients, but not the BKPyV and CMV infection. The potential use of TTV load levels as a guide for optimal immunosuppressive drug dosage to prevent allograft rejection deserves further validation.
Collapse
Affiliation(s)
- Aline L van Rijn
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, the Netherlands.
| | - Herman F Wunderink
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Igor A Sidorov
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Caroline S de Brouwer
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Aloysius Cm Kroes
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Hein Putter
- Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, the Netherlands
| | - Aiko Pj de Vries
- Department of Internal Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Joris I Rotmans
- Department of Internal Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Mariet Cw Feltkamp
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
14
|
Beyond Cytomegalovirus and Epstein-Barr Virus: a Review of Viruses Composing the Blood Virome of Solid Organ Transplant and Hematopoietic Stem Cell Transplant Recipients. Clin Microbiol Rev 2020; 33:33/4/e00027-20. [PMID: 32847820 DOI: 10.1128/cmr.00027-20] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Viral primary infections and reactivations are common complications in patients after solid organ transplantation (SOT) and hematopoietic stem cell transplantation (HSCT) and are associated with high morbidity and mortality. Among these patients, viral infections are frequently associated with viremia. Beyond the usual well-known viruses that are part of the routine clinical management of transplant recipients, numerous other viral signatures or genomes can be identified in the blood of these patients. The identification of novel viral species and variants by metagenomic next-generation sequencing has opened up a new field of investigation and new paradigms. Thus, there is a need to thoroughly describe the state of knowledge in this field with a review of all viral infections that should be scrutinized in high-risk populations. Here, we review the eukaryotic DNA and RNA viruses identified in blood, plasma, or serum samples of pediatric and adult SOT/HSCT recipients and the prevalence of their detection, with a particular focus on recently identified viruses and those for which their potential association with disease remains to be investigated, such as members of the Polyomaviridae, Anelloviridae, Flaviviridae, and Astroviridae families. Current knowledge of the clinical significance of these viral infections with associated viremia among transplant recipients is also discussed. To ensure a comprehensive description in these two populations, individuals described as healthy (mostly blood donors) are considered for comparative purposes. The list of viruses that should be on the clinicians' radar is certainly incomplete and will expand, but the challenge is to identify those of possible clinical significance.
Collapse
|
15
|
Initial Virome Characterization of the Common Cnidarian Lab Model Nematostella vectensis. Viruses 2020; 12:v12020218. [PMID: 32075325 PMCID: PMC7077227 DOI: 10.3390/v12020218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/09/2020] [Accepted: 02/13/2020] [Indexed: 12/26/2022] Open
Abstract
The role of viruses in forming a stable holobiont has been the subject of extensive research in recent years. However, many emerging model organisms still lack any data on the composition of the associated viral communities. Here, we re-analyzed seven publicly available transcriptome datasets of the starlet sea anemone Nematostella vectensis, the most commonly used anthozoan lab model, and searched for viral sequences. We applied a straightforward, yet powerful approach of de novo assembly followed by homology-based virus identification and a multi-step, thorough taxonomic validation. The comparison of different lab populations of N. vectensis revealed the existence of the core virome composed of 21 viral sequences, present in all adult datasets. Unexpectedly, we observed an almost complete lack of viruses in the samples from the early developmental stages, which together with the identification of the viruses shared with the major source of the food in the lab, the brine shrimp Artemia salina, shed new light on the course of viral species acquisition in N. vectensis. Our study provides an initial, yet comprehensive insight into N. vectensis virome and sets the first foundation for the functional studies of viruses and antiviral systems in this lab model cnidarian.
Collapse
|
16
|
Li G, Zhou Z, Yao L, Xu Y, Wang L, Fan X. Full annotation of serum virome in Chinese blood donors with elevated alanine aminotransferase levels. Transfusion 2019; 59:3177-3185. [PMID: 31393615 DOI: 10.1111/trf.15476] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 07/14/2019] [Accepted: 07/20/2019] [Indexed: 12/30/2022]
Abstract
BACKGROUND A serum alanine aminotransferase (ALT) test is currently demanded for blood donation in China. One of the major reasons to include such a test is possible etiology of known or unknown hepatotropic viruses. However, this hypothesis has never been examined convincingly. STUDY DESIGN AND METHODS The study recruited 90 Chinese blood donors that were divided into three groups based on their ALT values. Serum virome from these donors was explored using a metagenomics approach with enhanced sensitivity resolved at single sequencing reads. RESULTS Anellovirus and pegivirus C (GBV-C) were detected among these donors. None of them were found solely in donors with abnormal liver enzyme. Anellovirus was highly prevalent (93.3%) and the co-infection with multiple genera (alpha, beta, and gammatorquevirus) were more common in the donors with normal ALT values in comparison to those with elevated ALT (single/double/triple Anellovirus genera, 1/3/24 vs. 7/7/14 or 6/7/13, p = 0.009). For unmapped reads that accounted for 15 ± 14.9% of the data, similarity-based (BLASTN, BLASTP, and HMMER3) and similarity-independent (k-mer frequency) analysis identified several circular rep encoding ssDNA (CRESS-DNA) genomes. Direct PCR testing indicated these genomes were likely reagent contaminants. CONCLUSION Viral etiology is not responsible for elevated ALT levels in Chinese blood donors. The ALT test, if not abandoned, should be adjusted for its cutoff in response to donor shortage in China.
Collapse
Affiliation(s)
- Gang Li
- Wuhan Blood Center, Wuhan, China
| | | | - Li Yao
- Wuhan Blood Center, Wuhan, China
| | - Yanjuan Xu
- Division of Gastroenterology & Hepatology, Department of Internal Medicine, Saint Louis University School of Medicine, St. Louis, Missouri
| | - Lan Wang
- Wuhan Blood Center, Wuhan, China
| | - Xiaofeng Fan
- Division of Gastroenterology & Hepatology, Department of Internal Medicine, Saint Louis University School of Medicine, St. Louis, Missouri.,Saint Louis University Liver Center, Saint Louis University School of Medicine, St. Louis, Missouri
| |
Collapse
|
17
|
Maggi F, Pistello M, Antonelli G. Future management of viral diseases: role of new technologies and new approaches in microbial interactions. Clin Microbiol Infect 2018; 25:136-141. [PMID: 30502490 DOI: 10.1016/j.cmi.2018.11.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 11/03/2018] [Accepted: 11/10/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND New technologies allow rapid detecting and counting of virus genomes in clinical specimens, defining susceptibility to specific antivirals, pinpointing molecular sequences correlated to virulence traits, and identifying viral and host factors driving resolution or chronicity of infections. As a result, during the past three decades the diagnostic virology laboratory has become crucial for patient care and an integral component of the multifarious armamentarium for patient management. This change in paradigm has caused obsolescence of methods once considered the reference standard of infectious disease diagnosis that were used to detect whole or specific components of virions in the specimen. OBJECTIVES This review provides an overview of standard and novel technologies applied to molecular diagnosis of viral infections and illustrates some crucial points for correcting interpretation of the laboratory data. SOURCES Peer-reviewed literature of topics pertinent to this review. CONTENT AND IMPLICATIONS New technologies are reinventing the way virologic diagnoses are made, with a conversion to new, simpler-to-use platforms. Although indicated for the same purpose, not all methods are equal and can yield different results. Further, tests identifying multiple analytes at once can detect microorganisms present or activated as a result of pathologic processes triggered by other pathogens or noninfectious causes. Thus, new directions will have to be taken in the way in which the diagnoses of viral diseases are performed. This represents a breakthrough in the clinical virology laboratory.
Collapse
Affiliation(s)
- F Maggi
- Department of Translational Research, Retrovirus Center and Virology Section, University of Pisa, Pisa, Italy; Virology Division, Pisa University Hospital, Pisa, Italy
| | - M Pistello
- Department of Translational Research, Retrovirus Center and Virology Section, University of Pisa, Pisa, Italy; Virology Division, Pisa University Hospital, Pisa, Italy
| | - G Antonelli
- Department of Molecular Medicine, Laboratory of Virology and Pasteur Institute-Cenci Bolognetti Foundation, Sapienza University of Rome, Rome, Italy; Microbiology and Virology Unit, Sapienza University Hospital 'Policlinico Umberto I,' Rome, Italy.
| |
Collapse
|
18
|
Vu DL, Cordey S, Simonetta F, Brito F, Docquier M, Turin L, van Delden C, Boely E, Dantin C, Pradier A, Roosnek E, Chalandon Y, Zdobnov EM, Masouridi-Levrat S, Kaiser L. Human pegivirus persistence in human blood virome after allogeneic haematopoietic stem-cell transplantation. Clin Microbiol Infect 2018; 25:225-232. [PMID: 29787887 DOI: 10.1016/j.cmi.2018.05.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 04/11/2018] [Accepted: 05/01/2018] [Indexed: 01/06/2023]
Abstract
OBJECTIVES Because commensal viruses are defined by the immunologic tolerance afforded to them, any immunomodulation, such as is received during haematopoietic stem-cell transplantation, may shift the demarcation between innocuous viral resident and disease-causing pathogen. METHODS We analysed by deep-sequencing the plasma virome of 40 allogeneic haematopoietic stem-cell transplantation patients 1 month after transplantation. Because human pegivirus (HPgV) was highly prevalent, we performed a 1-year screening of 122 plasma samples by specific real-time reverse transcription PCR assay. We used the log-rank test and the Gray test to assess association with outcomes, and the Mann-Whitney test and multivariable linear regression model to assess association with T-cell reconstitution. RESULTS Polyomaviruses (PyV) (20/40 patients), anelloviruses (16/40), pegiviruses (14/40) and herpesviruses (14/40) were most frequently identified, including ten cytomegalovirus; three Epstein-Barr virus; two herpes simplex virus type 1; one human herpesvirus 6b and one human herpesvirus 7; 18 Merkel cell-PyV; two BK-PyV; three PyV-6; and one JC-PyV. Papillomavirus and adenovirus were identified in 11 and two patients, respectively. The HPgV specific real-time reverse transcription PCR screening identified 51 of 122 positive samples, high virus loads and persistent infections up to 1 year after transplantation. Comparison between patients with or without HPgV infection at time of transplantation did not reveal a significant difference in infections, engraftment, survival, graft vs. host disease, relapse or immune reconstitution. CONCLUSIONS The blood virome after allogeneic haematopoietic stem-cell transplantation includes several DNA viruses, notably herpesviruses and PyV. Among RNA viruses, HPgV is highly prevalent and persists for several months, and it thus may deserve special attention in further research on immune reconstitution.
Collapse
Affiliation(s)
- D-L Vu
- Division of Infectious Diseases, University of Geneva Hospitals, Geneva, Switzerland; Swiss Transplant Cohort Study, Basel, Switzerland.
| | - S Cordey
- Laboratory of Virology, Division of Laboratory Medicine, University of Geneva Hospitals, Geneva, Switzerland; Faculty of Medicine, Geneva, Switzerland
| | - F Simonetta
- Division of Haematology, University of Geneva Hospitals, Geneva, Switzerland
| | - F Brito
- Faculty of Medicine, Geneva, Switzerland; Swiss Institute of Bioinformatics, Faculty of Medicine, Geneva, Switzerland
| | - M Docquier
- Faculty of Medicine, Geneva, Switzerland
| | - L Turin
- Laboratory of Virology, Division of Laboratory Medicine, University of Geneva Hospitals, Geneva, Switzerland; Faculty of Medicine, Geneva, Switzerland
| | - C van Delden
- Division of Infectious Diseases, University of Geneva Hospitals, Geneva, Switzerland; Faculty of Medicine, Geneva, Switzerland; Swiss Transplant Cohort Study, Basel, Switzerland
| | - E Boely
- Swiss Transplant Cohort Study, Basel, Switzerland
| | - C Dantin
- Division of Haematology, University of Geneva Hospitals, Geneva, Switzerland
| | - A Pradier
- Division of Haematology, University of Geneva Hospitals, Geneva, Switzerland
| | - E Roosnek
- Faculty of Medicine, Geneva, Switzerland
| | - Y Chalandon
- Faculty of Medicine, Geneva, Switzerland; Division of Haematology, University of Geneva Hospitals, Geneva, Switzerland
| | - E M Zdobnov
- Faculty of Medicine, Geneva, Switzerland; Swiss Institute of Bioinformatics, Faculty of Medicine, Geneva, Switzerland
| | - S Masouridi-Levrat
- Division of Haematology, University of Geneva Hospitals, Geneva, Switzerland
| | - L Kaiser
- Division of Infectious Diseases, University of Geneva Hospitals, Geneva, Switzerland; Laboratory of Virology, Division of Laboratory Medicine, University of Geneva Hospitals, Geneva, Switzerland; Faculty of Medicine, Geneva, Switzerland
| |
Collapse
|