1
|
Kovacec V, Di Gregorio S, Pajon M, Khan UB, Poklepovich T, Campos J, Crestani C, Bentley SD, Jamrozy D, Mollerach M, Bonofiglio L. Genomic characterization of group B Streptococcus from Argentina: insights into prophage diversity, virulence factors and antibiotic resistance genes. Microb Genom 2025; 11:001399. [PMID: 40266661 PMCID: PMC12046356 DOI: 10.1099/mgen.0.001399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 03/18/2025] [Indexed: 04/24/2025] Open
Abstract
Group B Streptococcus (GBS) is a commensal bacterium that can cause severe infections in infants and adults with comorbidities. Resistance and reduced susceptibility to antibiotics are continually on the rise, and vaccines remain in development. Prophages have been reported to contribute to GBS evolution and pathogenicity. However, no studies are available to date on prophage contribution to the epidemiology of GBS isolates from humans in South America. In the context of an Argentinian multicentric study, we had previously phenotypically characterized 365 human GBS isolates from invasive disease, urinary infections and maternal colonization. These isolates had been whole-genome sequenced, and their prophage presence was bioinformatically determined. In this study, we genomically characterized the isolates and analysed the prophage content in the context of the epidemiological data. The phylogenetic analysis of the 365 genomes with 103 GBS from public databases revealed that Argentinian GBS were related to isolates from around the world. The most prevalent lineages, independent of the isolated source, were CC23/Ia and CC12/Ib. Genes encoding virulence factors involved in immune response evasion, tissue damage and adherence to host tissues, and invasion were found in all of the genomes in accordance with previously described lineage distribution. According to the prevalent capsular types and the distribution of specific virulence factors in Argentinian GBS, over 95% coverage would be expected from the vaccines currently under development. Antibiotic resistance determinants (ARDs) to at least one antibiotic class were found in 90% of the genomes, including novel mutations in pbp2x, while more than 15% carried ARDs to three or more classes. GBS collected from urinary infections carried a significantly higher proportion of ARDs to multiple antibiotic classes than the rest of the isolates. A total of 454 prophages were found among the 468 genomes analysed, which were classified into 23 prophage types. Prophage presence exhibited variations based on GBS clonal complex and capsular type. A possible association between an increased GBS pathogenicity and the carriage of prophages with integrase type GBSInt8 and/or the presence of genes that encode the Phox Homology domain has been observed. The highest prevalence of prophages per genome was found in lineages CC17/III and CC19/III, while the lowest amount was observed in CC12/Ib. Overall, the highest density of prophages, virulence factors and ARDs determinants was found in CC19 isolates, mostly of capsular type III, independent of the isolates' source. This is the first analysis of the human-associated GBS population in South America based on whole-genome sequencing data, which will make a significant contribution to future studies on the global GBS population structure.
Collapse
Affiliation(s)
- Veronica Kovacec
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Bacteriología y Virología Molecular, Buenos Aires C1113, Argentina
| | - Sabrina Di Gregorio
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Bacteriología y Virología Molecular, Buenos Aires C1113, Argentina
- CONICET, Buenos Aires C1425, Argentina
| | - Mario Pajon
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Bacteriología y Virología Molecular, Buenos Aires C1113, Argentina
| | - Uzma Basit Khan
- Parasites and Microbes Programme, Wellcome Sanger Institute, Cambridgeshire CB10 1SA, UK
| | - Tomas Poklepovich
- Unidad Operativa Centro Nacional de Genómica y Bioinformática, ANLIS Dr. Carlos G. Malbrán, Buenos Aires C1282AFF, Argentina
| | - Josefina Campos
- Unidad Operativa Centro Nacional de Genómica y Bioinformática, ANLIS Dr. Carlos G. Malbrán, Buenos Aires C1282AFF, Argentina
| | - Chiara Crestani
- Global Health Department, Institut Pasteur, Paris 75015, France
| | - Stephen D. Bentley
- Parasites and Microbes Programme, Wellcome Sanger Institute, Cambridgeshire CB10 1SA, UK
| | - Dorota Jamrozy
- Parasites and Microbes Programme, Wellcome Sanger Institute, Cambridgeshire CB10 1SA, UK
| | - Marta Mollerach
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Bacteriología y Virología Molecular, Buenos Aires C1113, Argentina
- CONICET, Buenos Aires C1425, Argentina
| | - Laura Bonofiglio
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Bacteriología y Virología Molecular, Buenos Aires C1113, Argentina
- CONICET, Buenos Aires C1425, Argentina
| |
Collapse
|
2
|
Kovacec V, Di Gregorio S, Pajon M, Crestani C, Poklepovich T, Campos J, Basit Khan U, Bentley SD, Jamrozy D, Mollerach M, Bonofiglio L. Revisiting typing systems for group B Streptococcus prophages: an application in prophage detection and classification in group B Streptococcus isolates from Argentina. Microb Genom 2024; 10:001297. [PMID: 39418095 PMCID: PMC11485964 DOI: 10.1099/mgen.0.001297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/30/2024] [Indexed: 10/19/2024] Open
Abstract
Group B Streptococcus (GBS) causes severe infections in neonates and adults with comorbidities. Prophages have been reported to contribute to GBS evolution and pathogenicity. However, no studies are available to date on the presence and diversity of prophages in GBS isolates from humans in South America. This study provides insights into the prophage content of 365 GBS isolates collected from clinical samples in the context of an Argentinean multicentric study. Using whole-genome sequence data, we implemented two previously proposed methods for prophage typing: a PCR approach (carried out in silico) coupled with a blastx-based method to classify prophages based on their prophage group and integrase type, respectively. We manually searched the genomes and identified 325 prophages. However, only 80% of prophages could be accurately categorized with the previous approaches. Integration of phylogenetic analysis, prophage group and integrase type allowed for all to be classified into 19 prophage types, which correlated with GBS clonal complex grouping. The revised prophage typing approach was additionally improved by using a blastn search after enriching the database with ten new genes for prophage group classification combined with the existing integrase typing method. This modified and integrated typing system was applied to the analysis of 615 GBS genomes (365 GBS from Argentina and 250 from public databases), which revealed 29 prophage types, including two novel integrase subtypes. Their characterization and comparative analysis revealed major differences in the lysogeny and replication modules. Genes related to bacterial fitness, virulence or adaptation to stressful environments were detected in all prophage types. Considering prophage prevalence, distribution and their association with bacterial virulence, it is important to study their role in GBS epidemiology. In this context, we propose the use of an improved and integrated prophage typing system suitable for rapid phage detection and classification with little computational processing.
Collapse
Affiliation(s)
- Veronica Kovacec
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Bacteriología y Virología Molecular, Buenos Aires, Argentina
| | - Sabrina Di Gregorio
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Bacteriología y Virología Molecular, Buenos Aires, Argentina
- CONICET, Buenos Aires, Argentina
| | - Mario Pajon
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Bacteriología y Virología Molecular, Buenos Aires, Argentina
| | | | - Tomás Poklepovich
- Unidad Operativa Centro Nacional de Genómica y Bioinformática, ANLIS Dr. Carlos G. Malbrán, Buenos Aires, Argentina
| | - Josefina Campos
- Unidad Operativa Centro Nacional de Genómica y Bioinformática, ANLIS Dr. Carlos G. Malbrán, Buenos Aires, Argentina
| | - Uzma Basit Khan
- Parasites and Microbes Programme, Wellcome Sanger Institute, Cambridgeshire, UK
| | - Stephen D. Bentley
- Parasites and Microbes Programme, Wellcome Sanger Institute, Cambridgeshire, UK
| | - Dorota Jamrozy
- Parasites and Microbes Programme, Wellcome Sanger Institute, Cambridgeshire, UK
| | - Marta Mollerach
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Bacteriología y Virología Molecular, Buenos Aires, Argentina
- CONICET, Buenos Aires, Argentina
| | - Laura Bonofiglio
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Bacteriología y Virología Molecular, Buenos Aires, Argentina
- CONICET, Buenos Aires, Argentina
| |
Collapse
|
3
|
Wiafe-Kwakye CS, Fournier A, Maurais H, Southworth KJ, Molloy SD, Neely MN. Comparative Genomic Analysis of Prophages in Human Vaginal Isolates of Streptococcus agalactiae. Pathogens 2024; 13:610. [PMID: 39204211 PMCID: PMC11357604 DOI: 10.3390/pathogens13080610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 09/03/2024] Open
Abstract
Prophages, viral genomes integrated into bacterial genomes, are known to enhance bacterial colonization, adaptation, and ecological fitness, providing a better chance for pathogenic bacteria to disseminate and cause infection. Streptococcus agalactiae (Group B Streptococcus or GBS) is a common bacterium found colonizing the genitourinary tract of humans. However, GBS-colonized pregnant women are at risk of passing the organism to the neonate, where it can cause severe infections. GBS typically encode one or more prophages in their genomes, yet their role in pathogen fitness and virulence has not yet been described. Sequencing and bioinformatic analysis of the genomic content of GBS human isolates identified 42 complete prophages present in their genomes. Comparative genomic analyses of the prophage sequences revealed that the prophages could be classified into five distinct clusters based on their genomic content, indicating significant diversity in their genetic makeup. Prophage diversity was also identified across GBS capsule serotypes, sequence types (STs), and clonal clusters (CCs). Comprehensive genomic annotation revealed that all GBS strains encode paratox, a protein that prevents the uptake of DNA in Streptococcus, either on the chromosome, on the prophage, or both, and each prophage genome has at least one toxin-antitoxin system.
Collapse
Affiliation(s)
- Caitlin S. Wiafe-Kwakye
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME 04469, USA (S.D.M.)
| | - Andrew Fournier
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME 04469, USA (S.D.M.)
| | - Hannah Maurais
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME 04469, USA (S.D.M.)
| | - Katie J. Southworth
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME 04469, USA (S.D.M.)
| | - Sally D. Molloy
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME 04469, USA (S.D.M.)
- The Honors College, University of Maine, Orono, ME 04469, USA
| | - Melody N. Neely
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME 04469, USA (S.D.M.)
| |
Collapse
|
4
|
Megat Mazhar Khair MH, Tee AN, Wahab NF, Othman SS, Goh YM, Masarudin MJ, Chong CM, In LLA, Gan HM, Song AAL. Comprehensive Characterization of a Streptococcus agalactiae Phage Isolated from a Tilapia Farm in Selangor, Malaysia, and Its Potential for Phage Therapy. Pharmaceuticals (Basel) 2023; 16:ph16050698. [PMID: 37242481 DOI: 10.3390/ph16050698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 05/28/2023] Open
Abstract
The Streptococcus agalactiae outbreak in tilapia has caused huge losses in the aquaculture industry worldwide. In Malaysia, several studies have reported the isolation of S. agalactiae, but no study has reported the isolation of S. agalactiae phages from tilapia or from the culture pond. Here, the isolation of the S. agalactiae phage from infected tilapia is reported and it is named as vB_Sags-UPM1. Transmission electron micrograph (TEM) revealed that this phage showed characteristics of a Siphoviridae and it was able to kill two local S. agalactiae isolates, which were S. agalactiae smyh01 and smyh02. Whole genome sequencing (WGS) of the phage DNA showed that it contained 42,999 base pairs with 36.80% GC content. Bioinformatics analysis predicted that this phage shared an identity with the S. agalactiae S73 chromosome as well as several other strains of S. agalactiae, presumably due to prophages carried by these hosts, and it encodes integrase, which suggests that it was a temperate phage. The endolysin of vB_Sags-UPM1 termed Lys60 showed killing activity on both S. agalactiae strains with varying efficacy. The discovery of the S. agalactiae temperate phage and its antimicrobial genes could open a new window for the development of antimicrobials to treat S. agalactiae infection.
Collapse
Affiliation(s)
- Megat Hamzah Megat Mazhar Khair
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - An Nie Tee
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Nurul Fazlin Wahab
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Siti Sarah Othman
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Yong Meng Goh
- Department of Veterinary Preclinical Sciences, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Mas Jaffri Masarudin
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Nanomaterials Synthesis and Characterisation Laboratory, Institute of Nanoscience and Nanotechnology, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Chou Min Chong
- Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Lionel Lian Aun In
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University, Kuala Lumpur 56000, Selangor, Malaysia
| | - Han Ming Gan
- Patriot Biotech, Sunway Geo Avenue, Bandar Sunway, Subang Jaya 47500, Selangor, Malaysia
| | - Adelene Ai-Lian Song
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| |
Collapse
|
5
|
Mejia ME, Robertson CM, Patras KA. Interspecies Interactions within the Host: the Social Network of Group B Streptococcus. Infect Immun 2023; 91:e0044022. [PMID: 36975791 PMCID: PMC10112235 DOI: 10.1128/iai.00440-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
Abstract
Group B Streptococcus (GBS) is a pervasive neonatal pathogen accounting for a combined half a million deaths and stillbirths annually. The most common source of fetal or neonatal GBS exposure is the maternal microbiota. GBS asymptomatically colonizes the gastrointestinal and vaginal mucosa of 1 in 5 individuals globally, although its precise role in these niches is not well understood. To prevent vertical transmission, broad-spectrum antibiotics are administered to GBS-positive mothers during labor in many countries. Although antibiotics have significantly reduced GBS early-onset neonatal disease, there are several unintended consequences, including an altered neonatal microbiota and increased risk for other microbial infections. Additionally, the incidence of late-onset GBS neonatal disease remains unaffected and has sparked an emerging hypothesis that GBS-microbe interactions in developing neonatal gut microbiota may be directly involved in this disease process. This review summarizes our current understanding of GBS interactions with other resident microbes at the mucosal surface from multiple angles, including clinical association studies, agriculture and aquaculture observations, and experimental animal model systems. We also include a comprehensive review of in vitro findings of GBS interactions with other bacterial and fungal microbes, both commensal and pathogenic, along with newly established animal models of GBS vaginal colonization and in utero or neonatal infection. Finally, we provide a perspective on emerging areas of research and current strategies to design microbe-targeting prebiotic or probiotic therapeutic intervention strategies to prevent GBS disease in vulnerable populations.
Collapse
Affiliation(s)
- Marlyd E. Mejia
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Clare M. Robertson
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Kathryn A. Patras
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
- Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
6
|
Lee IPA, Andam CP. Frequencies and characteristics of genome-wide recombination in Streptococcus agalactiae, Streptococcus pyogenes, and Streptococcus suis. Sci Rep 2022; 12:1515. [PMID: 35087075 PMCID: PMC8795270 DOI: 10.1038/s41598-022-04995-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 01/05/2022] [Indexed: 11/08/2022] Open
Abstract
Streptococcus consists of ecologically diverse species, some of which are important pathogens of humans and animals. We sought to quantify and compare the frequencies and characteristics of within-species recombination in the pan-genomes of Streptococcus agalactiae, Streptococcus pyogenes and Streptococcus suis. We used 1081, 1813 and 1204 publicly available genome sequences of each species, respectively. Based on their core genomes, S. agalactiae had the highest relative rate of recombination to mutation (11.5743) compared to S. pyogenes (1.03) and S. suis (0.57). The proportion of the species pan-genome that have had a history of recombination was 12.85%, 24.18% and 20.50% of the pan-genomes of each species, respectively. The composition of recombining genes varied among the three species, and some of the most frequently recombining genes are implicated in adhesion, colonization, oxidative stress response and biofilm formation. For each species, a total of 22.75%, 29.28% and 18.75% of the recombining genes were associated with prophages. The cargo genes of integrative conjugative elements and integrative and mobilizable elements contained genes associated with antimicrobial resistance and virulence. Homologous recombination and mobilizable pan-genomes enable the creation of novel combinations of genes and sequence variants, and the potential for high-risk clones to emerge.
Collapse
Affiliation(s)
| | - Cheryl P Andam
- University at Albany, State University of New York, New York, 12222, USA.
| |
Collapse
|
7
|
Laumay F, Benchetrit H, Corvaglia AR, van der Mee-Marquet N, François P. The Staphylococcus aureus CC398 Lineage: An Evolution Driven by the Acquisition of Prophages and Other Mobile Genetic Elements. Genes (Basel) 2021; 12:genes12111752. [PMID: 34828356 PMCID: PMC8623586 DOI: 10.3390/genes12111752] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/25/2021] [Accepted: 10/28/2021] [Indexed: 12/31/2022] Open
Abstract
Among clinically relevant lineages of Staphylococcus aureus, the lineage or clonal complex 398 (CC398) is of particular interest. Strains from this lineage were only described as livestock colonizers until 2007. Progressively, cases of infection were reported in humans in contact with farm animals, and now, CC398 isolates are increasingly identified as the cause of severe infections even in patients without any contact with animals. These observations suggest that CC398 isolates have spread not only in the community but also in the hospital setting. In addition, several recent studies have reported that CC398 strains are evolving towards increased virulence and antibiotic resistance. Identification of the origin and emergence of this clonal complex could probably benefit future large-scale studies that aim to detect sources of contamination and infection. Current evidence indicates that the evolution of CC398 strains towards these phenotypes has been driven by the acquisition of prophages and other mobile genetic elements. In this short review, we summarize the main knowledge of this major lineage of S. aureus that has become predominant in the human clinic worldwide within a single decade.
Collapse
Affiliation(s)
- Floriane Laumay
- Genomic Research Laboratory, Service of Infectious Diseases, Faculty of Medicine, Geneva University Hospitals, 1211 Geneva, Switzerland; (F.L.); (A.-R.C.)
- Institut des Agents Infectieux, Centre de Biologie du Nord, Hospices Civils de Lyon, F-69003 Lyon, France
| | - Hugo Benchetrit
- UFR de Chimie et de Biologie, Faculté des Sciences, Université Grenoble Alpes, 38000 Grenoble, France;
| | - Anna-Rita Corvaglia
- Genomic Research Laboratory, Service of Infectious Diseases, Faculty of Medicine, Geneva University Hospitals, 1211 Geneva, Switzerland; (F.L.); (A.-R.C.)
- Geneva Centre for Emerging Viral Diseases, Faculty of Medicine, Geneva University Hospitals, 1211 Geneva, Switzerland
| | | | - Patrice François
- Genomic Research Laboratory, Service of Infectious Diseases, Faculty of Medicine, Geneva University Hospitals, 1211 Geneva, Switzerland; (F.L.); (A.-R.C.)
- Correspondence:
| |
Collapse
|
8
|
Silvestre I, Nunes A, Borges V, Isidro J, Silva C, Vieira L, Gomes JP, Borrego MJ. Genomic insights on DNase production in Streptococcus agalactiae ST17 and ST19 strains. INFECTION GENETICS AND EVOLUTION 2021; 93:104969. [PMID: 34147652 DOI: 10.1016/j.meegid.2021.104969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 06/08/2021] [Accepted: 06/15/2021] [Indexed: 10/21/2022]
Abstract
Streptococcus agalactiae evasion from the human defense mechanisms has been linked to the production of DNases. These were proposed to contribute to the hypervirulence of S. agalactiae ST17/capsular-type III strains, mostly associated with neonatal meningitis. We performed a comparative genomic analysis between ST17 and ST19 human strains with different cell tropism and distinct DNase production phenotypes. All S. agalactiae ST17 strains, with the exception of 2211-04, were found to display DNase activity, while the opposite scenario was observed for ST19, where 1203-05 was the only DNase(+) strain. The analysis of the genetic variability of the seven genes putatively encoding secreted DNases in S. agalactiae revealed an exclusive amino acid change in the predicted signal peptide of GBS0661 (NucA) of the ST17 DNase(-), and an exclusive amino acid change alteration in GBS0609 of the ST19 DNase(+) strain. Further core-genome analysis identified some specificities (SNVs or indels) differentiating the DNase(-) ST17 2211-04 and the DNase(+) ST19 1203-05 from the remaining strains of each ST. The pan-genomic analysis evidenced an intact phage without homology in S. agalactiae and a transposon homologous to TnGBS2.3 in ST17 DNase(-) 2211-04; the transposon was also found in one ST17 DNase(+) strain, yet with a different site of insertion. A group of nine accessory genes were identified among all ST17 DNase(+) strains, including the Eco47II family restriction endonuclease and the C-5 cytosine-specific DNA methylase. None of these loci was found in any DNase(-) strain, which may suggest that these proteins might contribute to the lack of DNase activity. In summary, we provide novel insights on the genetic diversity between DNase(+) and DNase(-) strains, and identified genetic traits, namely specific mutations affecting predicted DNases (NucA and GBS0609) and differences in the accessory genome, that need further investigation as they may justify distinct DNase-related virulence phenotypes in S. agalactiae.
Collapse
Affiliation(s)
- Inês Silvestre
- Department of Life Sciences, UCIBIO, Nova School of Science and Technology, 2829-516 Caparica, Portugal; National Reference Laboratory for Sexually Transmitted Infections, Department of Infectious Diseases, National Institute of Health, Avenida Padre Cruz, 1649-016 Lisbon, Portugal
| | - Alexandra Nunes
- Bioinformatics Unit, Department of Infectious Diseases, National Institute of Health, Avenida Padre Cruz, 1649-016 Lisbon, Portugal; CBIOS - Research Center for Biosciences & Health Technologies, Lusófona University of Humanities and Technologies, Campo Grande 376, 1749-024 Lisbon, Portugal
| | - Vítor Borges
- Bioinformatics Unit, Department of Infectious Diseases, National Institute of Health, Avenida Padre Cruz, 1649-016 Lisbon, Portugal
| | - Joana Isidro
- Bioinformatics Unit, Department of Infectious Diseases, National Institute of Health, Avenida Padre Cruz, 1649-016 Lisbon, Portugal
| | - Catarina Silva
- Innovation and Technology Unit, Department of Human Genetics, National Institute of Health, Avenida Padre Cruz, 1649-016 Lisbon, Portugal; Centre for Toxicogenomics and Human Health (ToxOmics), Nova Medical School
- Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Campo dos Mártires da Pátria, 1169-056 Lisbon, Portugal
| | - Luís Vieira
- Innovation and Technology Unit, Department of Human Genetics, National Institute of Health, Avenida Padre Cruz, 1649-016 Lisbon, Portugal; Centre for Toxicogenomics and Human Health (ToxOmics), Nova Medical School
- Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Campo dos Mártires da Pátria, 1169-056 Lisbon, Portugal
| | - João Paulo Gomes
- Bioinformatics Unit, Department of Infectious Diseases, National Institute of Health, Avenida Padre Cruz, 1649-016 Lisbon, Portugal.
| | - Maria José Borrego
- National Reference Laboratory for Sexually Transmitted Infections, Department of Infectious Diseases, National Institute of Health, Avenida Padre Cruz, 1649-016 Lisbon, Portugal.
| |
Collapse
|
9
|
12/111phiA Prophage Domestication Is Associated with Autoaggregation and Increased Ability to Produce Biofilm in Streptococcus agalactiae. Microorganisms 2021; 9:microorganisms9061112. [PMID: 34063935 PMCID: PMC8223999 DOI: 10.3390/microorganisms9061112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/14/2021] [Accepted: 05/17/2021] [Indexed: 01/11/2023] Open
Abstract
CC17 Streptococcus agalactiae carrying group-A prophages is increasingly responsible for neonatal infections. To investigate the impact of the genetic features of a group-A prophage, we first conducted an in silico analysis of the genome of 12/111phiA, a group-A prophage carried by a strain responsible for a bloodstream infection in a parturient. This revealed a Restriction Modification system, suggesting a prophage maintenance strategy and five ORFs of interest for the host and encoding a type II toxin antitoxin system RelB/YafQ, an endonuclease, an S-adenosylmethionine synthetase MetK, and an StrP-like adhesin. Using the WT strain cured from 12/111phiA and constructing deleted mutants for the ORFs of interest, and their complemented mutants, we demonstrated an impact of prophage features on growth characteristics, cell morphology and biofilm formation. Our findings argue in favor of 12/111phiA domestication by the host and a role of prophage features in cell autoaggregation, glycocalyx and biofilm formation. We suggest that lysogeny may promote GBS adaptation to the acid environment of the vagina, consequently colonizing and infecting neonates.
Collapse
|
10
|
Lichvariková A, Soltys K, Szemes T, Slobodnikova L, Bukovska G, Turna J, Drahovska H. Characterization of Clinical and Carrier Streptococcus agalactiae and Prophage Contribution to the Strain Variability. Viruses 2020; 12:v12111323. [PMID: 33217933 PMCID: PMC7698700 DOI: 10.3390/v12111323] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 11/14/2020] [Accepted: 11/16/2020] [Indexed: 12/13/2022] Open
Abstract
Streptococcus agalactiae (group B Streptococcus, GBS) represents a leading cause of invasive bacterial infections in newborns and is also responsible for diseases in older and immunocompromised adults. Prophages represent an important factor contributing to the genome plasticity and evolution of new strains. In the present study, prophage content was analyzed in human GBS isolates. Thirty-seven prophages were identified in genomes of 20 representative sequenced strains. On the basis of the sequence comparison, we divided the prophages into eight groups named A–H. This division also corresponded to the clustering of phage integrase, even though several different integration sites were observed in some relative prophages. Next, PCR method was used for detection of the prophages in 123 GBS strains from adult hospitalized patients and from pregnancy screening. At least one prophage was present in 105 isolates (85%). The highest prevalence was observed for prophage group A (71%) and satellite prophage group B (62%). Other groups were detected infrequently (1–6%). Prophage distribution did not differ between clinical and screening strains, but it was unevenly distributed in MLST (multi locus sequence typing) sequence types. High content of full-length and satellite prophages detected in present study implies that prophages could be beneficial for the host bacterium and could contribute to evolution of more adapted strains.
Collapse
Affiliation(s)
- Aneta Lichvariková
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovicova 6, 841 15 Bratislava, Slovakia; (A.L.); (K.S.); (T.S.); (J.T.)
- Comenius University Science Park, Ilkovicova 8, 841 04 Bratislava, Slovakia
| | - Katarina Soltys
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovicova 6, 841 15 Bratislava, Slovakia; (A.L.); (K.S.); (T.S.); (J.T.)
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovicova 6, 841 15 Bratislava, Slovakia
| | - Tomas Szemes
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovicova 6, 841 15 Bratislava, Slovakia; (A.L.); (K.S.); (T.S.); (J.T.)
- Comenius University Science Park, Ilkovicova 8, 841 04 Bratislava, Slovakia
| | - Livia Slobodnikova
- Institute of Microbiology, Medical Faculty, Comenius University in Bratislava, 813 72 Bratislava, Slovakia;
| | - Gabriela Bukovska
- Institute of Molecular Biology, Slovak Academy of Sciences, 840 05 Bratislava, Slovakia;
| | - Jan Turna
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovicova 6, 841 15 Bratislava, Slovakia; (A.L.); (K.S.); (T.S.); (J.T.)
| | - Hana Drahovska
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovicova 6, 841 15 Bratislava, Slovakia; (A.L.); (K.S.); (T.S.); (J.T.)
- Correspondence:
| |
Collapse
|
11
|
Crestani C, Forde TL, Zadoks RN. Development and Application of a Prophage Integrase Typing Scheme for Group B Streptococcus. Front Microbiol 2020; 11:1993. [PMID: 32983017 PMCID: PMC7487436 DOI: 10.3389/fmicb.2020.01993] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 07/28/2020] [Indexed: 01/18/2023] Open
Abstract
Group B Streptococcus (GBS) is a gram-positive pathogen mainly affecting humans, cattle, and fishes. Mobile genetic elements play an important role in the evolution of GBS, its adaptation to host species and niches, and its pathogenicity. In particular, lysogenic prophages have been associated with a high virulence of certain strains and with their ability to cause invasive infections in humans. It is therefore important to be able to accurately detect and classify prophages in GBS genomes. Several bioinformatic tools for the identification of prophages in bacterial genomes are available on-line. However, genome searches for most of these programs are affected by the composition of their reference database. Lack of databases specific to GBS results in failure to recognize all prophages in the species. Additionally, performance of these programs is affected by genome fragmentation in the case of draft genomes, leading to underestimation of the number of phages. They also prove impractical when dealing with large genome datasets and they do not offer a quick way of classifying bacteriophages. We developed a GBS-specific method to screen genome assemblies for the presence of prophages and to classify them based on a reproducible typing scheme. This was achieved through an extensive search of a vast number of high-quality GBS sequences (n = 572) originating from different host species and countries in order to build a database of phage integrase types, on which the scheme is based. The proposed typing scheme comprises 12 integration sites and sixteen prophage integrase types, including multiple subtypes per integration site and integrase genes that were not site-specific. Two putative phage-inducible chromosomal islands (PICI) and their insertion sites were also identified during the course of these analyses. Phages were common and diverse in all major clonal complexes associated with human disease and detected in isolates from every animal species and continent included in the study. This database will facilitate further work on the prevalence and role of prophages in GBS evolution, and identifies the roles of PICIs in GBS and of prophage in hypervirulent ST283 as areas for further research.
Collapse
Affiliation(s)
- Chiara Crestani
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Taya L Forde
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Ruth N Zadoks
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom.,Sydney School of Veterinary Science, University of Sydney, Camden, NSW, Australia
| |
Collapse
|
12
|
Happel AU, Varsani A, Balle C, Passmore JA, Jaspan H. The Vaginal Virome-Balancing Female Genital Tract Bacteriome, Mucosal Immunity, and Sexual and Reproductive Health Outcomes? Viruses 2020; 12:E832. [PMID: 32751611 PMCID: PMC7472209 DOI: 10.3390/v12080832] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/22/2020] [Accepted: 07/24/2020] [Indexed: 12/12/2022] Open
Abstract
Besides bacteria, fungi, protists and archaea, the vaginal ecosystem also contains a range of prokaryote- and eukaryote-infecting viruses, which are collectively referred to as the "virome". Despite its well-described role in the gut and other environmental niches, the vaginal virome remains understudied. With a focus on sexual and reproductive health, we summarize the currently known components of the vaginal virome, its relationship with other constituents of the vaginal microbiota and its association with adverse health outcomes. While a range of eukaryote-infecting viruses has been described to be present in the female genital tract (FGT), few prokaryote-infecting viruses have been described. Literature suggests that various vaginal viruses interact with vaginal bacterial microbiota and host immunity and that any imbalance thereof may contribute to the risk of adverse reproductive health outcomes, including infertility and adverse birth outcomes. Current limitations of vaginal virome research include experimental and analytical constraints. Considering the vaginal virome may represent the missing link in our understanding of the relationship between FGT bacteria, mucosal immunity, and adverse sexual and reproductive health outcomes, future studies evaluating the vaginal microbiome and its population dynamics holistically will be important for understanding the role of the vaginal virome in balancing health and disease.
Collapse
Affiliation(s)
- Anna-Ursula Happel
- Department of Pathology, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Anzio Road, Observatory, Cape Town 7925, South Africa; (C.B.); (J.-A.P.); (H.J.)
| | - Arvind Varsani
- The Biodesign Center of Fundamental and Applied Microbiomics, School of Life Sciences, Center for Evolution and Medicine, Arizona State University, 1001 S. McAllister Ave, Tempe, AZ 85287-5001, USA;
- Structural Biology Research Unit, Department of Integrative Biomedical Sciences, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Anzio Road, Observatory, Cape Town 7925, South Africa
| | - Christina Balle
- Department of Pathology, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Anzio Road, Observatory, Cape Town 7925, South Africa; (C.B.); (J.-A.P.); (H.J.)
| | - Jo-Ann Passmore
- Department of Pathology, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Anzio Road, Observatory, Cape Town 7925, South Africa; (C.B.); (J.-A.P.); (H.J.)
- NRF-DST CAPRISA Centre of Excellence in HIV Prevention, 719 Umbilo Road, Congella, Durban 4013, South Africa
- National Health Laboratory Service, Anzio Road, Observatory, Cape Town 7925, South Africa
| | - Heather Jaspan
- Department of Pathology, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Anzio Road, Observatory, Cape Town 7925, South Africa; (C.B.); (J.-A.P.); (H.J.)
- Department of Pediatrics and Global Health, University of Washington, 1510 San Juan Road NE, Seattle, WA 98195, USA
- Seattle Children’s Research Institute, 307 Westlake Ave N, Seattle, WA 98109, USA
| |
Collapse
|
13
|
Increasing incidence of group B streptococcus neonatal infections in the Netherlands is associated with clonal expansion of CC17 and CC23. Sci Rep 2020; 10:9539. [PMID: 32533007 PMCID: PMC7293262 DOI: 10.1038/s41598-020-66214-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 05/15/2020] [Indexed: 01/19/2023] Open
Abstract
Group B streptococcus (GBS) is the leading cause of neonatal invasive disease worldwide. In the Netherlands incidence of the disease increased despite implementation of preventive guidelines. We describe a genomic analysis of 1345 GBS isolates from neonatal (age 0–89 days) invasive infections in the Netherlands reported between 1987 and 2016. Most isolates clustered into one of five major lineages: CC17 (39%), CC19 (25%), CC23 (18%), CC10 (9%) and CC1 (7%). There was a significant rise in the number of infections due to isolates from CC17 and CC23. Phylogenetic clustering analysis revealed that this was caused by expansion of specific sub-lineages, designated CC17-A1, CC17-A2 and CC23-A1. Dating of phylogenetic trees estimated that these clones diverged in the 1960s/1970s, representing historical rather than recently emerged clones. For CC17-A1 the expansion correlated with acquisition of a new phage, carrying gene encoding a putative cell-surface protein. Representatives of CC17-A1, CC17-A2 and CC23-A1 clones were identified in datasets from other countries demonstrating their global distribution.
Collapse
|
14
|
Antibiotic Resistance and Molecular Epidemiological Characteristics of Streptococcus agalactiae Isolated from Pregnant Women in Guangzhou, South China. THE CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY = JOURNAL CANADIEN DES MALADIES INFECTIEUSES ET DE LA MICROBIOLOGIE MEDICALE 2020; 2020:1368942. [PMID: 32399123 PMCID: PMC7210523 DOI: 10.1155/2020/1368942] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 01/16/2020] [Accepted: 03/07/2020] [Indexed: 11/17/2022]
Abstract
Streptococcus agalactiae colonization in pregnant women can cause postpartum intrauterine infections and life-threatening neonatal infections. To formulate strategies for the prevention and treatment of S. agalactiae infections, we performed a comprehensive analysis of antibiotic resistance and a molecular-based epidemiological investigation of S. agalactiae in this study. Seventy-two S. agalactiae strains, collected from pregnant women, were subjected to antibiotic susceptibility tests; then, the screened erythromycin and clindamycin nonsusceptible isolates were used for macrolides and clindamycin resistance genes detection, respectively. Detection of resistance genes, serotyping, and determination of virulence genes were performed by polymerase chain reaction. The clonal relationships among the colonized strains were evaluated by multilocus sequence typing. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) mass peak analysis was performed to discriminate the specific sequence types (STs). In our study, 69.4% and 47.2% of the strains were nonsusceptible to erythromycin and clindamycin, respectively; the multidrug resistance rate was 66.7%. All erythromycin nonsusceptible strains harbored resistance genes, whereas only 52.9% of the clindamycin nonsusceptible strains possessed the linB gene. Erythromycin resistance was mainly mediated by the ermB or mefA/E genes. Four serotypes were identified, and the most common serotype was serotype III (52.8%), followed by Ib (22.2%), Ia (18.0%), and II (4.2%). All the strains were divided into 18 STs that were assigned to nine clonal complexes. Most of the major STs were distributed into specific serotypes, including ST19/serotype III, ST17/serotype III, ST485/serotype Ia, ST862/serotype III, and ST651/serotype III. Analysis of virulence genes yielded seven clusters, of which bca-cfb-scpB-lmb (61.6%) was the predominant virulence gene cluster. Among all ST strains distributed in this region, only the ST17 strains had a mass peak at 7620 Da. The outcomes of this study are beneficial for the epidemiological comparison of colonized S. agalactiae in different regions and may be helpful for developing the strategies for the prevention of S. agalactiae infection in Guangzhou. Furthermore, our results show that MALDI-TOF MS can be used for the rapid identification of the ST17 strains.
Collapse
|
15
|
Khazaal S, Al Safadi R, Osman D, Hiron A, Gilot P. Dual and divergent transcriptional impact of IS1548 insertion upstream of the peptidoglycan biosynthesis gene murB of Streptococcus agalactiae. Gene 2019; 720:144094. [PMID: 31476407 DOI: 10.1016/j.gene.2019.144094] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 08/01/2019] [Accepted: 08/28/2019] [Indexed: 11/28/2022]
Abstract
Fourteen different insertion sequences belonging to seven families were identified in the genome of Streptococcus agalactiae. Among them, IS1548, a mobile element of the ISAs1 family, was linked to clonal complex (CC) 19 strains associated with neonatal meningitis and endocarditis. IS1548 impacts S. agalactiae in two reported ways: i) inactivation of virulence genes by insertion in an open reading frame (e.g. hylB or cpsD), ii) positive modulation of the expression of a downstream gene by insertion in an intergenic region (e.g. lmb). We previously identified an unknown integration site of IS1548 in the intergenic region between the folK and the murB genes involved in folate and peptidoglycan biosynthesis, respectively. In this work, we analyzed the prevalence of IS1548 in a large collection of nine hundred and eleven S. agalactiae strains. IS1548 positive strains belong to twenty-nine different sequence types and to ten CCs. The majority of them were, however, clustered within sequence type 19 and sequence type 22, belonging to CC19 and CC22, respectively. In contrast, IS1548 targets the folK-murB intergenic region exclusively in CC19 strains. We evaluated the impact of the insertion of IS1548 on the expression of murB by locating transcriptional promoters influencing its expression in the presence or absence of IS1548 and by comparative β-galactosidase transcriptional fusion assays. We found that in the absence of IS1548, genes involved in folate biosynthesis are co-transcribed with murB. As it was postulated that a folic acid mediated reaction may be involved in cell wall synthesis, this co-transcription could be necessary to synchronize these two processes. The insertion of IS1548 in the folK-murB intergenic region disrupt this co-transcription. Interestingly, we located a promoter at the right end of IS1548 that is able to initiate additional transcripts of murB. The insertion of IS1548 in this region has thus a dual and divergent impact on the expression of murB. By comparative β-galactosidase transcriptional fusion assays, we showed that, consequently, the overall impact of the insertion of IS1548 results in a minor decrease of murB gene transcription. This study provides new insights into gene expression effects mediated by IS1548 in S. agalactiae.
Collapse
Affiliation(s)
- Sarah Khazaal
- ISP, Bactéries et Risque Materno-Foetal, Université de Tours, INRA, 37032 Tours, France; Azm Center for Research in Biotechnology and its Applications, LBA3B, EDST, Lebanese University, Tripoli 1300, Lebanon
| | - Rim Al Safadi
- Azm Center for Research in Biotechnology and its Applications, LBA3B, EDST, Lebanese University, Tripoli 1300, Lebanon
| | - Dani Osman
- Azm Center for Research in Biotechnology and its Applications, LBA3B, EDST, Lebanese University, Tripoli 1300, Lebanon
| | - Aurélia Hiron
- ISP, Bactéries et Risque Materno-Foetal, Université de Tours, INRA, 37032 Tours, France
| | - Philippe Gilot
- ISP, Bactéries et Risque Materno-Foetal, Université de Tours, INRA, 37032 Tours, France.
| |
Collapse
|
16
|
Rezaei Javan R, Ramos-Sevillano E, Akter A, Brown J, Brueggemann AB. Prophages and satellite prophages are widespread in Streptococcus and may play a role in pneumococcal pathogenesis. Nat Commun 2019; 10:4852. [PMID: 31649284 PMCID: PMC6813308 DOI: 10.1038/s41467-019-12825-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 09/27/2019] [Indexed: 02/06/2023] Open
Abstract
Prophages (viral genomes integrated within a host bacterial genome) can confer various phenotypic traits to their hosts, such as enhanced pathogenicity. Here we analyse >1300 genomes of 70 different Streptococcus species and identify nearly 800 prophages and satellite prophages (prophages that do not encode their own structural components but rely on the bacterial host and another helper prophage for survival). We show that prophages and satellite prophages are widely distributed among streptococci in a structured manner, and constitute two distinct entities with little effective genetic exchange between them. Cross-species transmission of prophages is not uncommon. Furthermore, a satellite prophage is associated with virulence in a mouse model of Streptococcus pneumoniae infection. Our findings highlight the potential importance of prophages in streptococcal biology and pathogenesis. Prophages are viral genomes integrated within bacterial genomes. Here, Rezaei Javan et al. identify nearly 800 prophages and satellite prophages in > 1300 Streptococcus genomes, and show that a satellite prophage is associated with virulence in a mouse model of pneumococcal infection.
Collapse
Affiliation(s)
| | | | - Asma Akter
- Department of Medicine, Imperial College London, London, UK
| | - Jeremy Brown
- UCL Respiratory, Division of Medicine, University College London, London, UK
| | - Angela B Brueggemann
- Nuffield Department of Medicine, University of Oxford, Oxford, UK. .,Department of Medicine, Imperial College London, London, UK. .,Nuffield Department of Population Health, University of Oxford, Oxford, UK.
| |
Collapse
|
17
|
Emerging serotype III sequence type 17 group B streptococcus invasive infection in infants: the clinical characteristics and impacts on outcomes. BMC Infect Dis 2019; 19:538. [PMID: 31216993 PMCID: PMC6585028 DOI: 10.1186/s12879-019-4177-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 06/10/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Group B Streptococcus (GBS) is an important pathogen that causes high mortality and morbidity in young infants. However, data on clinical manifestations between different GBS serotypes and correlation with molecular epidemiology are largely incomplete. The aim of this study was to determine the serotype distribution, antimicrobial resistance, clinical features and molecular characteristics of invasive GBS isolates recovered from Taiwanese infants. METHODS From 2003 to 2017, 182 non-duplicate GBS isolates that caused invasive disease in infants less than one year of age underwent serotyping, multilocus sequence typing (MLST) and antibiotic susceptibility testing. The clinical features of these infants with GBS disease were also reviewed. RESULTS Of the 182 patients with invasive GBS disease, 41 (22.5%) were early-onset disease, 121 (66.5%) were late-onset disease and 20 (11.0%) were late late-onset disease (> 90 days of age). All these patients were treated with effective antibiotics on time. Among them, 51 (28.0%) had meningitis, 29 (16.0%) had neurological complications, 12 (6.6%) died during hospitalization, and 15 (8.8%) out of 170 patients who survived had long-term neurological sequelae at discharge. Serotype III GBS strains accounted for 64.8%, followed by serotype Ia (18.1%) and Ib (8.2%). MLST analysis revealed 11 different sequence types among the 182 isolates and ST-17 was the most dominant sequence type (56.6%). The correlation between serotype III and ST17 was evident, as ST17 accounted for 87.3% of all serotype III isolates. There was an obvious increasing trend of type III/ST-17 GBS that caused invasive disease in infants. All isolates were susceptible to penicillin, cefotaxime, and vancomycin, while 68.1 and 65.9% were resistant to erythromycin and clindamycin, respectively. CONCLUSIONS Despite timely and appropriate antibiotic treatment, a significant proportion of invasive GBS disease still inevitably causes adverse outcomes. Further study to explore preventive strategies and development of serotype-based vaccines will be necessary in the future.
Collapse
|
18
|
Renard A, Barbera L, Courtier-Martinez L, Dos Santos S, Valentin AS, Mereghetti L, Quentin R, van der Mee-Marquet NL. phiD12-Like Livestock-Associated Prophages Are Associated With Novel Subpopulations of Streptococcus agalactiae Infecting Neonates. Front Cell Infect Microbiol 2019; 9:166. [PMID: 31192160 PMCID: PMC6546898 DOI: 10.3389/fcimb.2019.00166] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 05/03/2019] [Indexed: 01/14/2023] Open
Abstract
Group B Streptococcus (GBS) is a major cause of invasive disease in neonates worldwide. Monitoring data have revealed a continuing trend toward an increase in neonatal GBS infections, despite the introduction of preventive measures. We investigated this trend, by performing the first ever characterization of the prophage content for 106 GBS strains causing neonatal infections between 2002 and 2018. We determined whether the genome of each strain harbored prophages, and identified the insertion site of each of the prophages identified. We found that 71.7% of the strains carried at least one prophage, and that prophages genetically similar to livestock-associated phiD12, carrying genes potentially involved in GBS pathogenesis (e.g., genes encoding putative virulence factors and factors involved in biofilm formation, bacterial persistence, or adaptation to challenging environments) predominated. The phiD12-like prophages were (1) associated with CC17 and 1 strains (p = 0.002), (2) more frequent among strains recovered during the 2011–2018 period than among those from 2002–2010 (p < 0.001), and (3) located at two major insertion sites close to bacterial genes involved in host adaptation and colonization. Our data provide evidence for a recent increase in lysogeny in GBS, characterized by the acquisition, within the genome, of genetic features typical of animal-associated mobile genetic elements by GBS strains causing neonatal infection. We suggest that lysogeny and phiD12-like prophage genetic elements may have conferred an advantage on GBS strains for adaptation to or colonization of the maternal vaginal tract, or for pathogenicity, and that these factors are currently playing a key role in the increasing ability of GBS strains to infect neonates.
Collapse
Affiliation(s)
- Adélaïde Renard
- Bactéries et Risque Materno-Foetal, UMR 1282, Infectiologie Santé Publique, Université de Tours, Tours, France
| | - Laurie Barbera
- Bactéries et Risque Materno-Foetal, UMR 1282, Infectiologie Santé Publique, Université de Tours, Tours, France
| | - Luka Courtier-Martinez
- Bactéries et Risque Materno-Foetal, UMR 1282, Infectiologie Santé Publique, Université de Tours, Tours, France
| | - Sandra Dos Santos
- Cellule Régionale d'Epidémiologie Nosocomiale, Centre d'Appui pour la Prévention des Infections Associées aux Soins CPias Centre val de Loire, Service de Bactériologie et Hygiène, Centre Hospitalier Universitaire, Tours, France
| | - Anne-Sophie Valentin
- Bactéries et Risque Materno-Foetal, UMR 1282, Infectiologie Santé Publique, Université de Tours, Tours, France
| | - Laurent Mereghetti
- Bactéries et Risque Materno-Foetal, UMR 1282, Infectiologie Santé Publique, Université de Tours, Tours, France.,Cellule Régionale d'Epidémiologie Nosocomiale, Centre d'Appui pour la Prévention des Infections Associées aux Soins CPias Centre val de Loire, Service de Bactériologie et Hygiène, Centre Hospitalier Universitaire, Tours, France
| | - Roland Quentin
- Bactéries et Risque Materno-Foetal, UMR 1282, Infectiologie Santé Publique, Université de Tours, Tours, France
| | - Nathalie L van der Mee-Marquet
- Bactéries et Risque Materno-Foetal, UMR 1282, Infectiologie Santé Publique, Université de Tours, Tours, France.,Cellule Régionale d'Epidémiologie Nosocomiale, Centre d'Appui pour la Prévention des Infections Associées aux Soins CPias Centre val de Loire, Service de Bactériologie et Hygiène, Centre Hospitalier Universitaire, Tours, France
| |
Collapse
|