1
|
Iwata K. Nonnegligible Seroprevalence and Predictors of Murine Typhus, Japan. Emerg Infect Dis 2024; 30:403. [PMID: 38270544 PMCID: PMC10826769 DOI: 10.3201/eid3002.230827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024] Open
|
2
|
Aita T, Sando E, Katoh S, Hamaguchi S, Fujita H, Kurita N. Nonnegligible Seroprevalence and Predictors of Murine Typhus, Japan (Response). Emerg Infect Dis 2024; 30:403-404. [PMID: 38270143 PMCID: PMC10826762 DOI: 10.3201/eid3002.231465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024] Open
|
3
|
Liu L, Xiao Y, Wei X, Li X, Duan C, Jia X, Jia R, Guo J, Chen Y, Zhang X, Zhang W, Wang Y. Spatiotemporal epidemiology and risk factors of scrub typhus in Hainan Province, China, 2011-2020. One Health 2023; 17:100645. [PMID: 38024283 PMCID: PMC10665174 DOI: 10.1016/j.onehlt.2023.100645] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 10/09/2023] [Accepted: 10/11/2023] [Indexed: 12/01/2023] Open
Abstract
Background The re-emergence of scrub typhus in the southern provinces of China in recent decades has been validated, thereby attracting the attention of public health authorities. There has been a spatial and temporal expansion of scrub typhus in Hainan Province, but the epidemiological characteristics, environmental drivers, and potential high-risk areas for scrub typhus have not yet been investigated. Objective The aims of this study were to characterize the spatiotemporal epidemiology of scrub typhus, identify dominant environmental risk factors, and map potential risk areas in Hainan Province from 2011 to 2020. Methods The spatiotemporal dynamics of scrub typhus in Hainan Province between 2011 and 2020 were analyzed using spatial analyses and seasonal-trend decomposition using regression (STR). The maximum entropy (MaxEnt) model was applied to determine the key environmental predictors and environmentally suitable areas for scrub typhus, and the demographic diversity of the predicted suitable zones was evaluated. Results During 2011-2020, 3260 scrub typhus cases were recorded in Hainan Province. The number of scrub typhus cases increased continuously each year, particularly among farmers (67.61%) and individuals aged 50-59 years (23.25%) who were identified as high-risk groups. A dual epidemic peak was detected, emerging annually from April to June and from July to October. The MaxEnt-based risk map illustrated that highly suitable areas, accounting for 25.36% of the total area, were mainly distributed in the northeastern part of Hainan Province, where 75.43% of the total population lived. Jackknife tests revealed that ground surface temperature, elevation, cumulative precipitation, evaporation, land cover, population density, and ratio of dependents were the most significant environmental factors. Conclusion In this study, we gained insights into the spatiotemporal epidemiological dynamics, pivotal environmental drivers, and potential risk map of scrub typhus in Hainan Province. These results have important implications for researchers and public health officials in guiding future prevention and control strategies for scrub typhus.
Collapse
Affiliation(s)
- Lisha Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Yang Xiao
- Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Xianyu Wei
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Xuan Li
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Chunyuan Duan
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
- Department of Epidemiology and Biostatistics, School of Public Health, China Medical University, Shenyang, China
| | - Xinjing Jia
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
- Department of Epidemiology and Biostatistics, School of Public Health, China Medical University, Shenyang, China
| | - Ruizhong Jia
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Jinpeng Guo
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
- Department of Epidemiology and Biostatistics, School of Public Health, China Medical University, Shenyang, China
| | - Yong Chen
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
- Department of Epidemiology and Biostatistics, School of Public Health, China Medical University, Shenyang, China
| | - Xiushan Zhang
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Wenyi Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
- Department of Epidemiology and Biostatistics, School of Public Health, China Medical University, Shenyang, China
| | - Yong Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
- Department of Epidemiology and Biostatistics, School of Public Health, China Medical University, Shenyang, China
| |
Collapse
|
4
|
Senvanpan N, Phimolsarnnousith V, Rattanavong S, Mayxay M, Reinharz D, Fine AE, Horwood PF, Dussart P, Blacksell SD, Pruvot M, Newton PN, Robinson MT. Longitudinal comparison of bacterial pathogen seropositivity among wet market vendors in the Lao People's Democratic Republic. One Health 2023; 17:100618. [PMID: 37811399 PMCID: PMC7615163 DOI: 10.1016/j.onehlt.2023.100618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 08/18/2023] [Accepted: 08/21/2023] [Indexed: 10/10/2023] Open
Abstract
Wild animal trade for human consumption is a global issue, involving complex interactions between economics, culture, food security and conservation. Whilst being a biodiversity issue, it is also a major public health concern, with recent epidemics and pandemics of zoonotic pathogens linked to interactions with wildlife. At three time points, between March 2017 and June 2018, a longitudinal sero-survey of 150 market vendors from three wet markets in Laos (selling vegetables, domestic animal meat and/or wildlife meat) was conducted to determine if vendors had been differentially exposed to three endemic bacterial pathogens - Orientia tsutsugamushi, Rickettsia typhi, and Leptospira spp. A total of 367 serum samples were tested by IgG enzyme-linked immunosorbent assay (ELISA) and immunofluorescence assay (IFA, for scrub typhus group (STG) and typhus group (TG) only). Among vendors, 32.7% were IgG-positive for at least one pathogen, 13.3% sero-converted during the study. Multi-season occupancy modelling for STG indicated a significantly higher prevalence of STG IgG in vegetable vendors (27.3%) and wildlife vendors (28.4%) than in domestic animal meat vendors (6.9 %, p=0.05), and higher in Phonsavanh market (OR=9.6, p=0.03) compared to Lak Sao and Salavan markets. Estimated mean incidence was 57 cases per 10,000 per 7.5-month period. For TG, vendor age had a significant effect on prevalence (OR=1.04, p=0.006), estimated mean incidence was 64 cases per 10,000 per season (7.5-month period). Despite individuals selling domestic meat having a higher prevalence of Leptospira infections than those that did not (11.6% versus 4.5%), the difference was not significant. Whilst this study has a number of limitations, including vendors changing what food types they sold and no investigation of exposure outside of markets, the finding that the risk of exposure of vendors to zoonotic pathogens may be associated with types of food sold for human consumption warrants further investigation.
Collapse
Affiliation(s)
- Nilandone Senvanpan
- Institute de la Francophonie pour la Médecine Tropicale (IFMT)/Lao Tropical & Public Health Institute, Vientiane, Laos
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit (LOMWRU), Microbiology Laboratory, Mahosot Hospital, Vientiane, Laos
| | - Vilayouth Phimolsarnnousith
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit (LOMWRU), Microbiology Laboratory, Mahosot Hospital, Vientiane, Laos
| | - Sayaphet Rattanavong
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit (LOMWRU), Microbiology Laboratory, Mahosot Hospital, Vientiane, Laos
| | - Mayfong Mayxay
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit (LOMWRU), Microbiology Laboratory, Mahosot Hospital, Vientiane, Laos
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Institute of Research and Education Development (IRED), University of Health Sciences, Ministry of Health, Vientiane, Laos
| | - Daniel Reinharz
- Institute de la Francophonie pour la Médecine Tropicale (IFMT)/Lao Tropical & Public Health Institute, Vientiane, Laos
- Département de Médecine Sociale et Préventive, Université Laval, Québec, Canada
| | - Amanda E. Fine
- Wildlife Conservation Society, Health Program, 2300 Southern Blvd, Bronx, NY 10460, USA
| | - Paul F. Horwood
- Virology Unit, Institut Pasteur du Cambodge, Pasteur Network, Phnom Penh, Cambodia
| | - Philippe Dussart
- Virology Unit, Institut Pasteur du Cambodge, Pasteur Network, Phnom Penh, Cambodia
| | - Stuart D. Blacksell
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit (LOMWRU), Microbiology Laboratory, Mahosot Hospital, Vientiane, Laos
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Mathieu Pruvot
- Wildlife Conservation Society, Health Program, 2300 Southern Blvd, Bronx, NY 10460, USA
- University of Calgary, Faculty of Veterinary Medicine, Calgary, AB, Canada
| | - Paul N. Newton
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit (LOMWRU), Microbiology Laboratory, Mahosot Hospital, Vientiane, Laos
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Matthew T. Robinson
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit (LOMWRU), Microbiology Laboratory, Mahosot Hospital, Vientiane, Laos
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
5
|
Blanton LS. Murine Typhus: A Review of a Reemerging Flea-Borne Rickettsiosis with Potential for Neurologic Manifestations and Sequalae. Infect Dis Rep 2023; 15:700-716. [PMID: 37987401 PMCID: PMC10660532 DOI: 10.3390/idr15060063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/24/2023] [Accepted: 10/24/2023] [Indexed: 11/22/2023] Open
Abstract
Murine typhus is an acute febrile illness caused by Rickettsia typhi, an obligately intracellular Gram-negative coccobacillus. Rats (Rattus species) and their fleas (Xenopsylla cheopis) serve as the reservoir and vector of R. typhi, respectively. Humans become infected when R. typhi-infected flea feces are rubbed into flea bite wounds or onto mucous membranes. The disease is endemic throughout much of the world, especially in tropical and subtropical seaboard regions where rats are common. Murine typhus is reemerging as an important cause of febrile illness in Texas and Southern California, where an alternate transmission cycle likely involves opossums (Didelphis virginiana) and cat fleas (Ctenocephalides felis). Although primarily an undifferentiated febrile illness, a range of neurologic manifestations may occur, especially when treatment is delayed. Serology is the mainstay of diagnostic testing, but confirmation usually requires demonstrating seroconversion or a fourfold increase in antibody titer from acute- and convalescent-phase sera (antibodies are seldom detectable in the first week of illness). Thus, early empiric treatment with doxycycline, the drug of choice, is imperative. The purpose of this review is to highlight murine typhus as an important emerging and reemerging infectious disease, review its neurologic manifestations, and discuss areas in need of further study.
Collapse
Affiliation(s)
- Lucas S Blanton
- Department Internal Medicine, Division of Infectious Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
6
|
Riswari SF, Prodjosoewojo S, Mony SR, Megantara I, Iskandar S, Mayasari W, Heryaman H, de Mast Q, van der Ven A, Kosasih H, Alisjahbana B. Murine typhus is a common cause of acute febrile illness in Bandung, Indonesia. PLoS One 2023; 18:e0283135. [PMID: 37418452 PMCID: PMC10328256 DOI: 10.1371/journal.pone.0283135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 03/02/2023] [Indexed: 07/09/2023] Open
Abstract
Murine typhus (MT), an infection caused by the gram-negative bacteria Rickettsia typhi (R. typhi), is a significant cause of acute febrile illness (AFI) in Southeast Asia but is rarely reported in Indonesia. The current study aimed to describe the clinical characteristics of MT cases in Bandung, West Java. Non-confirmed AFI cases (n = 176) from a prospective cohort study of whom paired serum samples (acute (T1), midterm (T2), or convalescent (T3)) were available were screened using MT serology. IgG against R. typhi was detected in the T2 or T3 samples using an in-house ELISA. Positive IgG samples were further screened for the presence of IgM. If both IgM and IgG were positive, the endpoint titer of T1, T2, or T3 was determined. In cases with a fourfold increase in titer, real-time PCR of T1 samples was performed to detect R. typhi DNA. In total, 71/176 (40.3%) patients tested positive for IgG antibody, and 26 AFI cases were confirmed as MT (23 cases by PCR, 3 cases by fourfold titer increased IgG or IgM titer). The most common clinical symptoms in the confirmed cases were headache (80%), arthralgia (73%), malaise (69%), and myalgia (54%). In these cases, the presumptive clinical diagnoses were typhoid fever (43.2%), dengue (38.5%), and leptospirosis (19.2%). MT was not considered in any of the patients, and no patients received doxycycline. These findings confirmed that MT is an important cause of AFI in Indonesia. MT should be included in the differential diagnosis of AFI, and empirical treatment with doxycycline should be considered.
Collapse
Affiliation(s)
- Silvita Fitri Riswari
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
- Research Center for Care and Control of Infectious Diseases (RC3ID), Universitas Padjadjaran, Bandung, Indonesia
- Department of Internal Medicine and the Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Susantina Prodjosoewojo
- Research Center for Care and Control of Infectious Diseases (RC3ID), Universitas Padjadjaran, Bandung, Indonesia
- Department of Internal Medicine, Hasan Sadikin General Hospital, Bandung, Indonesia
| | - Siti Rasnawati Mony
- Research Center for Care and Control of Infectious Diseases (RC3ID), Universitas Padjadjaran, Bandung, Indonesia
| | - Imam Megantara
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
- Research Center for Care and Control of Infectious Diseases (RC3ID), Universitas Padjadjaran, Bandung, Indonesia
| | - Shelly Iskandar
- Research Center for Care and Control of Infectious Diseases (RC3ID), Universitas Padjadjaran, Bandung, Indonesia
- Department of Psychiatry, Hasan Sadikin General Hospital, Bandung, Indonesia
| | - Wulan Mayasari
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - Henhen Heryaman
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - Quirijn de Mast
- Department of Internal Medicine and the Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Andre van der Ven
- Department of Internal Medicine and the Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Herman Kosasih
- Indonesia Research Partnership on Infectious Diseases (INA-RESPOND), Jakarta, Indonesia
| | - Bachti Alisjahbana
- Research Center for Care and Control of Infectious Diseases (RC3ID), Universitas Padjadjaran, Bandung, Indonesia
- Department of Internal Medicine, Hasan Sadikin General Hospital, Bandung, Indonesia
| |
Collapse
|
7
|
Blanton LS, Caravedo Martinez MA, Mendell N, Villasante-Tezanos A, Walker DH, Bouyer D. Increased Seroprevalence of Typhus Group Rickettsiosis, Galveston County, Texas, USA. Emerg Infect Dis 2023; 29:212-214. [PMID: 36573645 PMCID: PMC9796186 DOI: 10.3201/eid2901.221206] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Whether increases in typhus group rickettsiosis in Galveston County, Texas, USA, are caused by increased recognition or true reemergence is unclear. We conducted a serosurvey that demonstrated Rickettsia typhi antibodies increased from 1.2% in 2013 to 7.8% in 2021 (p<0.001). These findings support pathogen reemergence rather than enhanced recognition alone.
Collapse
|
8
|
An Update on the Laboratory Diagnosis of Rickettsia spp. Infection. Pathogens 2021; 10:pathogens10101319. [PMID: 34684267 PMCID: PMC8541673 DOI: 10.3390/pathogens10101319] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/25/2021] [Accepted: 10/11/2021] [Indexed: 01/10/2023] Open
Abstract
Rickettsia species causing human illness are present globally and can cause significant disease. Diagnosis and identification of this intracellular bacteria are challenging with many available diagnostic modalities suffering from several shortcomings. Detection of antibodies directed against Rickettsia spp. via serological methods remains widely used with a broad range of sensitivity and specificity values reported depending on the assay. Molecular methods, including polymerase chain reaction (PCR) testing, enables species-specific identification with a fast turnaround time; however, due to resource requirements, use in some endemic settings is limited. Reports on the use of next-generation sequencing (NGS) and metagenomics to diagnose Rickettsia spp. infection have been increasing. Despite offering several potential advantages in the diagnosis and surveillance of disease, genomic approaches are currently only limited to reference and research laboratories. Continued development of Rickettsia spp. diagnostics is required to improve disease detection and epidemiological surveillance, and to better understand transmission dynamics.
Collapse
|
9
|
Caravedo Martinez MA, Ramírez-Hernández A, Blanton LS. Manifestations and Management of Flea-Borne Rickettsioses. Res Rep Trop Med 2021; 12:1-14. [PMID: 33574726 PMCID: PMC7873028 DOI: 10.2147/rrtm.s274724] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 01/26/2021] [Indexed: 12/16/2022] Open
Abstract
Murine typhus and flea-borne spotted fever are undifferentiated febrile illnesses caused by Rickettsia typhi and Rickettsia felis, respectively. These organisms are small obligately intracellular bacteria and are transmitted to humans by fleas. Murine typhus is endemic to coastal areas of the tropics and subtropics (especially port cities), where rats are the primary mammalian host and rat fleas (Xenopsylla cheopis) are the vector. In the United States, a cycle of transmission involving opossums and cat fleas (Ctenocephalides felis) are the presumed reservoir and vector, respectively. The incidence and distribution of murine typhus appear to be increasing in endemic areas of the US. Rickettsia felis has also been reported throughout the world and is found within the ubiquitous cat flea. Flea-borne rickettsioses manifest as an undifferentiated febrile illness. Headache, malaise, and myalgia are frequent symptoms that accompany fever. The incidence of rash is variable, so its absence should not dissuade the clinician to consider a rickettsial illness as part of the differential diagnosis. When present, the rash is usually macular or papular. Although not a feature of murine typhus, eschar has been found in 12% of those with flea-borne spotted fever. Confirmatory laboratory diagnosis is usually obtained by serology; the indirect immunofluorescence assay is the serologic test of choice. Antibodies are seldom present during the first few days of illness. Thus, the diagnosis requires acute- and convalescent-phase specimens to document seroconversion or a four-fold increase in antibody titer. Since laboratory diagnosis is usually retrospective, when a flea-borne rickettsiosis is considered, empiric treatment should be initiated. The treatment of choice for both children and adults is doxycycline, which results in a swift and effective response. The following review is aimed to summarize the key clinical, epidemiological, ecological, diagnostic, and treatment aspects of flea-borne rickettsioses.
Collapse
Affiliation(s)
- Maria A Caravedo Martinez
- Department of Internal Medicine – Division of Infectious Diseases, University of Texas Medical Branch, Galveston, TX, USA
| | | | - Lucas S Blanton
- Department of Internal Medicine – Division of Infectious Diseases, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
10
|
Anstead GM. History, Rats, Fleas, and Opossums. II. The Decline and Resurgence of Flea-Borne Typhus in the United States, 1945-2019. Trop Med Infect Dis 2020; 6:2. [PMID: 33379251 PMCID: PMC7839051 DOI: 10.3390/tropicalmed6010002] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/14/2020] [Accepted: 12/18/2020] [Indexed: 11/17/2022] Open
Abstract
Flea-borne typhus, due to Rickettsia typhi and R. felis, is an infection causing fever, headache, rash, and diverse organ manifestations that can result in critical illness or death. This is the second part of a two-part series describing the rise, decline, and resurgence of flea-borne typhus (FBT) in the United States over the last century. These studies illustrate the influence of historical events, social conditions, technology, and public health interventions on the prevalence of a vector-borne disease. Flea-borne typhus was an emerging disease, primarily in the Southern USA and California, from 1910 to 1945. The primary reservoirs in this period were the rats Rattus norvegicus and Ra. rattus and the main vector was the Oriental rat flea (Xenopsylla cheopis). The period 1930 to 1945 saw a dramatic rise in the number of reported cases. This was due to conditions favorable to the proliferation of rodents and their fleas during the Depression and World War II years, including: dilapidated, overcrowded housing; poor environmental sanitation; and the difficulty of importing insecticides and rodenticides during wartime. About 42,000 cases were reported between 1931-1946, and the actual number of cases may have been three-fold higher. The number of annual cases of FBT peaked in 1944 at 5401 cases. American involvement in World War II, in the short term, further perpetuated the epidemic of FBT by the increased production of food crops in the American South and by promoting crowded and unsanitary conditions in the Southern cities. However, ultimately, World War II proved to be a powerful catalyst in the control of FBT by improving standards of living and providing the tools for typhus control, such as synthetic insecticides and novel rodenticides. A vigorous program for the control of FBT was conducted by the US Public Health Service from 1945 to 1952, using insecticides, rodenticides, and environmental sanitation and remediation. Government programs and relative economic prosperity in the South also resulted in slum clearance and improved housing, which reduced rodent harborage. By 1956, the number of cases of FBT in the United States had dropped dramatically to only 98. Federally funded projects for rat control continued until the mid-1980s. Effective antibiotics for FBT, such as the tetracyclines, came into clinical practice in the late 1940s. The first diagnostic test for FBT, the Weil-Felix test, was found to have inadequate sensitivity and specificity and was replaced by complement fixation in the 1940s and the indirect fluorescent antibody test in the 1980s. A second organism causing FBT, R. felis, was discovered in 1990. Flea-borne typhus persists in the United States, primarily in South and Central Texas, the Los Angeles area, and Hawaii. In the former two areas, the opossum (Didelphis virginiana) and cats have replaced rats as the primary reservoirs, with the cat flea (Ctenocephalides felis) now as the most important vector. In Hawaii, 73% of cases occur in Maui County because it has lower rainfall than other areas. Despite great successes against FBT in the post-World War II era, it has proved difficult to eliminate because it is now associated with our companion animals, stray pets, opossums, and the cat flea, an abundant and non-selective vector. In the new millennium, cases of FBT are increasing in Texas and California. In 2018-2019, Los Angeles County experienced a resurgence of FBT, with rats as the reservoir.
Collapse
Affiliation(s)
- Gregory M Anstead
- Medical Service, South Texas Veterans Health Care System and Department of Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
11
|
The Isolation of Orientia tsutsugamushi and Rickettsia typhi from Human Blood through Mammalian Cell Culture: a Descriptive Series of 3,227 Samples and Outcomes in the Lao People's Democratic Republic. J Clin Microbiol 2020; 58:JCM.01553-20. [PMID: 32999008 PMCID: PMC7685894 DOI: 10.1128/jcm.01553-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 09/23/2020] [Indexed: 11/20/2022] Open
Abstract
In the Lao People’s Democratic Republic (Laos), rickettsial infections, including scrub and murine typhus, account for a significant burden of fevers. The Mahosot Hospital Microbiology Laboratory in Vientiane, Laos, routinely performs rickettsial isolation from hospitalized patients with suspected rickettsioses using mammalian cell culture systems. We review the clinical and laboratory factors associated with successful Orientia tsutsugamushi and Rickettsia typhi isolations from this laboratory over a period of 6 years between 2008 and 2014. In the Lao People’s Democratic Republic (Laos), rickettsial infections, including scrub and murine typhus, account for a significant burden of fevers. The Mahosot Hospital Microbiology Laboratory in Vientiane, Laos, routinely performs rickettsial isolation from hospitalized patients with suspected rickettsioses using mammalian cell culture systems. We review the clinical and laboratory factors associated with successful Orientia tsutsugamushi and Rickettsia typhi isolations from this laboratory over a period of 6 years between 2008 and 2014. The overall isolation success was 7.9% for all samples submitted and 17.3% for samples for which the patient had a positive O. tsutsugamushi or R. typhi rapid diagnostic test (RDT), serology, or PCR. The frequency of successful isolation was highest for samples submitted in November, at the end of the wet season (28.3%). A longer median duration of reported illness, a positive result for a concurrent Orientia or Rickettsia spp. quantitative PCR, and the use of antibiotics by the patient in the week before admission were significantly associated with isolation success (P < 0.05). Buffy coat inoculation and a shorter interval between sample collection and inoculation in the laboratory were associated with a higher frequency of isolation (both P < 0.05). This frequency was highest if cell culture inoculation occurred on the same day as blood sample collection. Factors related to the initial rickettsial bacterial concentration are likely the main contributors to isolation success. However, modifiable factors do contribute to the rickettsial isolation success, especially delays in inoculating patient samples into culture.
Collapse
|
12
|
Dhawan S, Robinson MT, Stenos J, Graves SR, Wangrangsimakul T, Newton PN, Day NPJ, Blacksell SD. Selection of Diagnostic Cutoffs for Murine Typhus IgM and IgG Immunofluorescence Assay: A Systematic Review. Am J Trop Med Hyg 2020; 103:55-63. [PMID: 32274984 PMCID: PMC7356422 DOI: 10.4269/ajtmh.19-0818] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 02/18/2020] [Indexed: 11/16/2022] Open
Abstract
Murine typhus is a neglected but widespread infectious disease that results in acute fever. The immunofluorescence assay (IFA) is the "gold standard" to identify IgM or IgG antibodies, although there is a lack of standardization in methodologies. The objective of this review is to summarize 1) the differences in published methodologies, 2) the diagnostic cutoff titers, and 3) the justification of diagnostic cutoffs. Searches were performed by combining the following search terms: "murine typhus," "rickettsia typhi," "immunofluorescence," "IFA," and "serologic" with restrictions (i.e., "rickettsia typhi" or "murine typhus," and "IFA" or "immunofluorescence," or "serologic*"). The search identified 78 studies that used IFA or immunoperoxidase assay (IIP) antibody cutoffs to diagnose murine typhus, 39 of which were case series. Overall, 45 studies (57.7%) provided little to no rationale as to how the cutoff was derived. Variation was seen locally in the cutoff titers used, but a 4-fold or greater increase was often applied. The cutoffs varied depending on the antibody target. No consensus was observed in establishing a cutoff, or for a single-value diagnostic cutoff. In conclusion, there is a lack of consensus in the establishment of a single-value cutoff. Further studies will need to be executed at each distinct geographic location to identify region-specific cutoffs, while also considering background antibody levels to distinguish between healthy and infected patients.
Collapse
Affiliation(s)
- Sandhya Dhawan
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Matthew T. Robinson
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit (LOMWRU), Mahosot Hospital, Vientiane, Lao People’s Democratic Republic
| | - John Stenos
- Australian Rickettsial Reference Laboratory, University Hospital Geelong, Geelong, Australia
| | - Stephen R. Graves
- Australian Rickettsial Reference Laboratory, University Hospital Geelong, Geelong, Australia
| | - Tri Wangrangsimakul
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Paul N. Newton
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit (LOMWRU), Mahosot Hospital, Vientiane, Lao People’s Democratic Republic
| | - Nicholas P. J. Day
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Stuart D. Blacksell
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit (LOMWRU), Mahosot Hospital, Vientiane, Lao People’s Democratic Republic
| |
Collapse
|