1
|
Zhang Q, Zhou X, Zhang W, Wang X, Dou S, Zhao L, El‐Habta R, Zhou Q, Backman LJ, Danielson P. Corneal strain influences keratocyte proliferation and migration through upregulation of ALDH3A1 expression. FASEB J 2024; 38:e70236. [PMID: 39652089 PMCID: PMC11627209 DOI: 10.1096/fj.202401392r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 10/24/2024] [Accepted: 11/21/2024] [Indexed: 12/12/2024]
Abstract
Keratocytes are the primary resident cells in the corneal stroma. They play an essential role in maintaining corneal physiological function. Studying the factors that affect the phenotype and behavior of keratocytes offers meaningful perspectives for improving the understanding and treatment of corneal injuries. In this study, 3% strain was applied to human keratocytes using the Flexcell® Tension Systems. Real-time quantitative PCR (RT-qPCR) and western blot were used to investigate the influence of strain on the expression of intracellular aldehyde dehydrogenase 3A1 (ALDH3A1). ALDH3A1 knockdown was achieved using double-stranded RNA-mediated interference (RNAi). Immunofluorescence (IF) staining was employed to observe the impact of changes in ALDH3A1 expression on nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) nuclear translocation. Keratocyte proliferation and migration were assessed by bromodeoxyuridine (BrdU) assay and scratch wound healing assay, respectively. Mouse injury models and single-cell RNA sequencing of keratocytes from keratoconus patients were used to assess how strain influenced ALDH3A1 in vivo. Our results demonstrate that 3% strain suppresses keratocyte proliferation and increases ALDH3A1. Increased ALDH3A1 inhibits NF-κB nuclear translocation, a key step in the activation of the NF-κB signaling pathway. Conversely, ALDH3A1 knockdown promotes NF-κB nuclear translocation, ultimately enhancing keratocyte proliferation and migration. Elevated ALDH3A1 levels were also observed in mouse injury models with increased corneal strain and keratoconus patients. These findings provide valuable insights for further research into the role of corneal strain and its connection to corneal injury repair.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Medical and Translational BiologyUmeå UniversityUmeåSweden
| | - Xin Zhou
- Department of Medical and Translational BiologyUmeå UniversityUmeåSweden
| | - Wei Zhang
- School of MedicineSoutheast UniversityNanjingChina
| | - Xiaolei Wang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of OphthalmologyEye Institute of Shandong First Medical UniversityQingdaoChina
| | - Shengqian Dou
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of OphthalmologyEye Institute of Shandong First Medical UniversityQingdaoChina
| | - Leilei Zhao
- Medical CollegeQingdao UniversityQingdaoChina
| | - Roine El‐Habta
- Department of Medical and Translational BiologyUmeå UniversityUmeåSweden
| | - Qingjun Zhou
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of OphthalmologyEye Institute of Shandong First Medical UniversityQingdaoChina
| | - Ludvig J. Backman
- Department of Medical and Translational BiologyUmeå UniversityUmeåSweden
- Department of Community Medicine and Rehabilitation, Section of PhysiotherapyUmeå UniversityUmeåSweden
| | - Patrik Danielson
- Department of Medical and Translational BiologyUmeå UniversityUmeåSweden
- Department of Clinical Sciences, OphthalmologyUmeå UniversityUmeåSweden
| |
Collapse
|
2
|
Ramasubramanian D, Hernández-Verdejo JL, López-Alonso JM. Influence of Contact Lens Parameters on Cornea: Biomechanical Analysis. Bioengineering (Basel) 2024; 11:966. [PMID: 39451343 PMCID: PMC11505363 DOI: 10.3390/bioengineering11100966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/22/2024] [Accepted: 09/25/2024] [Indexed: 10/26/2024] Open
Abstract
This study presents a finite element analysis to model ocular biomechanics and the interactions between the human eye and contact lenses in the closed-eye condition. The closed-eye state, where the eyelids are fully shut, presents challenges for experimental measurements due to the invasive nature of accessing and analysing the contact lens and corneal interface, making simulation tools valuable for accurate characterisation. The primary objective of this study was to examine how CLs fold and twist and their impact on the cornea when the eye is closed. The secondary aim of this study was to assess how crucial contact lens parameters (Young's modulus, base curve, and diameter) influence corneal stress distribution and the overall fit of the lens on the eye. The findings show that increasing Young's modulus significantly reduces corneal stress and promotes uniform stress distribution, making it the most influential factor for wearer comfort and safety. While base curve and diameter variations primarily affect contact area, their impact on stress distribution is minimal. This research provides insights for improving contact lens design and enhancing safety for contact lens wearers.
Collapse
Affiliation(s)
- Darshan Ramasubramanian
- Faculty of Optics and Optometry, Complutense University of Madrid, Arcos de Jalón 118, 28037 Madrid, Spain; (D.R.); (J.L.H.-V.)
- Alain Afflelou Óptico Portugal, Av. António Augusto de Aguiar 11, 1050-016 Lisbon, Portugal
| | - José Luis Hernández-Verdejo
- Faculty of Optics and Optometry, Complutense University of Madrid, Arcos de Jalón 118, 28037 Madrid, Spain; (D.R.); (J.L.H.-V.)
| | - José Manuel López-Alonso
- Faculty of Optics and Optometry, Complutense University of Madrid, Arcos de Jalón 118, 28037 Madrid, Spain; (D.R.); (J.L.H.-V.)
| |
Collapse
|
3
|
Ramasubramanian D, Hernández-Verdejo JL, López-Alonso JM. Contact lens fitting and changes in the tear film dynamics: mathematical and computational models review. Graefes Arch Clin Exp Ophthalmol 2024; 262:2751-2764. [PMID: 38430228 PMCID: PMC11377471 DOI: 10.1007/s00417-024-06400-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 01/25/2024] [Accepted: 02/06/2024] [Indexed: 03/03/2024] Open
Abstract
PURPOSE This review explores mathematical models, blinking characterization, and non-invasive techniques to enhance understanding and refine clinical interventions for ocular conditions, particularly for contact lens wear. METHODS The review evaluates mathematical models in tear film dynamics and their limitations, discusses contact lens wear models, and highlights computational mechanical models. It also explores computational techniques, customization of models based on individual blinking dynamics, and non-invasive diagnostic tools like high-speed cameras and advanced imaging technologies. RESULTS Mathematical models provide insights into tear film dynamics but face challenges due to simplifications. Contact lens wear models reveal complex ocular physiology and design aspects, aiding in lens development. Computational mechanical models explore eye biomechanics, often integrating tear film dynamics into a Multiphysics framework. While different computational techniques have their advantages and disadvantages, non-invasive tools like OCT and thermal imaging play a crucial role in customizing these Multiphysics models, particularly for contact lens wearers. CONCLUSION Recent advancements in mathematical modeling and non-invasive tools have revolutionized ocular health research, enabling personalized approaches. The review underscores the importance of interdisciplinary exploration in the Multiphysics approach involving tear film dynamics and biomechanics for contact lens wearers, promoting advancements in eye care and broader ocular health research.
Collapse
|
4
|
Kempuraj D, Mohan RR. Blast injury: Impact to the cornea. Exp Eye Res 2024; 244:109915. [PMID: 38677709 PMCID: PMC11179966 DOI: 10.1016/j.exer.2024.109915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/03/2024] [Accepted: 04/24/2024] [Indexed: 04/29/2024]
Abstract
Visual disorders are common even after mild traumatic brain injury (mTBI) or blast exposure. The cost of blast-induced vision loss in civilians, military personnel, and veterans is significant. The visual consequences of blasts associated with TBI are elusive. Active military personnel and veterans report various ocular pathologies including corneal disorders post-combat blasts. The wars and conflicts in Afghanistan, Iraq, Syria, and Ukraine have significantly increased the number of corneal and other ocular disorders among military personnel and veterans. Binocular vision, visual fields, and other visual functions could be impaired following blast-mediated TBI. Blast-associated injuries can cause visual disturbances, binocular system problems, and visual loss. About 25% of veterans exposed to blasts report corneal injury. Blast exposure induces corneal edema, corneal opacity, increased corneal thickness, damage of corneal epithelium, corneal abrasions, and stromal and endothelial abnormality including altered endothelial density, immune cell infiltration, corneal neovascularization, Descemet membrane rupture, and increased pain mediators in animal models and the blast-exposed military personnel including veterans. Immune response exacerbates blast-induced ocular injury. TBI is associated with dry eyes and pain in veterans. Subjects exposed to blasts that cause TBI should undergo immediate clinical visual and ocular examinations. Delayed visual care may lead to progressive vision loss, lengthening/impairing rehabilitation and ultimately may lead to permanent vision problems and blindness. Open-field blast exposure could induce corneal injuries and immune responses in the cornea. Further studies are warranted to understand corneal pathology after blast exposure. A review of current advancements in blast-induced corneal injury will help elucidate novel targets for potential therapeutic options. This review discusses the impact of blast exposure-associated corneal disorders.
Collapse
Affiliation(s)
- Duraisamy Kempuraj
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, United States; One-Health Vision Research Program, Departments of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, United States
| | - Rajiv R Mohan
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, United States; One-Health Vision Research Program, Departments of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, United States; Mason Eye Institute, School of Medicine, University of Missouri, Columbia, MO, United States.
| |
Collapse
|
5
|
Karimi A, Crouch DJ, Razaghi R, Crawford Downs J, Acott TS, Kelley MJ, Behnsen JG, Bosworth LA, Sheridan CM. Morphological and biomechanical analyses of the human healthy and glaucomatous aqueous outflow pathway: Imaging-to-modeling. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2023; 236:107485. [PMID: 37149973 PMCID: PMC11753070 DOI: 10.1016/j.cmpb.2023.107485] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/09/2023] [Accepted: 03/13/2023] [Indexed: 05/09/2023]
Abstract
BACKGROUND AND OBJECTIVE Intraocular pressure (IOP) is maintained via a dynamic balance between the production of aqueous humor and its drainage through the trabecular meshwork (TM), juxtacanalicular connective tissue (JCT), and Schlemm's canal (SC) endothelium of the conventional outflow pathway. Primary open angle glaucoma (POAG) is often associated with IOP elevation that occurs due to an abnormally high outflow resistance across the outflow pathway. Outflow tissues are viscoelastic and actively interact with aqueous humor dynamics through a two-way fluid-structure interaction coupling. While glaucoma affects the morphology and stiffness of the outflow tissues, their biomechanics and hydrodynamics in glaucoma eyes remain largely unknown. This research aims to develop an image-to-model method allowing the biomechanics and hydrodynamics of the conventional aqueous outflow pathway to be studied. METHODS We used a combination of X-ray computed tomography and scanning electron microscopy to reconstruct high-fidelity, eye-specific, 3D microstructural finite element models of the healthy and glaucoma outflow tissues in cellularized and decellularized conditions. The viscoelastic TM/JCT/SC complex finite element models with embedded viscoelastic beam elements were subjected to a physiological IOP load boundary; the stresses/strains and the flow state were calculated using fluid-structure interaction and computational fluid dynamics. RESULTS Based on the resultant hydrodynamics parameters across the outflow pathway, the primary site of outflow resistance in healthy eyes was in the JCT and immediate vicinity of the SC inner wall, while the majority of the outflow resistance in the glaucoma eyes occurred in the TM. The TM and JCT in the glaucoma eyes showed 1.32-fold and 1.13-fold larger beam thickness and smaller trabecular space size (2.24-fold and 1.50-fold) compared to the healthy eyes. CONCLUSIONS Characterizing the accurate morphology of the outflow tissues may significantly contribute to constructing more accurate, robust, and reliable models, that can eventually help to better understand the dynamic IOP regulation, hydrodynamics of the aqueous humor, and outflow resistance dynamic in the human eyes. This model demonstrates proof of concept for determining changes to outflow resistance in healthy and glaucomatous tissues and thus may be utilized in larger cohorts of donor tissues where disease specificity, race, age, and gender of the eye donors may be accounted for.
Collapse
Affiliation(s)
- Alireza Karimi
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, United States
| | - Devon J Crouch
- Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L7 8TX, United Kingdom
| | - Reza Razaghi
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL, United States
| | - J Crawford Downs
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Ted S Acott
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, United States; Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, Oregon, United States
| | - Mary J Kelley
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, United States; Department of Integrative Biosciences, Oregon Health & Science University, Portland, Oregon, United States
| | - Julia G Behnsen
- Department of Mechanical, Materials, and Aerospace Engineering, University of Liverpool, Liverpool, L69 6GB, United Kingdom
| | - Lucy A Bosworth
- Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L7 8TX, United Kingdom
| | - Carl M Sheridan
- Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L7 8TX, United Kingdom.
| |
Collapse
|
6
|
Wang S, Li F, Jin S, Zhang Y, Yang N, Zhao J. Biomechanics of open-globe injury: a review. Biomed Eng Online 2023; 22:53. [PMID: 37226242 DOI: 10.1186/s12938-023-01117-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 05/19/2023] [Indexed: 05/26/2023] Open
Abstract
Open-globe injury is a common cause of blindness clinically caused by blunt trauma, sharp injury, or shock waves, characterised by rupture of the cornea or sclera and exposure of eye contents to the environment. It causes catastrophic damage to the globe, resulting in severe visual impairment and psychological trauma to the patient. Depending on the structure of the globe, the biomechanics causing ocular rupture can vary, and trauma to different parts of the globe can cause varying degrees of eye injury. The weak parts or parts of the eyeball in contact with foreign bodies rupture when biomechanics, such as external force, unit area impact energy, corneoscleral stress, and intraocular pressure exceed a certain value. Studying the biomechanics of open-globe injury and its influencing factors can provide a reference for eye-contact operations and the design of eye-protection devices. This review summarises the biomechanics of open-globe injury and the relevant factors.
Collapse
Affiliation(s)
- Songtao Wang
- Department of Ophthalmology, The Second Hospital of Jilin University, No. 4026, Yatai Street, Nanguan District, Changchun, Jilin, China
| | - Fuqiang Li
- Department of Ophthalmology, The Second Hospital of Jilin University, No. 4026, Yatai Street, Nanguan District, Changchun, Jilin, China
| | - Siyan Jin
- Department of Ophthalmology, The Second Hospital of Jilin University, No. 4026, Yatai Street, Nanguan District, Changchun, Jilin, China
| | - Yu Zhang
- Department of Ophthalmology, The Second Hospital of Jilin University, No. 4026, Yatai Street, Nanguan District, Changchun, Jilin, China
| | - Ning Yang
- Department of Ophthalmology, The Second Hospital of Jilin University, No. 4026, Yatai Street, Nanguan District, Changchun, Jilin, China
| | - Jinsong Zhao
- Department of Ophthalmology, The Second Hospital of Jilin University, No. 4026, Yatai Street, Nanguan District, Changchun, Jilin, China.
| |
Collapse
|
7
|
Abdolkarimzadeh F, Ashory MR, Ghasemi-Ghalebahman A, Karimi A. A position- and time-dependent pressure profile to model viscoelastic mechanical behavior of the brain tissue due to tumor growth. Comput Methods Biomech Biomed Engin 2023; 26:660-672. [PMID: 35638726 PMCID: PMC9708950 DOI: 10.1080/10255842.2022.2082245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 04/06/2022] [Accepted: 05/23/2022] [Indexed: 11/03/2022]
Abstract
This study proposed a computational framework to calculate the resultant position- and time-dependent pressure profile on the brain tissue due to tumor growth. A finite element (FE) patch of the brain tissue was constructed and an inverse dynamic FE-optimization algorithm was used to calculate its viscoelastic mechanical properties under compressive uniaxial loading. Two patient-specific post-tumor resection FE models were input to the FE-optimization algorithm to calculate the optimized 3rd-order position-dependent and normal distribution time-dependent pressure profile parameters. The optimized viscoelastic material properties, the most suitable simulation time, and the optimized 3rd-order position- and -time-dependent pressure profiles were calculated.
Collapse
Affiliation(s)
| | | | | | - Alireza Karimi
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
8
|
Shahiri M, Jóźwik A, Asejczyk M. Opto-mechanical self-adjustment model of the human eye. BIOMEDICAL OPTICS EXPRESS 2023; 14:1923-1944. [PMID: 37206139 PMCID: PMC10191641 DOI: 10.1364/boe.484824] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/10/2023] [Accepted: 03/11/2023] [Indexed: 05/21/2023]
Abstract
The eye has specific optical and biomechanical properties that jointly regulate the eye's quality of vision, shape, and elasticity. These two characteristics are interdependent and correlated. Contrary to most currently available computational models of the human eye that only focus on biomechanical or optical aspects, the current study explores the inter-relationships between biomechanics, structure, and optical properties. Possible combinations of mechanical properties, boundary conditions, and biometrics were specified to ensure the opto-mechanical (OM) integrity to compensate for physiological changes in intraocular pressure (IOP) without compromising image acuity. This study evaluated the quality of the vision by analyzing the minimum spot diameters formed on the retina and drew how the self-adjustment mechanism affects the eye globe shape by adopting a finite element (FE) model of the eyeball. The model was verified by a water drinking test with biometric measurement (OCT Revo NX, Optopol) and tonometry (Corvis ST, Oculus).
Collapse
|
9
|
Explosive eye injuries: characteristics, traumatic mechanisms, and prognostic factors for poor visual outcomes. Mil Med Res 2023; 10:3. [PMID: 36631894 PMCID: PMC9835351 DOI: 10.1186/s40779-022-00438-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 12/21/2022] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Explosions can produce blast waves, high-speed medium, thermal radiation, and chemical spatter, leading to complex and compound eye injuries. However, few studies have comprehensively investigated the clinical features of different eye injury types or possible risk factors for poor prognosis. METHODS We retrospectively reviewed all consecutive records of explosive eye injuries (1449 eyes in 1115 inpatients) in 14 tertiary referral hospitals in China over 12 years (between January 2008 and December 2019). Data on demographics, eye injury types, ocular findings, treatments, and factors affecting visual prognosis were extracted from a standardized database of eye injuries and statistically analyzed. RESULTS Mechanical ocular trauma accounted for 94.00% of explosion-related eye injuries, among which intraocular foreign bodies (IOFBs) resulted in 55.17% of open globe injuries (OGIs) and contusion caused 60.22% of close globe injuries (CGIs). Proliferative vitreous retinopathy (PVR) was more common in perforating (47.06%) and IOFB (26.84%) than in penetrating (8.79%) injuries, and more common with laceration (24.25%) than rupture (9.22%, P < 0.01). However, no difference was observed between rupture and contusion. Ultimately, 9.59% of eyes were removed and the final vision was ≤ 4/200 in 45.82% of patients. Poor presenting vision [odds ratio (OR) = 5.789], full-thickness laceration of the eyeball ≥ 5 mm (OR = 3.665), vitreous hemorrhage (OR = 3.474), IOFB (OR = 3.510), non-mechanical eye injury (NMEI, OR = 2.622, P < 0.001), rupture (OR = 2.362), traumatic optic neuropathy (OR = 2.102), retinal detachment (RD, OR = 2.033), endophthalmitis (OR = 3.281, P < 0.01), contusion (OR = 1.679), ciliary body detachment (OR = 6.592), zone III OGI (OR = 1.940), and PVR (OR = 1.615, P < 0.05) were significant negative predictors for poor visual outcomes. CONCLUSIONS Explosion ocular trauma has complex mechanisms, with multiple eyes involved and poor prognosis. In lethal level I explosion injuries, eyeball rupture is a serious condition, whereas contusion is more likely to improve. In level II injuries, IOFBs are more harmful than penetrating injuries, and level IV represents burn-related eye injuries. PVR is more associated with penetrating mechanisms than with OGI. Identifying the risk predictors for visual prognosis can guide clinicians in the evaluation and treatment of ocular blast injuries.
Collapse
|
10
|
Karimi A, Halabian M, Razaghi R, Downs JC, Kelley MJ, Acott TS. Modeling the Endothelial Glycocalyx Layer in the Human Conventional Aqueous Outflow Pathway. Cells 2022; 11:3925. [PMID: 36497183 PMCID: PMC9740116 DOI: 10.3390/cells11233925] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/30/2022] [Accepted: 12/03/2022] [Indexed: 12/07/2022] Open
Abstract
A layer of proteoglycans and glycoproteins known as glycocalyx covers the surface of the trabecular meshwork (TM), juxtacanalicular tissue (JCT), and Schlemm's canal (SC) inner wall of the conventional aqueous outflow pathway in the eye. This has been shown to play a role in the mechanotransduction of fluid shear stress and in the regulation of the outflow resistance. The outflow resistance in the conventional outflow pathway is the main determinant of the intraocular pressure (IOP) through an active, two-way, fluid-structure interaction coupling between the outflow tissues and aqueous humor. A 3D microstructural finite element (FE) model of a healthy human eye TM/JCT/SC complex with interspersed aqueous humor was constructed. A very thin charged double layer that represents the endothelial glycocalyx layer covered the surface of the elastic outflow tissues. The aqueous humor was modeled as electroosmotic flow that is charged when it is in contact with the outflow tissues. The electrical-fluid-structure interaction (EFSI) method was used to couple the charged double layer (glycocalyx), fluid (aqueous humor), and solid (outflow tissues). When the IOP was elevated to 15 mmHg, the maximum aqueous humor velocity in the EFSI model was decreased by 2.35 mm/s (9%) compared to the fluid-structure interaction (FSI) model. The charge or electricity in the living human conventional outflow pathway generated by the charged endothelial glycocalyx layer plays a minor biomechanical role in the resultant stresses and strains as well as the hydrodynamics of the aqueous humor.
Collapse
Affiliation(s)
- Alireza Karimi
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Mahdi Halabian
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Reza Razaghi
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - J. Crawford Downs
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Mary J. Kelley
- Departments of Ophthalmology and Integrative Biosciences, Casey Eye Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Ted S. Acott
- Departments of Ophthalmology and Biochemistry and Molecular Biology, Casey Eye Institute, Oregon Health & Science University, Portland, OR 97239, USA
| |
Collapse
|
11
|
Karimi A, Razaghi R, Rahmati SM, Downs JC, Acott TS, Kelley MJ, Wang RK, Johnstone M. The Effect of Intraocular Pressure Load Boundary on the Biomechanics of the Human Conventional Aqueous Outflow Pathway. Bioengineering (Basel) 2022; 9:672. [PMID: 36354583 PMCID: PMC9687513 DOI: 10.3390/bioengineering9110672] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/28/2022] [Accepted: 11/08/2022] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND Aqueous humor outflow resistance in the trabecular meshwork (TM), juxtacanalicular connective tissue (JCT), and Schlemm's canal (SC) endothelium of the conventional outflow pathway actively contribute to intraocular pressure (IOP) regulation. Outflow resistance is actively affected by the dynamic outflow pressure gradient across the TM, JCT, and SC inner wall tissues. The resistance effect implies the presence of a fluid-structure interaction (FSI) coupling between the outflow tissues and the aqueous humor. However, the biomechanical interactions between viscoelastic outflow tissues and aqueous humor dynamics are largely unknown. METHODS A 3D microstructural finite element (FE) model of a healthy human eye TM/JCT/SC complex was constructed with elastic and viscoelastic material properties for the bulk extracellular matrix and embedded elastic cable elements. The FE models were subjected to both idealized and a physiologic IOP load boundary using the FSI method. RESULTS The elastic material model for both the idealized and physiologic IOP load boundary at equal IOPs showed similar stresses and strains in the outflow tissues as well as pressure in the aqueous humor. However, outflow tissues with viscoelastic material properties were sensitive to the IOP load rate, resulting in different mechanical and hydrodynamic responses in the tissues and aqueous humor. CONCLUSIONS Transient IOP fluctuations may cause a relatively large IOP difference of ~20 mmHg in a very short time frame of ~0.1 s, resulting in a rate stiffening in the outflow tissues. Rate stiffening reduces strains and causes a rate-dependent pressure gradient across the outflow tissues. Thus, the results suggest it is necessary to use a viscoelastic material model in outflow tissues that includes the important role of IOP load rate.
Collapse
Affiliation(s)
- Alireza Karimi
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Reza Razaghi
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | | | - J. Crawford Downs
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Ted S. Acott
- Departments of Ophthalmology and Biochemistry and Molecular Biology, Casey Eye Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Mary J. Kelley
- Departments of Ophthalmology and Integrative Biosciences, Casey Eye Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Ruikang K. Wang
- Department of Ophthalmology, University of Washington, Seattle, WA 98195, USA
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Murray Johnstone
- Department of Ophthalmology, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
12
|
Karimi A, Razaghi R, Rahmati SM, Downs JC, Acott TS, Wang RK, Johnstone M. Modeling the biomechanics of the conventional aqueous outflow pathway microstructure in the human eye. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 221:106922. [PMID: 35660940 PMCID: PMC10424784 DOI: 10.1016/j.cmpb.2022.106922] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/16/2022] [Accepted: 05/26/2022] [Indexed: 05/27/2023]
Abstract
BACKGROUND AND OBJECTIVE Intraocular pressure (IOP) is determined by aqueous humor outflow resistance, which is a function of the combined resistance of Schlemm's canal (SC) endothelium and the trabecular meshwork (TM) and their interactions in the juxtacanalicular connective tissue (JCT) region. Aqueous outflow in the conventional outflow pathway results in pressure gradient across the TM, JCT, and SC inner wall, and induces mechanical stresses and strains that influence the geometry and homeostasis of the outflow system. The outflow resistance is affected by alteration in tissues' geometry, so there is potential for active, two-way, fluid-structure interaction (FSI) coupling between the aqueous humor (fluid) and the TM, JCT, and SC inner wall (structure). However, our understanding of the biomechanical interactions of the aqueous humor with the outflow connective tissues and its contribution to the outflow resistance regulation is incomplete. METHODS In this study, a microstructural finite element (FE) model of a human eye TM, JCT, and SC inner wall was constructed from a segmented, high-resolution histologic 3D reconstruction of the human outflow system. Three different elastic moduli (0.004, 0.128, and 51.5 MPa based on prior reports) were assigned to the TM/JCT complex while the elastic modulus of the SC inner wall was kept constant at 0.00748 MPa. The hydraulic conductivity was programmed separately for the TM, JCT, and SC inner wall using a custom subroutine. Cable elements were embedded into the TM and JCT extracellular matrix to represent the directional stiffness imparted by anisotropic collagen fibril orientation. The resultant stresses and strains in the outflow system were calculated using fluid-structure interaction method. RESULTS The higher TM/JCT stiffness resulted in larger stresses, but smaller strains in the outflow connective tissues, and resulted in a 4- and 5-fold larger pressure drop across the SC inner wall, respectively, compared to the most compliant model. Funneling through µm-sized SC endothelial pores was evident in the models at lower tissue stiffness, but aqueous flow was more turbulent in models with higher TM/JCT stiffness. CONCLUSIONS The mechanical properties of the outflow tissues play a crucial role in the hydrodynamics of the aqueous humor in the conventional outflow system.
Collapse
Affiliation(s)
- Alireza Karimi
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, 1670 University Boulevard, VH 372B, Birmingham, AL 35294, USA.
| | - Reza Razaghi
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, 1670 University Boulevard, VH 372B, Birmingham, AL 35294, USA
| | | | - J Crawford Downs
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, 1670 University Boulevard, VH 372B, Birmingham, AL 35294, USA
| | - Ted S Acott
- Ophthalmology and Biochemistry and Molecular Biology, Casey Eye Institute, Oregon Health & Science University, Portland, OR, USA
| | - Ruikang K Wang
- Department of Ophthalmology, University of Washington, Seattle, WA, USA; Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Murray Johnstone
- Department of Ophthalmology, University of Washington, Seattle, WA, USA
| |
Collapse
|
13
|
Ocular biomechanics during improvised explosive device blast: A computational study using eye-specific models. Injury 2022; 53:1401-1415. [PMID: 35144807 PMCID: PMC8940691 DOI: 10.1016/j.injury.2022.02.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/27/2022] [Accepted: 02/03/2022] [Indexed: 02/02/2023]
Abstract
BACKGROUND Eye injuries comprise 10-13% of civilian improvised explosive device (IED) injuries. The bomb blast wave induces a normal and shear forces on the tissues, causing a large acute IOP elevation. This study calculated the biomechanical stresses and strains in the eye due to IED explosion via eye-specific fluid-structure interaction (FSI) models. METHODS Blast occurred at 2, 3, and 4 m from the front and side of the victim and the weights of the IED were 1 and 2 kg. The ground was covered with the deformable soil to mimic the realistic IED explosion condition and reflect the blast wave. RESULTS The IOP elevation of ∼6,000-48,000 mmHg was observed in the eyes while the highest IOP was occurred with the IED weight and distance of 2 kg and 2 m (front) and the lowest was occurred with the IED weight and distance of 1 kg and 4 m (side). Our findings suggest the importance of the victim location and orientation concerning the blast wave when it comes to ocular injury assessment. IOP elevation of ∼2900 and ∼2700 mmHg were observed in ∼1.6 ms after the blast for the IEDS weight of 2 kg and a victim distance of 2 m in front and side blasts, respectively, in consistence with the literature. Nonetheless, IOPs were considerably higher after ∼1.6 ms due to the merging of the bomb blast wave and its reflection off the ground. CONCLUSIONS The stresses and strains were highest for the frontal blast. Both side and frontal blasts caused higher stresses and strains at the rectus muscle insertions where the sclera is thinnest and prone to rupture. Blast angle has no considerable role in the resultant IOP. Front blast with a heavier IED resulted a higher stresses and deformations in the eye connective tissues compared to the side blast.
Collapse
|
14
|
Abdolkarimzadeh F, Ashory MR, Ghasemi-Ghalebahman A, Karimi A. Inverse dynamic finite element-optimization modeling of the brain tumor mass-effect using a variable pressure boundary. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2021; 212:106476. [PMID: 34715517 DOI: 10.1016/j.cmpb.2021.106476] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 10/12/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND AND OBJECTIVE Statistical atlases of brain structure can potentially contribute in the surgical and radiotherapeutic treatment planning for the brain tumor patients. However, the current brain image-registration methods lack of accuracy when it comes to the mass-effect caused by tumor growth. Numerical simulations, such as finite element method (FEM), allow us to calculate the resultant pressure and deformation in the brain tissue due to tumor growth, and to predict the mass-effect. To date, however, the pressure boundary in the brain tissue due to tumor growth has been simply presented as a constant profile throughout the entire tumor outer surface that resulted in discrepancy between the patient imaging data and brain atlases. METHODS In this study, we employed a fully-coupled inverse dynamic FE-optimization method to estimate the resultant variable pressure boundary due to tumor resection surgery. To do that, magnetic resonance imaging data of two patients' pre- and post-tumor resection surgery were registered, segmented, volume-meshed, and prepared for fully-coupled inverse dynamic FE-optimization simulations. Two different pressure boundaries were defined on the brain cavity after tumor resection including: a) a constant pressure boundary and b) a variable pressure boundary. The inverse FE-optimization algorithm was used to find the optimum constant and variable pressure boundaries that result in the least distance between the surface-nodes of the post-surgery brain cavity and pre-surgery tumor. RESULTS The results revealed that a variable pressure boundary causes a considerably lower mean percentage error compared to a constant pressure one; hence, it can more effectively address the realistic boundary in tumor resection surgery and predict the mass-effect. CONCLUSIONS The proposed variable pressure boundary can be a robust tool that allows batch processing to register the brains with tumors to statistical atlases of normal brains and construction of brain tumor atlases. This approach is also computationally inexpensive and can be coupled to any FE software to run. The findings of this study have implications for not only predicting the accurate pressure boundary and mass-effect before tumor resection surgery, but also for predicting some clinical symptoms of brain cancers and presenting useful tools for APPLICATIONs in image-guided neurosurgery.
Collapse
Affiliation(s)
| | | | | | - Alireza Karimi
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL, United States.
| |
Collapse
|