1
|
Dahiya A, Raghuvanshi D, Sharma C, Joshi K, Nehra A, Sharma A, Jangra R, Badhwar P, Tuteja R, Gill SS, Gill R. Deep learning method for malaria parasite evaluation from microscopic blood smear. Artif Intell Med 2025; 163:103114. [PMID: 40107120 DOI: 10.1016/j.artmed.2025.103114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 02/22/2025] [Accepted: 03/14/2025] [Indexed: 03/22/2025]
Abstract
OBJECTIVE Malaria remains a leading cause of global morbidity and mortality, responsible for approximately 5,97,000 deaths according to World Malaria Report 2024. The study aims to systematically review current methodologies for automated analysis of the Plasmodium genus in malaria diagnostics. Specifically, it focuses on computer-assisted methods, examining databases, blood smear types, staining techniques, and diagnostic models used for malaria characterization while identifying the limitations and contributions of recent studies. METHODS A systematic literature review was conducted following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Peer-reviewed and published studies from 2020 to 2024 were retrieved from Web of Science and Scopus. Inclusion criteria focused on studies utilizing deep learning and machine learning models for automated malaria detection from microscopic blood smears. The review considered various blood smear types, staining techniques, and diagnostic models, providing a comprehensive evaluation of the automated diagnostic landscape for malaria. RESULTS The NIH database is the standardized and most widely tested database for malaria diagnostics. Giemsa stained-thin blood smear is the most efficient diagnostic method for the detection and observation of the plasmodium lifecycle. This study has been able to identify three categories of ML models most suitable for digital diagnostic of malaria, i.e., Most Accurate- ResNet and VGG with peak accuracy of 99.12 %, Most Popular- custom CNN-based models used by 58 % of studies, and least complex- CADx model. A few pre and post-processing techniques like Gaussian filter and auto encoder for noise reduction have also been discussed for improved accuracy of models. CONCLUSION Automated methods for malaria diagnostics show considerable promise in improving diagnostic accuracy and reducing human error. While deep learning models have demonstrated high performance, challenges remain in data standardization and real-world application. Addressing these gaps could lead to more reliable and scalable diagnostic tools, aiding global malaria control efforts.
Collapse
Affiliation(s)
- Abhinav Dahiya
- Department of Computer Science and Engineering, University Institute of Engineering and Technology, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Devvrat Raghuvanshi
- Department of Computer Science and Engineering, University Institute of Engineering and Technology, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Chhaya Sharma
- Department of Computer Science and Engineering, University Institute of Engineering and Technology, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Kamaldeep Joshi
- Department of Computer Science and Engineering, University Institute of Engineering and Technology, Maharshi Dayanand University, Rohtak, Haryana, India.
| | - Ashima Nehra
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak- 124 001, Haryana, India
| | - Archana Sharma
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak- 124 001, Haryana, India
| | - Radha Jangra
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak- 124 001, Haryana, India
| | - Parul Badhwar
- Department of Biotechnology, Baba Mastnath University, Rohtak- 124 001, Haryana, India
| | - Renu Tuteja
- Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi - 110067, India
| | - Sarvajeet S Gill
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak- 124 001, Haryana, India.
| | - Ritu Gill
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak- 124 001, Haryana, India.
| |
Collapse
|
2
|
Zedda L, Loddo A, Di Ruberto C. A deep architecture based on attention mechanisms for effective end-to-end detection of early and mature malaria parasites in a realistic scenario. Comput Biol Med 2025; 186:109704. [PMID: 39869986 DOI: 10.1016/j.compbiomed.2025.109704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 01/08/2025] [Accepted: 01/14/2025] [Indexed: 01/29/2025]
Abstract
BACKGROUND Malaria is a critical and potentially fatal disease caused by the Plasmodium parasite and is responsible for more than 600,000 deaths globally. Early and accurate detection of malaria parasites is crucial for effective treatment, yet conventional microscopy faces limitations in variability and efficiency. METHODS We propose a novel computer-aided detection framework based on deep learning and attention mechanisms, extending the YOLO-SPAM and YOLO-PAM models. Our approach facilitates the detection and classification of malaria parasites across all infection stages and supports multi-species identification. RESULTS The framework was evaluated on three publicly available datasets, demonstrating high accuracy in detecting four distinct malaria species and their life stages. Comparative analysis against state-of-the-art methodologies indicates significant improvements in both detection rates and diagnostic utility. CONCLUSION This study presents a robust solution for automated malaria detection, offering valuable support for pathologists and enhancing diagnostic practices in real-world scenarios.
Collapse
Affiliation(s)
- Luca Zedda
- Department of Mathematics and Computer Science, University of Cagliari, Via Ospedale 72, 09124, Cagliari, Italy.
| | - Andrea Loddo
- Department of Mathematics and Computer Science, University of Cagliari, Via Ospedale 72, 09124, Cagliari, Italy.
| | - Cecilia Di Ruberto
- Department of Mathematics and Computer Science, University of Cagliari, Via Ospedale 72, 09124, Cagliari, Italy
| |
Collapse
|
3
|
Feng R, Li S, Zhang Y. AI-powered microscopy image analysis for parasitology: integrating human expertise. Trends Parasitol 2024; 40:633-646. [PMID: 38824067 DOI: 10.1016/j.pt.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 06/03/2024]
Abstract
Microscopy image analysis plays a pivotal role in parasitology research. Deep learning (DL), a subset of artificial intelligence (AI), has garnered significant attention. However, traditional DL-based methods for general purposes are data-driven, often lacking explainability due to their black-box nature and sparse instructional resources. To address these challenges, this article presents a comprehensive review of recent advancements in knowledge-integrated DL models tailored for microscopy image analysis in parasitology. The massive amounts of human expert knowledge from parasitologists can enhance the accuracy and explainability of AI-driven decisions. It is expected that the adoption of knowledge-integrated DL models will open up a wide range of applications in the field of parasitology.
Collapse
Affiliation(s)
- Ruijun Feng
- College of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China; School of Computer Science and Engineering, University of New South Wales, Sydney, Australia
| | - Sen Li
- College of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China
| | - Yang Zhang
- College of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China.
| |
Collapse
|
4
|
Alsulimani A, Akhter N, Jameela F, Ashgar RI, Jawed A, Hassani MA, Dar SA. The Impact of Artificial Intelligence on Microbial Diagnosis. Microorganisms 2024; 12:1051. [PMID: 38930432 PMCID: PMC11205376 DOI: 10.3390/microorganisms12061051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 05/19/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024] Open
Abstract
Traditional microbial diagnostic methods face many obstacles such as sample handling, culture difficulties, misidentification, and delays in determining susceptibility. The advent of artificial intelligence (AI) has markedly transformed microbial diagnostics with rapid and precise analyses. Nonetheless, ethical considerations accompany AI adoption, necessitating measures to uphold patient privacy, mitigate biases, and ensure data integrity. This review examines conventional diagnostic hurdles, stressing the significance of standardized procedures in sample processing. It underscores AI's significant impact, particularly through machine learning (ML), in microbial diagnostics. Recent progressions in AI, particularly ML methodologies, are explored, showcasing their influence on microbial categorization, comprehension of microorganism interactions, and augmentation of microscopy capabilities. This review furnishes a comprehensive evaluation of AI's utility in microbial diagnostics, addressing both advantages and challenges. A few case studies including SARS-CoV-2, malaria, and mycobacteria serve to illustrate AI's potential for swift and precise diagnosis. Utilization of convolutional neural networks (CNNs) in digital pathology, automated bacterial classification, and colony counting further underscores AI's versatility. Additionally, AI improves antimicrobial susceptibility assessment and contributes to disease surveillance, outbreak forecasting, and real-time monitoring. Despite a few limitations, integration of AI in diagnostic microbiology presents robust solutions, user-friendly algorithms, and comprehensive training, promising paradigm-shifting advancements in healthcare.
Collapse
Affiliation(s)
- Ahmad Alsulimani
- Medical Laboratory Technology Department, College of Applied Medical Sciences, Jazan University, Jazan 45142, Saudi Arabia; (A.A.); (M.A.H.)
| | - Naseem Akhter
- Department of Biology, Arizona State University, Lake Havasu City, AZ 86403, USA;
| | - Fatima Jameela
- Modern American Dental Clinic, West Warren Avenue, Dearborn, MI 48126, USA;
| | - Rnda I. Ashgar
- College of Nursing, Jazan University, Jazan 45142, Saudi Arabia; (R.I.A.); (A.J.)
| | - Arshad Jawed
- College of Nursing, Jazan University, Jazan 45142, Saudi Arabia; (R.I.A.); (A.J.)
| | - Mohammed Ahmed Hassani
- Medical Laboratory Technology Department, College of Applied Medical Sciences, Jazan University, Jazan 45142, Saudi Arabia; (A.A.); (M.A.H.)
| | - Sajad Ahmad Dar
- College of Nursing, Jazan University, Jazan 45142, Saudi Arabia; (R.I.A.); (A.J.)
| |
Collapse
|
5
|
Fan BE, Yong BSJ, Li R, Wang SSY, Aw MYN, Chia MF, Chen DTY, Neo YS, Occhipinti B, Ling RR, Ramanathan K, Ong YX, Lim KGE, Wong WYK, Lim SP, Latiff STBA, Shanmugam H, Wong MS, Ponnudurai K, Winkler S. From microscope to micropixels: A rapid review of artificial intelligence for the peripheral blood film. Blood Rev 2024; 64:101144. [PMID: 38016837 DOI: 10.1016/j.blre.2023.101144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/12/2023] [Accepted: 11/14/2023] [Indexed: 11/30/2023]
Abstract
Artificial intelligence (AI) and its application in classification of blood cells in the peripheral blood film is an evolving field in haematology. We performed a rapid review of the literature on AI and peripheral blood films, evaluating the condition studied, image datasets, machine learning models, training set size, testing set size and accuracy. A total of 283 studies were identified, encompassing 6 broad domains: malaria (n = 95), leukemia (n = 81), leukocytes (n = 72), mixed (n = 25), erythrocytes (n = 15) or Myelodysplastic syndrome (MDS) (n = 1). These publications have demonstrated high self-reported mean accuracy rates across various studies (95.5% for malaria, 96.0% for leukemia, 94.4% for leukocytes, 95.2% for mixed studies and 91.2% for erythrocytes), with an overall mean accuracy of 95.1%. Despite the high accuracy, the challenges toward real world translational usage of these AI trained models include the need for well-validated multicentre data, data standardisation, and studies on less common cell types and non-malarial blood-borne parasites.
Collapse
Affiliation(s)
- Bingwen Eugene Fan
- Department of Haematology, Tan Tock Seng Hospital, Singapore; Department of Laboratory Medicine, Khoo Teck Puat Hospital, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore; Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| | - Bryan Song Jun Yong
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Ruiqi Li
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | | | | | - Ming Fang Chia
- Department of Haematology, Tan Tock Seng Hospital, Singapore
| | | | - Yuan Shan Neo
- ASUS Intelligent Cloud Services, Singapore, Singapore
| | | | - Ryan Ruiyang Ling
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Kollengode Ramanathan
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Cardiothoracic Intensive Care Unit, National University Heart Centre, National University Hospital, Singapore, Singapore
| | - Yi Xiong Ong
- Department of Laboratory Medicine, Tan Tock Seng Hospital, Singapore
| | | | | | - Shu Ping Lim
- Department of Laboratory Medicine, Tan Tock Seng Hospital, Singapore
| | | | | | - Moh Sim Wong
- Department of Laboratory Medicine, Khoo Teck Puat Hospital, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore; Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Kuperan Ponnudurai
- Department of Haematology, Tan Tock Seng Hospital, Singapore; Department of Laboratory Medicine, Khoo Teck Puat Hospital, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore; Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Stefan Winkler
- ASUS Intelligent Cloud Services, Singapore, Singapore; School of Computing, National University of Singapore, Singapore
| |
Collapse
|
6
|
Ilyas T, Ahmad K, Arsa DMS, Jeong YC, Kim H. Enhancing medical image analysis with unsupervised domain adaptation approach across microscopes and magnifications. Comput Biol Med 2024; 170:108055. [PMID: 38295480 DOI: 10.1016/j.compbiomed.2024.108055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/05/2024] [Accepted: 01/26/2024] [Indexed: 02/02/2024]
Abstract
In the domain of medical image analysis, deep learning models are heralding a revolution, especially in detecting complex and nuanced features characteristic of diseases like tumors and cancers. However, the robustness and adaptability of these models across varied imaging conditions and magnifications remain a formidable challenge. This paper introduces the Fourier Adaptive Recognition System (FARS), a pioneering model primarily engineered to address adaptability in malarial parasite recognition. Yet, the foundational principles guiding FARS lend themselves seamlessly to broader applications, including tumor and cancer diagnostics. FARS capitalizes on the untapped potential of transitioning from bounding box labels to richer semantic segmentation labels, enabling a more refined examination of microscopy slides. With the integration of adversarial training and the Color Domain Aware Fourier Domain Adaptation (F2DA), the model ensures consistent feature extraction across diverse microscopy configurations. The further inclusion of category-dependent context attention amplifies FARS's cross-domain versatility. Evidenced by a substantial elevation in cross-magnification performance from 31.3% mAP to 55.19% mAP and a 15.68% boost in cross-domain adaptability, FARS positions itself as a significant advancement in malarial parasite recognition. Furthermore, the core methodologies of FARS can serve as a blueprint for enhancing precision in other realms of medical image analysis, especially in the complex terrains of tumor and cancer imaging. The code is available at; https://github.com/Mr-TalhaIlyas/FARS.
Collapse
Affiliation(s)
- Talha Ilyas
- Division of Electronics and Information Engineering, Jeonbuk National University, Jeonju, 54896, Republic of Korea; Core Research Institute of Intelligent Robots, Jeonbuk National University, Jeonju, 54896, Republic of Korea.
| | - Khubaib Ahmad
- Division of Electronics and Information Engineering, Jeonbuk National University, Jeonju, 54896, Republic of Korea; Core Research Institute of Intelligent Robots, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Dewa Made Sri Arsa
- Division of Electronics and Information Engineering, Jeonbuk National University, Jeonju, 54896, Republic of Korea; Core Research Institute of Intelligent Robots, Jeonbuk National University, Jeonju, 54896, Republic of Korea; Department of Information Technology, Universitas Udayana, Bali, 80361, Indonesia
| | - Yong Chae Jeong
- Core Research Institute of Intelligent Robots, Jeonbuk National University, Jeonju, 54896, Republic of Korea; Division of Electronics Engineering, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Hyongsuk Kim
- Division of Electronics and Information Engineering, Jeonbuk National University, Jeonju, 54896, Republic of Korea; Core Research Institute of Intelligent Robots, Jeonbuk National University, Jeonju, 54896, Republic of Korea.
| |
Collapse
|
7
|
Baddal B, Taner F, Uzun Ozsahin D. Harnessing of Artificial Intelligence for the Diagnosis and Prevention of Hospital-Acquired Infections: A Systematic Review. Diagnostics (Basel) 2024; 14:484. [PMID: 38472956 DOI: 10.3390/diagnostics14050484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/23/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024] Open
Abstract
Healthcare-associated infections (HAIs) are the most common adverse events in healthcare and constitute a major global public health concern. Surveillance represents the foundation for the effective prevention and control of HAIs, yet conventional surveillance is costly and labor intensive. Artificial intelligence (AI) and machine learning (ML) have the potential to support the development of HAI surveillance algorithms for the understanding of HAI risk factors, the improvement of patient risk stratification as well as the prediction and timely detection and prevention of infections. AI-supported systems have so far been explored for clinical laboratory testing and imaging diagnosis, antimicrobial resistance profiling, antibiotic discovery and prediction-based clinical decision support tools in terms of HAIs. This review aims to provide a comprehensive summary of the current literature on AI applications in the field of HAIs and discuss the future potentials of this emerging technology in infection practice. Following the PRISMA guidelines, this study examined the articles in databases including PubMed and Scopus until November 2023, which were screened based on the inclusion and exclusion criteria, resulting in 162 included articles. By elucidating the advancements in the field, we aim to highlight the potential applications of AI in the field, report related issues and shortcomings and discuss the future directions.
Collapse
Affiliation(s)
- Buket Baddal
- Department of Medical Microbiology and Clinical Microbiology, Faculty of Medicine, Near East University, North Cyprus, Mersin 10, 99138 Nicosia, Turkey
- DESAM Research Institute, Near East University, North Cyprus, Mersin 10, 99138 Nicosia, Turkey
| | - Ferdiye Taner
- Department of Medical Microbiology and Clinical Microbiology, Faculty of Medicine, Near East University, North Cyprus, Mersin 10, 99138 Nicosia, Turkey
- DESAM Research Institute, Near East University, North Cyprus, Mersin 10, 99138 Nicosia, Turkey
| | - Dilber Uzun Ozsahin
- Department of Medical Diagnostic Imaging, College of Health Science, University of Sharjah, Sharjah 27272, United Arab Emirates
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
- Operational Research Centre in Healthcare, Near East University, North Cyprus, Mersin 10, 99138 Nicosia, Turkey
| |
Collapse
|
8
|
Lo CM, Wang CC, Hung PH. Interactive content-based image retrieval with deep learning for CT abdominal organ recognition. Phys Med Biol 2024; 69:045004. [PMID: 38232396 DOI: 10.1088/1361-6560/ad1f86] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 01/17/2024] [Indexed: 01/19/2024]
Abstract
Objective.Recognizing the most relevant seven organs in an abdominal computed tomography (CT) slice requires sophisticated knowledge. This study proposed automatically extracting relevant features and applying them in a content-based image retrieval (CBIR) system to provide similar evidence for clinical use.Approach.A total of 2827 abdominal CT slices, including 638 liver, 450 stomach, 229 pancreas, 442 spleen, 362 right kidney, 424 left kidney and 282 gallbladder tissues, were collected to evaluate the proposed CBIR in the present study. Upon fine-tuning, high-level features used to automatically interpret the differences among the seven organs were extracted via deep learning architectures, including DenseNet, Vision Transformer (ViT), and Swin Transformer v2 (SwinViT). Three images with different annotations were employed in the classification and query.Main results.The resulting performances included the classification accuracy (94%-99%) and retrieval result (0.98-0.99). Considering global features and multiple resolutions, SwinViT performed better than ViT. ViT also benefited from a better receptive field to outperform DenseNet. Additionally, the use of hole images can obtain almost perfect results regardless of which deep learning architectures are used.Significance.The experiment showed that using pretrained deep learning architectures and fine-tuning with enough data can achieve successful recognition of seven abdominal organs. The CBIR system can provide more convincing evidence for recognizing abdominal organs via similarity measurements, which could lead to additional possibilities in clinical practice.
Collapse
Affiliation(s)
- Chung-Ming Lo
- Graduate Institute of Library, Information and Archival Studies, National Chengchi University, Taipei, Taiwan
| | - Chi-Cheng Wang
- Department of Radiology, Mackay Memorial Hospital, Taipei, Taiwan
| | - Peng-Hsiang Hung
- Department of Radiology, Mackay Memorial Hospital, Taipei, Taiwan
| |
Collapse
|
9
|
Tarimo SA, Jang MA, Ngasa EE, Shin HB, Shin H, Woo J. WBC YOLO-ViT: 2 Way - 2 stage white blood cell detection and classification with a combination of YOLOv5 and vision transformer. Comput Biol Med 2024; 169:107875. [PMID: 38154163 DOI: 10.1016/j.compbiomed.2023.107875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/24/2023] [Accepted: 12/18/2023] [Indexed: 12/30/2023]
Abstract
Accurate detection and classification of white blood cells, otherwise known as leukocytes, play a critical role in diagnosing and monitoring various illnesses. However, conventional methods, such as manual classification by trained professionals, must be revised in terms of accuracy, efficiency, and potential bias. Moreover, applying deep learning techniques to detect and classify white blood cells using microscopic images is challenging owing to limited data, resolution noise, irregular shapes, and varying colors from different sources. This study presents a novel approach integrating object detection and classification for numerous type-white blood cell. We designed a 2-way approach to use two types of images: WBC and nucleus. YOLO (fast object detection) and ViT (powerful image representation capabilities) are effectively integrated into 16 classes. The proposed model demonstrates an exceptional 96.449% accuracy rate in classification.
Collapse
Affiliation(s)
- Servas Adolph Tarimo
- Department of Future Convergence Technology, Soonchunhyang University, Asan, South Korea
| | - Mi-Ae Jang
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Emmanuel Edward Ngasa
- Department of Future Convergence Technology, Soonchunhyang University, Asan, South Korea
| | - Hee Bong Shin
- Department of Laboratory Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, South Korea.
| | - HyoJin Shin
- Department of ICT Convergence, Soonchunhyang University, Asan, South Korea
| | - Jiyoung Woo
- Department of ICT Convergence, Soonchunhyang University, Asan, South Korea.
| |
Collapse
|
10
|
Lo CM, Hung PH. Predictive stroke risk model with vision transformer-based Doppler features. Med Phys 2024; 51:126-138. [PMID: 38043124 DOI: 10.1002/mp.16861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 11/17/2023] [Accepted: 11/17/2023] [Indexed: 12/05/2023] Open
Abstract
BACKGROUND Acute stroke is the leading cause of death and disability globally, with an estimated 16 million cases each year. The progression of carotid stenosis reduces blood flow to the intracranial vasculature, causing stroke. Early recognition of ischemic stroke is crucial for disease treatment and management. PURPOSE A computer-aided diagnosis (CAD) system was proposed in this study to rapidly evaluate ischemic stroke in carotid color Doppler (CCD). METHODS Based on the ground truth from the clinical examination report, the vision transformer (ViT) features extracted from all CCD images (513 stroke and 458 normal images) were combined in machine learning classifiers to generate the likelihood of ischemic stroke for each image. The pretrained weights from ImageNet reduced the time-consuming training process. The accuracy, sensitivity, specificity, and area under the receiver operating characteristic curve were calculated to evaluate the stroke prediction model. The chi-square test, DeLong test, and Bonferroni correction for multiple comparisons were applied to deal with the type-I error. Only p values equal to or less than 0.00125 were considered to be statistically significant. RESULTS The proposed CAD system achieved an accuracy of 89%, a sensitivity of 94%, a specificity of 84%, and an area under the receiver operating characteristic curve of 0.95, outperforming the convolutional neural networks AlexNet (82%, p < 0.001), Inception-v3 (78%, p < 0.001), ResNet101 (84%, p < 0.001), and DenseNet201 (85%, p < 0.01). The computational time in model training was only 30 s, which would be efficient and practical in clinical use. CONCLUSIONS The experiment shows the promising use of CCD images in stroke estimation. Using the pretrained ViT architecture, the image features can be automatically and efficiently generated without human intervention. The proposed CAD system provides a rapid and reliable suggestion for diagnosing ischemic stroke.
Collapse
Affiliation(s)
- Chung-Ming Lo
- Graduate Institute of Library, Information and Archival Studies, National Chengchi University, Taipei, Taiwan
| | - Peng-Hsiang Hung
- Department of Radiology, Mackay Memorial Hospital, Taipei, Taiwan
| |
Collapse
|
11
|
Zedda L, Loddo A, Di Ruberto C. YOLO-PAM: Parasite-Attention-Based Model for Efficient Malaria Detection. J Imaging 2023; 9:266. [PMID: 38132684 PMCID: PMC10744183 DOI: 10.3390/jimaging9120266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/14/2023] [Accepted: 11/24/2023] [Indexed: 12/23/2023] Open
Abstract
Malaria is a potentially fatal infectious disease caused by the Plasmodium parasite. The mortality rate can be significantly reduced if the condition is diagnosed and treated early. However, in many underdeveloped countries, the detection of malaria parasites from blood smears is still performed manually by experienced hematologists. This process is time-consuming and error-prone. In recent years, deep-learning-based object-detection methods have shown promising results in automating this task, which is critical to ensure diagnosis and treatment in the shortest possible time. In this paper, we propose a novel Transformer- and attention-based object-detection architecture designed to detect malaria parasites with high efficiency and precision, focusing on detecting several parasite sizes. The proposed method was tested on two public datasets, namely MP-IDB and IML. The evaluation results demonstrated a mean average precision exceeding 83.6% on distinct Plasmodium species within MP-IDB and reaching nearly 60% on IML. These findings underscore the effectiveness of our proposed architecture in automating malaria parasite detection, offering a potential breakthrough in expediting diagnosis and treatment processes.
Collapse
Affiliation(s)
- Luca Zedda
- Department of Mathematics and Computer Science, University of Cagliari, Via Ospedale 72, 09124 Cagliari, Italy;
| | - Andrea Loddo
- Department of Mathematics and Computer Science, University of Cagliari, Via Ospedale 72, 09124 Cagliari, Italy;
| | | |
Collapse
|
12
|
Kim YJ, Shin JS, Lee KW, Eom HJ, Jo BG, Lee JW, Kim JH, Kim SY, Kang JH, Choi JW. Expression, Purification, and Characterization of Plasmodium vivax Lactate Dehydrogenase from Bacteria without Codon Optimization. Int J Mol Sci 2023; 24:11083. [PMID: 37446261 DOI: 10.3390/ijms241311083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/30/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023] Open
Abstract
Plasmodium vivax is the most widespread cause of malaria, especially in subtropical and temperate regions such as Asia-Pacific and America. P. vivax lactate dehydrogenase (PvLDH), an essential enzyme in the glycolytic pathway, is required for the development and reproduction of the parasite. Thus, LDH from these parasites has garnered attention as a diagnostic biomarker for malaria and as a potential molecular target for developing antimalarial drugs. In this study, we prepared a transformed Escherichia coli strain for the overexpression of PvLDH without codon optimization. We introduced this recombinant plasmid DNA prepared by insertion of the PvLDH gene in the pET-21a(+) expression vector, into the Rosetta(DE3), an E. coli strain suitable for eukaryotic protein expression. The time, temperature, and inducer concentration for PvLDH expression from this E. coli Rosetta(DE3), containing the original PvLDH gene, were optimized. We obtained PvLDH with a 31.0 mg/L yield and high purity (>95%) from this Rosetta(DE3) strain. The purified protein was characterized structurally and functionally. The PvLDH expressed and purified from transformed bacteria without codon optimization was successfully demonstrated to exhibit its potential tetramer structure and enzyme activity. These findings are expected to provide valuable insights for research on infectious diseases, metabolism, diagnostics, and therapeutics for malaria caused by P. vivax.
Collapse
Affiliation(s)
- Yeon-Jun Kim
- Department of Biomedical Science, Cheongju University, Cheongju 28160, Republic of Korea
| | - Jun-Seop Shin
- Department of Biomedical Science, Cheongju University, Cheongju 28160, Republic of Korea
| | - Kang Woo Lee
- Department of Biomedical Science, Cheongju University, Cheongju 28160, Republic of Korea
| | - Hyo-Ji Eom
- Department of Biomedical Science, Cheongju University, Cheongju 28160, Republic of Korea
| | - Byung Gwan Jo
- Department of Biomedical Science, Cheongju University, Cheongju 28160, Republic of Korea
| | - Jin Woo Lee
- College of Pharmacy, Duksung Women's University, Seoul 01369, Republic of Korea
| | - Jun Hyoung Kim
- Division of Infectious Diseases, Department of Internal Medicine, Chungbuk National University Hospital, Cheongju 28644, Republic of Korea
| | - So Yeon Kim
- Department of Dental Hygiene, Cheongju University, Cheongju 28503, Republic of Korea
| | - Jung Hoon Kang
- Department of Biomedical Science, Cheongju University, Cheongju 28160, Republic of Korea
- Department of Biopharmaceutical Sciences, Cheongju University, Cheongju 28160, Republic of Korea
| | - Jae-Won Choi
- Department of Biomedical Science, Cheongju University, Cheongju 28160, Republic of Korea
- Department of Biopharmaceutical Sciences, Cheongju University, Cheongju 28160, Republic of Korea
| |
Collapse
|
13
|
Yang G, Qin Z, Mu J, Mao H, Mao H, Han M. Efficient diagnosis of hematologic malignancies using bone marrow microscopic images: A method based on MultiPathGAN and MobileViTv2. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2023; 237:107583. [PMID: 37167882 DOI: 10.1016/j.cmpb.2023.107583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 04/30/2023] [Accepted: 05/03/2023] [Indexed: 05/13/2023]
Abstract
BACKGROUND AND OBJECTIVES Hematologic malignancies, including the associated multiple subtypes, are critically threatening to human health. The timely detection of malignancies is crucial for their effective treatment. In this regard, the examination of bone marrow smears constitutes a crucial step. Nonetheless, the conventional approach to cell identification and enumeration is laborious and time-intensive. Therefore, the present study aimed to develop a method for the efficient diagnosis of these malignancies directly from bone marrow microscopic images. METHODS A deep learning-based framework was developed to facilitate the diagnosis of common hematologic malignancies. First, a total of 2033 microscopic images of bone marrow analysis, including the images for 6 disease types and 1 healthy control, were collected from two Chinese medical websites. Next, the collected images were classified into the training, validation, and test datasets in the ratio of 7:1:2. Subsequently, a method of stain normalization to multi-domains (stain domain augmentation) based on the MultiPathGAN model was developed to equalize the stain styles and expand the image datasets. Afterward, a lightweight hybrid model named MobileViTv2, which integrates the strengths of both CNNs and ViTs, was developed for disease classification. The resulting model was trained and utilized to diagnose patients based on multiple microscopic images of their bone marrow smears, obtained from a cohort of 61 individuals. RESULTS MobileViTv2 exhibited an average accuracy of 94.28% when applied to the test set, with multiple myeloma, acute lymphocytic leukemia, and lymphoma revealed as the three diseases diagnosed with the highest accuracy values of 98%, 96%, and 96%, respectively. Regarding patient-level prediction, the average accuracy of MobileViTv2 was 96.72%. This model outperformed both CNN and ViT models in terms of accuracy, despite utilizing only 9.8 million parameters. When applied to two public datasets, MobileViTv2 exhibited accuracy values of 99.75% and 99.72%, respectively, and outperformed previous methods. CONCLUSIONS The proposed framework could be applied directly to bone marrow microscopic images with different stain styles to efficiently establish the diagnosis of common hematologic malignancies.
Collapse
Affiliation(s)
- Guanghui Yang
- School of Information Science and Engineering, Shandong University, Qingdao 266237, China
| | - Ziqi Qin
- School of Information Science and Engineering, Shandong University, Qingdao 266237, China
| | - Jianmin Mu
- Mudan District Hospital of Traditional Chinese Medicine, Heze 274031, China
| | - Haiting Mao
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250033, China
| | - Huihui Mao
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250033, China
| | - Min Han
- School of Information Science and Engineering, Shandong University, Qingdao 266237, China.
| |
Collapse
|
14
|
Lo CM, Lai KL. Deep learning-based assessment of knee septic arthritis using transformer features in sonographic modalities. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2023; 237:107575. [PMID: 37148635 DOI: 10.1016/j.cmpb.2023.107575] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/21/2023] [Accepted: 05/02/2023] [Indexed: 05/08/2023]
Abstract
PURPOSE Septic arthritis is an infectious disease. Conventionally, the diagnosis of septic arthritis can only be based on the identification of causal pathogens taken from synovial fluid, synovium or blood samples. However, the cultures require several days for the isolation of pathogens. A rapid assessment performed through computer-aided diagnosis (CAD) would bring timely treatment. METHODS A total of 214 non-septic arthritis and 64 septic arthritis images generated by gray-scale (GS) and Power Doppler (PD) ultrasound modalities were collected for the experiment. A deep learning-based vision transformer (ViT) with pre-trained parameters were used for image feature extraction. The extracted features were then combined in machine learning classifiers with ten-fold cross validation in order to evaluate the abilities of septic arthritis classification. RESULTS Using a support vector machine, GS and PD features can achieve an accuracy rate of 86% and 91%, with the area under the receiver operating characteristic curves (AUCs) being 0.90 and 0.92, respectively. The best accuracy (92%) and best AUC (0.92) was obtained by combining both feature sets. CONCLUSIONS This is the first CAD system based on a deep learning approach for the diagnosis of septic arthritis as seen on knee ultrasound images. Using pre-trained ViT, both the accuracy and computation costs improved more than they had through convolutional neural networks. Additionally, automatically combining GS and PD generates a higher accuracy to better assist the physician's observations, thus providing a timely evaluation of septic arthritis.
Collapse
Affiliation(s)
- Chung-Ming Lo
- Graduate Institute of Library, Information and Archival Studies, National Chengchi University, Taipei, Taiwan
| | - Kuo-Lung Lai
- Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan; Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan.
| |
Collapse
|
15
|
Real-life evaluation of deep learning models trained on two datasets for Plasmodium falciparum detection with thin blood smear images at 500x magnification. INFORMATICS IN MEDICINE UNLOCKED 2022. [DOI: 10.1016/j.imu.2022.101132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|