1
|
Hansen KW, Brand JA, Aimon C, Avgar T, Bertram MG, Bontekoe ID, Brodin T, Hegemann A, Koger B, Lourie E, Menezes JFS, Serota M, Attias N, Aikens E. A call for increased integration of experimental approaches in movement ecology. Biol Rev Camb Philos Soc 2025. [PMID: 40298165 DOI: 10.1111/brv.70025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 04/02/2025] [Accepted: 04/03/2025] [Indexed: 04/30/2025]
Abstract
Rapid developments in animal-tracking technology have enabled major advances in the field of movement ecology, which seeks to understand the drivers and consequences of movement across scales, taxa, and ecosystems. The field has made ground-breaking discoveries, yet the majority of studies in movement ecology remain reliant on observational approaches. While important, observational studies are limited compared to experimental methods that can reveal causal relationships and underlying mechanisms. As such, we advocate for a renewed focus on experimental approaches in animal movement ecology. We illustrate a way forward in experimental movement ecology across two fundamental levels of biological organisation: individuals and social groups. We then explore the application of experiments in movement ecology to study anthropogenic influences on wildlife movement, and enhance our mechanistic understanding of conservation interventions. In each of these examples, we draw upon previous research that has effectively employed experimental approaches, while highlighting outstanding questions that could be answered by further experimentation. We conclude by highlighting the ways experimental manipulations in both laboratory and natural settings provide a promising way forward to generate mechanistic understandings of the drivers, consequences, and conservation of animal movement.
Collapse
Affiliation(s)
- K Whitney Hansen
- Caesar Kleberg Wildlife Research Institute, Texas A&M University-Kingsville, 700 University Blvd, MSC 218, Kingsville, TX, 78363, USA
| | - Jack A Brand
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Skogsmarksgränd, Umeå, SE-907 36, Sweden
- Institute of Zoology, Zoological Society of London, London, NW1 4RY, UK
| | - Cassandre Aimon
- Centre for Ecological Sciences, Indian Institute of Science, Bengaluru, Bangalore, Karnataka, 560 012, India
| | - Tal Avgar
- Department of Biology, University of British Columbia, and Wildlife Science Centre, Biodiversity Pathways Ltd., Syilx Okanagan Nation Territory, Vancouver, British Columbia, Canada
| | - Michael G Bertram
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Skogsmarksgränd, Umeå, SE-907 36, Sweden
- Department of Zoology, Stockholm University, Stockholm, Sweden
- School of Biological Sciences, Monash University, Melbourne, Australia
| | - Iris D Bontekoe
- Department of Migration, Max Planck Institute of Animal Behavior, Am Obstberg 1, Radolfzell, 78315, Germany
- Collective Migration Group, Max Planck Institute of Animal Behavior, Bücklestraße 5a, Konstanz, 78467, Germany
- Department of Biology, University of Konstanz, Universitätsstraße 10, Konstanz, 78464, Germany
| | - Tomas Brodin
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Skogsmarksgränd, Umeå, SE-907 36, Sweden
| | - Arne Hegemann
- Department of Biology, Lund University, Lund, SE-223 62, Sweden
| | - Benjamin Koger
- School of Computing, University of Wyoming, Laramie, WY, 82071, USA
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY, 82071, USA
| | - Emmaneul Lourie
- Movement Ecology Lab, Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem, 91904, Israel
| | - Jorge F S Menezes
- Mamirauá Institute for Sustainable Development, Estrada do Bexiga, 2.584 Bairro Fonte Boa, Tefé, Amazonas, Brazil
| | - Mitchell Serota
- Department of Environmental Science, Policy, and Management, University of California - Berkeley, Berkeley, 130 Mulford Hall, Berkeley, CA, 94720, USA
| | - Nina Attias
- Center for Latin American Studies, University of Florida, Gainesville, Florida, 32601, USA
| | - Ellen Aikens
- School of Computing, University of Wyoming, Laramie, WY, 82071, USA
- Haub School of Environment and Natural Resources, University of Wyoming, Laramie, WY, 82072, USA
| |
Collapse
|
2
|
Teichroeb JA, Smeltzer EA, Mathur V, Anderson KA, Fowler EJ, Adams FV, Vasey EN, Tamara Kumpan L, Stead SM, Arseneau-Robar TJM. How can we apply decision-making theories to wild animal behavior? Predictions arising from dual process theory and Bayesian decision theory. Am J Primatol 2025; 87:e23565. [PMID: 37839050 PMCID: PMC11650956 DOI: 10.1002/ajp.23565] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 09/19/2023] [Accepted: 10/03/2023] [Indexed: 10/17/2023]
Abstract
Our understanding of decision-making processes and cognitive biases is ever increasing, thanks to an accumulation of testable models and a large body of research over the last several decades. The vast majority of this work has been done in humans and laboratory animals because these study subjects and situations allow for tightly controlled experiments. However, it raises questions about how this knowledge can be applied to wild animals in their complex environments. Here, we review two prominent decision-making theories, dual process theory and Bayesian decision theory, to assess the similarities in these approaches and consider how they may apply to wild animals living in heterogenous environments within complicated social groupings. In particular, we wanted to assess when wild animals are likely to respond to a situation with a quick heuristic decision and when they are likely to spend more time and energy on the decision-making process. Based on the literature and evidence from our multi-destination routing experiments on primates, we find that individuals are likely to make quick, heuristic decisions when they encounter routine situations, or signals/cues that accurately predict a certain outcome, or easy problems that experience or evolutionary history has prepared them for. Conversely, effortful decision-making is likely in novel or surprising situations, when signals and cues have unpredictable or uncertain relationships to an outcome, and when problems are computationally complex. Though if problems are overly complex, satisficing via heuristics is likely, to avoid costly mental effort. We present hypotheses for how animals with different socio-ecologies may have to distribute their cognitive effort. Finally, we examine the conservation implications and potential cognitive overload for animals experiencing increasingly novel situations caused by current human-induced rapid environmental change.
Collapse
Affiliation(s)
- Julie A Teichroeb
- Department of Anthropology, University of Toronto Scarborough, Toronto, Ontario, Canada
- Department of Anthropology, University of Toronto, Toronto, Ontario, Canada
| | - Eve A Smeltzer
- Department of Anthropology, University of Toronto Scarborough, Toronto, Ontario, Canada
- Department of Anthropology, University of Toronto, Toronto, Ontario, Canada
| | - Virendra Mathur
- Department of Anthropology, University of Toronto Scarborough, Toronto, Ontario, Canada
- Department of Anthropology, University of Toronto, Toronto, Ontario, Canada
| | - Karyn A Anderson
- Department of Anthropology, University of Toronto Scarborough, Toronto, Ontario, Canada
- Department of Anthropology, University of Toronto, Toronto, Ontario, Canada
| | - Erica J Fowler
- Department of Anthropology, University of Toronto Scarborough, Toronto, Ontario, Canada
- Department of Anthropology, University of Toronto, Toronto, Ontario, Canada
| | - Frances V Adams
- Department of Anthropology, University of Toronto Scarborough, Toronto, Ontario, Canada
- Department of Anthropology, University of Toronto, Toronto, Ontario, Canada
| | - Eric N Vasey
- Department of Anthropology, University of Toronto Scarborough, Toronto, Ontario, Canada
- Department of Anthropology, University of Toronto, Toronto, Ontario, Canada
| | - Ludmila Tamara Kumpan
- Department of Anthropology, University of Toronto Scarborough, Toronto, Ontario, Canada
- Department of Anthropology, University of Toronto, Toronto, Ontario, Canada
| | - Samantha M Stead
- Department of Anthropology, University of Toronto Scarborough, Toronto, Ontario, Canada
- Department of Anthropology, University of Toronto, Toronto, Ontario, Canada
| | - T Jean M Arseneau-Robar
- Department of Anthropology, University of Toronto Scarborough, Toronto, Ontario, Canada
- Department of Biology, Concordia University, Montréal, Quebec, Canada
| |
Collapse
|
3
|
Merkle JA, Poulin MP, Caldwell MR, Laforge MP, Scholle AE, Verzuh TL, Geremia C. Spatial-social familiarity complements the spatial-social interface: evidence from Yellowstone bison. Philos Trans R Soc Lond B Biol Sci 2024; 379:20220530. [PMID: 39230449 PMCID: PMC11449198 DOI: 10.1098/rstb.2022.0530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 12/08/2023] [Accepted: 01/23/2024] [Indexed: 09/05/2024] Open
Abstract
Social animals make behavioural decisions based on local habitat and conspecifics, as well as memorized past experience (i.e. 'familiarity') with habitat and conspecifics. Here, we develop a conceptual and empirical understanding of how spatial and social familiarity fit within the spatial-social interface-a novel framework integrating the spatial and social components of animal behaviour. We conducted a multi-scale analysis of the movements of GPS-collared plains bison (Bison bison, n = 66) residing in and around Yellowstone National Park, USA. We found that both spatial and social familiarity mediate how individuals respond to their spatial and social environments. For instance, individuals with high spatial familiarity rely on their own knowledge as opposed to their conspecifics, and individuals with high social familiarity rely more strongly on the movement of conspecifics to guide their own movement. We also found that fine-scale spatial and social phenotypes often scale up to broad-scale phenotypes. For instance, bison that select more strongly to align with their nearest neighbour have larger home ranges. By integrating spatial and social familiarity into the spatial-social interface, we demonstrate the utility of the interface for testing hypotheses, while also highlighting the pervasive importance of cognitive mechanisms in animal behaviour. This article is part of the theme issue 'The spatial-social interface: a theoretical and empirical integration'.
Collapse
Affiliation(s)
- Jerod A Merkle
- Department of Zoology and Physiology, University of Wyoming , Laramie, WY, USA
| | - Marie-Pier Poulin
- Department of Zoology and Physiology, University of Wyoming , Laramie, WY, USA
| | - Molly R Caldwell
- Department of Zoology and Physiology, University of Wyoming , Laramie, WY, USA
- Program in Ecology and Evolution, University of Wyoming , Laramie, WY, USA
| | - Michel P Laforge
- Department of Zoology and Physiology, University of Wyoming , Laramie, WY, USA
- Faculty of Natural Resources Management, Lakehead University , Thunder Bay, ON, Canada
| | - Anne E Scholle
- Department of Zoology and Physiology, University of Wyoming , Laramie, WY, USA
- Program in Ecology and Evolution, University of Wyoming , Laramie, WY, USA
| | - Tana L Verzuh
- Department of Zoology and Physiology, University of Wyoming , Laramie, WY, USA
- Program in Ecology and Evolution, University of Wyoming , Laramie, WY, USA
| | - Chris Geremia
- Yellowstone Center for Resources, Yellowstone National Park, Mammoth Hot Springs , Yellowstone, WY, USA
| |
Collapse
|
4
|
Lourie E, Shamay T, Toledo S, Nathan R. Spatial memory obviates following behaviour in an information centre of wild fruit bats. Philos Trans R Soc Lond B Biol Sci 2024; 379:20240060. [PMID: 39230458 PMCID: PMC11449202 DOI: 10.1098/rstb.2024.0060] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/10/2024] [Accepted: 05/20/2024] [Indexed: 09/05/2024] Open
Abstract
According to the information centre hypothesis (ICH), colonial species use social information in roosts to locate ephemeral resources. Validating the ICH necessitates showing that uninformed individuals follow informed ones to the new resource. However, following behaviour may not be essential when individuals have a good memory of the resources' locations. For instance, Egyptian fruit bats forage on spatially predictable trees, but some bear fruit at unpredictable times. These circumstances suggest an alternative ICH pathway in which bats learn when fruits emerge from social cues in the roost but then use spatial memory to locate them without following conspecifics. Here, using an unique field manipulation and high-frequency tracking data, we test for this alternative pathway: we introduced bats smeared with the fruit odour of the unpredictably fruiting Ficus sycomorus trees to the roost, when they bore no fruits, and then tracked the movement of conspecifics exposed to the manipulated social cue. As predicted, bats visited the F. sycomorus trees with significantly higher probabilities than during routine foraging trips (of >200 bats). Our results show how the integration of spatial memory and social cues leads to efficient resource tracking and highlight the value of using large movement datasets and field experiments in behavioural ecology. This article is part of the theme issue 'The spatial-social interface: a theoretical and empirical integration'.
Collapse
Affiliation(s)
- Emmanuel Lourie
- Movement Ecology Laboratory, Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem Israel , Jerusalem, Israel
| | - Tomer Shamay
- Movement Ecology Laboratory, Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem Israel , Jerusalem, Israel
| | - Sivan Toledo
- Blavatnik School of Computer Science, Tel-Aviv University , Tel Aviv, Israel
| | - Ran Nathan
- Movement Ecology Laboratory, Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem Israel , Jerusalem, Israel
| |
Collapse
|
5
|
Webber Q, Prokopenko C, Kingdon K, Turner J, Vander Wal E. Effects of the social environment on movement-integrated habitat selection. MOVEMENT ECOLOGY 2024; 12:61. [PMID: 39238061 PMCID: PMC11378598 DOI: 10.1186/s40462-024-00502-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/20/2024] [Indexed: 09/07/2024]
Abstract
BACKGROUND Movement links the distribution of habitats with the social environment of animals using those habitats. Despite the links between movement, habitat selection, and socioecology, their integration remains a challenge due to lack of shared vocabulary across fields, methodological gaps, and the implicit (rather than explicit) historical development of theory in the fields of social and spatial ecology. Given these challenges can be addressed, opportunity for further study will provide insight about the links between social, spatial, and movement ecology. Here, our objective was to disentangle the roles of habitat selection and social association as drivers of movement in caribou (Rangifer tarandus). METHODS To accomplish our objective, we modelled the relationship between collective movement and selection of foraging habitats using socially informed integrated step selection function (iSSF). Using iSSF, we modelled the effect of social processes, i.e., nearest neighbour distance and social preference, and movement behaviour on patterns of habitat selection. RESULTS By unifying social network analysis with iSSF, we identified movement-dependent social association, where individuals took shorter steps in lichen habitat and foraged in close proximity to more familiar individuals. CONCLUSIONS Our study demonstrates that social preference is context-dependent based on habitat selection and foraging behaviour. We therefore surmise that habitat selection and social association are drivers of collective movement, such that movement is the glue between habitat selection and social association. Here, we put these concepts into practice to demonstrate that movement is the glue connecting individual habitat selection to the social environment.
Collapse
Affiliation(s)
- Quinn Webber
- Cognitive and Behavioural Ecology Interdisciplinary Program, Memorial University of Newfoundland, St. John's, NL, Canada.
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada.
| | - Christina Prokopenko
- Department of Biology, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Katrien Kingdon
- Department of Biology, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Julie Turner
- Department of Biology, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Eric Vander Wal
- Cognitive and Behavioural Ecology Interdisciplinary Program, Memorial University of Newfoundland, St. John's, NL, Canada
- Department of Biology, Memorial University of Newfoundland, St. John's, NL, Canada
| |
Collapse
|
6
|
Acácio M, Gahm K, Anglister N, Vaadia G, Hatzofe O, Harel R, Efrat R, Nathan R, Pinter-Wollman N, Spiegel O. Behavioral plasticity shapes population aging patterns in a long-lived avian scavenger. Proc Natl Acad Sci U S A 2024; 121:e2407298121. [PMID: 39163331 PMCID: PMC11363333 DOI: 10.1073/pnas.2407298121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 07/13/2024] [Indexed: 08/22/2024] Open
Abstract
Studying the mechanisms shaping age-related changes in behavior ("behavioral aging") is important for understanding population dynamics in our changing world. Yet, studies that capture within-individual behavioral changes in wild populations of long-lived animals are still scarce. Here, we used a 15-y GPS-tracking dataset of a social obligate scavenger, the griffon vulture (Gyps fulvus), to investigate age-related changes in movement and social behaviors, and disentangle the role of behavioral plasticity and selective disappearance in shaping such patterns. We tracked 142 individuals for up to 12 y and found a nonlinear increase in site fidelity with age: a sharp increase in site fidelity before sexual maturity (<5 y old), stabilization during adulthood (6 to 15 y), and a further increase at old age (>15 y). This pattern resulted from individuals changing behavior throughout their life (behavioral plasticity) and not from selective disappearance. Mature vultures increased the predictability of their movement routines and spent more nights at the most popular roosting sites compared to younger individuals. Thus, adults likely have a competitive advantage over younger conspecifics. These changes in site fidelity and movement routines were mirrored in changes to social behavior. Older individuals interacted less with their associates (decreasing average strength with age), particularly during the breeding season. Our results reveal a variety of behavioral aging patterns in long-lived species and underscore the importance of behavioral plasticity in shaping such patterns. Comprehensive longitudinal studies are imperative for understanding how plasticity and selection shape the persistence of wild animal populations facing human-induced environmental changes.
Collapse
Affiliation(s)
- Marta Acácio
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Kaija Gahm
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, CA
| | - Nili Anglister
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Gideon Vaadia
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Ohad Hatzofe
- Science Division, Israel Nature and Parks Authority, Jerusalem, Israel
| | - Roi Harel
- Department for the Ecology of Animal Societies, Max Planck Institute of Animal Behavior, Konstanz, Germany
| | - Ron Efrat
- Mitrani Department of Desert Ecology, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Israel
| | - Ran Nathan
- Department of Ecology, Evolution and Behavior, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Noa Pinter-Wollman
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, CA
| | - Orr Spiegel
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
7
|
Newman BA, D’Angelo GJ. A Review of Cervidae Visual Ecology. Animals (Basel) 2024; 14:420. [PMID: 38338063 PMCID: PMC10854973 DOI: 10.3390/ani14030420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/21/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
This review examines the visual systems of cervids in relation to their ability to meet their ecological needs and how their visual systems are specialized for particular tasks. Cervidae encompasses a diverse group of mammals that serve as important ecological drivers within their ecosystems. Despite evidence of highly specialized visual systems, a large portion of cervid research ignores or fails to consider the realities of cervid vision as it relates to their ecology. Failure to account for an animal's visual ecology during research can lead to unintentional biases and uninformed conclusions regarding the decision making and behaviors for a species or population. Our review addresses core behaviors and their interrelationship with cervid visual characteristics. Historically, the study of cervid visual characteristics has been restricted to specific areas of inquiry such as color vision and contains limited integration into broader ecological and behavioral research. The purpose of our review is to bridge these gaps by offering a comprehensive review of cervid visual ecology that emphasizes the interplay between the visual adaptations of cervids and their interactions with habitats and other species. Ultimately, a better understanding of cervid visual ecology allows researchers to gain deeper insights into their behavior and ecology, providing critical information for conservation and management efforts.
Collapse
Affiliation(s)
- Blaise A. Newman
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA
| | | |
Collapse
|
8
|
Sharma N, Anglister N, Spiegel O, Pinter‐Wollman N. Social situations differ in their contribution to population-level social structure in griffon vultures. Ecol Evol 2023; 13:e10139. [PMID: 37274150 PMCID: PMC10238758 DOI: 10.1002/ece3.10139] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 05/11/2023] [Accepted: 05/15/2023] [Indexed: 06/06/2023] Open
Abstract
Social relationships among animals emerge from interactions in multiple ecological and social situations. However, we seldom ask how each situation contributes to the global structure of a population, and whether different situations contribute different information about social relationships and the position of individuals within the social fabric. Griffon vultures (Gyps fulvus) interact socially in multiple situations, including communal roosting, joint flights, and co-feeding. These social interactions can influence population-level outcomes, such as disease transmission and information sharing that determine survival and response to changes. We examined the unique contribution of each social and ecological situation to the social structure of the population and individuals' positions within the overall social network using high-resolution GPS tracking. We found that the number of individuals each vulture interacted with (degree) was best predicted by diurnal interactions-both during flights and on the ground (such as when feeding). However, the strength of social bonds, that is, the number of interactions an individual had (strength), was best predicted by interactions on the ground-both during the day (e.g., while feeding) and at night (e.g., while roosting) but not by interactions while flying. Thus, social situations differ in their impact on the relationships that individuals form. By incorporating the ecological situations in which social interactions occur we gain a more complete view of how social relationships are formed and which situations are important for different types of interactions.
Collapse
Affiliation(s)
- Nitika Sharma
- Department of Ecology and Evolutionary BiologyUniversity of California Los AngelesLos AngelesCaliforniaUSA
| | - Nili Anglister
- School of Zoology, Faculty of Life SciencesTel Aviv UniversityTel AvivIsrael
| | - Orr Spiegel
- School of Zoology, Faculty of Life SciencesTel Aviv UniversityTel AvivIsrael
| | - Noa Pinter‐Wollman
- Department of Ecology and Evolutionary BiologyUniversity of California Los AngelesLos AngelesCaliforniaUSA
| |
Collapse
|
9
|
Wang H, Salmaniw Y. Open problems in PDE models for knowledge-based animal movement via nonlocal perception and cognitive mapping. J Math Biol 2023; 86:71. [PMID: 37029822 DOI: 10.1007/s00285-023-01905-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/12/2023] [Accepted: 03/16/2023] [Indexed: 04/09/2023]
Abstract
The inclusion of cognitive processes, such as perception, learning and memory, are inevitable in mechanistic animal movement modelling. Cognition is the unique feature that distinguishes animal movement from mere particle movement in chemistry or physics. Hence, it is essential to incorporate such knowledge-based processes into animal movement models. Here, we summarize popular deterministic mathematical models derived from first principles that begin to incorporate such influences on movement behaviour mechanisms. Most generally, these models take the form of nonlocal reaction-diffusion-advection equations, where the nonlocality may appear in the spatial domain, the temporal domain, or both. Mathematical rules of thumb are provided to judge the model rationality, to aid in model development or interpretation, and to streamline an understanding of the range of difficulty in possible model conceptions. To emphasize the importance of biological conclusions drawn from these models, we briefly present available mathematical techniques and introduce some existing "measures of success" to compare and contrast the possible predictions and outcomes. Throughout the review, we propose a large number of open problems relevant to this relatively new area, ranging from precise technical mathematical challenges, to more broad conceptual challenges at the cross-section between mathematics and ecology. This review paper is expected to act as a synthesis of existing efforts while also pushing the boundaries of current modelling perspectives to better understand the influence of cognitive movement mechanisms on movement behaviours and space use outcomes.
Collapse
Affiliation(s)
- Hao Wang
- Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, AB, T6G 2G1, Canada
| | - Yurij Salmaniw
- Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, AB, T6G 2G1, Canada.
| |
Collapse
|
10
|
Cain S, Solomon T, Leshem Y, Toledo S, Arnon E, Roulin A, Spiegel O. Movement predictability of individual barn owls facilitates estimation of home range size and survival. MOVEMENT ECOLOGY 2023; 11:10. [PMID: 36750910 PMCID: PMC9906850 DOI: 10.1186/s40462-022-00366-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 12/31/2022] [Indexed: 06/18/2023]
Abstract
BACKGROUND There is growing attention to individuality in movement, its causes and consequences. Similarly to other well-established personality traits (e.g., boldness or sociability), conspecifics also differ repeatedly in their spatial behaviors, forming behavioral types ("spatial-BTs"). These spatial-BTs are typically described as the difference in the mean-level among individuals, and the intra-individual variation (IIV, i.e., predictability) is only rarely considered. Furthermore, the factors determining predictability or its ecological consequences for broader space-use patterns are largely unknown, in part because predictability was mostly tested in captivity (e.g., with repeated boldness assays). Here we test if (i) individuals differ in their movement and specifically in their predictability. We then investigate (ii) the consequences of this variation for home-range size and survival estimates, and (iii) the factors that affect individual predictability. METHODS We tracked 92 barn owls (Tyto alba) with an ATLAS system and monitored their survival. From these high-resolution (every few seconds) and extensive trajectories (115.2 ± 112.1 nights; X̅ ± SD) we calculated movement and space-use indices (e.g., max-displacement and home-range size, respectively). We then used double-hierarchical and generalized linear mix-models to assess spatial-BTs, individual predictability in nightly max-displacement, and its consistency across time. Finally, we explored if predictability levels were associated with home-range size and survival, as well as the seasonal, geographical, and demographic factors affecting it (e.g., age, sex, and owls' density). RESULTS Our dataset (with 74 individuals after filtering) revealed clear patterns of individualism in owls' movement. Individuals differed consistently both in their mean movement (e.g., max-displacement) and their IIV around it (i.e., predictability). More predictable individuals had smaller home-ranges and lower survival rates, on top and beyond the expected effects of their spatial-BT (max-displacement), sex, age and ecological environments. Juveniles were less predictable than adults, but the sexes did not differ in their predictability. CONCLUSION These results demonstrate that individual predictability may act as an overlooked axis of spatial-BT with potential implications for relevant ecological processes at the population level and individual fitness. Considering how individuals differ in their IIV of movement beyond the mean-effect can facilitate understanding the intraspecific diversity, predicting their responses to changing ecological conditions and their population management.
Collapse
Affiliation(s)
- Shlomo Cain
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, 69978, Tel Aviv, Israel
| | - Tovale Solomon
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, 69978, Tel Aviv, Israel
| | - Yossi Leshem
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, 69978, Tel Aviv, Israel
| | - Sivan Toledo
- Blavatnik School of Computer Science, Tel Aviv University, 69978, Tel Aviv, Israel
| | - Eitam Arnon
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, 69978, Tel Aviv, Israel
| | - Alexandre Roulin
- Department of Ecology and Evolution, Building Biophore, University of Lausanne, 1015, Lausanne, Switzerland
| | - Orr Spiegel
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, 69978, Tel Aviv, Israel.
| |
Collapse
|
11
|
Webber QMR, Albery GF, Farine DR, Pinter-Wollman N, Sharma N, Spiegel O, Vander Wal E, Manlove K. Behavioural ecology at the spatial-social interface. Biol Rev Camb Philos Soc 2023; 98:868-886. [PMID: 36691262 DOI: 10.1111/brv.12934] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/25/2023]
Abstract
Spatial and social behaviour are fundamental aspects of an animal's biology, and their social and spatial environments are indelibly linked through mutual causes and shared consequences. We define the 'spatial-social interface' as intersection of social and spatial aspects of individuals' phenotypes and environments. Behavioural variation at the spatial-social interface has implications for ecological and evolutionary processes including pathogen transmission, population dynamics, and the evolution of social systems. We link spatial and social processes through a foundation of shared theory, vocabulary, and methods. We provide examples and future directions for the integration of spatial and social behaviour and environments. We introduce key concepts and approaches that either implicitly or explicitly integrate social and spatial processes, for example, graph theory, density-dependent habitat selection, and niche specialization. Finally, we discuss how movement ecology helps link the spatial-social interface. Our review integrates social and spatial behavioural ecology and identifies testable hypotheses at the spatial-social interface.
Collapse
Affiliation(s)
- Quinn M R Webber
- Department of Integrative Biology, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
| | - Gregory F Albery
- Department of Biology, Georgetown University, 37th and O Streets, Washington, DC, 20007, USA.,Wissenschaftskolleg zu Berlin, Wallotstraße 19, 14193, Berlin, Germany.,Leibniz Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, 12587, Berlin, Germany
| | - Damien R Farine
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.,Department of Collective Behavior, Max Planck Institute of Animal Behavior, Universitatsstraße 10, 78464, Constance, Germany.,Division of Ecology and Evolution, Research School of Biology, Australian National University, 46 Sullivans Creek Road, Canberra, ACT, 2600, Australia
| | - Noa Pinter-Wollman
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Nitika Sharma
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Orr Spiegel
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Eric Vander Wal
- Department of Biology, Memorial University, St. John's, NL, A1C 5S7, Canada
| | - Kezia Manlove
- Department of Wildland Resources and Ecology Center, Utah State University, 5200 Old Main Hill, Logan, UT, 84322, USA
| |
Collapse
|
12
|
Orlando CG, Possell M, Price C, Banks PB, Mercorelli L, McArthur C. A new conceptual and quantitative approach to exploring and defining potential open-access olfactory information. THE NEW PHYTOLOGIST 2022; 236:1605-1619. [PMID: 35975694 PMCID: PMC9826502 DOI: 10.1111/nph.18432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
All organisms emit odour, providing 'open-access' olfactory information for any receiver with the right sensory apparatus. Characterizing open-access information emitted by groups of organisms, such as plant species, provides the means to answer significant questions about ecological interactions and their evolution. We present a new conceptual framework defining information reliability and a practical method to characterize and recover information from amongst olfactory noise. We quantified odour emissions from two tree species, one focal group and one outgroup, to demonstrate our approach using two new R statistical functions. We explore the consequences of relaxing or tightening criteria defining information and, from thousands of odour combinations, we identify and quantify those few likely to be informative. Our method uses core general principles characterizing information while incorporating knowledge of how receivers detect and discriminate odours. We can now map information in consistency-precision reliability space, explore the concept of information, and test information-noise boundaries, and between cues and signals.
Collapse
Affiliation(s)
| | - Malcolm Possell
- School of Life and Environmental SciencesThe University of SydneySydneyNSW2006Australia
| | - Catherine Price
- School of Life and Environmental SciencesThe University of SydneySydneyNSW2006Australia
| | - Peter B. Banks
- School of Life and Environmental SciencesThe University of SydneySydneyNSW2006Australia
| | - Louis Mercorelli
- The Sydney Informatics HubThe University of SydneySydneyNSW2006Australia
| | - Clare McArthur
- School of Life and Environmental SciencesThe University of SydneySydneyNSW2006Australia
| |
Collapse
|
13
|
Strepsirrhine movement and navigation: sense and sociality. Curr Opin Behav Sci 2022. [DOI: 10.1016/j.cobeha.2022.101133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
14
|
García MG, de Guinea M, Bshary R, van de Waal E. Drivers and outcomes of between-group conflict in vervet monkeys. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210145. [PMID: 35369750 PMCID: PMC8977665 DOI: 10.1098/rstb.2021.0145] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 02/22/2022] [Indexed: 12/17/2022] Open
Abstract
Neighbouring groups compete over access to resources and territories in between-group encounters, which can escalate into between-group conflicts (BGCs). Both the ecological characteristics of a territory and the rival's fighting ability shape the occurrence and outcome of such contests. What remains poorly understood, however, is how seasonal variability in the ecological value of a territory together with fighting ability related to the likelihood of between-group encounters and the extent to which these escalate into conflicts. To test this, we observed and followed four vervet monkey groups in the wild, and recorded the group structure (i.e. size, composition), the locations and the outcomes of 515 BGCs. We then assessed key ecological measures at these locations, such as vegetation availability (estimated from Copernicus Sentinel 2 satellite images) and the intensity of usage of these locations. We tested to what extent these factors together influenced the occurrence and outcomes of BGCs. We found that the occurrence of BGCs increased at locations with higher vegetation availability relative to the annual vegetation availability within the group's home territory. Also, groups engaging in a BGC at locations far away from their home territory were less likely to win a BGC. Regarding group structure, we found that smaller groups systematically won BGCs against larger groups, which can be explained by potentially higher rates of individual free-riding occurring in larger groups. This study sheds light on how the ecology of encounter locations in combination with a group's social characteristics can critically impact the dynamics of BGCs in a non-human primate species. This article is part of the theme issue 'Intergroup conflict across taxa'.
Collapse
Affiliation(s)
- Miguel Gareta García
- Inkawu Vervet Project, Mawana Game Reserve, KwaZulu Natal 3115, South Africa
- Department of Eco-Ethology, Faculty of Biology, University of Neuchâtel, Rue Emile Argand 11, Neuchâtel 2000, Switzerland
| | - Miguel de Guinea
- Movement Ecology Laboratory, Alexander Silverman Institute of Life Sciences, Department of Ecology, Evolution and Behavior, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Redouan Bshary
- Inkawu Vervet Project, Mawana Game Reserve, KwaZulu Natal 3115, South Africa
- Department of Eco-Ethology, Faculty of Biology, University of Neuchâtel, Rue Emile Argand 11, Neuchâtel 2000, Switzerland
| | - Erica van de Waal
- Inkawu Vervet Project, Mawana Game Reserve, KwaZulu Natal 3115, South Africa
- Department of Ecology and Evolution, Faculty of Biology and Medicine, University of Lausanne, Lausanne 1015, Switzerland
| |
Collapse
|
15
|
Payne E, Spiegel O, Sinn DL, Leu ST, Gardner MG, Godfrey SS, Wohlfeil C, Sih A. Intrinsic traits, social context, and local environment shape home range size and fidelity of sleepy lizards. ECOL MONOGR 2022. [DOI: 10.1002/ecm.1519] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- E. Payne
- Department of Environmental Science and Policy University of California Davis Davis USA
| | - O. Spiegel
- School of Zoology, Faculty of Life Sciences, Tel Aviv University Tel Aviv Israel
| | - D. L. Sinn
- Department of Environmental Science and Policy University of California Davis Davis USA
- Department of Biological Sciences University of Tasmania, Hobart Tasmania Australia
| | - S. T. Leu
- School of Animal and Veterinary Sciences, University of Adelaide Adelaide Australia
| | - M. G. Gardner
- College of Science and Engineering, Flinders University Adelaide Australia
- Evolutionary Biology Unit, South Australian Museum, North Terrace Adelaide Australia
| | - S. S. Godfrey
- Department of Zoology University of Otago Dunedin New Zealand
| | - C. Wohlfeil
- College of Science and Engineering, Flinders University Adelaide Australia
| | - A. Sih
- Department of Environmental Science and Policy University of California Davis Davis USA
| |
Collapse
|
16
|
Fei H, de Guinea M, Yang L, Chapman CA, Fan P. Where to sleep next? Evidence for spatial memory associated with sleeping sites in Skywalker gibbons (Hoolock tianxing). Anim Cogn 2022; 25:891-903. [PMID: 35099623 DOI: 10.1007/s10071-022-01600-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 01/11/2022] [Accepted: 01/13/2022] [Indexed: 12/29/2022]
Abstract
Finding suitable sleeping sites is highly advantageous but challenging for wild animals. While suitable sleeping sites provide protection against predators and enhance sleep quality, these sites are heterogeneously distributed in space. Thus, animals may generate memories associated with suitable sleeping sites to be able to approach them efficiently when needed. Here, we examined traveling trajectories (i.e., direction, linearity, and speed of traveling) in relation to sleeping sites to assess whether Skywalker gibbons (Hoolock tianxing) use spatial memory to locate sleeping trees. Our results show that about 30% of the sleeping trees were efficiently revisited by gibbons and the recursive use of trees was higher than a randomly simulated visiting pattern. When gibbons left the last feeding tree for the day, they traveled in a linear fashion to sleeping sites out-of-sight (> 40 m away), and linearity of travel to sleeping trees out-of-sight was higher than 0.800 for all individuals. The speed of the traveling trajectories to sleeping sites out-of-sight increased not only as sunset approached, but also when daily rainfall increased. These results suggest that gibbons likely optimized their trajectories to reach sleeping sites under increasing conditions of predatory risk (i.e., nocturnal predators) and uncomfortable weather. Our study provides novel evidence on the use of spatial memory to locate sleeping sites through analyses of movement patterns, which adds to an already extensive body of literature linking cognitive processes and sleeping patterns in human and non-human animals.
Collapse
Affiliation(s)
- Hanlan Fei
- Department of Ecology, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China.,College of Life Science, China West Normal University, Nanchong, 637002, China
| | - Miguel de Guinea
- Movement Ecology Laboratory, Department of Ecology Evolution and Behavior, Alexander Silverman Institute of Life Science, The Hebrew University of Jerusalem, 91904, Jerusalem, Israel
| | - Li Yang
- Department of Ecology, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Colin A Chapman
- Wilson Center, 1300 Pennsylvania Avenue NW, Washington, DC, 20004, USA.,Department of Anthropology, The George Washington University, Washington, DC, 20037, USA.,School of Life Sciences, University of KwaZulu-Natal, Scottsville, Pietermaritzburg, 3209, South Africa.,Shaanxi Key Laboratory for Animal Conservation, Northwest University, Xi'an, 710127, China
| | - Pengfei Fan
- Department of Ecology, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China.
| |
Collapse
|
17
|
|
18
|
Michelangeli M, Payne E, Spiegel O, Sinn DL, Leu ST, Gardner MG, Sih A. Personality, spatiotemporal ecological variation and resident/explorer movement syndromes in the sleepy lizard. J Anim Ecol 2021; 91:210-223. [PMID: 34679184 DOI: 10.1111/1365-2656.13616] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 10/04/2021] [Indexed: 01/26/2023]
Abstract
Individual variation in movement is profoundly important for fitness and offers key insights into the spatial and temporal dynamics of populations and communities. Nonetheless, individual variation in fine-scale movement behaviours is rarely examined even though animal tracking devices offer the long-term, high-resolution, repeatable data in natural conditions that are ideal for studying this variation. Furthermore, of the few studies that consider individual variation in movement, even fewer also consider the internal traits and environmental factors that drive movement behaviour which are necessary for contextualising individual differences in movement patterns. In this study, we GPS tracked a free-ranging population of sleepy lizards Tiliqua rugosa, each Austral spring over 5 years to examine consistent among-individual variation in movement patterns, as well as how these differences were mediated by key internal and ecological factors. We found that individuals consistently differed in a suite of weekly movement traits, and that these traits strongly covaried among-individuals, forming movement syndromes. Lizards fell on a primary movement continuum, from 'residents' that spent extended periods of time residing within smaller core areas of their home range, to 'explorers' that moved greater distances and explored vaster areas of the environment. Importantly, we also found that these consistent differences in lizard movement were related to two ecologically important animal personality traits (boldness and aggression), their sex, key features of the environment (including food availability, and a key water resource), habitat type and seasonal variation (cool/moist vs. hot/drier) in environmental conditions. Broadly, these movement specialisations likely reflect variation in life-history tactics including foraging and mating tactics that ultimately underlie key differences in space use. Such information can be used to connect phenotypic population structure to key ecological and evolutionary processes, for example social networks and disease-transmission pathways, further highlighting the value of examining individual variation in movement behaviour.
Collapse
Affiliation(s)
- Marcus Michelangeli
- Department of Environmental Science and Policy, University of California, Davis, CA, USA.,School of Biological Sciences, Monash University, Melbourne, Vic., Australia.,Department of Wildlife, Fish and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Eric Payne
- Department of Environmental Science and Policy, University of California, Davis, CA, USA
| | - Orr Spiegel
- Department of Environmental Science and Policy, University of California, Davis, CA, USA.,The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - David L Sinn
- Department of Environmental Science and Policy, University of California, Davis, CA, USA
| | - Stephan T Leu
- School of Animal and Veterinary Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Michael G Gardner
- College of Science and Engineering, Flinders University, Adelaide, SA, Australia.,Evolutionary Biology Unit, South Australian Museum, North Terrace, Adelaide, SA, Australia
| | - Andrew Sih
- Department of Environmental Science and Policy, University of California, Davis, CA, USA
| |
Collapse
|
19
|
Lourie E, Schiffner I, Toledo S, Nathan R. Memory and Conformity, but Not Competition, Explain Spatial Partitioning Between Two Neighboring Fruit Bat Colonies. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.732514] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Spatial partitioning between neighboring colonies is considered a widespread phenomenon in colonial species, reported mainly in marine birds. Partitioning is suspected to emerge due to various processes, such as competition, diet specialization, memory, information transfer, or even “foraging cultures.” Yet, empirical evidence from other taxa, and studies that tease apart the relative contribution of the processes underlying partitioning, remain scarce, mostly due to insufficiently detailed movement data. Here, we used high-resolution movement tracks (at 0.125 Hz) of 107 individuals belonging to two neighboring colonies of the Egyptian fruit bat (Rousettus aegyptiacus), a highly gregarious central-place forager, using the ATLAS reverse-GPS system in the Hula Valley, Israel. Based on comparisons between agent-based mechanistic models and observed spatial partitioning patterns, we found high levels of partitioning of both area and tree resources (<11% overlap) that were stable across different fruiting seasons. Importantly, partitioning could not have emerged if the bats’ movement was only limited by food availability and travel distances, as most commonly hypothesized. Rather than density-dependent or between-colony competition, memory, and, to a lesser extent, conformity in tree-use explain how partitioning develops. Elucidating the mechanisms that shape spatial partitioning among neighboring colonies in the wild under variable resource conditions is important for understanding the ecology and evolution of inter-group coexistence, space use patterns and sociality.
Collapse
|
20
|
Kashetsky T, Avgar T, Dukas R. The Cognitive Ecology of Animal Movement: Evidence From Birds and Mammals. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.724887] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Cognition, defined as the processes concerned with the acquisition, retention and use of information, underlies animals’ abilities to navigate their local surroundings, embark on long-distance seasonal migrations, and socially learn information relevant to movement. Hence, in order to fully understand and predict animal movement, researchers must know the cognitive mechanisms that generate such movement. Work on a few model systems indicates that most animals possess excellent spatial learning and memory abilities, meaning that they can acquire and later recall information about distances and directions among relevant objects. Similarly, field work on several species has revealed some of the mechanisms that enable them to navigate over distances of up to several thousand kilometers. Key behaviors related to movement such as the choice of nest location, home range location and migration route are often affected by parents and other conspecifics. In some species, such social influence leads to the formation of aggregations, which in turn may lead to further social learning about food locations or other resources. Throughout the review, we note a variety of topics at the interface of cognition and movement that invite further investigation. These include the use of social information embedded in trails, the likely important roles of soundscapes and smellscapes, the mechanisms that large mammals rely on for long-distance migration, and the effects of expertise acquired over extended periods.
Collapse
|
21
|
Jang H, Oktaviani R, Kim S, Mardiastuti A, Choe JC. Do Javan gibbons (Hylobates moloch) use fruiting synchrony as a foraging strategy? Am J Primatol 2021; 83:e23319. [PMID: 34402078 DOI: 10.1002/ajp.23319] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 06/16/2021] [Accepted: 07/27/2021] [Indexed: 12/29/2022]
Abstract
Tropical rainforests are characterized by a high diversity of plant species. Each plant species presents with differential phenological patterns in fruit production. In some species, all individual trees produce fruit simultaneously within clustered periods; whereas in others, each individual tree fruits at irregular time intervals. By observing this pattern, some primate species use the presence of fruits in one tree as a cue to find fruit in other trees of the same synchronously fruiting tree species. Here, we investigated whether the highly frugivorous Javan gibbons (Hylobates moloch) in Gunung Halimun-Salak National Park in Indonesia have knowledge of synchronous characteristics of fruiting trees and whether they can further distinguish fruit species with different synchrony levels, that is, tree species with highly synchronous fruiting patterns versus tree species with less synchronous fruiting patterns. Across 12 months we collected biweekly phenological data on 250 trees from 10 fruit species and observed Javan gibbons' visits to those species. We found that a fruit discovery in the beginning of fruiting seasons triggered gibbons to visit trees of the same fruit species. However, gibbons' visit rates did not differ between highly synchronous and asynchronous species. Our results suggest that Javan gibbons have knowledge of synchronous characteristics of fruiting trees in general, but they do not differentiate highly synchronous versus asynchronous fruit species. We speculate that Javan gibbons, who live in relatively small ranges with very low tree density of preferred fruit species, are likely able to track and remember fruiting states of individual trees without needing to distinguish fruit species with different synchrony levels. Moreover, gibbons may make little benefit of distinguishing highly synchronous versus asynchronous fruit species, probably due to gibbons' heavy use of asynchronous figs. Our study provides an insight into how gibbon's foraging strategies may have been shaped in response to their ecological environment.
Collapse
Affiliation(s)
- Haneul Jang
- Department of Human Behavior, Ecology and Culture, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Rahayu Oktaviani
- Javan Gibbon Research and Conservation Project, Bogor, Indonesia.,Division of Ecoscience, Ewha Womans University, Seoul, South Korea
| | - Sanha Kim
- Biodiversity Foundation, Seoul, South Korea
| | - Ani Mardiastuti
- Department of Forest Resources Conservation and Ecotourism, Faculty of Forestry and Environment, IPB University, Bogor, Indonesia
| | - Jae C Choe
- Division of Ecoscience, Ewha Womans University, Seoul, South Korea
| |
Collapse
|
22
|
Rheault H, Anderson CR, Bonar M, Marrotte RR, Ross TR, Wittemyer G, Northrup JM. Some Memories Never Fade: Inferring Multi-Scale Memory Effects on Habitat Selection of a Migratory Ungulate Using Step-Selection Functions. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.702818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Understanding how animals use information about their environment to make movement decisions underpins our ability to explain drivers of and predict animal movement. Memory is the cognitive process that allows species to store information about experienced landscapes, however, remains an understudied topic in movement ecology. By studying how species select for familiar locations, visited recently and in the past, we can gain insight to how they store and use local information in multiple memory types. In this study, we analyzed the movements of a migratory mule deer (Odocoileus hemionus) population in the Piceance Basin of Colorado, United States to investigate the influence of spatial experience over different time scales on seasonal range habitat selection. We inferred the influence of short and long-term memory from the contribution to habitat selection of previous space use within the same season and during the prior year, respectively. We fit step-selection functions to GPS collar data from 32 female deer and tested the predictive ability of covariates representing current environmental conditions and both metrics of previous space use on habitat selection, inferring the latter as the influence of memory within and between seasons (summer vs. winter). Across individuals, models incorporating covariates representing both recent and past experience and environmental covariates performed best. In the top model, locations that had been previously visited within the same season and locations from previous seasons were more strongly selected relative to environmental covariates, which we interpret as evidence for the strong influence of both short- and long-term memory in driving seasonal range habitat selection. Further, the influence of previous space uses was stronger in the summer relative to winter, which is when deer in this population demonstrated strongest philopatry to their range. Our results suggest that mule deer update their seasonal range cognitive map in real time and retain long-term information about seasonal ranges, which supports the existing theory that memory is a mechanism leading to emergent space-use patterns such as site fidelity. Lastly, these findings provide novel insight into how species store and use information over different time scales.
Collapse
|
23
|
Williams HJ, Safi K. Certainty and integration of options in animal movement. Trends Ecol Evol 2021; 36:990-999. [PMID: 34303526 DOI: 10.1016/j.tree.2021.06.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 06/17/2021] [Accepted: 06/22/2021] [Indexed: 10/20/2022]
Abstract
Physical energy defines the energy landscape and determines the species-specific cost of movement, thus influencing movement decisions. In unpredictable and dynamic environments, observing the locomotion of others increases individual certainty in the distribution of physical energy to increase movement efficiency. Beyond the physical energy landscape, social sampling increases certainty in all ecological landscapes that influence animal movement (including fear and resource landscapes), and individuals use energy to express each of these. We call for the development of an 'optimal movement theory' (OMT) that integrates the multidimensional reality of movement decisions by combining ecological landscapes according to a single expectation of energy cost-benefit, where social sampling provides up-to-date information under uncertain conditions. This mechanistic framework has implications for predicting individual movement patterns and for investigating the emergence of aggregations.
Collapse
Affiliation(s)
- Hannah J Williams
- Department of Migration, Max Planck Institute of Animal Behavior, 78315 Radolfzell, Germany; University of Konstanz, Department of Biology, Universitätsstraße 10, 78464 Konstanz, Germany; Centre for the Advanced Study of Collective Behaviour, University of Konstanz, 78464 Konstanz, Germany.
| | - Kamran Safi
- Department of Migration, Max Planck Institute of Animal Behavior, 78315 Radolfzell, Germany; University of Konstanz, Department of Biology, Universitätsstraße 10, 78464 Konstanz, Germany
| |
Collapse
|
24
|
Habitat Quality and Social Behavioral Association Network in a Wintering Waterbirds Community. SUSTAINABILITY 2021. [DOI: 10.3390/su13116044] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Migratory waterbirds concentrated in freshwater ecosystems in mosaic environments rely on quality habitats for overwintering. At West Dongting Lake National Nature Reserve (WDLNNR), China, land-use change and hydrology alternation are compounding factors that have affected important wintering areas for migratory waterbirds. Presently, changes in the hydrology and landscape have reshaped natural wintering habitats and their availability, though the impact of hydrological management on habitat selection of wintering waterbirds is largely unknown. In this study, we classified differentially managed habitats and calculated their area using the normalized difference vegetation index (NDVI) to evaluate suitable habitat availability over the study period (2016–2017 and 2017–2018 wintering periods). We then used social behavioral association network (SBAN) model to compare habitat quality through species-species social interactions and species-habitat associations in lakes with different hydrological management. The results indicated that social interactions between and within species structured wintering waterbirds communities, which could be dominated by one or more species, while dominant species control the activities of other co-existing species. Analysis of variance (ANOVA) tests indicated significant differences in SBAN metrics between lakes (p = 0.0237) and habitat (p < 0.0001) levels. Specifically, lakes with managed hydrology were preferred by more species. The managed lakes had better habitat quality in terms of significantly higher habitat areas (p < 0.0001) and lower habitat transitions (p = 0.0113). Collectively, our findings suggest that proper hydrological management can provide continuous availability of quality habitats, especially mudflats and shallow waters, for a stable SBAN to ensure a wintering waterbirds community with more sympatric species in a dynamic environment.
Collapse
|
25
|
Wauters LA, Mazzamuto MV, Santicchia F, Martinoli A, Preatoni DG, Lurz PWW, Bertolino S, Romeo C. Personality traits, sex and food abundance shape space use in an arboreal mammal. Oecologia 2021; 196:65-76. [PMID: 33796927 PMCID: PMC8139925 DOI: 10.1007/s00442-021-04901-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 03/23/2021] [Indexed: 10/29/2022]
Abstract
Animal space use is affected by spatio-temporal variation in food availability and/or population density and varies among individuals. This inter-individual variation in spacing behaviour can be further influenced by sex, body condition, social dominance, and by the animal's personality. We used capture-mark-recapture and radio-tracking to examine the relationship between space use and personality in Eurasian red squirrels (Sciurus vulgaris) in three conifer forests in the Italian Alps. We further explored to what extent this was influenced by changes in food abundance and/or population density. Measures of an individual's trappability and trap diversity had high repeatability and were used in a Principal Component Analysis to obtain a single personality score representing a boldness-exploration tendency. Males increased home-range size with low food abundance and low female density, independent of their personality. However, bolder males used larger core-areas that overlapped less with other males than shy ones, suggesting different resource (food, partners) utilization strategies among personality types. For females, space use-personality relationships varied with food abundance, and bolder females used larger home ranges than shy ones at low female density, but the trend was opposite at high female density. Females' intrasexual core-area overlap was negatively related to body mass, with no effect of personality. We conclude that relationships between personality traits and space use in free-ranging squirrels varied with sex, and were further influenced by spatio-temporal fluctuations in food availability. Moreover, different personality types (bold-explorative vs. shy) seemed to adopt different space-use strategies to increase access to food and/or partners.
Collapse
Affiliation(s)
- Lucas A Wauters
- Environment Analysis and Management Unit, Guido Tosi Research Group, Department of Theoretical and Applied Sciences, Università degli Studi dell'Insubria, via J.H. Dunant, 3, 21100, Varese, Italy.,Department of Biology, University of Antwerp, Wilrijk, Belgium
| | - Maria Vittoria Mazzamuto
- Environment Analysis and Management Unit, Guido Tosi Research Group, Department of Theoretical and Applied Sciences, Università degli Studi dell'Insubria, via J.H. Dunant, 3, 21100, Varese, Italy.,School of Natural Resources and the Environment, University of Arizona, Tucson, USA
| | - Francesca Santicchia
- Environment Analysis and Management Unit, Guido Tosi Research Group, Department of Theoretical and Applied Sciences, Università degli Studi dell'Insubria, via J.H. Dunant, 3, 21100, Varese, Italy.
| | - Adriano Martinoli
- Environment Analysis and Management Unit, Guido Tosi Research Group, Department of Theoretical and Applied Sciences, Università degli Studi dell'Insubria, via J.H. Dunant, 3, 21100, Varese, Italy
| | - Damiano G Preatoni
- Environment Analysis and Management Unit, Guido Tosi Research Group, Department of Theoretical and Applied Sciences, Università degli Studi dell'Insubria, via J.H. Dunant, 3, 21100, Varese, Italy
| | - Peter W W Lurz
- The Royal (Dick) School of Veterinary Studies and the Roslin Institute, University of Edinburgh, Roslin, UK
| | - Sandro Bertolino
- Department of Life Sciences and Systems Biology, Università degli Studi di Torino, Turin, Italy
| | - Claudia Romeo
- Department of Veterinary Medicine, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
26
|
de Guinea M, Estrada A, Janmaat KR, Nekaris KAI, Van Belle S. Disentangling the importance of social and ecological information in goal-directed movements in a wild primate. Anim Behav 2021. [DOI: 10.1016/j.anbehav.2020.12.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
27
|
Aben J, Signer J, Heiskanen J, Pellikka P, Travis JMJ. What you see is where you go: visibility influences movement decisions of a forest bird navigating a three-dimensional-structured matrix. Biol Lett 2021; 17:20200478. [PMID: 33497591 DOI: 10.1098/rsbl.2020.0478] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Animal spatial behaviour is often presumed to reflect responses to visual cues. However, inference of behaviour in relation to the environment is challenged by the lack of objective methods to identify the information that effectively is available to an animal from a given location. In general, animals are assumed to have unconstrained information on the environment within a detection circle of a certain radius (the perceptual range; PR). However, visual cues are only available up to the first physical obstruction within an animal's PR, making information availability a function of an animal's location within the physical environment (the effective visual perceptual range; EVPR). By using LiDAR data and viewshed analysis, we modelled forest birds' EVPRs at each step along a movement path. We found that the EVPR was on average 0.063% that of an unconstrained PR and, by applying a step-selection analysis, that individuals are 1.55 times more likely to move to a tree within their EVPR than to an equivalent tree outside it. This demonstrates that behavioural choices can be substantially impacted by the characteristics of an individual's EVPR and highlights that inferences made from movement data may be improved by accounting for the EVPR.
Collapse
Affiliation(s)
- Job Aben
- Department of Biology, University of Antwerp, Wilrijk, Belgium
| | - Johannes Signer
- Wildlife Sciences, University of Goettingen, Göttingen, Germany
| | - Janne Heiskanen
- Department of Geosciences and Geography, University of Helsinki, Helsinki, Finland.,Institute for Atmospheric and Earth System Research, Faculty of Science, University of Helsinki, Finland
| | - Petri Pellikka
- Department of Geosciences and Geography, University of Helsinki, Helsinki, Finland.,Institute for Atmospheric and Earth System Research, Faculty of Science, University of Helsinki, Finland
| | | |
Collapse
|
28
|
Abreu F, Garber PA, Souto A, Presotto A, Schiel N. Navigating in a challenging semiarid environment: the use of a route-based mental map by a small-bodied neotropical primate. Anim Cogn 2021; 24:629-643. [PMID: 33394185 DOI: 10.1007/s10071-020-01465-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 12/17/2020] [Accepted: 12/19/2020] [Indexed: 11/27/2022]
Abstract
To increase efficiency in the search for resources, many animals rely on their spatial abilities. Specifically, primates have been reported to use mostly topological and rarely Euclidean maps when navigating in large-scale space. Here, we aimed to investigate if the navigation of wild common marmosets inhabiting a semiarid environment is consistent with a topological representation and how environmental factors affect navigation. We collected 497 h of direct behavioral and GPS information on a group of marmosets using a 2-min instantaneous focal animal sampling technique. We found that our study group reused not only long-route segments (mean of 1007 m) but entire daily routes, a pattern that is not commonly seen in primates. The most frequently reused route segments were the ones closer to feeding sites, distant to resting sites, and in areas sparse in tree vegetation. We also identified a total of 56 clustered direction change points indicating that the group modified their direction of travel. These changes in direction were influenced by their close proximity to resting and feeding sites. Despite our small sample size, the obtained results are important and consistent with the contention that common marmosets navigate using a topological map that seems to benefit these animals in response to the exploitation of clustered exudate trees. Based on our findings, we hypothesize that the Caatinga landscape imposes physical restrictions in our group's navigation such as gaps in vegetation, small trees and xerophytic plants. This study, based on preliminary evidence, raises the question of whether navigation patterns are an intrinsic characteristic of a species or are ecologically dependent and change according to the environment.
Collapse
Affiliation(s)
- Filipa Abreu
- Department of Biology, Federal Rural University of Pernambuco, R. Dom Manuel de Medeiros, s/n, Dois Irmãos, Recife, PE, 52171-900, Brazil.
| | - Paul A Garber
- Department of Anthropology, Program in Ecology, Evolution, and Conservation Biology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Antonio Souto
- Department of Zoology, Federal University of Pernambuco, Av. Professor Moraes Rego, 1235, Recife, PE, 50670-901, Brazil
| | - Andrea Presotto
- Department of Geography and Geosciences, Salisbury University, Salisbury, USA
| | - Nicola Schiel
- Department of Biology, Federal Rural University of Pernambuco, R. Dom Manuel de Medeiros, s/n, Dois Irmãos, Recife, PE, 52171-900, Brazil
| |
Collapse
|
29
|
Cheng L, Zhou L, Bao Y, Mahtab N. Effect of conspecific neighbors on the foraging activity levels of the wintering Oriental Storks ( Ciconia boyciana): Benefits of social information. Ecol Evol 2020; 10:10384-10394. [PMID: 33072267 PMCID: PMC7548187 DOI: 10.1002/ece3.6693] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 07/15/2020] [Accepted: 07/29/2020] [Indexed: 11/07/2022] Open
Abstract
Animals prefer to aggregate in patches with high abundance and availability of food resources. Group foragers typically receive information about food resources by monitoring external events and the behavior of neighbors. The Information Centre Hypothesis proposes that aggregations increase foraging activity levels as a result of social information provided by conspecifics. Increasing the foraging rate has as a result decreasing time devoted to anti-predator vigilance and may intensify competition among group members. Studies have shown that foraging activities are influenced by factors other than flock size, such as the number and foraging intensity of neighbors. To test these hypotheses, we examined the effect of number and foraging intensity of neighbors on the foraging activity levels (foraging rate, foraging effort, and foraging success rate) of the wintering Oriental Storks (Ciconia boyciana). In this study, we collected focal sampling data on the foraging behavior of storks at Shengjin Lake during winter from 2017 to 2019, controlling the effects of other variables (group identity, wintering years, and wintering periods). We found that foraging activity levels were higher in the presence of foraging neighbors than in their absence. Moreover, individuals adjusted their foraging activity levels according to social information gathered from the behavior of neighboring conspecifics. Focal individuals' foraging rate and foraging effort were positively correlated with the average foraging rate of neighbors. Their foraging success rate was not influenced by the average foraging rate and foraging success rate of neighbors; however, it was positively correlated with the average foraging effort of neighbors. In conclusion, foraging activity levels of individuals are primarily driven by the intensity of the foraging activity of neighbors. This result differs from the results of previous studies that suggested that flock size was the most important factor determining individual foraging activity levels.
Collapse
Affiliation(s)
- Lei Cheng
- School of Resources and Environmental Engineering Anhui University Hefei China.,Anhui Province Key Laboratory of Wetland Ecosystem Protection and Restoration (Anhui University) Hefei China.,Anhui Biodiversity Information Center Anhui University Hefei China
| | - Lizhi Zhou
- School of Resources and Environmental Engineering Anhui University Hefei China.,Anhui Province Key Laboratory of Wetland Ecosystem Protection and Restoration (Anhui University) Hefei China.,Anhui Biodiversity Information Center Anhui University Hefei China
| | - Yiwei Bao
- School of Resources and Environmental Engineering Anhui University Hefei China.,Anhui Province Key Laboratory of Wetland Ecosystem Protection and Restoration (Anhui University) Hefei China.,Anhui Biodiversity Information Center Anhui University Hefei China
| | - Nazia Mahtab
- School of Resources and Environmental Engineering Anhui University Hefei China.,Anhui Province Key Laboratory of Wetland Ecosystem Protection and Restoration (Anhui University) Hefei China.,Anhui Biodiversity Information Center Anhui University Hefei China
| |
Collapse
|
30
|
Jiao J, Riotte-Lambert L, Pilyugin SS, Gil MA, Osenberg CW. Mobility and its sensitivity to fitness differences determine consumer-resource distributions. ROYAL SOCIETY OPEN SCIENCE 2020; 7:200247. [PMID: 32742692 PMCID: PMC7353973 DOI: 10.1098/rsos.200247] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 05/27/2020] [Indexed: 06/11/2023]
Abstract
An animal's movement rate (mobility) and its ability to perceive fitness gradients (fitness sensitivity) determine how well it can exploit resources. Previous models have examined mobility and fitness sensitivity separately and found that mobility, modelled as random movement, prevents animals from staying in high-quality patches, leading to a departure from an ideal free distribution (IFD). However, empirical work shows that animals with higher mobility can more effectively collect environmental information and better sense patch quality, especially when the environment is frequently changed by human activities. Here, we model, for the first time, this positive correlation between mobility and fitness sensitivity and measure its consequences for the populations of a consumer and its resource. In the absence of consumer demography, mobility alone had no effect on system equilibria, but a positive correlation between mobility and fitness sensitivity could produce an IFD. In the presence of consumer demography, lower levels of mobility prevented the system from approaching an IFD due to the mixing of consumers between patches. However, when positively correlated with fitness sensitivity, high mobility led to an IFD. Our study demonstrates that the expected covariation of animal movement attributes can drive broadly theorized consumer-resource patterns across space and time and could underlie the role of consumers in driving spatial heterogeneity in resource abundance.
Collapse
Affiliation(s)
- Jing Jiao
- NIMBioS, University of Tennessee, Knoxville, TN, USA
- Department of Biology, University of Florida, Gainesville, FL, USA
| | - Louise Riotte-Lambert
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | | | - Michael A. Gil
- Institute of Marine Sciences, University of California, NOAA Southwest Fisheries Science Center, Santa Cruz, CA, USA
| | | |
Collapse
|
31
|
de Guinea M, Estrada A, Nekaris KAI, Van Belle S. Arboreal route navigation in a Neotropical mammal: energetic implications associated with tree monitoring and landscape attributes. MOVEMENT ECOLOGY 2019; 7:39. [PMID: 31890215 PMCID: PMC6918719 DOI: 10.1186/s40462-019-0187-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 12/05/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Although navigating along a network of routes might constrain animal movement flexibility, it may be an energetically efficient strategy. Routinely using the same route allows for visually monitoring of food resources, which might reduce the cognitive load and as such facilitate the process of movement decision-making. Similarly, locating routes in areas that avoid costly landscape attributes will enhance their overall energy balance. In this study we determined the benefits of route navigation in an energy minimiser arboreal primate, the black howler monkey (Alouatta pigra). METHODS We monitored five neighbouring groups of black howler monkeys at Palenque National Park, Mexico from September 2016 through August 2017. We recorded the location of the focal group every 20 m and mapped all travel paths to establish a route network (N = 1528 travel bouts). We constructed linear mixed models to assess the influence of food resource distribution (N = 931 trees) and landscape attributes (slope, elevation and presence of canopy gaps) on the location of routes within a route network. RESULTS The number of food trees that fell within the visual detection distance from the route network was higher (mean: 156.1 ± SD 44.9) than randomly simulated locations (mean: 121.9 ± SD 46.4). Similarly, the number of food trees found within the monkey's visual range per meter travelled increased, on overage, 0.35 ± SE 0.04 trees/m with increasing use of the route. In addition, route segments used at least twice were more likely to occur with increasing density of food resources and decreasing presence of canopy gaps. Route segments used at least four times were more likely to occur in elevated areas within the home ranges but only under conditions of reduced visual access to food resources. CONCLUSIONS Route navigation emerged as an efficient movement strategy in a group-living arboreal primate. Highly used route segments potentially increased visual access to food resources while avoiding energetically costly landscape features securing foraging success in a tropical rainforest.
Collapse
Affiliation(s)
- Miguel de Guinea
- Department of Social Sciences, Oxford Brookes University, Gibbs Building, Gipsy Lane, Oxford, OX3 0BP UK
| | - Alejandro Estrada
- Institute of Biology, National Autonomous University of Mexico, Mexico City, Mexico
| | - K. Anne-Isola Nekaris
- Department of Social Sciences, Oxford Brookes University, Gibbs Building, Gipsy Lane, Oxford, OX3 0BP UK
| | - Sarie Van Belle
- Department of Anthropology, University of Texas at Austin, Austin, TX USA
| |
Collapse
|
32
|
Jang H, Boesch C, Mundry R, Ban SD, Janmaat KRL. Travel linearity and speed of human foragers and chimpanzees during their daily search for food in tropical rainforests. Sci Rep 2019; 9:11066. [PMID: 31363113 PMCID: PMC6667462 DOI: 10.1038/s41598-019-47247-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 07/03/2019] [Indexed: 11/09/2022] Open
Abstract
To understand the evolutionary roots of human spatial cognition, researchers have compared spatial abilities of humans and one of our closest living relatives, the chimpanzee (Pan troglodytes). However, how humans and chimpanzees compare in solving spatial tasks during real-world foraging is unclear to date, as measuring such spatial abilities in natural habitats is challenging. Here we compared spatial movement patterns of the Mbendjele BaYaka people and the Taï chimpanzees during their daily search for food in rainforests. We measured linearity and speed during off-trail travels toward out-of-sight locations as proxies for spatial knowledge. We found similarly high levels of linearity in individuals of Mbendjele foragers and Taï chimpanzees. However, human foragers and chimpanzees clearly differed in their reactions to group size and familiarity with the foraging areas. Mbendjele foragers increased travel linearity with increasing familiarity and group size, without obvious changes in speed. This pattern was reversed in Taï chimpanzees. We suggest that these differences between Mbendjele foragers and Taï chimpanzees reflect their different ranging styles, such as life-time range size and trail use. This result highlights the impact of socio-ecological settings on comparing spatial movement patterns. Our study provides a first step toward comparing long-range spatial movement patterns of two closely-related species in their natural environments.
Collapse
Affiliation(s)
- Haneul Jang
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.
| | - Christophe Boesch
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Wild Chimpanzee Foundation, Abidjan, Côte d'Ivoire
| | - Roger Mundry
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Simone D Ban
- Wild Chimpanzee Foundation, Abidjan, Côte d'Ivoire
| | - Karline R L Janmaat
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Institute for Biodiversity and Ecosystem Dynamics, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
33
|
O'Farrell S, Sanchirico JN, Spiegel O, Depalle M, Haynie AC, Murawski SA, Perruso L, Strelcheck A. Disturbance modifies payoffs in the explore-exploit trade-off. Nat Commun 2019; 10:3363. [PMID: 31358737 PMCID: PMC6662700 DOI: 10.1038/s41467-019-11106-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 06/20/2019] [Indexed: 01/25/2023] Open
Abstract
Decision-making agents face a fundamental trade-off between exploring new opportunities with risky outcomes versus exploiting familiar options with more certain but potentially suboptimal outcomes. Although mediation of this trade-off is essential to adaptive behavior and has for decades been assumed to modulate performance, the empirical consequences of human exploratory strategies are unknown beyond laboratory or theoretical settings. Leveraging 540,000 vessel position records from 2494 commercial fishing trips along with corresponding revenues, here we find that during undisturbed conditions, there was no relationship between exploration and performance, contrary to theoretical predictions. However, during a major disturbance event which closed the most-utilized fishing grounds, explorers benefited significantly from less-impacted revenues and were also more likely to continue fishing. We conclude that in stochastic natural systems characterized by non-stationary rewards, the role of exploration in buffering against disturbance may be greater than previously thought in humans. The empirical consequences of human explorative strategies are not fully understood. Here the authors find that during undisturbed conditions, more-explorative vessels gained no performance advantage while during a major disturbance event, explorers benefited significantly from less-impacted revenues and were also more likely to continue fishing.
Collapse
Affiliation(s)
- Shay O'Farrell
- Department of Environmental Science and Policy, University of California Davis, One Shields Avenue, Davis, CA, 95616, USA.
| | - James N Sanchirico
- Department of Environmental Science and Policy, University of California Davis, One Shields Avenue, Davis, CA, 95616, USA.,Resources for the Future, Washington, DC, 20036, USA
| | - Orr Spiegel
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Maxime Depalle
- Department of Environmental Science and Policy, University of California Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Alan C Haynie
- NOAA Fisheries, Alaska Fisheries Science Center, 7600 Sand Point Way NE, Bldg 4, Seattle, WA, 98115, USA
| | - Steven A Murawski
- College of Marine Science, University of South Florida, 140 Seventh Avenue South, MSL 200D, St. Petersburg, FL, 33701, USA
| | - Larry Perruso
- NOAA Fisheries, Southeast Fisheries Science Center, 75 Virginia Beach Dr., Miami, FL, 33149, USA
| | - Andrew Strelcheck
- NOAA Fisheries, Southeast Regional Office, 263 13th Avenue South, St. Petersburg, FL, 33701, USA
| |
Collapse
|
34
|
Sage E, Bouten W, Hoekstra B, Camphuysen KCJ, Shamoun-Baranes J. Orographic lift shapes flight routes of gulls in virtually flat landscapes. Sci Rep 2019; 9:9659. [PMID: 31273241 PMCID: PMC6609688 DOI: 10.1038/s41598-019-46017-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 06/19/2019] [Indexed: 11/09/2022] Open
Abstract
Interactions between landscape and atmosphere result in a dynamic flight habitat which birds may use opportunistically to save energy during flight. However, their ability to utilise these dynamic landscapes and its influence on shaping movement paths is not well understood. We investigate the degree to which gulls utilise fine scale orographic lift created by wind deflected upwards over landscape features in a virtually flat landscape. Using accelerometer measurements and GPS tracking, soaring flight is identified and analysed with respect to orographic lift, modelled using high-resolution digital elevation models and wind measurements. The relationship between orographic lift and flight routes suggests gulls have advanced knowledge of their aerial surroundings and the benefits to be gained from them, even regarding small features such as tree lines. We show that in a landscape constantly influenced by anthropogenic change, the structure of our landscape has an aerial impact on flight route connectivity and costs.
Collapse
Affiliation(s)
- Elspeth Sage
- Theoretical and computational ecology, Institute for Biodiversity and Ecosystem Dynamics, Faculty of Science, University of Amsterdam, PO Box 94240, 1090 GE, Amsterdam, The Netherlands.
| | - Willem Bouten
- Theoretical and computational ecology, Institute for Biodiversity and Ecosystem Dynamics, Faculty of Science, University of Amsterdam, PO Box 94240, 1090 GE, Amsterdam, The Netherlands
| | - Bart Hoekstra
- Theoretical and computational ecology, Institute for Biodiversity and Ecosystem Dynamics, Faculty of Science, University of Amsterdam, PO Box 94240, 1090 GE, Amsterdam, The Netherlands
| | - Kees C J Camphuysen
- Department Coastal Systems, NIOZ Royal Institute for Sea Research and Utrecht University, P.O. Box 59, 1790 AB, Den Burg, Texel, The Netherlands
| | - Judy Shamoun-Baranes
- Theoretical and computational ecology, Institute for Biodiversity and Ecosystem Dynamics, Faculty of Science, University of Amsterdam, PO Box 94240, 1090 GE, Amsterdam, The Netherlands
| |
Collapse
|
35
|
Crowley PH, Trimmer PC, Spiegel O, Ehlman SM, Cuello WS, Sih A. Predicting Habitat Choice after Rapid Environmental Change. Am Nat 2019; 193:619-632. [DOI: 10.1086/702590] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
36
|
Gil MA, Hein AM, Spiegel O, Baskett ML, Sih A. Social Information Links Individual Behavior to Population and Community Dynamics. Trends Ecol Evol 2018; 33:535-548. [DOI: 10.1016/j.tree.2018.04.010] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 04/13/2018] [Accepted: 04/16/2018] [Indexed: 11/17/2022]
|
37
|
Courbin N, Besnard A, Péron C, Saraux C, Fort J, Perret S, Tornos J, Grémillet D. Short-term prey field lability constrains individual specialisation in resource selection and foraging site fidelity in a marine predator. Ecol Lett 2018; 21:1043-1054. [PMID: 29659122 DOI: 10.1111/ele.12970] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 01/11/2018] [Accepted: 03/26/2018] [Indexed: 01/21/2023]
Abstract
Spatio-temporally stable prey distributions coupled with individual foraging site fidelity are predicted to favour individual resource specialisation. Conversely, predators coping with dynamic prey distributions should diversify their individual diet and/or shift foraging areas to increase net intake. We studied individual specialisation in Scopoli's shearwaters (Calonectris diomedea) from the highly dynamic Western Mediterranean, using daily prey distributions together with resource selection, site fidelity and trophic-level analyses. As hypothesised, we found dietary diversification, low foraging site fidelity and almost no individual specialisation in resource selection. Crucially, shearwaters switched daily foraging tactics, selecting areas with contrasting prey of varying trophic levels. Overall, information use and plastic resource selection of individuals with reduced short-term foraging site fidelity allow predators to overcome prey field lability. Our study is an essential step towards a better understanding of individual responses to enhanced environmental stochasticity driven by global changes, and of pathways favouring population persistence.
Collapse
Affiliation(s)
- Nicolas Courbin
- Centre d'Ecologie Fonctionnelle et Evolutive (CEFE), UMR 5175, Centre National de la Recherche Scientifique (CNRS), Université de Montpellier, Université Paul Valéry Montpellier, Ecole Pratiques des Hautes Etudes (EPHE), 1919 Route de Mende, 34293, Montpellier Cedex 5, France
| | - Aurélien Besnard
- Centre d'Ecologie Fonctionnelle et Evolutive (CEFE), UMR 5175, Centre National de la Recherche Scientifique (CNRS), Université de Montpellier, Université Paul Valéry Montpellier, Ecole Pratiques des Hautes Etudes (EPHE), 1919 Route de Mende, 34293, Montpellier Cedex 5, France
| | - Clara Péron
- Marine Biodiversity Exploitation and Conservation (MARBEC), UMR 248, Institut de Recherche pour le Développement (IRD), Université de Montpellier, Place Eugène Bataillon - bât 24 - CC093, 34095, Montpellier Cedex 5, France
| | - Claire Saraux
- Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER), UMR 248 MARBEC, Avenue Jean Monnet CS 3017, 34203, Sète, France
| | - Jérôme Fort
- Littoral, Environnement et Sociétés (LIENSs), UMR 7266, Centre National de la Recherche Scientifique (CNRS), Université La Rochelle, 2 rue Olympe de Gouges, 17000, La Rochelle, France
| | - Samuel Perret
- Centre d'Ecologie Fonctionnelle et Evolutive (CEFE), UMR 5175, Centre National de la Recherche Scientifique (CNRS), Université de Montpellier, Université Paul Valéry Montpellier, Ecole Pratiques des Hautes Etudes (EPHE), 1919 Route de Mende, 34293, Montpellier Cedex 5, France
| | - Jérémy Tornos
- Centre d'Ecologie Fonctionnelle et Evolutive (CEFE), UMR 5175, Centre National de la Recherche Scientifique (CNRS), Université de Montpellier, Université Paul Valéry Montpellier, Ecole Pratiques des Hautes Etudes (EPHE), 1919 Route de Mende, 34293, Montpellier Cedex 5, France
| | - David Grémillet
- Centre d'Ecologie Fonctionnelle et Evolutive (CEFE), UMR 5175, Centre National de la Recherche Scientifique (CNRS), Université de Montpellier, Université Paul Valéry Montpellier, Ecole Pratiques des Hautes Etudes (EPHE), 1919 Route de Mende, 34293, Montpellier Cedex 5, France
- FitzPatrick Institute, DST/NRF Excellence Centre at the University of Cape Town, Rondebosch, 7701, South Africa
| |
Collapse
|
38
|
Webber QMR, Vander Wal E. An evolutionary framework outlining the integration of individual social and spatial ecology. J Anim Ecol 2017; 87:113-127. [PMID: 29055050 DOI: 10.1111/1365-2656.12773] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 10/08/2017] [Indexed: 11/29/2022]
Abstract
Behaviour is the interface between an organism and its environment, and behavioural plasticity is important for organisms to cope with environmental change. Social behaviour is particularly important because sociality is a dynamic process, where environmental variation influences group dynamics and social plasticity can mediate resource acquisition. Heterogeneity in the ecological environment can therefore influence the social environment. The combination of the ecological and social environments may be interpreted collectively as the "socioecological environment," which could explain variation in fitness. Our objective was to outline a framework through which individual social and spatial phenotypes can be integrated and interpreted as phenotypes that covary as a function of changes in the socioecological environment. We propose the socioecological environment is composed of individual behavioural traits, including sociality and habitat selection, both of which are repeatable, potentially heritable and may reflect animal personality traits. We also highlight how ecological and social niche theory can be applied to the socioecological environment framework, where individuals occupy different socioecological niches. Individual sociality and habitat selection are also density-dependent, and theory predicts that density-dependent traits should affect reproduction, survival, and therefore fitness and population dynamics. We then illustrate the proximate links between sociality, habitat selection and fitness as well as the ultimate, and possibly adaptive, consequences associated with changes in population density. The ecological, evolutionary and applied implications of our proposed socioecological environment framework are broad and changes in density could influence individual fitness and population dynamics. For instance, human-induced environmental changes can influence population density, which can affect the distribution of social and spatial phenotypes within a population. In summary, we outline a conceptual framework that incorporates individual social and spatial behavioural traits with fitness and we highlight a range of ecological and evolutionary processes that are likely associated with the socioecological environment.
Collapse
Affiliation(s)
- Quinn M R Webber
- Cognitive and Behavioural Ecology Interdisciplinary Program, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Eric Vander Wal
- Cognitive and Behavioural Ecology Interdisciplinary Program, Memorial University of Newfoundland, St. John's, NL, Canada.,Department of Biology, Memorial University of Newfoundland, St. John's, NL, Canada
| |
Collapse
|
39
|
Aben J, Pellikka P, Travis JMJ. A call for viewshed ecology: Advancing our understanding of the ecology of information through viewshed analysis. Methods Ecol Evol 2017. [DOI: 10.1111/2041-210x.12902] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Job Aben
- Institute of Biological and Environmental SciencesUniversity of Aberdeen Aberdeen UK
- Department of BiologyUniversity of Antwerp Wilrijk Belgium
| | - Petri Pellikka
- Department of Geosciences and GeographyUniversity of Helsinki Helsinki Finland
| | - Justin M. J. Travis
- Institute of Biological and Environmental SciencesUniversity of Aberdeen Aberdeen UK
| |
Collapse
|
40
|
Harel R, Spiegel O, Getz WM, Nathan R. Social foraging and individual consistency in following behaviour: testing the information centre hypothesis in free-ranging vultures. Proc Biol Sci 2017; 284:rspb.2016.2654. [PMID: 28404771 DOI: 10.1098/rspb.2016.2654] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 03/15/2017] [Indexed: 11/12/2022] Open
Abstract
Uncertainties regarding food location and quality are among the greatest challenges faced by foragers and communal roosting may facilitate success through social foraging. The information centre hypothesis (ICH) suggests that uninformed individuals at shared roosts benefit from following informed individuals to previously visited resources. We tested several key prerequisites of the ICH in a social obligate scavenger, the Eurasian griffon vulture (Gyps fulvus), by tracking movements and behaviour of sympatric individuals over extended periods and across relatively large spatial scales, thereby precluding alternative explanations such as local enhancement. In agreement with the ICH, we found that 'informed' individuals returning to previously visited carcasses were followed by 'uninformed' vultures that consequently got access to these resources. When a dyad (two individuals that depart from the same roost within 2 min of each other) included an informed individual, they spent a higher proportion of the flight time close to each other at a shorter distance between them than otherwise. Although all individuals occasionally profited from following others, they differed in their tendencies to be informed or uninformed. This study provides evidence for 'following behaviour' in natural conditions and demonstrates differential roles and information states among foragers within a population. Moreover, demonstrating the possible reliance of vultures on following behaviour emphasizes that individuals in declining populations may suffer from reduced foraging efficiency.
Collapse
Affiliation(s)
- Roi Harel
- Movement Ecology Lab, Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem 91904, Israel
| | - Orr Spiegel
- Movement Ecology Lab, Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem 91904, Israel.,Department of Environmental Science and Policy, University of California, Davis, CA 95616, USA
| | - Wayne M Getz
- Department of Environmental Science, Policy and Management, University of California, Berkeley, CA 94720, USA.,School of Mathematical Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa
| | - Ran Nathan
- Movement Ecology Lab, Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem 91904, Israel
| |
Collapse
|
41
|
Cornelius C, Awade M, Cândia-Gallardo C, Sieving KE, Metzger JP. Habitat fragmentation drives inter-population variation in dispersal behavior in a Neotropical rainforest bird. Perspect Ecol Conserv 2017. [DOI: 10.1016/j.pecon.2017.02.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
42
|
Spiegel O, Leu ST, Bull CM, Sih A. What's your move? Movement as a link between personality and spatial dynamics in animal populations. Ecol Lett 2016; 20:3-18. [DOI: 10.1111/ele.12708] [Citation(s) in RCA: 218] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 05/17/2016] [Accepted: 10/29/2016] [Indexed: 11/30/2022]
Affiliation(s)
- Orr Spiegel
- Department of Environmental Science and Policy University of California Davis CA USA
| | - Stephan T. Leu
- School of Biological Sciences Flinders University GPO Box 2100 Adelaide SA Australia
- Department of Biology Georgetown University Washington DC USA
| | - C. Michael Bull
- School of Biological Sciences Flinders University GPO Box 2100 Adelaide SA Australia
| | - Andrew Sih
- Department of Environmental Science and Policy University of California Davis CA USA
| |
Collapse
|