1
|
Zhao L, Ma G. Chromatography media and purification processes for complex and super-large biomolecules: A review. J Chromatogr A 2025; 1744:465721. [PMID: 39893916 DOI: 10.1016/j.chroma.2025.465721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 01/22/2025] [Accepted: 01/23/2025] [Indexed: 02/04/2025]
Abstract
The biopharmaceutical industry has been one of the most dynamic industries in the world. New biopharmaceuticals are constantly developed, especially for complex and super-large biomolecules including antibodies, virus-like particles (VLPs), viral vectors, DNA, mRNA, and are very promising in drugs, vaccines, cell and gene therapy. Due to complex and unstable structures, as well as low concentration, it is very difficult to purify these complex and super-large biomolecules. Chromatography is the most widely used purification technique in bioseparation, and chromatography media is the key material. This review gives a comprehensive analysis of chromatography media and purification processes for complex and super-large biomolecules. A detailed summary of tailor-made chromatography media is first provided, including particle size and its uniformity, pore structure, spacer arm and polymer grafting, and new ligands and special separation mechanisms. Then the current choices and trends of purification processes for vaccines, VLPs, DNA, mRNA, antibodies and modified therapeutic proteins are reviewed. Finally, a brief overview of continuous biochromatography and computer-assisted chromatographic method development is provided. We hope this review will provide some useful guidance for design of chromatography media and purification of complex biopharmaceuticals.
Collapse
Affiliation(s)
- Lan Zhao
- State Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guanghui Ma
- State Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
2
|
Cui Y, Huai J, Cai Y, Li S, Zhang W, Zhou T, Song Y, Zhang H, Li S, Zhuang L, Zhang J. Continuous chromatography system with 6-zone and 18-column dynamic tandem connection technique for the enrichment of total flavonoids from Epimedium koreanum Nakai. Anal Bioanal Chem 2025; 417:583-598. [PMID: 39607507 DOI: 10.1007/s00216-024-05669-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 11/11/2024] [Accepted: 11/18/2024] [Indexed: 11/29/2024]
Abstract
Natural flavonoids have been shown to have many pharmacological activities. Efficient and continuous enrichment of total flavonoids with high content and low mobile phase usage from complex natural products is greatly needed at the moment. In this study, a new continuous chromatography system (CCS) with 6 zones and the 18-column dynamic tandem connection technique was developed and used to enrich total flavonoids from Epimedium koreanum Nakai (EKN). The 18 columns were divided into 6 zones, and the principle of a dynamic series of three columns was adopted for each zone to achieve continuous automatic separation and enrichment of total flavonoids under the control of a logic control valve. The CCS separation conditions were established based on single-column chromatography and a theoretical calculation model of the CCS. By means of the self-designed device and method, 485.11±3.16 g of total flavonoids were isolated from 16.2 kg of EKN. It is worth noting that the total content of 18 types of flavonoids in the samples enriched by the CCS was increased from 2.84±0.07% to 88.29±0.22%, the total recovery rate was 92.20±0.38%, and the RSD of each flavonoid was less than 5.0%. Furthermore, compared with single-column chromatography filled with the same volume of chromatography filler, the entire process saved about 2/3 of the mobile phase usage. In summary, the developed device and method could efficiently and continuously enrich total flavonoids from EKN with high-content and low mobile phase usage and would have a wide application prospect in the separation and enrichment of natural products.
Collapse
Affiliation(s)
- Yi Cui
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, 222005, PR China
| | - Jie Huai
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, 222005, PR China
| | - Yiting Cai
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, 222005, PR China
| | - Shuai Li
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, 222005, PR China
| | - Weiye Zhang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, 222005, PR China
| | - Taoyulin Zhou
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, 222005, PR China
| | - Yujie Song
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, 222005, PR China
| | - Han Zhang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, 222005, PR China
| | - Shengfu Li
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, 222005, PR China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, PR China
| | - Linwu Zhuang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, 222005, PR China.
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, PR China.
- Jiangsu Institute of Marine Resources Development, Lianyungang, 222005, PR China.
| | - Junjie Zhang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, 222005, PR China.
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, PR China.
- Jiangsu Institute of Marine Resources Development, Lianyungang, 222005, PR China.
| |
Collapse
|
3
|
Konoike F, Taniguchi M, Yamamoto S. Integrated continuous downstream process of monoclonal antibody developed by converting the batch platform process based on the process characterization. Biotechnol Bioeng 2024; 121:2269-2277. [PMID: 37691165 DOI: 10.1002/bit.28537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 08/06/2023] [Accepted: 08/16/2023] [Indexed: 09/12/2023]
Abstract
A continuous downstream process of monoclonal antibody was developed based on the process characterization. Periodic-counter current chromatography (PCCC) with two protein A columns was used for the capture step. For low pH virus inactivation (VI), a batch reactor was employed, which can work as a surge (buffer) tank. Flow-through chromatography (FTC) with two connected columns of different separation modes (anion-mixed mode and cation exchange) was designed as a polish step. After 24 h PCCC run, the collected pool was processed for VI. After adjusting pH and electric conductivity, the solution was fed to the two connected FTC columns for 24 h. Virus filter was also connected to the exit of the connected-column. PCCC and FTC were run in parallel. Six runs of different feed rates (0.5-10 L/day) and feed concentrations (1-3.2 g/L) were performed with protein A columns of 1-5 mL and FTC columns of 3-10 mL. The largest run (feed rate 10 L/day, feed concentration 2 g/L) was carried out at a GMP facility with 15 mL protein A columns and 100 mL FTC columns. Good recovery and purity values were obtained for all runs. The process was found to be flexible and stable for feed fluctuations. Only three surge or pool tanks were needed in addition to the final product pool tank.
Collapse
Affiliation(s)
- Fuminori Konoike
- Manufacturing Technology Association of Biologics, Shin-kawa, Chuo-ku, Japan
| | - Masatoshi Taniguchi
- Manufacturing Technology Association of Biologics, Shin-kawa, Chuo-ku, Japan
| | - Shuichi Yamamoto
- Manufacturing Technology Association of Biologics, Shin-kawa, Chuo-ku, Japan
- Biomedical Engineering Center (YUBEC), Graduate School of Science and Technology for Innovation, Yamaguchi University, Ube, Japan
| |
Collapse
|
4
|
Andersson N, Fons JG, Isaksson M, Tallvod S, Espinoza D, Sjökvist L, Andersson GZ, Nilsson B. Methodology for fast development of digital solutions in integrated continuous downstream processing. Biotechnol Bioeng 2024; 121:2378-2387. [PMID: 37458361 DOI: 10.1002/bit.28501] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 06/01/2023] [Accepted: 07/07/2023] [Indexed: 07/25/2024]
Abstract
The methodology for production of biologics is going through a paradigm shift from batch-wise operation to continuous production. Lot of efforts are focused on integration, intensification, and continuous operation for decreased foot-print, material, equipment, and increased productivity and product quality. These integrated continuous processes with on-line analytics become complex processes, which requires automation, monitoring, and control of the operation, even unmanned or remote, which means bioprocesses with high level of automation or even autonomous capabilities. The development of these digital solutions becomes an important part of the process development and needs to be assessed early in the development chain. This work discusses a platform that allows fast development, advanced studies, and validation of digital solutions for integrated continuous downstream processes. It uses an open, flexible, and extendable real-time supervisory controller, called Orbit, developed in Python. Orbit makes it possible to communicate with a set of different physical setups and on the same time perform real-time execution. Integrated continuous processing often implies parallel operation of several setups and network of Orbit controllers makes it possible to synchronize complex process system. Data handling, storage, and analysis are important properties for handling heterogeneous and asynchronous data generated in complex downstream systems. Digital twin applications, such as advanced model-based and plant-wide monitoring and control, are exemplified using computational extensions in Orbit, exploiting data and models. Examples of novel digital solutions in integrated downstream processes are automatic operation parameter optimization, Kalman filter monitoring, and model-based batch-to-batch control.
Collapse
Affiliation(s)
- Niklas Andersson
- Department of Chemical Engineering, Lund University, Lund, Sweden
| | | | | | - Simon Tallvod
- Department of Chemical Engineering, Lund University, Lund, Sweden
| | - Daniel Espinoza
- Department of Chemical Engineering, Lund University, Lund, Sweden
| | - Linnea Sjökvist
- Department of Chemical Engineering, Lund University, Lund, Sweden
| | | | - Bernt Nilsson
- Department of Chemical Engineering, Lund University, Lund, Sweden
| |
Collapse
|
5
|
Brower K, Wiltberger K, Berdugo C, Bosley A, Goodrich E, Pferdeort V, Schaefer G. Process development and characterization for integrated continuous bioprocesses-Highlights from N-mAb. Biotechnol Prog 2024; 40:e3425. [PMID: 38289271 DOI: 10.1002/btpr.3425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/31/2023] [Accepted: 12/20/2023] [Indexed: 08/20/2024]
Abstract
The N-mAb case study was produced by the National Institute for Innovation in Manufacturing Biopharmaceuticals (NIIMBL) to support teaching and learning for both industry and to accelerate adoption of advanced manufacturing process technologies such as integrated continuous bioprocesses (ICB) for mAbs. Similar to the A-mAb case study, N-mAb presents the evolution of an integrated control strategy, from early clinical through process validation and commercial manufacturing with a focus on elements that are unique to integrated continuous bioprocesses. This publication presents a summary of the process design and characterization chapters to allow a greater focus on the unique elements relevant to that phase of development.
Collapse
Affiliation(s)
- Kevin Brower
- Sanofi, Purification Development-Mammalian Platform, Framingham, Massachusetts, USA
| | - Kelly Wiltberger
- Biogen, Biologics Development, Biogen, Research Triangle Park, North Carolina, USA
| | | | - Allen Bosley
- AstraZeneca, Purification Process Sciences, Gaithersburg, Maryland, USA
| | | | - Valerie Pferdeort
- Biogen, Cell Culture Development, Research Triangle Park, North Carolina, USA
| | - Gene Schaefer
- National Institute for Innovation in Manufacturing Biopharmaceuticals (NIIMBL), Newark, Delaware, USA
| |
Collapse
|
6
|
Sun YN, Chen WW, Yao SJ, Lin DQ. Model-assisted process development, characterization and design of continuous chromatography for antibody separation. J Chromatogr A 2023; 1707:464302. [PMID: 37607430 DOI: 10.1016/j.chroma.2023.464302] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/10/2023] [Accepted: 08/14/2023] [Indexed: 08/24/2023]
Abstract
Continuous manufacturing in monoclonal antibody production has generated increased interest due to its consistent quality, high productivity, high equipment utilization, and low cost. One of the major challenges in realizing continuous biological manufacturing lies in implementing continuous chromatography. Given the complex operation mode and various operation parameters, it is challenging to develop a continuous process. Due to the process parameters being mainly determined by the breakthrough curves and elution behaviors, chromatographic modeling has gradually been used to assist in process development and characterization. Model-assisted approaches could realize multi-parameter interaction investigation and multi-objective optimization by integrating continuous process models. These approaches could reduce time and resource consumption while achieving a comprehensive and systematic understanding of the process. This paper reviews the application of modeling tools in continuous chromatography process development, characterization and design. Model-assisted process development approaches for continuous capture and polishing steps are introduced and summarized. The challenges and potential of model-assisted process characterization are discussed, emphasizing the need for further research on the design space determination strategy and parameter robustness analysis method. Additionally, some model applications for process design were highlighted to promote the establishment of the process optimization and process simulation platform.
Collapse
Affiliation(s)
- Yan-Na Sun
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Wu-Wei Chen
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Shan-Jing Yao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Dong-Qiang Lin
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
7
|
Computational fluid dynamics simulation and the experimental verification of protein adsorption on a hollow fiber membranes module. J Chromatogr A 2023; 1687:463706. [PMID: 36521242 DOI: 10.1016/j.chroma.2022.463706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/01/2022] [Accepted: 12/06/2022] [Indexed: 12/12/2022]
Abstract
Immobilized metal affinity chromatography (IMAC) ensures the specific purification of proteins containing histidine tags through high affinity with transition metal chelators, which has various applications in biological protein separation. Most chromatographic separations currently use a fixed bed. In this form, internal flow pressure drops very sharply, accompanied by uneven solution flow, pore blockages, etc., all of which greatly reduce separation efficiency. Therefore, this study uses hollow fiber membranes (HFMs) with micron-scale inner diameters as a base, thus reducing operating pressure and significantly enhancing mass transmission. Batch adsorption experiments were performed using flat plate membranes to obtain the reaction's thermodynamic and kinetic model parameters for use in a dynamic column breakthrough simulation. The numerical simulation was based on a single HFM model and established a mathematical model for computational fluid dynamics (CFD) in ANSYS Fluent software. Model accuracy was validated by combining the simulation with experiments. The effects of different module and process parameters on the breakthrough curve were investigated by varying parameters such as flow rate, initial feed concentration, and HFM inner diameter. Design parameters and operating conditions contributing to module utilization were subsequently obtained.
Collapse
|
8
|
Shi C, Chen XJ, Jiao B, Liu P, Jing SY, Zhong XZ, Chen R, Gong W, Lin DQ. Model-assisted process design for better evaluation and scaling up of continuous downstream bioprocessing. J Chromatogr A 2022; 1683:463532. [DOI: 10.1016/j.chroma.2022.463532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 10/31/2022]
|
9
|
Thakur G, Bansode V, Rathore AS. Continuous manufacturing of monoclonal antibodies: Automated downstream control strategy for dynamic handling of titer variations. J Chromatogr A 2022; 1682:463496. [PMID: 36126561 DOI: 10.1016/j.chroma.2022.463496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/06/2022] [Accepted: 09/08/2022] [Indexed: 11/16/2022]
Abstract
Handling long-term dynamic variability in harvest titer is a critical challenge in continuous downstream manufacturing. This challenge is becoming increasingly important with the advent of high-titer clones and modern upstream perfusion processes where the titer can vary significantly across the course of a campaign. In this paper, we present a strategy for real-time, dynamic adjustment of the entire downstream train, including capture chromatography, viral inactivation, depth filtration, polishing chromatography, and single-pass formulation, to accommodate variations in titer from 1-7 g/L. The strategy was tested in real time in a continuous downstream purification process of 36 h duration with induced titer variations. The dynamic control strategy leverages real-time NIR-based concentration sensors in the harvest material to continuously track the titer, integrated with an in-house Python-based control system that operates a BioSMB for carrying out capture and polishing chromatography, as well as a series of pumps and solenoid valves for carrying out viral inactivation and formulation. A set of 9 different methods, corresponding to the different harvest titers have been coded onto the Python controller. The methods have a varying number of chromatography columns (3-6 for Protein A and 2-10 for CEX), designed to ensure proper scheduling and optimize productivity across the entire titer variation space. The approach allows for a wide range of titers to be processed on a single integrated setup without having to change equipment or to re-design each time. The strategy also overcomes a key unexplored challenge in continuous processing, namely hand-shaking the downstream train to upstream conditions with long-term titer variability while maintaining automated operation with high productivity and robustness.
Collapse
Affiliation(s)
- Garima Thakur
- Department of Chemical Engineering, Indian Institute of Technology, Hauz Khas, New Delhi 110016, India
| | - Vikrant Bansode
- Department of Chemical Engineering, Indian Institute of Technology, Hauz Khas, New Delhi 110016, India
| | - Anurag S Rathore
- Department of Chemical Engineering, Indian Institute of Technology, Hauz Khas, New Delhi 110016, India.
| |
Collapse
|
10
|
Ferreira KB, Benlegrimet A, Diane G, Pasquier V, Guillot R, De Poli M, Chappuis L, Vishwanathan N, Souquet J, Broly H, Bielser JM. Transfer of continuous manufacturing process principles for mAb production in a GMP environment - a step in the transition from batch to continuous. Biotechnol Prog 2022; 38:e3259. [PMID: 35412696 DOI: 10.1002/btpr.3259] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/06/2022] [Accepted: 04/09/2022] [Indexed: 11/09/2022]
Abstract
Implementation of continuous in lieu of batch upstream processing (USP) and downstream process (DSP) for the production of recombinant therapeutic protein is a significant paradigm change. The present report describes how the first kilograms of monoclonal antibody were produced with equipment originally designed for batch operations while using continuous manufacturing processes and principles. Project timelines for the delivery of clinical material have driven this ambition and helped the transition. Nevertheless, because of equipment availability, a tradeoff between the envisaged continuous downstream process (cDSP) operations and the ones described in this paper had to be taken. A total of 2.1 kg of monoclonal antibody were produced in two GMP runs for clinical trials. For USP, a 200-L single-use pilot scale bioreactor was upgraded to enable perfusion operation. DSP steps were designed to be easily transferable to cDSP for later clinical or commercial productions. An in-line conditioning buffer preparation strategy was tested in a discontinuous way to prove its efficiency and the purification cascade was structured in parallel to the continuous collection of antibody-containing cell culture supernatant. This strategy will avoid any process change when later moving to the continuous equipment that are currently under qualification. Alignment between small-scale references runs and the GMP runs in terms of productivity and quality confirmed that the presented approach was valid. Thus, we demonstrate that existing fed-batch infrastructure can be adapted to continuous manufacturing without significant additional investments. Such approach is useful to evaluate next generation manufacturing processes before making large investments.
Collapse
Affiliation(s)
| | | | - Gabriel Diane
- Biotech Process Sciences, Merck KGaA, Aubonne, Switzerland
| | - Victor Pasquier
- Biotech Process Sciences, Merck KGaA, Corsier-sur-Vevey, Switzerland
| | - Raphael Guillot
- Biotech Process Sciences, Merck KGaA, Corsier-sur-Vevey, Switzerland
| | - Marc De Poli
- Biotech Process Sciences, Merck KGaA, Aubonne, Switzerland
| | - Loïc Chappuis
- Biotech Process Sciences, Merck KGaA, Aubonne, Switzerland
| | | | - Jonathan Souquet
- Biotech Process Sciences, Merck KGaA, Corsier-sur-Vevey, Switzerland
| | - Hervé Broly
- Biotech Process Sciences, Merck KGaA, Corsier-sur-Vevey, Switzerland
| | - Jean-Marc Bielser
- Biotech Process Sciences, Merck KGaA, Corsier-sur-Vevey, Switzerland
| |
Collapse
|
11
|
Leong HY, Fu XQ, Show PL, Yao SJ, Lin DQ. Downstream processing of virus-like particles with aqueous two-phase systems: applications and challenges. J Sep Sci 2022; 45:2064-2076. [PMID: 35191590 DOI: 10.1002/jssc.202100947] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 02/15/2022] [Accepted: 02/20/2022] [Indexed: 11/06/2022]
Abstract
The advancement of recombinant virus-like particle-based vaccines has attracted global attention owing to substantially safety and high efficacy in provoking a protective immunity against various chronic and infectious diseases in humans and animals. A robust, low-cost and scalability separation and purification technology is of utmost importance in the downstream processing of recombinant virus-like particles to produce affordable and safe vaccines. Being a relatively simple, environmentally friendly and efficient biomolecules recovery approach, aqueous two-phase systems have received great attention from researchers worldwide. This review aims to highlight the challenges and outlook in addition to the current applications of aqueous two-phase systems in downstream processing of virus-like particles. The efforts will confidently reinforce scholars' knowledge and fill in the valuable research gap in the aspect of concerning recombinant virus-like particle-based vaccines development, particularly related to the virus-like particles downstream production processes. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Hui Yi Leong
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Xiao-Qian Fu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Pau Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Broga Road, Selangor Darul Ehsan, 43500 Semenyih, Malaysia
| | - Shan-Jing Yao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Dong-Qiang Lin
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
12
|
Tanudjaja HJ, Ng AQQ, Chew JW. Mechanistic insights into the membrane fouling mechanism during ultrafiltration of high-concentration proteins via in-situ electrical impedance spectroscopy (EIS). J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2021.11.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
13
|
Sivo A, Kim TK, Ruta V, Luisi R, Osorio-Tejada J, Escriba-Gelonch M, Hessel V, Sponchioni M, Vilé G. Enhanced flow synthesis of small molecules by in-line integration of sequential catalysis and benchtop twin-column continuous chromatography. REACT CHEM ENG 2022. [DOI: 10.1039/d2re00242f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In-line integration of sequential catalysis and continuous multi-column purification. Adapted for small compound amounts (hit-to-lead). Suitable for large-scale purification (process chemistry).
Collapse
Affiliation(s)
- Alessandra Sivo
- Department of Chemistry, Materials, and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Piazza Leonardo da Vinci 32, IT-20131 Milano, Italy
| | - Tae Keun Kim
- Department of Chemistry, Materials, and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Piazza Leonardo da Vinci 32, IT-20131 Milano, Italy
| | - Vincenzo Ruta
- Department of Chemistry, Materials, and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Piazza Leonardo da Vinci 32, IT-20131 Milano, Italy
| | - Renzo Luisi
- Department of Pharmacy – Drug Sciences, University of Bari “A. Moro”, Via E. Orabona 4, IT-70125 Bari, Italy
| | | | | | - Volker Hessel
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, North Terrace Campus, Adelaide, 5005, Australia
| | - Mattia Sponchioni
- Department of Chemistry, Materials, and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Piazza Leonardo da Vinci 32, IT-20131 Milano, Italy
| | - Gianvito Vilé
- Department of Chemistry, Materials, and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Piazza Leonardo da Vinci 32, IT-20131 Milano, Italy
| |
Collapse
|
14
|
Saleh D, Wang G, Rischawy F, Kluters S, Studts J, Hubbuch J. In silico process characterization for biopharmaceutical development following the quality by design concept. Biotechnol Prog 2021; 37:e3196. [PMID: 34309240 DOI: 10.1002/btpr.3196] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/06/2021] [Accepted: 07/21/2021] [Indexed: 12/15/2022]
Abstract
With the quality by design (QbD) initiative, regulatory authorities demand a consistent drug quality originating from a well-understood manufacturing process. This study demonstrates the application of a previously published mechanistic chromatography model to the in silico process characterization (PCS) of a monoclonal antibody polishing step. The proposed modeling workflow covered the main tasks of traditional PCS studies following the QbD principles, including criticality assessment of 11 process parameters and establishment of their proven acceptable ranges of operation. Analyzing effects of multi-variate sampling of process parameters on the purification outcome allowed identification of the edge-of-failure. Experimental validation of in silico results demanded approximately 75% less experiments compared to a purely wet-lab based PCS study. Stochastic simulation, considering the measured variances of process parameters and loading material composition, was used to estimate the capability of the process to meet the acceptance criteria for critical quality attributes and key performance indicators. The proposed workflow enables the implementation of digital process twins as QbD tool for improved development of biopharmaceutical manufacturing processes.
Collapse
Affiliation(s)
- David Saleh
- Late Stage DSP Development, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany.,Karlsruhe Institute of Technology (KIT), Institute of Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe, Germany
| | - Gang Wang
- Late Stage DSP Development, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Federico Rischawy
- Late Stage DSP Development, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany.,Karlsruhe Institute of Technology (KIT), Institute of Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe, Germany
| | - Simon Kluters
- Late Stage DSP Development, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Joey Studts
- Late Stage DSP Development, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Jürgen Hubbuch
- Karlsruhe Institute of Technology (KIT), Institute of Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe, Germany
| |
Collapse
|
15
|
Shi C, Vogg S, Lin DQ, Sponchioni M, Morbidelli M. Analysis and optimal design of batch and two-column continuous chromatographic frontal processes for monoclonal antibody purification. Biotechnol Bioeng 2021; 118:3420-3434. [PMID: 33755192 DOI: 10.1002/bit.27763] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/09/2021] [Accepted: 03/12/2021] [Indexed: 11/07/2022]
Abstract
The increasing demand for efficient and robust processes in the purification of monoclonal antibodies (mAbs) has recently brought frontal chromatography to the forefront. Applied during the polishing step, it enables the removal of high molecular weight aggregates from the target product, achieving high purities. Typically, this process is operated in batch using a single column, which makes it intrinsically subjected to a purity-yield tradeoff. This means that high purities can only be achieved at the cost of lowering the product yield and vice versa. Recently, a two-column continuous implementation of frontal chromatography, referred to as Flow2, was developed. Despite being able of alleviating the purity-yield tradeoff typical of batch operations, the increase in the number of process parameters complicates its optimal design, with the risk of not exploiting its full potential. In this study, we developed an ad hoc design procedure (DP) suitable for the optimization of both batch frontal chromatography and Flow2 in terms of purity, yield, and productivity. This procedure provided similar results as a multiobjective optimization based on genetic algorithm but with lower computational effort. Then, batch and Flow2 operated at their optimal conditions were compared. Besides showing a more favorable Pareto front of yield and productivity at a specified purity, the Flow2 process demonstrated improved robustness compared to the batch process with respect to modifications in the loading linear velocity, washing buffer ionic strength and loading time, thus providing an appealing operation for integrated processes.
Collapse
Affiliation(s)
- Ce Shi
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | | | - Dong-Qiang Lin
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Mattia Sponchioni
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milano, Italy
| | - Massimo Morbidelli
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
16
|
Gerstweiler L, Bi J, Middelberg AP. Continuous downstream bioprocessing for intensified manufacture of biopharmaceuticals and antibodies. Chem Eng Sci 2021. [DOI: 10.1016/j.ces.2020.116272] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
17
|
Khanal O, Lenhoff AM. Developments and opportunities in continuous biopharmaceutical manufacturing. MAbs 2021; 13:1903664. [PMID: 33843449 PMCID: PMC8043180 DOI: 10.1080/19420862.2021.1903664] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/25/2021] [Accepted: 03/11/2021] [Indexed: 12/12/2022] Open
Abstract
Today's biologics manufacturing practices incur high costs to the drug makers, which can contribute to high prices for patients. Timely investment in the development and implementation of continuous biomanufacturing can increase the production of consistent-quality drugs at a lower cost and a faster pace, to meet growing demand. Efficient use of equipment, manufacturing footprint, and labor also offer the potential to improve drug accessibility. Although technological efforts enabling continuous biomanufacturing have commenced, challenges remain in the integration, monitoring, and control of traditionally segmented unit operations. Here, we discuss recent developments supporting the implementation of continuous biomanufacturing, along with their benefits.
Collapse
Affiliation(s)
- Ohnmar Khanal
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE
| | - Abraham M. Lenhoff
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE
| |
Collapse
|
18
|
Lin DQ, Zhang QL, Yao SJ. Model-assisted approaches for continuous chromatography: Current situation and challenges. J Chromatogr A 2020; 1637:461855. [PMID: 33445032 DOI: 10.1016/j.chroma.2020.461855] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 12/01/2020] [Accepted: 12/23/2020] [Indexed: 12/28/2022]
Abstract
Continuous bioprocessing is a promising trend in biopharmaceutical production, and multi-column continuous chromatography shows advantages of high productivity, high resin capacity utilization, small footprint, low buffer consumption and less waste. Due to the complexity and dynamic nature of continuous processing, traditional experiment-based approaches are often time-consuming and inefficient. In this review, model-assisted approaches were focused and their applications in continuous chromatography process development, validation and control were discussed. Chromatographic models are useful in describing particular process performances of continuous capture and polishing with multi-column chromatography. Model-assisted tools showed powerful ability in evaluating multiple operating parameters and identifying optimal points over the entire design space. The residence time distribution models, model-assisted process analytical technologies and model-predictive control strategies were also developed to reveal the propagation of disturbances, enhance real time monitor and achieve adaptive control to match the transient disturbances and deviations of continuous processes. Moreover, artificial neural networks and machine learning concepts were integrated into modeling approaches to improve data treatment. In general, further development in research and applications of model-assisted approaches for continuous chromatography are needed urgently to support the continuous manufacturing.
Collapse
Affiliation(s)
- Dong-Qiang Lin
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou310027, China.
| | - Qi-Lei Zhang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou310027, China
| | - Shan-Jing Yao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou310027, China
| |
Collapse
|
19
|
De Luca C, Felletti S, Lievore G, Chenet T, Morbidelli M, Sponchioni M, Cavazzini A, Catani M. Modern trends in downstream processing of biotherapeutics through continuous chromatography: The potential of Multicolumn Countercurrent Solvent Gradient Purification. Trends Analyt Chem 2020; 132:116051. [PMID: 32994652 PMCID: PMC7513800 DOI: 10.1016/j.trac.2020.116051] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Single-column (batch) preparative chromatography is the technique of choice for purification of biotherapeutics but it is often characterized by an intrinsic limitation in terms of yield-purity trade-off, especially for separations containing a larger number of product-related impurities. This drawback can be alleviated by employing multicolumn continuous chromatography. Among the different methods working in continuous mode, in this paper we will focus in particular on Multicolumn Countercurrent Solvent Gradient Purification (MCSGP) which has been specifically designed for challenging separations of target biomolecules from their product-related impurities. The improvements come from the automatic internal recycling of the impure fractions inside the chromatographic system, which results in an increased yield without compromising the purity of the pool. In this article, steps of the manufacturing process of biopharmaceuticals will be described, as well as the advantages of continuous chromatography over batch processes, by particularly focusing on MCSGP.
Collapse
Affiliation(s)
- Chiara De Luca
- Dept. of Chemistry and Pharmaceutical Sciences, University of Ferrara, via L. Borsari 46, 44121 Ferrara, Italy
| | - Simona Felletti
- Dept. of Chemistry and Pharmaceutical Sciences, University of Ferrara, via L. Borsari 46, 44121 Ferrara, Italy
| | - Giulio Lievore
- Dept. of Chemistry and Pharmaceutical Sciences, University of Ferrara, via L. Borsari 46, 44121 Ferrara, Italy
| | - Tatiana Chenet
- Dept. of Chemistry and Pharmaceutical Sciences, University of Ferrara, via L. Borsari 46, 44121 Ferrara, Italy
| | - Massimo Morbidelli
- Dept. of Chemistry, Materials and Chemical Engineering Giulio Natta, Politecnico di Milano, via Mancinelli 7, 20131 Milan, Italy
| | - Mattia Sponchioni
- Dept. of Chemistry, Materials and Chemical Engineering Giulio Natta, Politecnico di Milano, via Mancinelli 7, 20131 Milan, Italy
| | - Alberto Cavazzini
- Dept. of Chemistry and Pharmaceutical Sciences, University of Ferrara, via L. Borsari 46, 44121 Ferrara, Italy
| | - Martina Catani
- Dept. of Chemistry and Pharmaceutical Sciences, University of Ferrara, via L. Borsari 46, 44121 Ferrara, Italy
| |
Collapse
|
20
|
Sun YN, Shi C, Zhang QL, Yao SJ, Slater NK, Lin DQ. Model-based process development and evaluation of twin-column continuous capture processes with Protein A affinity resin. J Chromatogr A 2020; 1625:461300. [DOI: 10.1016/j.chroma.2020.461300] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 05/29/2020] [Accepted: 05/31/2020] [Indexed: 11/16/2022]
|
21
|
Junter GA, Lebrun L. Polysaccharide-based chromatographic adsorbents for virus purification and viral clearance. J Pharm Anal 2020; 10:291-312. [PMID: 32292625 PMCID: PMC7104128 DOI: 10.1016/j.jpha.2020.01.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 01/10/2020] [Accepted: 01/11/2020] [Indexed: 12/20/2022] Open
Abstract
Viruses still pose a significant threat to human and animal health worldwide. In the fight against viral infections, high-purity viral stocks are needed for manufacture of safer vaccines. It is also a priority to ensure the viral safety of biopharmaceuticals such as blood products. Chromatography techniques are widely implemented at both academic and industrial levels in the purification of viral particles, whole viruses and virus-like particles to remove viral contaminants from biopharmaceutical products. This paper focuses on polysaccharide adsorbents, particulate resins and membrane adsorbers, used in virus purification/removal chromatography processes. Different chromatographic modes are surveyed, with particular attention to ion exchange and affinity/pseudo-affinity adsorbents among which commercially available agarose-based resins (Sepharose®) and cellulose-based membrane adsorbers (Sartobind®) occupy a dominant position. Mainly built on the development of new ligands coupled to conventional agarose/cellulose matrices, the development perspectives of polysaccharide-based chromatography media in this antiviral area are stressed in the conclusive part.
Collapse
Affiliation(s)
- Guy-Alain Junter
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, PBS, 76000, Rouen, France
| | - Laurent Lebrun
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, PBS, 76000, Rouen, France
| |
Collapse
|
22
|
Feidl F, Vogg S, Wolf M, Podobnik M, Ruggeri C, Ulmer N, Wälchli R, Souquet J, Broly H, Butté A, Morbidelli M. Process‐wide control and automation of an integrated continuous manufacturing platform for antibodies. Biotechnol Bioeng 2020; 117:1367-1380. [DOI: 10.1002/bit.27296] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 02/03/2020] [Indexed: 12/17/2022]
Affiliation(s)
- Fabian Feidl
- Institute for Chemical and BioengineeringDepartment of Chemistry and Applied BiosciencesZurich Switzerland
| | - Sebastian Vogg
- Institute for Chemical and BioengineeringDepartment of Chemistry and Applied BiosciencesZurich Switzerland
| | - Moritz Wolf
- Institute for Chemical and BioengineeringDepartment of Chemistry and Applied BiosciencesZurich Switzerland
| | - Matevz Podobnik
- Institute for Chemical and BioengineeringDepartment of Chemistry and Applied BiosciencesZurich Switzerland
| | - Caterina Ruggeri
- Institute for Chemical and BioengineeringDepartment of Chemistry and Applied BiosciencesZurich Switzerland
| | - Nicole Ulmer
- Institute for Chemical and BioengineeringDepartment of Chemistry and Applied BiosciencesZurich Switzerland
| | - Ruben Wälchli
- Institute for Chemical and BioengineeringDepartment of Chemistry and Applied BiosciencesZurich Switzerland
| | - Jonathan Souquet
- Merck Serono S.A. Biotech Process Sciences Corsier‐sur‐Vevey Switzerland
| | - Hervé Broly
- Merck Serono S.A. Biotech Process Sciences Corsier‐sur‐Vevey Switzerland
| | - Alessandro Butté
- Institute for Chemical and BioengineeringDepartment of Chemistry and Applied BiosciencesZurich Switzerland
| | - Massimo Morbidelli
- Institute for Chemical and BioengineeringDepartment of Chemistry and Applied BiosciencesZurich Switzerland
| |
Collapse
|
23
|
Design space and robustness analysis of batch and counter-current frontal chromatography processes for the removal of antibody aggregates. J Chromatogr A 2020; 1619:460943. [PMID: 32061360 DOI: 10.1016/j.chroma.2020.460943] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 01/31/2020] [Accepted: 02/02/2020] [Indexed: 12/11/2022]
Abstract
Increasing molecular diversity and market competition requires biopharmaceutical manufacturers to intensify their processes. In this respect, frontal chromatography on cation exchange resins has shown its potential to effectively remove aggregates. However, yield losses during the wash step need to be accepted in order to ensure robust product quality. In this work, we present a novel counter-current frontal chromatography process called Flow2, which uses inline dilution during an interconnected wash phase to allow high monomer recovery without contaminating the product pool with impurities. Its model-based design spaces under purity and yield constraints are compared with those corresponding to traditional batch processes in terms of size and process attributes yield and productivity. The Flow2 process shows the largest extent of feasible operating points independent of feed conditions. Thereby, it allows the implementation of higher ionic strength wash, thus widening the range of operating conditions resulting in yields above 95% compared to batch processes. Productivities of batch and counter-current processes are the same at short regeneration times and equal residence time. However, long regeneration times, while influencing the size of the Flow2 design space, are not detrimental for its productivity resulting in twice as high values as obtained for the batch process. Furthermore, process robustness is evaluated by the ability of the process to maintain the required product quality when subjected to process parameter perturbations. It is found that the Flow2 process is able to retain a larger design space associated also with higher yields showing its ability to improve process attributes without sacrificing robustness at the same time.
Collapse
|
24
|
Affinity Membranes and Monoliths for Protein Purification. MEMBRANES 2019; 10:membranes10010001. [PMID: 31878114 PMCID: PMC7022333 DOI: 10.3390/membranes10010001] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/19/2019] [Accepted: 12/20/2019] [Indexed: 12/18/2022]
Abstract
Affinity capture represents an important step in downstream processing of proteins and it is conventionally performed through a chromatographic process. The performance of this step highly depends on the type of matrix employed. In particular, resin beads and convective materials, such as membranes and monoliths, are the commonly available supports. The present work deals with non-competitive binding of bovine serum albumin (BSA) on different chromatographic media functionalized with Cibacron Blue F3GA (CB). The aim is to set up the development of the purification process starting from the lab-scale characterization of a commercially available CB resin, regenerated cellulose membranes and polymeric monoliths, functionalized with CB to identify the best option. The performance of the three different chromatographic media is evaluated in terms of BSA binding capacity and productivity. The experimental investigation shows promising results for regenerated cellulose membranes and monoliths, whose performance are comparable with those of the packed column tested. It was demonstrated that the capacity of convective stationary phases does not depend on flow rate, in the range investigated, and that the productivity that can be achieved with membranes is 10 to 20 times higher depending on the initial BSA concentration value, and with monoliths it is approximately twice that of beads, at the same superficial velocity.
Collapse
|
25
|
Tripathi NK, Shrivastava A. Recent Developments in Bioprocessing of Recombinant Proteins: Expression Hosts and Process Development. Front Bioeng Biotechnol 2019; 7:420. [PMID: 31921823 PMCID: PMC6932962 DOI: 10.3389/fbioe.2019.00420] [Citation(s) in RCA: 278] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 11/29/2019] [Indexed: 12/22/2022] Open
Abstract
Infectious diseases, along with cancers, are among the main causes of death among humans worldwide. The production of therapeutic proteins for treating diseases at large scale for millions of individuals is one of the essential needs of mankind. Recent progress in the area of recombinant DNA technologies has paved the way to producing recombinant proteins that can be used as therapeutics, vaccines, and diagnostic reagents. Recombinant proteins for these applications are mainly produced using prokaryotic and eukaryotic expression host systems such as mammalian cells, bacteria, yeast, insect cells, and transgenic plants at laboratory scale as well as in large-scale settings. The development of efficient bioprocessing strategies is crucial for industrial production of recombinant proteins of therapeutic and prophylactic importance. Recently, advances have been made in the various areas of bioprocessing and are being utilized to develop effective processes for producing recombinant proteins. These include the use of high-throughput devices for effective bioprocess optimization and of disposable systems, continuous upstream processing, continuous chromatography, integrated continuous bioprocessing, Quality by Design, and process analytical technologies to achieve quality product with higher yield. This review summarizes recent developments in the bioprocessing of recombinant proteins, including in various expression systems, bioprocess development, and the upstream and downstream processing of recombinant proteins.
Collapse
Affiliation(s)
- Nagesh K. Tripathi
- Bioprocess Scale Up Facility, Defence Research and Development Establishment, Gwalior, India
| | - Ambuj Shrivastava
- Division of Virology, Defence Research and Development Establishment, Gwalior, India
| |
Collapse
|
26
|
De Luca C, Felletti S, Macis M, Cabri W, Lievore G, Chenet T, Pasti L, Morbidelli M, Cavazzini A, Catani M, Ricci A. Modeling the nonlinear behavior of a bioactive peptide in reversed-phase gradient elution chromatography. J Chromatogr A 2019; 1616:460789. [PMID: 31874699 DOI: 10.1016/j.chroma.2019.460789] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/09/2019] [Accepted: 12/12/2019] [Indexed: 01/03/2023]
Abstract
The thermodynamic behavior of octreotide, a cyclic octapeptide with important pharmaceutical functions, has been simulated under reversed-phase gradient elution conditions. To this end, adsorption behavior was firstly investigated in isocratic conditions, under a variety of water/acetonitrile + 0.02% (v/v) trifluoroacetic acid (TFA) mixtures as mobile phase by using a Langmuir isotherm. Organic modifier was varied in the range between 23 and 28% (v/v). Adsorption isotherms were determined by means of the so-called Inverse Method (IM) with a minimum amount of peptide. The linear solvent strength (LSS) model was used to find the correlation between isotherm parameters and mobile phase composition. This study contributes to enlarge our knowledge on the chromatographic behavior under nonlinear gradient conditions of peptides. In particular, it focuses on a cyclic octapeptide.
Collapse
Affiliation(s)
- Chiara De Luca
- Dept. of Chemistry and Pharmaceutical Sciences, University of Ferrara, via L. Borsari 46, Ferrara 44121, Italy
| | - Simona Felletti
- Dept. of Chemistry and Pharmaceutical Sciences, University of Ferrara, via L. Borsari 46, Ferrara 44121, Italy
| | - Marco Macis
- Fresenius Kabi iPSUM, via San Leonardo 23, Villadose, Rovigo 45010, Italy
| | - Walter Cabri
- Fresenius Kabi iPSUM, via San Leonardo 23, Villadose, Rovigo 45010, Italy
| | - Giulio Lievore
- Dept. of Chemistry and Pharmaceutical Sciences, University of Ferrara, via L. Borsari 46, Ferrara 44121, Italy
| | - Tatiana Chenet
- Dept. of Chemistry and Pharmaceutical Sciences, University of Ferrara, via L. Borsari 46, Ferrara 44121, Italy
| | - Luisa Pasti
- Dept. of Chemistry and Pharmaceutical Sciences, University of Ferrara, via L. Borsari 46, Ferrara 44121, Italy
| | - Massimo Morbidelli
- Dept. of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zurich, Vladimir-Prelog-Weg 1, Zurich 8093, Switzerland
| | - Alberto Cavazzini
- Dept. of Chemistry and Pharmaceutical Sciences, University of Ferrara, via L. Borsari 46, Ferrara 44121, Italy.
| | - Martina Catani
- Dept. of Chemistry and Pharmaceutical Sciences, University of Ferrara, via L. Borsari 46, Ferrara 44121, Italy.
| | - Antonio Ricci
- Fresenius Kabi iPSUM, via San Leonardo 23, Villadose, Rovigo 45010, Italy
| |
Collapse
|
27
|
Wälchli R, Ressurreição M, Vogg S, Feidl F, Angelo J, Xu X, Ghose S, Jian Li Z, Le Saoût X, Souquet J, Broly H, Morbidelli M. Understanding mAb aggregation during low pH viral inactivation and subsequent neutralization. Biotechnol Bioeng 2019; 117:687-700. [PMID: 31784982 DOI: 10.1002/bit.27237] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 10/22/2019] [Accepted: 11/22/2019] [Indexed: 12/31/2022]
Abstract
Monoclonal antibodies (mAbs) and related recombinant proteins continue to gain importance in the treatment of a great variety of diseases. Despite significant advances, their manufacturing can still present challenges owing to their molecular complexity and stringent regulations with respect to product purity, stability, safety, and so forth. In this context, protein aggregates are of particular concern due to their immunogenic potential. During manufacturing, mAbs routinely undergo acidic treatment to inactivate viral contamination, which can lead to their aggregation and thereby to product loss. To better understand the underlying mechanism so as to propose strategies to mitigate the issue, we systematically investigated the denaturation and aggregation of two mAbs at low pH as well as after neutralization. We observed that at low pH and low ionic strength, mAb surface hydrophobicity increased whereas molecular size remained constant. After neutralization of acidic mAb solutions, the fraction of monomeric mAb started to decrease accompanied by an increase on average mAb size. This indicates that electrostatic repulsion prevents denatured mAb molecules from aggregation under acidic pH and low ionic strength, whereas neutralization reduces this repulsion and coagulation initiates. Limiting denaturation at low pH by d-sorbitol addition or temperature reduction effectively improved monomer recovery after neutralization. Our findings might be used to develop innovative viral inactivation procedures during mAb manufacturing that result in higher product yields.
Collapse
Affiliation(s)
- Ruben Wälchli
- Department of Chemistry and Applied Biosciences, ETH Zurich, Institute for Chemical and Bioengineering, Zurich, Switzerland
| | - Mariana Ressurreição
- Department of Chemistry and Applied Biosciences, ETH Zurich, Institute for Chemical and Bioengineering, Zurich, Switzerland
| | - Sebastian Vogg
- Department of Chemistry and Applied Biosciences, ETH Zurich, Institute for Chemical and Bioengineering, Zurich, Switzerland
| | - Fabian Feidl
- Department of Chemistry and Applied Biosciences, ETH Zurich, Institute for Chemical and Bioengineering, Zurich, Switzerland
| | - James Angelo
- Biologics Process Development, Global Product Development and Supply, Bristol-Myers Squibb Co., Devens, Massachusetts
| | - Xuankuo Xu
- Biologics Process Development, Global Product Development and Supply, Bristol-Myers Squibb Co., Devens, Massachusetts
| | - Sanchayita Ghose
- Biologics Process Development, Global Product Development and Supply, Bristol-Myers Squibb Co., Devens, Massachusetts
| | - Zheng Jian Li
- Biologics Process Development, Global Product Development and Supply, Bristol-Myers Squibb Co., Devens, Massachusetts
| | - Xavier Le Saoût
- Biotech Process Sciences, Merck KGaA, Corsier-sur-Vevey, Vaud, Switzerland
| | - Jonathan Souquet
- Biotech Process Sciences, Merck KGaA, Corsier-sur-Vevey, Vaud, Switzerland
| | - Hervé Broly
- Biotech Process Sciences, Merck KGaA, Corsier-sur-Vevey, Vaud, Switzerland
| | - Massimo Morbidelli
- Department of Chemistry and Applied Biosciences, ETH Zurich, Institute for Chemical and Bioengineering, Zurich, Switzerland
| |
Collapse
|
28
|
Yang O, Prabhu S, Ierapetritou M. Comparison between Batch and Continuous Monoclonal Antibody Production and Economic Analysis. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.8b04717] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Ou Yang
- Department of Chemical and Biochemical Engineering, Rutgers—The State University of New Jersey, 98 Brett Road, Piscataway, New Jersey 08854-8058, United States
| | - Siddharth Prabhu
- Department of Chemical and Biochemical Engineering, Rutgers—The State University of New Jersey, 98 Brett Road, Piscataway, New Jersey 08854-8058, United States
| | - Marianthi Ierapetritou
- Department of Chemical and Biochemical Engineering, Rutgers—The State University of New Jersey, 98 Brett Road, Piscataway, New Jersey 08854-8058, United States
| |
Collapse
|