1
|
Cheng N, Ramirez MG, Edwards C, Trejo J. USP34 regulates endothelial PAR1 mRNA transcript expression and cellular signaling. Mol Biol Cell 2025; 36:ar12. [PMID: 39705380 PMCID: PMC11809309 DOI: 10.1091/mbc.e24-07-0294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/26/2024] [Accepted: 12/09/2024] [Indexed: 12/22/2024] Open
Abstract
Signaling by G protein-coupled receptors (GPCRs) is regulated by temporally distinct processes including receptor desensitization, internalization, and lysosomal sorting, and are tightly controlled by posttranslational modifications. While the role of phosphorylation in regulating GPCR signaling is well studied and established, the mechanisms by which other posttranslational modifications, such as ubiquitination, regulate GPCR signaling are not clearly defined. We hypothesize that GPCR ubiquitination and deubiquitination is critical for proper signaling and cellular responses. In the present study, we show that the deubiquitinase ubiquitin-specific protease-34 (USP34) regulates thrombin-stimulated protease-activated receptor-1 (PAR1)-induced p38 autophosphorylation and activation. The PAR1-stimulated p38 signaling pathway is driven by ubiquitination. Interestingly, small interfering RNA-induced knockdown of USP34 expression markedly increased PAR1 cell surface abundance and protein expression without modulating PAR1 ubiquitination or the ubiquitination status of p38 signaling pathway components. In addition, increased PAR1 expression observed in USP34-depleted cells was not caused by altered PAR1 constitutive internalization, agonist-induced internalization, or receptor degradation. Rather, we report that loss of USP34 expression increased mRNA transcript expression of the PAR1-encoding gene, F2R. This study unexpectedly identified a critical role for USP34 in regulation of F2R mRNA transcript expression, which modulates PAR1 cell surface levels and thrombin-stimulated p38 mitogen-activated protein kinase signaling.
Collapse
Affiliation(s)
- Norton Cheng
- Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, CA 92093
- Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA 92093
| | - Monica Gonzalez Ramirez
- Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, CA 92093
| | - Chloe Edwards
- Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, CA 92093
| | - JoAnn Trejo
- Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, CA 92093
| |
Collapse
|
2
|
Chen S, Qin X, Sun Y, Ma Z, Niu C, Xu Y, Lu L, Zou H. 12-HETE/GPR31 induces endothelial dysfunction in diabetic retinopathy. FASEB J 2024; 38:e70064. [PMID: 39295162 DOI: 10.1096/fj.202401362r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/18/2024] [Accepted: 09/09/2024] [Indexed: 09/21/2024]
Abstract
12-hydroxyeicosatetraenoic acid (12-HETE), a major metabolite of arachidonic acid, is converted by 12/15-lipoxygenase and implicated in diabetic retinopathy (DR). Our previous study demonstrated a positive correlation between 12-HETE and the prevalence of DR. However, reasons for the increased production of 12-HETE are unclear, and the underlying mechanisms through which 12-HETE promotes DR are unknown. This study aimed to elucidate the correlation between 12-HETE and DR onset, investigate potential mechanisms through which 12-HETE promotes DR, and seek explanations for the increased production of 12-HETE in diabetes. We conducted a prospective cohort study, which revealed that higher serum 12-HETE levels could induce DR. Additionally, G protein-coupled receptor 31 (GPR31), a high-affinity receptor for 12-HETE, was expressed in human retinal microvascular endothelial cells (HRMECs). 12-HETE/GPR31-mediated HRMEC inflammation occurred via the p38 MAPK pathway. 12-HETE levels were significantly higher in the retina of mice with high-fat diet (HFD)- and streptozotocin (STZ)-induced diabetes than in those with only STZ-induced diabetes and healthy controls. They were positively correlated with the levels of inflammatory cytokines in the retina, indicating that HFD could induce increased 12-HETE synthesis in patients with diabetes in addition to hyperglycemia. Conclusively, 12-HETE is a potential risk factor for DR. The 12-HETE/GPR31 axis plays a crucial role in HRMEC dysfunction and could be a novel target for DR prevention and control. Nevertheless, further research is warranted to provide comprehensive insights into the complex underlying mechanisms of 12-HETE in DR.
Collapse
Affiliation(s)
- Shuli Chen
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinran Qin
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Sun
- Shanghai MicroH Therapeutics, LLC, Shanghai, China
| | - Zhenlin Ma
- Shanghai MicroH Therapeutics, LLC, Shanghai, China
| | - Chen Niu
- Shanghai MicroH Therapeutics, LLC, Shanghai, China
| | - Yi Xu
- Shanghai Eye Disease Prevention and Treatment Center/Shanghai Eye Hospital, Shanghai, China
| | - Lina Lu
- Shanghai Eye Disease Prevention and Treatment Center/Shanghai Eye Hospital, Shanghai, China
| | - Haidong Zou
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Eye Disease Prevention and Treatment Center/Shanghai Eye Hospital, Shanghai, China
- Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
- National Clinical Research Center for Eye Diseases, Shanghai, China
| |
Collapse
|
3
|
Lan M, Lin C, Zeng L, Hu S, Shi Y, Zhao Y, Liu X, Sun J, Liang G, Huang M. Linderanine C regulates macrophage polarization by inhibiting the MAPK signaling pathway against ulcerative colitis. Biomed Pharmacother 2024; 178:117239. [PMID: 39098180 DOI: 10.1016/j.biopha.2024.117239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/26/2024] [Accepted: 07/30/2024] [Indexed: 08/06/2024] Open
Abstract
Ulcerative colitis (UC) is a chronic non-specific inflammatory disease involving the mucosa and submucosa of the rectum and colon. Lindera aggregate (Sims) Kosterm is a traditional Chinese herb used for thousands of years in the treatment of gastrointestinal diseases. Previously, we have demonstrated that the extracts of Lindera aggregate have good anti-UC effects, but their pharmacodynamic active components have not been fully clarified. Therefore, we explored the therapeutic effect of Linderanine C (LDC), a characteristic component of Lindera aggregata, on UC and its mechanism in this study. Firstly, we found that LDC could significantly reduce the disease activity index of UC and improve shortened colon and pathological changes in vivo. Colon tissue transcriptomics suggested that the anti-UC effect of LDC might be related to its anti-inflammatory activity. Cellular experiments revealed that LDC could inhibit the expression of the M1 cell marker CD86 in RAW264.7 cells, reduce the production of inflammatory mediators such as IL-6 and TNF-α, and have good anti-inflammatory activity in vitro. Cellular transcriptomics reveal the potential involvement of the MAPK signaling pathway in the anti-inflammatory effect of LDC. The co-culture assay confirmed that LDC could significantly reduce inflammation-mediated intestinal epithelial cell injury. In conclusion, LDC was able to inhibit macrophage M1 polarization and reduce inflammatory mediator production by inhibiting the MAPK signaling pathway, effectively improving UC.
Collapse
Affiliation(s)
- Mengyao Lan
- Zhejiang TCM Key Laboratory of Pharmacology and Translational Research of Natural Products, School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 311399, China
| | - Cailu Lin
- Zhejiang TCM Key Laboratory of Pharmacology and Translational Research of Natural Products, School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 311399, China
| | - Lulu Zeng
- Zhejiang TCM Key Laboratory of Pharmacology and Translational Research of Natural Products, School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 311399, China
| | - Shijie Hu
- Zhejiang TCM Key Laboratory of Pharmacology and Translational Research of Natural Products, School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 311399, China
| | - Yuan Shi
- Zhejiang TCM Key Laboratory of Pharmacology and Translational Research of Natural Products, School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 311399, China
| | - Yan Zhao
- Zhejiang TCM Key Laboratory of Pharmacology and Translational Research of Natural Products, School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 311399, China
| | - Xin Liu
- Department of Colorectal Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Jinfeng Sun
- Department of Pharmacy and Institute of Inflammation, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, China; Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin 133002, China
| | - Guang Liang
- Zhejiang TCM Key Laboratory of Pharmacology and Translational Research of Natural Products, School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 311399, China; Department of Pharmacy and Institute of Inflammation, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, China.
| | - Mincong Huang
- Zhejiang TCM Key Laboratory of Pharmacology and Translational Research of Natural Products, School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 311399, China.
| |
Collapse
|
4
|
Wang R, Wang R, Zhou S, Liu T, Dang J, Chen Q, Chen J, Wang Z. Ubiquitination of angiotensin-converting enzyme 2 contributes to the development of pulmonary arterial hypertension mediated by neural precursor cell-expressed developmentally down-regulated gene 4-Like. Respir Res 2024; 25:326. [PMID: 39210401 PMCID: PMC11363581 DOI: 10.1186/s12931-024-02953-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024] Open
Abstract
OBJECTIVES In this study, we investigated whether neural precursor cell-expressed developmentally down-regulated gene 4-like (NEDD4L) is the E3 enzyme of angiotensin-converting enzyme 2 (ACE2) and whether NEDD4L degrades ACE2 via ubiquitination, leading to the progression of pulmonary arterial hypertension (PAH). METHODS Bioinformatic analyses were used to explore the E3 ligase that ubiquitinates ACE2. Cultured pulmonary arterial smooth muscle cells (PASMCs) and specimens from patients with PAH were used to investigate the crosstalk between NEDD4L and ACE2 and its ubiquitination in the context of PAH. RESULTS The inhibition of ubiquitination attenuated hypoxia-induced proliferation of PASMCs. The levels of NEDD4L were increased, and those of ACE2 were decreased in lung tissues from patients with PAH and in PASMCs. NEDD4L, the E3 ligase of ACE2, inhibited the expression of ACE2 in PASMCs, possibly through ubiquitination-mediated degradation. PAH was associated with upregulation of NEDD4L expression and downregulation of ACE2 expression. CONCLUSIONS NEDD4L, the E3 ubiquitination enzyme of ACE2, promotes the proliferation of PASMCs, ultimately leading to PAH.
Collapse
Affiliation(s)
- Rui Wang
- Graduate School, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, Jiangsu, China
- Department of Anesthesiology, Affiliated Hospital of Xuzhou Medical University, No.99 Huaihai West Road, Xuzhou, Jiangsu, China
| | - Rui Wang
- Department of Orthopedics, Xuzhou Central Hospital, 199 Jiefang South Road, Quanshan District, Xuzhou, Jiangsu, China
| | - Siqi Zhou
- Department of Gastroenterology, Nanjing Drum Tower Hospital Clinical College of Jiangsu University, 321 Zhongshan Road, Drum Tower District, Nanjing, Jiangsu, China
| | - Tianya Liu
- Department of Anesthesiology, Affiliated Hospital of Xuzhou Medical University, No.99 Huaihai West Road, Xuzhou, Jiangsu, China
| | - Jingjing Dang
- Graduate School, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, Jiangsu, China
- Department of Anesthesiology, Affiliated Hospital of Xuzhou Medical University, No.99 Huaihai West Road, Xuzhou, Jiangsu, China
| | - Qianmin Chen
- Department of Anesthesiology, Affiliated Hospital of Xuzhou Medical University, No.99 Huaihai West Road, Xuzhou, Jiangsu, China
| | - Jingyu Chen
- Graduate School, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, Jiangsu, China
| | - Zhiping Wang
- Graduate School, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, Jiangsu, China.
- Department of Anesthesiology, Affiliated Hospital of Xuzhou Medical University, No.99 Huaihai West Road, Xuzhou, Jiangsu, China.
| |
Collapse
|
5
|
Ye Y, Li L, Kang H, Wan Z, Zhang M, Gang B, Liu J, Liu G, Gu W. LAMP1 controls CXCL10-CXCR3 axis mediated inflammatory regulation of macrophage polarization during inflammatory stimulation. Int Immunopharmacol 2024; 132:111929. [PMID: 38555817 DOI: 10.1016/j.intimp.2024.111929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/08/2024] [Accepted: 03/22/2024] [Indexed: 04/02/2024]
Abstract
Increased expression of CXCL10 and its receptor CXCR3 represents an inflammatory response in cells and tissues. Macrophage polarization and autophagy are major functions in inflammatory macrophages; however, the cellular functions of the CXCL10-CXCR3 axis in macrophages are not well understood. Here, we examined the role of CXCL10-CXCR3-axis-regulated autophagy in macrophage polarization. First, in non-inflammatory macrophages, whereas CXCL10 promotes M2 polarization and inhibits M1 polarization, CXCR3 antagonist AMG487 induces the opposite macrophage polarization. Next, CXCL10 promotes the expression of autophagy proteins (Atg5-Atg12 complex, p62, LC3-II, and LAMP1) and AMG487 inhibits their expression. Knockdown of LAMP1 by short interfering RNA switches the CXCL10-induced polarization from M2 to M1 in non-inflammatory macrophages. Furthermore, in inflammatory macrophages stimulated by poly(I:C), CXCL10 induces M1 polarization and AMG487 induces M2 polarization in association with a decrease in LAMP1. Finally, AMG487 alleviates lung injury after poly(I:C) treatment in mice. In conclusion, CXCL10-CXCR3 axis differentially directs macrophage polarization in inflammatory and non-inflammatory states, and autophagy protein LAMP1 acts as the switch controlling the direction of macrophage polarization by CXCL10-CXCR3.
Collapse
Affiliation(s)
- Yingying Ye
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, and Anhui Province Key Laboratory of Cancer Translational Medicine, Bengbu Medical University, 2600 Donghai Avenue, Bengbu, Anhui 233030, China; Reproduction Medicine Center, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, 233030, China
| | - Lexing Li
- Department of Basic Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Hu Kang
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, and Anhui Province Key Laboratory of Cancer Translational Medicine, Bengbu Medical University, 2600 Donghai Avenue, Bengbu, Anhui 233030, China
| | - Ziyu Wan
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, and Anhui Province Key Laboratory of Cancer Translational Medicine, Bengbu Medical University, 2600 Donghai Avenue, Bengbu, Anhui 233030, China
| | - Mengjie Zhang
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, and Anhui Province Key Laboratory of Cancer Translational Medicine, Bengbu Medical University, 2600 Donghai Avenue, Bengbu, Anhui 233030, China
| | - Baocai Gang
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, and Anhui Province Key Laboratory of Cancer Translational Medicine, Bengbu Medical University, 2600 Donghai Avenue, Bengbu, Anhui 233030, China
| | - Jie Liu
- College of Animal and Veterinary Science, Southwest Minzu University, Chengdu, Sichuan 610041, China
| | - Guoquan Liu
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, and Anhui Province Key Laboratory of Cancer Translational Medicine, Bengbu Medical University, 2600 Donghai Avenue, Bengbu, Anhui 233030, China.
| | - Wei Gu
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, and Anhui Province Key Laboratory of Cancer Translational Medicine, Bengbu Medical University, 2600 Donghai Avenue, Bengbu, Anhui 233030, China.
| |
Collapse
|
6
|
Alvarado-Ojeda ZA, Trejo-Moreno C, Ferat-Osorio E, Méndez-Martínez M, Fragoso G, Rosas-Salgado G. Role of Angiotensin II in Non-Alcoholic Steatosis Development. Arch Med Res 2024; 55:102986. [PMID: 38492325 DOI: 10.1016/j.arcmed.2024.102986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 02/23/2024] [Accepted: 03/05/2024] [Indexed: 03/18/2024]
Abstract
Fatty liver is a multifactorial disease characterized by excessive accumulation of lipids in hepatocytes (steatosis), insulin resistance, oxidative stress, and inflammation. This disease has a major public health impact because it is the first stage of a chronic and degenerative process in the liver that can lead to steatohepatitis, cirrhosis, and liver cancer. Although this disease is mainly diagnosed in patients with obesity, type 2 diabetes mellitus, and dyslipidemia, recent evidence indicates that vasoactive hormones such as angiotensin II (ANGII) not only promote endothelial dysfunction (ED) and hypertension, but also cause fatty liver, increase adipose tissue, and develop a pro-steatotic environment characterized by a low-grade systemic pro-inflammatory and pro-oxidant state, with elevated blood lipid levels. The role of ANGII in lipid accumulation has been little studied, so this review aims to summarize existing reports on the possible mechanism of action of ANGII in inducing lipid accumulation in hepatocytes.
Collapse
Affiliation(s)
| | - Celeste Trejo-Moreno
- Facultad de Medicina, Universidad Autónoma del Estado de Morelos, Cuernavaca Morelos, Mexico
| | - Eduardo Ferat-Osorio
- División de Investigación en Salud, Unidad de Investigación en Epidemiología Clínica, Hospital de Especialidades, Dr. Bernardo Sepúlveda Gutiérrez, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Marisol Méndez-Martínez
- Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana-Xochimilco, Mexico City, Mexico
| | - Gladis Fragoso
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Gabriela Rosas-Salgado
- Facultad de Medicina, Universidad Autónoma del Estado de Morelos, Cuernavaca Morelos, Mexico.
| |
Collapse
|
7
|
Kusumaningrum AE, Makaba S, Ali E, Singh M, Fenjan MN, Rasulova I, Misra N, Al-Musawi SG, Alsalamy A. A perspective on emerging therapies in metastatic colorectal cancer: Focusing on molecular medicine and drug resistance. Cell Biochem Funct 2024; 42:e3906. [PMID: 38269502 DOI: 10.1002/cbf.3906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/23/2023] [Accepted: 12/01/2023] [Indexed: 01/26/2024]
Abstract
The majority of cancer cases are colorectal cancer, which is also the second largest cause of cancer-related deaths worldwide. Metastasis is the leading cause of death for patients with colorectal cancer. Metastatic colorectal cancer incidence are on the rise due to a tiny percentage of tumors developing resistant to medicines despite advances in treatment tactics. Cutting-edge targeted medications are now the go-to option for customized and all-encompassing CRC care. Specifically, multitarget kinase inhibitors, antivascular endothelial growth factors, and epidermal growth factor receptors are widely used in clinical practice for CRC-targeted treatments. Rare targets in metastatic colorectal cancer are becoming more well-known due to developments in precision diagnostics and the extensive use of second-generation sequencing technology. These targets include the KRAS mutation, the BRAF V600E mutation, the HER2 overexpression/amplification, and the MSI-H/dMMR. Incorporating certain medications into clinical trials has significantly increased patient survival rates, opening new avenues and bringing fresh viewpoints for treating metastatic colorectal cancer. These focused therapies change how cancer is treated, giving patients new hope and better results. These markers can significantly transform and individualize therapy regimens. They could open the door to precisely customized and more effective medicines, improving patient outcomes and quality of life. The fast-growing body of knowledge regarding the molecular biology of colorectal cancer and the latest developments in gene sequencing and molecular diagnostics are directly responsible for this advancement.
Collapse
Affiliation(s)
| | - Sarce Makaba
- Researcher and lecturer, Universitas Cenderawasih Jayapura, Jayapura, Indonesia
| | - Eyhab Ali
- College of Pharmacy, Al-Zahraa University for Women, Karbala, Iraq
| | - Mandeep Singh
- Directorate of Sports and Physical Education, University of Jammu, Jammu, India
| | - Mohammed N Fenjan
- College of Health and Medical Technology, Al-Ayen University, Thi-Qar, Iraq
| | - Irodakhon Rasulova
- School of Humanities, Natural & Social Sciences, New Uzbekistan University, Tashkent, Uzbekistan
- Department of Public Health, Samarkand State Medical University, Samarkand, Uzbekistan
| | - Neeti Misra
- Department of Management, Uttaranchal Institute of Management, Uttaranchal University, Dehradun, India
| | - Sada G Al-Musawi
- College of Pharmacy, National University of Science and Technology, Dhi Qar, Iraq
| | - Ali Alsalamy
- College of Technical Engineering, Imam Ja'afar Al-Sadiq University, Al-Muthanna, Iraq
| |
Collapse
|
8
|
Birch CA, Wedegaertner H, Orduña-Castillo LB, Gonzalez Ramirez ML, Qin H, Trejo J. Endothelial APC/PAR1 distinctly regulates cytokine-induced pro-inflammatory VCAM-1 expression. Front Mol Biosci 2023; 10:1211597. [PMID: 37692066 PMCID: PMC10483999 DOI: 10.3389/fmolb.2023.1211597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 08/04/2023] [Indexed: 09/12/2023] Open
Abstract
Introduction: Dysfunction of the endothelium impairs its' protective role and promotes inflammation and progression of vascular diseases. Activated Protein C (APC) elicits endothelial cytoprotective responses including barrier stabilization, anti-inflammatory and anti-apoptotic responses through the activation of the G protein-coupled receptor (GPCR) protease-activated receptor-1 (PAR1) and is a promising therapeutic. Despite recent advancements in developing new Activated protein C variants with clinical potential, the mechanism by which APC/PAR1 promotes different cytoprotective responses remains unclear and is important to understand to advance Activated protein C and new targets as future therapeutics. Here we examined the mechanisms by which APC/PAR1 attenuates cytokine-induced pro-inflammatory vascular cell adhesion molecule (VCAM-1) expression, a key mediator of endothelial inflammatory responses. Methods: Quantitative multiplexed mass spectrometry analysis of Activated protein C treated endothelial cells, endothelial cell transcriptomics database (EndoDB) online repository queries, biochemical measurements of protein expression, quantitative real-time polymerase chain reaction (RT-qPCR) measurement of mRNA transcript abundance, pharmacological inhibitors and siRNA transfections of human cultured endothelial cells. Results: Here we report that Activated Protein C modulates phosphorylation of tumor necrosis factor (TNF)-α signaling pathway components and attenuates of TNF-α induced VCAM-1 expression independent of mRNA stability. Unexpectedly, we found a critical role for the G protein-coupled receptor co-receptor sphingosine-1 phosphate receptor-1 (S1PR1) and the G protein receptor kinase-2 (GRK2) in mediating APC/PAR1 anti-inflammatory responses in endothelial cells. Discussion: This study provides new knowledge of the mechanisms by which different APC/PAR1 cytoprotective responses are mediated through discrete β-arrestin-2-driven signaling pathways modulated by specific G protein-coupled receptor co-receptors and GRKs.
Collapse
Affiliation(s)
- Cierra A. Birch
- Department of Pharmacology, School of Medicine, University of California, San Diego, CA, United States
| | - Helen Wedegaertner
- Department of Pharmacology, School of Medicine, University of California, San Diego, CA, United States
- Biomedical Sciences Graduate Program, University of California, San Diego, CA, United States
| | - Lennis B. Orduña-Castillo
- Department of Pharmacology, School of Medicine, University of California, San Diego, CA, United States
| | | | - Huaping Qin
- Department of Pharmacology, School of Medicine, University of California, San Diego, CA, United States
| | - JoAnn Trejo
- Department of Pharmacology, School of Medicine, University of California, San Diego, CA, United States
| |
Collapse
|
9
|
Li Y, Li B, Chen WD, Wang YD. Role of G-protein coupled receptors in cardiovascular diseases. Front Cardiovasc Med 2023; 10:1130312. [PMID: 37342437 PMCID: PMC10277692 DOI: 10.3389/fcvm.2023.1130312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 05/09/2023] [Indexed: 06/22/2023] Open
Abstract
Cardiovascular diseases (CVDs) are the leading cause of death globally, with CVDs accounting for nearly 30% of deaths worldwide each year. G-protein-coupled receptors (GPCRs) are the most prominent family of receptors on the cell surface, and play an essential regulating cellular physiology and pathology. Some GPCR antagonists, such as β-blockers, are standard therapy for the treatment of CVDs. In addition, nearly one-third of the drugs used to treat CVDs target GPCRs. All the evidence demonstrates the crucial role of GPCRs in CVDs. Over the past decades, studies on the structure and function of GPCRs have identified many targets for the treatment of CVDs. In this review, we summarize and discuss the role of GPCRs in the function of the cardiovascular system from both vascular and heart perspectives, then analyze the complex ways in which multiple GPCRs exert regulatory functions in vascular and heart diseases. We hope to provide new ideas for the treatment of CVDs and the development of novel drugs.
Collapse
Affiliation(s)
- Yuanqiang Li
- State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Boyu Li
- Department of Gastroenterology and Hematology, The People's Hospital of Hebi, Henan, China
| | - Wei-Dong Chen
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Science, Inner Mongolia Medical University, Hohhot, China
- Key Laboratory of Receptors-Mediated Gene Regulation, School of Medicine, The People’s Hospital of Hebi, Henan University, Kaifeng, China
| | - Yan-Dong Wang
- State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| |
Collapse
|
10
|
Onoja A, Picchiotti N, Fallerini C, Baldassarri M, Fava F, Colombo F, Chiaromonte F, Renieri A, Furini S, Raimondi F. An explainable model of host genetic interactions linked to COVID-19 severity. Commun Biol 2022; 5:1133. [PMID: 36289370 PMCID: PMC9606365 DOI: 10.1038/s42003-022-04073-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 10/05/2022] [Indexed: 11/25/2022] Open
Abstract
We employed a multifaceted computational strategy to identify the genetic factors contributing to increased risk of severe COVID-19 infection from a Whole Exome Sequencing (WES) dataset of a cohort of 2000 Italian patients. We coupled a stratified k-fold screening, to rank variants more associated with severity, with the training of multiple supervised classifiers, to predict severity based on screened features. Feature importance analysis from tree-based models allowed us to identify 16 variants with the highest support which, together with age and gender covariates, were found to be most predictive of COVID-19 severity. When tested on a follow-up cohort, our ensemble of models predicted severity with high accuracy (ACC = 81.88%; AUCROC = 96%; MCC = 61.55%). Our model recapitulated a vast literature of emerging molecular mechanisms and genetic factors linked to COVID-19 response and extends previous landmark Genome-Wide Association Studies (GWAS). It revealed a network of interplaying genetic signatures converging on established immune system and inflammatory processes linked to viral infection response. It also identified additional processes cross-talking with immune pathways, such as GPCR signaling, which might offer additional opportunities for therapeutic intervention and patient stratification. Publicly available PheWAS datasets revealed that several variants were significantly associated with phenotypic traits such as "Respiratory or thoracic disease", supporting their link with COVID-19 severity outcome.
Collapse
Affiliation(s)
- Anthony Onoja
- Laboratorio di Biologia Bio@SNS, Scuola Normale Superiore, Pisa, Italy
| | - Nicola Picchiotti
- University of Siena, DIISM-SAILAB, Siena, Italy
- Department of Mathematics, University of Pavia, Pavia, Italy
| | - Chiara Fallerini
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
- Medical Genetics, University of Siena, Siena, Italy
| | - Margherita Baldassarri
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
- Medical Genetics, University of Siena, Siena, Italy
| | - Francesca Fava
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
- Medical Genetics, University of Siena, Siena, Italy
- Genetica Medica, Azienda Ospedaliero-Universitaria Senese, Siena, Italy
| | - Francesca Colombo
- Istituto di Tecnologie Biomediche-Consiglio Nazionale delle Ricerche, Segrate, MI, Italy
| | - Francesca Chiaromonte
- Dept. of Statistics and Huck Institutes of the Life Sciences, Penn State University, University Park, PA, 16802, USA
- Institute of Economics and EMbeDS, Sant'Anna School of Advanced Studies, 56127, Pisa, Italy
| | - Alessandra Renieri
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy.
- Medical Genetics, University of Siena, Siena, Italy.
- Genetica Medica, Azienda Ospedaliero-Universitaria Senese, Siena, Italy.
| | - Simone Furini
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | | |
Collapse
|
11
|
Vega-Lugo J, da Rocha-Azevedo B, Dasgupta A, Jaqaman K. Analysis of conditional colocalization relationships and hierarchies in three-color microscopy images. J Cell Biol 2022; 221:e202106129. [PMID: 35552363 PMCID: PMC9111757 DOI: 10.1083/jcb.202106129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 03/15/2022] [Accepted: 04/25/2022] [Indexed: 01/07/2023] Open
Abstract
Colocalization analysis of multicolor microscopy images is a cornerstone approach in cell biology. It provides information on the localization of molecules within subcellular compartments and allows the interrogation of known molecular interactions in their cellular context. However, almost all colocalization analyses are designed for two-color images, limiting the type of information that they reveal. Here, we describe an approach, termed "conditional colocalization analysis," for analyzing the colocalization relationships between three molecular entities in three-color microscopy images. Going beyond the question of whether colocalization is present or not, it addresses the question of whether the colocalization between two entities is influenced, positively or negatively, by their colocalization with a third entity. We benchmark the approach and showcase its application to investigate receptor-downstream adaptor colocalization relationships in the context of functionally relevant plasma membrane locations. The software for conditional colocalization analysis is available at https://github.com/kjaqaman/conditionalColoc.
Collapse
Affiliation(s)
- Jesus Vega-Lugo
- Department of Biophysics, UT Southwestern Medical Center, Dallas, TX
| | | | | | - Khuloud Jaqaman
- Department of Biophysics, UT Southwestern Medical Center, Dallas, TX
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX
| |
Collapse
|
12
|
Zalewski DP, Ruszel KP, Stępniewski A, Gałkowski D, Feldo M, Kocki J, Bogucka-Kocka A. miRNA Regulatory Networks Associated with Peripheral Vascular Diseases. J Clin Med 2022; 11:3470. [PMID: 35743538 PMCID: PMC9224609 DOI: 10.3390/jcm11123470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/13/2022] [Accepted: 06/14/2022] [Indexed: 02/06/2023] Open
Abstract
A growing body of evidence indicates a crucial role of miRNA regulatory function in a variety of mechanisms that contribute to the development of diseases. In our previous work, alterations in miRNA expression levels and targeted genes were shown in peripheral blood mononuclear cells (PBMCs) from patients with lower extremity artery disease (LEAD), abdominal aortic aneurysm (AAA), and chronic venous disease (CVD) in comparison with healthy controls. In this paper, previously obtained miRNA expression profiles were compared between the LEAD, AAA, and CVD groups to find either similarities or differences within the studied diseases. Differentially expressed miRNAs were identified using the DESeq2 method implemented in the R programming software. Pairwise comparisons (LEAD vs. AAA, LEAD vs. CVD, and AAA vs. CVD) were performed and revealed 10, 8, and 17 differentially expressed miRNA transcripts, respectively. The functional analysis of the obtained miRNAs was conducted using the miRNet 2.0 online tool and disclosed associations with inflammation and cellular differentiation, motility, and death. The miRNet 2.0 tool was also used to identify regulatory interactions between dysregulated miRNAs and target genes in patients with LEAD, AAA, and CVD. The presented research provides new information about similarities and differences in the miRNA-dependent regulatory mechanisms involved in the pathogenesis of LEAD, AAA, and CVD.
Collapse
Affiliation(s)
- Daniel P. Zalewski
- Chair and Department of Biology and Genetics, Medical University of Lublin, 4a Chodźki St., 20-093 Lublin, Poland;
| | - Karol P. Ruszel
- Department of Clinical Genetics, Chair of Medical Genetics, Medical University of Lublin, 11 Radziwiłłowska St., 20-080 Lublin, Poland; (K.P.R.); (J.K.)
| | - Andrzej Stępniewski
- Ecotech Complex Analytical and Programme Centre for Advanced Environmentally Friendly Technologies, University of Marie Curie-Skłodowska, 39 Głęboka St., 20-612 Lublin, Poland;
| | - Dariusz Gałkowski
- Department of Pathology and Laboratory Medicine, Rutgers-Robert Wood Johnson Medical School, One Robert Wood Johnson Place, New Brunswick, NJ 08903-0019, USA;
| | - Marcin Feldo
- Chair and Department of Vascular Surgery and Angiology, Medical University of Lublin, 11 Staszica St., 20-081 Lublin, Poland;
| | - Janusz Kocki
- Department of Clinical Genetics, Chair of Medical Genetics, Medical University of Lublin, 11 Radziwiłłowska St., 20-080 Lublin, Poland; (K.P.R.); (J.K.)
| | - Anna Bogucka-Kocka
- Chair and Department of Biology and Genetics, Medical University of Lublin, 4a Chodźki St., 20-093 Lublin, Poland;
| |
Collapse
|
13
|
2D MXenes for combatting COVID-19 Pandemic: A perspective on latest developments and innovations. FLATCHEM 2022; 33. [PMCID: PMC9055790 DOI: 10.1016/j.flatc.2022.100377] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The COVID-19 pandemic has adversely affected the world, causing enormous loss of lives. A greater impact on the economy was also observed worldwide. During the pandemic, the antimicrobial aprons, face masks, sterilizers, sensor processed touch-free sanitizers, and highly effective diagnostic devices having greater sensitivity and selectivity helped to foster the healthcare facilities. Furthermore, the research and development sectors are tackling this emergency with the rapid invention of vaccines and medicines. In this regard, two-dimensional (2D) nanomaterials are greatly explored to combat the extreme severity of the pandemic. Among the nanomaterials, the 2D MXene is a prospective element due to its unique properties like greater surface functionalities, enhanced conductivity, superior hydrophilicity, and excellent photocatalytic and/or photothermal properties. These unique properties of MXene can be utilized to fabricate face masks, PPE kits, face shields, and biomedical instruments like efficient biosensors having greater antiviral activities. MXenes can also cure comorbidities in COVID-19 patients and have high drug loading as well as controlled drug release capacity. Moreover, the remarkable biocompatibility of MXene adds a feather in its cap for diverse biomedical applications. This review briefly explains the different synthesis processes of 2D MXenes, their biocompatibility, cytotoxicity and antiviral features. In addition, this review also discusses the viral cycle of SARS-CoV-2 and its inactivation mechanism using MXene. Finally, various applications of MXene for combatting the COVID-19 pandemic and their future perspectives are discussed.
Collapse
|
14
|
Bertinat R, Villalobos-Labra R, Hofmann L, Blauensteiner J, Sepúlveda N, Westermeier F. Decreased NO production in endothelial cells exposed to plasma from ME/CFS patients. Vascul Pharmacol 2022; 143:106953. [PMID: 35074481 DOI: 10.1016/j.vph.2022.106953] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/07/2022] [Accepted: 01/10/2022] [Indexed: 12/27/2022]
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a debilitating disease characterized by severe and persistent fatigue. Along with clinical studies showing endothelial dysfunction (ED) in a subset of ME/CFS patients, we have recently reported altered ED-related microRNAs in plasma from affected individuals. Inadequate nitric oxide (NO), mainly produced by the endothelial isoform of nitric oxide synthase (eNOS) in endothelial cells (ECs), is a major cause of ED. In this study, we hypothesized that plasma from that cohort of ME/CFS patients induces eNOS-related ED in vitro. To test this, we cultured human umbilical vein endothelial cells (HUVECs) in the presence of plasma from either ME/CFS patients (ME/CFS-plasma, n = 11) or healthy controls (HC-plasma, n = 12). Then, we measured the NO production in the absence and presence of tyrosine kinase and G protein-coupled receptors agonists (TKRs and GPCRs, respectively), well-known to activate eNOS in ECs. Our data showed that HUVECs incubated with ME/CFS-plasma produced less NO either in the absence or presence of eNOS activators compared to ones in presence of HC-plasma. Also, the NO production elicited by bradykinin, histamine, and acetylcholine (GPCRs agonists) was more affected than the one triggered by insulin (TKR agonist). Finally, inhibitory eNOS phosphorylation at Thr495 was higher in HUVECs treated with ME/CFS-plasma compared to the same treatment with HC-plasma. In conclusion, this study in vitro shows a decreased NO production in HUVECs exposed to plasma from ME/CFS patients, suggesting an unreported role of eNOS in the pathophysiology of this disease.
Collapse
Affiliation(s)
- Romina Bertinat
- Centro de Microscopía Avanzada, CMA-BIO BIO, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Roberto Villalobos-Labra
- Department of Obstetrics and Gynecology, Heritage Medical Research Centre (HMRC), University of Alberta, Edmonton, Canada
| | - Lidija Hofmann
- Institute of Biomedical Science, Department of Health Studies, FH Joanneum University of Applied Sciences, Graz, Austria
| | - Jennifer Blauensteiner
- Institute of Biomedical Science, Department of Health Studies, FH Joanneum University of Applied Sciences, Graz, Austria
| | - Nuno Sepúlveda
- Faculty of Mathematics and Information Science, Warsaw University of Technology, Warsaw, Poland; CEAUL - Centro de Estatística e Aplicações da Universidade de Lisboa, Portugal
| | - Francisco Westermeier
- Institute of Biomedical Science, Department of Health Studies, FH Joanneum University of Applied Sciences, Graz, Austria; Centro Integrativo de Biología y Química Aplicada (CIBQA), Universidad Bernardo O'Higgins, Santiago, Chile.
| |
Collapse
|
15
|
Molinar-Inglis O, Birch CA, Nicholas D, Orduña-Castillo L, Cisneros-Aguirre M, Patwardhan A, Chen B, Grimsey NJ, Coronel LJ, Lin H, Gomez Menzies PK, Lawson MA, Patel HH, Trejo J. aPC/PAR1 confers endothelial anti-apoptotic activity via a discrete, β-arrestin-2-mediated SphK1-S1PR1-Akt signaling axis. Proc Natl Acad Sci U S A 2021; 118:e2106623118. [PMID: 34873055 PMCID: PMC8670512 DOI: 10.1073/pnas.2106623118] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/22/2021] [Indexed: 12/12/2022] Open
Abstract
Endothelial dysfunction is associated with vascular disease and results in disruption of endothelial barrier function and increased sensitivity to apoptosis. Currently, there are limited treatments for improving endothelial dysfunction. Activated protein C (aPC), a promising therapeutic, signals via protease-activated receptor-1 (PAR1) and mediates several cytoprotective responses, including endothelial barrier stabilization and anti-apoptotic responses. We showed that aPC-activated PAR1 signals preferentially via β-arrestin-2 (β-arr2) and dishevelled-2 (Dvl2) scaffolds rather than G proteins to promote Rac1 activation and barrier protection. However, the signaling pathways utilized by aPC/PAR1 to mediate anti-apoptotic activities are not known. aPC/PAR1 cytoprotective responses also require coreceptors; however, it is not clear how coreceptors impact different aPC/PAR1 signaling pathways to drive distinct cytoprotective responses. Here, we define a β-arr2-mediated sphingosine kinase-1 (SphK1)-sphingosine-1-phosphate receptor-1 (S1PR1)-Akt signaling axis that confers aPC/PAR1-mediated protection against cell death. Using human cultured endothelial cells, we found that endogenous PAR1 and S1PR1 coexist in caveolin-1 (Cav1)-rich microdomains and that S1PR1 coassociation with Cav1 is increased by aPC activation of PAR1. Our study further shows that aPC stimulates β-arr2-dependent SphK1 activation independent of Dvl2 and is required for transactivation of S1PR1-Akt signaling and protection against cell death. While aPC/PAR1-induced, extracellular signal-regulated kinase 1/2 (ERK1/2) activation is also dependent on β-arr2, neither SphK1 nor S1PR1 are integrated into the ERK1/2 pathway. Finally, aPC activation of PAR1-β-arr2-mediated protection against apoptosis is dependent on Cav1, the principal structural protein of endothelial caveolae. These studies reveal that different aPC/PAR1 cytoprotective responses are mediated by discrete, β-arr2-driven signaling pathways in caveolae.
Collapse
Affiliation(s)
- Olivia Molinar-Inglis
- Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, CA 92093
| | - Cierra A Birch
- Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, CA 92093
| | - Dequina Nicholas
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California, Irvine, CA 92697
| | - Lennis Orduña-Castillo
- Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, CA 92093
| | - Metztli Cisneros-Aguirre
- Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, CA 92093
| | - Anand Patwardhan
- Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, CA 92093
| | - Buxin Chen
- Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, CA 92093
| | - Neil J Grimsey
- Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, CA 92093
- Department of Pharmaceutical Sciences and Biomedical Sciences, School of Pharmacy, University of Georgia, Athens, GA 30682
| | - Luisa J Coronel
- Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, CA 92093
| | - Huilan Lin
- Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, CA 92093
| | - Patrick K Gomez Menzies
- Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, CA 92093
| | - Mark A Lawson
- Department of Obstetrics, Gynecology, and Reproductive Sciences, School of Medicine, University of California San Diego, La Jolla, CA 92093
| | - Hemal H Patel
- VA San Diego Health Care System, San Diego, CA 92161
- Department of Anesthesiology, School of Medicine, University of California San Diego, La Jolla, CA 92093
| | - JoAnn Trejo
- Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, CA 92093;
| |
Collapse
|
16
|
Characterization of a murine model of endothelial dysfunction induced by chronic intraperitoneal administration of angiotensin II. Sci Rep 2021; 11:21193. [PMID: 34707201 PMCID: PMC8551243 DOI: 10.1038/s41598-021-00676-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 10/14/2021] [Indexed: 02/05/2023] Open
Abstract
Endothelial dysfunction (ED) is a key factor for the development of cardiovascular diseases. Due to its chronic, life-threatening nature, ED only can be studied experimentally in animal models. Therefore, this work was aimed to characterize a murine model of ED induced by a daily intraperitoneal administration of angiotensin II (AGII) for 10 weeks. Oxidative stress, inflammation, vascular remodeling, hypertension, and damage to various target organs were evaluated in treated animals. The results indicated that a chronic intraperitoneal administration of AGII increases the production of systemic soluble VCAM, ROS and ICAM-1 expression, and the production of TNFα, IL1β, IL17A, IL4, TGFβ, and IL10 in the kidney, as well as blood pressure levels; it also promotes vascular remodeling and induces non-alcoholic fatty liver disease, glomerulosclerosis, and proliferative retinopathy. Therefore, the model herein proposed can be a representative model for ED; additionally, it is easy to implement, safe, rapid, and inexpensive.
Collapse
|
17
|
Genomic and Ancestral Variation Underlies the Severity of COVID-19 Clinical Manifestation in Individuals of European Descent. Life (Basel) 2021; 11:life11090921. [PMID: 34575070 PMCID: PMC8470085 DOI: 10.3390/life11090921] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/31/2021] [Accepted: 08/31/2021] [Indexed: 12/13/2022] Open
Abstract
The coronavirus disease (COVID-19) caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is characterized by a wide spectrum of clinical phenotypes ranging from asymptomatic to symptomatic with mild or moderate presentation and severe disease. COVID-19 susceptibility, severity and recovery have demonstrated high variability worldwide. Variances in the host genetic architecture may underlie the inter-individual and population-scale differences in COVID-19 presentation. We performed a genome-wide association analysis employing the genotyping data from AncestryDNA for COVID-19 patients of European descent and used asymptomatic subjects as the control group. We identified 621 genetic variants that were significantly distinct between asymptomatic and acutely symptomatic COVID-19 patients (multiple-testing corrected p-value < 0.001). These variants were found to be associated with pathways governing host immunity, such as interferon, interleukin and cytokine signalling, and known COVID-19 comorbidities, such as obesity and cholesterol metabolism. Further, our ancestry analysis revealed that the asymptomatic COVID-19 patients possess discernibly higher proportions of the Ancestral North Eurasian (ANE) and Eastern Hunter-Gatherer (EHG) ancestry, which was introduced to Europe through Bell Beaker culture (Yamnaya related) and lower fractions of Western Hunter-Gatherer (WHG) ancestry, while severely symptomatic patients have higher fractions of WHG and lower ANE/EHG ancestral components, thereby delineating the likely ancestral differences between the two groups.
Collapse
|
18
|
Kiser JN, Neibergs HL. Identifying Loci Associated With Bovine Corona Virus Infection and Bovine Respiratory Disease in Dairy and Feedlot Cattle. Front Vet Sci 2021; 8:679074. [PMID: 34409086 PMCID: PMC8364960 DOI: 10.3389/fvets.2021.679074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 07/01/2021] [Indexed: 01/04/2023] Open
Abstract
Bovine coronavirus (BCoV) is associated with respiratory and enteric infections in both dairy and beef cattle worldwide. It is also one of a complex of pathogens associated with bovine respiratory disease (BRD), which affects millions of cattle annually. The objectives of this study were to identify loci and heritability estimates associated with BCoV infection and BRD in dairy calves and feedlot cattle. Dairy calves from California (n = 1,938) and New Mexico (n = 647) and feedlot cattle from Colorado (n = 915) and Washington (n = 934) were tested for the presence of BCoV when classified as BRD cases or controls following the McGuirk scoring system. Two comparisons associated with BCoV were investigated: (1) cattle positive for BCoV (BCoV+) were compared to cattle negative for BCoV (BCoV-) and (2) cattle positive for BCoV and affected with BRD (BCoV+BRD+) were compared to cattle negative for BCoV and BRD (BCoV-BRD-). The Illumina BovineHD BeadChip was used for genotyping, and genome-wide association analyses (GWAA) were performed using EMMAX (efficient mixed-model association eXpedited). The GWAA for BCoV+ identified 51 loci (p < 1 × 10-5; 24 feedlot, 16 dairy, 11 combined) associated with infection with BCoV. Three loci were associated with BCoV+ across populations. Heritability estimates for BCoV+ were 0.01 for dairy, 0.11 for feedlot cattle, and 0.03 for the combined population. For BCoV+BRD+, 80 loci (p < 1 × 10-5; 26 feedlot, 25 dairy, 29 combined) were associated including 14 loci across populations. Heritability estimates for BCoV+BRD+ were 0.003 for dairy, 0.44 for feedlot cattle, and 0.07 for the combined population. Several positional candidate genes associated with BCoV and BRD in this study have been associated with other coronaviruses and respiratory infections in humans and mice. These results suggest that selection may reduce susceptibility to BCoV infection and BRD in cattle.
Collapse
Affiliation(s)
- Jennifer N Kiser
- Department of Animal Sciences, Washington State University, Pullman, WA, United States
| | - Holly L Neibergs
- Department of Animal Sciences, Washington State University, Pullman, WA, United States
| |
Collapse
|
19
|
Chen X, Zhang X, Lan L, Xu G, Li Y, Huang S. MALT1 positively correlates with Th1 cells, Th17 cells, and their secreted cytokines and also relates to disease risk, severity, and prognosis of acute ischemic stroke. J Clin Lab Anal 2021; 35:e23903. [PMID: 34273195 PMCID: PMC8418463 DOI: 10.1002/jcla.23903] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 06/27/2021] [Accepted: 06/30/2021] [Indexed: 11/07/2022] Open
Abstract
Background This study aimed to explore the association of mucosa‐associated lymphoid tissue lymphoma translocation protein 1 (MALT1) with acute ischemic stroke (AIS) risk and also to explore its association with T helper type 1 (Th1) cells, Th17 cells, disease severity, and prognosis in AIS patients. Methods One hundred twenty first‐episode AIS patients and 120 non‐AIS patients with high‐stroke‐risk factors (as controls) were recruited. Besides, in the cluster of differentiation 4‐positive (CD4+) T cells, the MALT1 gene expression was detected by reverse transcription quantitative polymerase chain reaction; meanwhile, Th1 and Th17 were detected by flow cytometry. Moreover, serum interferon (IFN)‐γ and interleukin (IL)‐17 were determined by enzyme‐linked immunosorbent assay. Results MALT1 expression was increased in AIS patients compared with controls and also it could differentiate AIS patients from controls, with an area under curve of 0.905 (95% confidence interval: 0.869–0.941). In AIS patients, MALT1 positively correlated with Th1 cells, Th17 cells, IFN‐γ, and IL‐17. Besides, MALT1 positively correlated with the National Institutes of Health Stroke Scale score. Furthermore, the Kaplan‐Meier curve and univariate Cox's regression analyses showed no correlation of MALT1 high expression with recurrence‐free survival (RFS) in AIS patients, although after adjustment using multivariant Cox's regression, high MALT1 expression independently correlated with worse RFS in AIS patients. Conclusion MALT1 expression is increased and positively correlates with disease severity, Th1 cells, and Th17 cells, whose high expression severs as an independent risk factor for worse RFS in AIS patients.
Collapse
Affiliation(s)
- Xia Chen
- Department of Anatomy, Hunan University of Medicine, Huaihua, China
| | - Xuemei Zhang
- Department of Anatomy, Hunan University of Medicine, Huaihua, China
| | - Ling Lan
- Department of Anatomy, Guangxi Medical University, Nanning, China
| | - Guoyao Xu
- Department of Neurology, The First Affiliated Hospital of Hunan University of Medicine, Huaihua, China
| | - Yanchun Li
- Department of Neurology, The First Affiliated Hospital of Hunan University of Medicine, Huaihua, China
| | - Shaoming Huang
- Department of Anatomy, Guangxi Medical University, Nanning, China
| |
Collapse
|
20
|
Eckenstaler R, Sandori J, Gekle M, Benndorf RA. Angiotensin II receptor type 1 - An update on structure, expression and pathology. Biochem Pharmacol 2021; 192:114673. [PMID: 34252409 DOI: 10.1016/j.bcp.2021.114673] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 07/02/2021] [Accepted: 07/06/2021] [Indexed: 12/12/2022]
Abstract
The AT1 receptor, a major effector of the renin-angiotensin system, has been extensively studied in the context of cardiovascular and renal disease. Moreover, angiotensin receptor blockers, sartans, are among the most frequently prescribed drugs for the treatment of hypertension, chronic heart failure and chronic kidney disease. However, precise molecular insights into the structure of this important drug target have not been available until recently. In this context, seminal studies have now revealed exciting new insights into the structure and biased signaling of the receptor and may thus foster the development of novel therapeutic approaches to enhance the efficacy of pharmacological angiotensin receptor antagonism or to enable therapeutic induction of biased receptor activity. In this review, we will therefore highlight these and other seminal publications to summarize the current understanding of the tertiary structure, ligand binding properties and downstream signal transduction of the AT1 receptor.
Collapse
Affiliation(s)
| | - Jana Sandori
- Institute of Pharmacy, Martin-Luther-University, Halle, Germany
| | - Michael Gekle
- Julius-Bernstein-Institute of Physiology, Martin-Luther-University, Halle, Germany
| | - Ralf A Benndorf
- Institute of Pharmacy, Martin-Luther-University, Halle, Germany.
| |
Collapse
|
21
|
Unal MA, Bayrakdar F, Fusco L, Besbinar O, Shuck CE, Yalcin S, Erken MT, Ozkul A, Gurcan C, Panatli O, Summak GY, Gokce C, Orecchioni M, Gazzi A, Vitale F, Somers J, Demir E, Yildiz SS, Nazir H, Grivel JC, Bedognetti D, Crisanti A, Akcali KC, Gogotsi Y, Delogu LG, Yilmazer A. 2D MXenes with antiviral and immunomodulatory properties: A pilot study against SARS-CoV-2. NANO TODAY 2021; 38:101136. [PMID: 33753982 PMCID: PMC7969865 DOI: 10.1016/j.nantod.2021.101136] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/22/2021] [Accepted: 03/15/2021] [Indexed: 05/03/2023]
Abstract
Two-dimensional transition metal carbides/carbonitrides known as MXenes are rapidly growing as multimodal nanoplatforms in biomedicine. Here, taking SARS-CoV-2 as a model, we explored the antiviral properties and immune-profile of a large panel of four highly stable and well-characterized MXenes - Ti3C2Tx, Ta4C3T x , Mo2Ti2C3T x and Nb4C3T x . To start with antiviral assessment, we first selected and deeply analyzed four different SARS-CoV-2 genotypes, common in most countries and carrying the wild type or mutated spike protein. When inhibition of the viral infection was tested in vitro with four viral clades, Ti3C2T x in particular, was able to significantly reduce infection only in SARS-CoV-2/clade GR infected Vero E6 cells. This difference in the antiviral activity, among the four viral particles tested, highlights the importance of considering the viral genotypes and mutations while testing antiviral activity of potential drugs and nanomaterials. Among the other MXenes tested, Mo2Ti2C3T x also showed antiviral properties. Proteomic, functional annotation analysis and comparison to the already published SARS-CoV-2 protein interaction map revealed that MXene-treatment exerts specific inhibitory mechanisms. Envisaging future antiviral MXene-based drug nano-formulations and considering the central importance of the immune response to viral infections, the immune impact of MXenes was evaluated on human primary immune cells by flow cytometry and single-cell mass cytometry on 17 distinct immune subpopulations. Moreover, 40 secreted cytokines were analyzed by Luminex technology. MXene immune profiling revealed i) the excellent bio and immune compatibility of the material, as well as the ability of MXene ii) to inhibit monocytes and iii) to reduce the release of pro-inflammatory cytokines, suggesting an anti-inflammatory effect elicited by MXene. We here report a selection of MXenes and viral SARS-CoV-2 genotypes/mutations, a series of the computational, structural and molecular data depicting deeply the SARS-CoV-2 mechanism of inhibition, as well as high dimensional single-cell immune-MXene profiling. Taken together, our results provide a compendium of knowledge for new developments of MXene-based multi-functioning nanosystems as antivirals and immune-modulators.
Collapse
Affiliation(s)
| | - Fatma Bayrakdar
- Ministry of Health General Directorate of Public Health, Microbiology References Laboratory, Ankara, Turkey
| | - Laura Fusco
- Department of Biomedical Sciences, University of Padua, Padua, Italy
- Cancer Research Department, Sidra Medicine, Doha, Qatar
| | - Omur Besbinar
- Stem Cell Institute, Ankara University, Balgat, Ankara, Turkey
- Department of Biomedical Engineering, Ankara University, Golbasi, Ankara, Turkey
| | - Christopher E Shuck
- A.J. Drexel Nanomaterials Institute and Department of Materials Science and Engineering, Drexel University, Philadelphia, PA, USA
| | - Süleyman Yalcin
- Ministry of Health General Directorate of Public Health, Microbiology References Laboratory, Ankara, Turkey
| | | | - Aykut Ozkul
- Department of Virology, Faculty of Veterinary Medicine, Ankara University, Ankara, Turkey
- Biotechnology Institute, Ankara University, Ankara, Turkey
| | - Cansu Gurcan
- Stem Cell Institute, Ankara University, Balgat, Ankara, Turkey
- Department of Biomedical Engineering, Ankara University, Golbasi, Ankara, Turkey
| | - Oguzhan Panatli
- Department of Biomedical Engineering, Ankara University, Golbasi, Ankara, Turkey
| | | | - Cemile Gokce
- Department of Biomedical Engineering, Ankara University, Golbasi, Ankara, Turkey
| | | | - Arianna Gazzi
- Department of Biomedical Sciences, University of Padua, Padua, Italy
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
| | - Flavia Vitale
- Department of Neurology, Bioengineering, Physical Medicine & Rehabilitation, Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
| | - Julia Somers
- Oregon Health & Sciences University, Department of Molecular and Medical Genetics, Portland, OR, USA
| | - Emek Demir
- Oregon Health & Sciences University, Department of Molecular and Medical Genetics, Portland, OR, USA
| | - Serap Suzuk Yildiz
- Ministry of Health General Directorate of Public Health, Microbiology References Laboratory, Ankara, Turkey
| | - Hasan Nazir
- Department of Chemistry, Ankara University, Tandogan, Ankara, Turkey
| | | | - Davide Bedognetti
- Cancer Research Department, Sidra Medicine, Doha, Qatar
- Department of Internal Medicine and Medical Specialties (DiMI), University of Genoa, Genoa, Italy
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Andrea Crisanti
- Department of Molecular Medicine, Padua University Hospital, Padua, Italy
| | - Kamil Can Akcali
- Stem Cell Institute, Ankara University, Balgat, Ankara, Turkey
- Department of Biophysics, Faculty of Medicine, Ankara University, Ankara, Turkey
| | - Yury Gogotsi
- A.J. Drexel Nanomaterials Institute and Department of Materials Science and Engineering, Drexel University, Philadelphia, PA, USA
| | | | - Açelya Yilmazer
- Stem Cell Institute, Ankara University, Balgat, Ankara, Turkey
- Department of Biomedical Engineering, Ankara University, Golbasi, Ankara, Turkey
| |
Collapse
|
22
|
Ibrahim MAA, Abdelrahman AHM, Mohamed TA, Atia MAM, Al-Hammady MAM, Abdeljawaad KAA, Elkady EM, Moustafa MF, Alrumaihi F, Allemailem KS, El-Seedi HR, Paré PW, Efferth T, Hegazy MEF. In Silico Mining of Terpenes from Red-Sea Invertebrates for SARS-CoV-2 Main Protease (M pro) Inhibitors. Molecules 2021; 26:2082. [PMID: 33916461 PMCID: PMC8038614 DOI: 10.3390/molecules26072082] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/25/2021] [Accepted: 03/30/2021] [Indexed: 02/06/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent for the COVID-19 pandemic, which generated more than 1.82 million deaths in 2020 alone, in addition to 83.8 million infections. Currently, there is no antiviral medication to treat COVID-19. In the search for drug leads, marine-derived metabolites are reported here as prospective SARS-CoV-2 inhibitors. Two hundred and twenty-seven terpene natural products isolated from the biodiverse Red-Sea ecosystem were screened for inhibitor activity against the SARS-CoV-2 main protease (Mpro) using molecular docking and molecular dynamics (MD) simulations combined with molecular mechanics/generalized Born surface area binding energy calculations. On the basis of in silico analyses, six terpenes demonstrated high potency as Mpro inhibitors with ΔGbinding ≤ -40.0 kcal/mol. The stability and binding affinity of the most potent metabolite, erylosides B, were compared to the human immunodeficiency virus protease inhibitor, lopinavir. Erylosides B showed greater binding affinity towards SARS-CoV-2 Mpro than lopinavir over 100 ns with ΔGbinding values of -51.9 vs. -33.6 kcal/mol, respectively. Protein-protein interactions indicate that erylosides B biochemical signaling shares gene components that mediate severe acute respiratory syndrome diseases, including the cytokine- and immune-signaling components BCL2L1, IL2, and PRKC. Pathway enrichment analysis and Boolean network modeling were performed towards a deep dissection and mining of the erylosides B target-function interactions. The current study identifies erylosides B as a promising anti-COVID-19 drug lead that warrants further in vitro and in vivo testing.
Collapse
Affiliation(s)
- Mahmoud A. A. Ibrahim
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia 61519, Egypt; (A.H.M.A.); (K.A.A.A.)
| | - Alaa H. M. Abdelrahman
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia 61519, Egypt; (A.H.M.A.); (K.A.A.A.)
| | - Tarik A. Mohamed
- Chemistry of Medicinal Plants Department, National Research Centre, 33 El-Bohouth St., Dokki, Giza 12622, Egypt;
| | - Mohamed A. M. Atia
- Molecular Genetics and Genome Mapping Laboratory, Genome Mapping Department, Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center (ARC), Giza 12619, Egypt;
| | | | - Khlood A. A. Abdeljawaad
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia 61519, Egypt; (A.H.M.A.); (K.A.A.A.)
| | - Eman M. Elkady
- National Institute of Oceanography & Fisheries, NIOF, Cairo 11516, Egypt; (M.A.M.A.-H.); (E.M.E.)
| | - Mahmoud F. Moustafa
- Department of Biology, College of Science, King Khalid University, Abha 9004, Saudi Arabia;
- Department of Botany & Microbiology, Faculty of Science, South Valley University, Qena 83523, Egypt
| | - Faris Alrumaihi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (F.A.); (K.S.A.)
| | - Khaled S. Allemailem
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (F.A.); (K.S.A.)
| | - Hesham R. El-Seedi
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, S-106 91 Stockholm, Sweden
- Department of Chemistry, Faculty of Science, El-Menoufia University, Shebin El-Kom 32512, Egypt
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
| | - Paul W. Paré
- Department of Chemistry & Biochemistry, Texas Tech University, Lubbock, TX 79409, USA;
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany;
| | - Mohamed-Elamir F. Hegazy
- Chemistry of Medicinal Plants Department, National Research Centre, 33 El-Bohouth St., Dokki, Giza 12622, Egypt;
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany;
| |
Collapse
|
23
|
Sun C, Chen Y, Hu L, Wu Y, Liang M, Ayaz Ahmed M, Bhan C, Guo Z, Yang H, Zuo Y, Yan Y, Zhou Q. Does Famotidine Reduce the Risk of Progression to Severe Disease, Death, and Intubation for COVID-19 Patients? A Systemic Review and Meta-Analysis. Dig Dis Sci 2021; 66:3929-3937. [PMID: 33625613 PMCID: PMC7903022 DOI: 10.1007/s10620-021-06872-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 01/21/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Famotidine was reported to potentially provide benefits to Coronavirus Disease 2019 (COVID-19) patients. However, it remains controversial whether it is effective in treating COVID-19. AIMS This study aimed to explore whether famotidine use is associated with reduced risk of the severity, death, and intubation for COVID-19 patients. METHODS This study was registered on International Prospective Register of Systematic Reviews (PROSPERO) (ID: CRD42020213536). A comprehensive search was performed to identify relevant studies up to October 2020. I-squared statistic and Q-test were utilized to assess the heterogeneity. Pooled risk ratios (RR) and 95% confidence intervals (CI) were calculated through the random effects or fixed effects model according to the heterogeneity. Subgroup analyses, sensitivity analysis, and publication bias assessment were also conducted. RESULTS Five studies including 36,635 subjects were included. We found that famotidine use was associated with a statistically non-significant reduced risk of progression to severe disease, death, and intubation for Coronavirus Disease 2019 (COVID-19) patients (pooled RR was 0.82, 95% CI = 0.52-1.30, P = 0.40). CONCLUSION Famotidine has no significant protective effect in reducing the risk of developing serious illness, death, and intubation for COVID-19 patients. More original studies are needed to further clarify whether it is associated with reduced risk of the severity, death, and intubation for COVID-19 patients.
Collapse
Affiliation(s)
- Chenyu Sun
- Internal Medicine, AMITA Health Saint Joseph Hospital Chicago, 2900 N. Lake Shore Drive, Chicago, IL, 60657, USA.
| | - Yue Chen
- Department of Clinical Medicine, School of the First Clinical Medicine, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, People's Republic of China
| | - Lei Hu
- Department of Clinical Medicine, School of the First Clinical Medicine, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, People's Republic of China
| | - Yile Wu
- Department of Epidemiology and Health Statistics, School of Public, Health Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, People's Republic of China
- Center for Evidence-Based Practice, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Mingming Liang
- Department of Epidemiology and Health Statistics, School of Public, Health Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, People's Republic of China
- Center for Evidence-Based Practice, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Mubashir Ayaz Ahmed
- Internal Medicine, AMITA Health Saint Joseph Hospital Chicago, 2900 N. Lake Shore Drive, Chicago, IL, 60657, USA
| | - Chandur Bhan
- Internal Medicine, AMITA Health Saint Joseph Hospital Chicago, 2900 N. Lake Shore Drive, Chicago, IL, 60657, USA
| | - Zhichun Guo
- Massachusetts College of Pharmacy and Health Sciences, 179 Longwood Ave, Boston, MA, 02115, USA
| | - Hongru Yang
- Massachusetts College of Pharmacy and Health Sciences, 179 Longwood Ave, Boston, MA, 02115, USA
| | - Yijing Zuo
- Massachusetts College of Pharmacy and Health Sciences, 179 Longwood Ave, Boston, MA, 02115, USA
| | - Yue Yan
- Massachusetts College of Pharmacy and Health Sciences, 179 Longwood Ave, Boston, MA, 02115, USA
| | - Qin Zhou
- Radiation Oncology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| |
Collapse
|
24
|
van Gastel J, Leysen H, Boddaert J, Vangenechten L, Luttrell LM, Martin B, Maudsley S. Aging-related modifications to G protein-coupled receptor signaling diversity. Pharmacol Ther 2020; 223:107793. [PMID: 33316288 DOI: 10.1016/j.pharmthera.2020.107793] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 11/26/2020] [Indexed: 02/06/2023]
Abstract
Aging is a highly complex molecular process, affecting nearly all tissue systems in humans and is the highest risk factor in developing neurodegenerative disorders such as Alzheimer's and Parkinson's disease, cardiovascular disease and Type 2 diabetes mellitus. The intense complexity of the aging process creates an incentive to develop more specific drugs that attenuate or even reverse some of the features of premature aging. As our current pharmacopeia is dominated by therapeutics that target members of the G protein-coupled receptor (GPCR) superfamily it may be prudent to search for effective anti-aging therapeutics in this fertile domain. Since the first demonstration of GPCR-based β-arrestin signaling, it has become clear that an enhanced appreciation of GPCR signaling diversity may facilitate the creation of therapeutics with selective signaling activities. Such 'biased' ligand signaling profiles can be effectively investigated using both standard molecular biological techniques as well as high-dimensionality data analyses. Through a more nuanced appreciation of the quantitative nature across the multiple dimensions of signaling bias that drugs possess, researchers may be able to further refine the efficacy of GPCR modulators to impact the complex aberrations that constitute the aging process. Identifying novel effector profiles could expand the effective pharmacopeia and assist in the design of precision medicines. This review discusses potential non-G protein effectors, and specifically their potential therapeutic suitability in aging and age-related disorders.
Collapse
Affiliation(s)
- Jaana van Gastel
- Receptor Biology Lab, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium; Faculty of Pharmacy, Biomedical and Veterinary Science, University of Antwerp, Antwerp, Belgium
| | - Hanne Leysen
- Receptor Biology Lab, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium; Faculty of Pharmacy, Biomedical and Veterinary Science, University of Antwerp, Antwerp, Belgium
| | - Jan Boddaert
- Molecular Pathology Group, Faculty of Medicine and Health Sciences, Laboratory of Cell Biology and Histology, Antwerp, Belgium
| | - Laura Vangenechten
- Receptor Biology Lab, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Louis M Luttrell
- Division of Endocrinology, Diabetes & Medical Genetics, Medical University of South Carolina, USA
| | - Bronwen Martin
- Faculty of Pharmacy, Biomedical and Veterinary Science, University of Antwerp, Antwerp, Belgium
| | - Stuart Maudsley
- Receptor Biology Lab, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium; Faculty of Pharmacy, Biomedical and Veterinary Science, University of Antwerp, Antwerp, Belgium.
| |
Collapse
|