1
|
Abdel-Hamid M, Hamed AM, Walker G, Romeih E. Yogurt fortified with various protein hydrolysates: Texture and functional properties. Food Chem 2024; 461:140861. [PMID: 39167949 DOI: 10.1016/j.foodchem.2024.140861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 08/02/2024] [Accepted: 08/11/2024] [Indexed: 08/23/2024]
Abstract
This work evaluated the impact of incorporating 1% of commercial protein hydrolysates [rice protein hydrolysate (RPH), pea protein hydrolysate (PPH), and casein hydrolysate (CH)] on the functional, microstructure, and texture properties of set yogurt. Yogurt prepared with RPH exhibited the highest viability number of Streptococcus thermophilus. The addition of three hydrolysate types to yogurt revealed significant increases in the antioxidant and ACE-inhibitory activities, where the highest values were noted for the yogurt prepared with RPH. RPH exhibited no differences in texture properties (firmness, consistency, and cohesiveness) to control yogurt. These results were confirmed by scanning electron microscope examination. RPH and control yogurts showed compacted and dense structures accompanied by small pores, whereas CH and PPH yogurt structures were characterized by coarse networks with large voids. Furthermore, there was no significant impact of adding protein hydrolysates on the overall acceptability of yogurt as indicated by a sensory panel.
Collapse
Affiliation(s)
- Mahmoud Abdel-Hamid
- Department of Chemical Sciences, Bernal Institute, University of Limerick, Limerick, Ireland; Dairy Science Department, Faculty of Agriculture, Cairo University, Giza, Egypt.
| | - Ahmed M Hamed
- Dairy Science Department, Faculty of Agriculture, Cairo University, Giza, Egypt; Dairy Processing Technology Centre, Bernal Institute, University of Limerick, Co., Limerick, Ireland
| | - Gavin Walker
- Department of Chemical Sciences, Bernal Institute, University of Limerick, Limerick, Ireland
| | - Ehab Romeih
- Dairy Science Department, Faculty of Agriculture, Cairo University, Giza, Egypt
| |
Collapse
|
2
|
Briceño-Islas G, Mojica L, Urías-Silvas JE. Functional chia (Salvia hispanica L.) co-product protein hydrolysate: An analysis of biochemical, antidiabetic, antioxidant potential and physicochemical properties. Food Chem 2024; 460:140406. [PMID: 39047480 DOI: 10.1016/j.foodchem.2024.140406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/22/2024] [Accepted: 07/07/2024] [Indexed: 07/27/2024]
Abstract
Protein hydrolysates with antioxidant potential have been reported to act as adjuvants in preventing and treating type-2 diabetes (T2D). This work investigated the biochemical, antidiabetic, antioxidant potential, and physicochemical properties of chia meal protein hydrolysate (CMPH). Bands smaller than 14 kDa were observed in the electrophoretic profile. The predominant amino acids were hydrophobic and aromatic. CMPH had the potential to inhibit α-amylase (IC50: 1.76 ± 0.13 mg/mL), α-glucosidase (IC50: 0.42 ± 0.13 mg/mL), and DPP-IV (IC50: 0.46 ± 0.14 mg/mL). Antioxidant activity for ABTS (IC50: 0.236 mg/mL), DPPH (8.83 ± 0.52%), and ORAC (IC25: 0.115 mg/mL). Against chia meal protein isolate (CMPI), CMPH has a broad solubility (pH 2-12.46). Particle size (624.5 ± 247.3 nm), low PDI (0.22 ± 0.06), ζ-potential (-31.1 ± 2.5 mV), and surface hydrophobicity (11,183.33 ± 2024.11) and the intrinsic fluorescence peak of CMPH was lower than that of CMPI. CMPH represents an alternative to add value to the agri-food co-product of the chia seed oil industry, generating food ingredients with outstanding antidiabetic and antioxidant potential.
Collapse
Affiliation(s)
- Gislane Briceño-Islas
- Food Technology, Center for Research and Assistance in Technology and Design of the State of Jalisco, A.C. (CIATEJ), Camino Arenero 1227, El Bajío Arenal, 45019 Zapopan, Jalisco, Mexico
| | - Luis Mojica
- Food Technology, Center for Research and Assistance in Technology and Design of the State of Jalisco, A.C. (CIATEJ), Camino Arenero 1227, El Bajío Arenal, 45019 Zapopan, Jalisco, Mexico
| | - Judith E Urías-Silvas
- Food Technology, Center for Research and Assistance in Technology and Design of the State of Jalisco, A.C. (CIATEJ), Camino Arenero 1227, El Bajío Arenal, 45019 Zapopan, Jalisco, Mexico.
| |
Collapse
|
3
|
Di Stefano E, Hüttmann N, Dekker P, Tomassen MMM, Oliviero T, Fogliano V, Udenigwe CC. Solid-state fermentation of green lentils by Lactiplantibacillus plantarum leads to formation of distinct peptides that are absorbable and enhances DPP-IV inhibitory activity in an intestinal Caco-2 cell model. Food Funct 2024; 15:11220-11235. [PMID: 39450545 DOI: 10.1039/d4fo03326d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Food-derived bioactive compounds mimicking the effects of incretin therapies offer promising opportunities for combination therapies with functional foods, where food matrix interactions, gastrointestinal enzyme activity, and in situ bioactivity should be key considerations. In this study, green lentils were solid-state fermented with Lactiplantibacillus plantarum ATCC8014, in vitro digested and exposed to brush border enzymes of a Caco-2 cell monolayer. Intestinal absorption of peptides and DPP-IV inhibitory activity were then investigated. LC-MS/MS profiles showed that peptides mainly originated from parental proteins of the vicilin, convicilin and legumin families. Fermentation led to the formation of more hydrophobic peptides when compared to the unfermented flour and up to 33.6% of them were transported to the basolateral side of a Caco-2 cell monolayer. Peptides with more than 22 amino acids and with a mass greater than 2000 Da were minimally transported. 73 peptides were uniquely identified in the basolateral fraction suggesting that they resulted from the activity of the brush border enzymes. The DPP-IV activity of Caco-2 cells grown as a polarized monolayer was decreased by 37.3% when exposed to in vitro digested 72 h-fermented lentil flour and 10% when exposed to the unfermented one. Inhibition of DPP-IV in the basolateral fluids was improved in a dose-dependent manner and reached 7.9% when 500 mg mL-1 of in vitro digested 72 h fermented lentil flour was used. Glucose absorption and uptake were minimally affected, suggesting that the previously observed hypoglycemic properties of lentils are likely due to activity on DPP-IV rather than on the inhibition of glucose absorption.
Collapse
Affiliation(s)
- Elisa Di Stefano
- Food Quality and Design Group, Wageningen University and Research, P.O. Box 8129, 6700 EV, Wageningen, The Netherlands
- School of Nutrition Sciences, University of Ottawa, Ottawa, Ontario, K1H 8M5, Canada.
| | - Nico Hüttmann
- John L. Holmes Mass Spectrometry Facility, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Pieter Dekker
- Food Quality and Design Group, Wageningen University and Research, P.O. Box 8129, 6700 EV, Wageningen, The Netherlands
| | - Monic M M Tomassen
- Wageningen Food & Biobased Research, PO Box 17, 6700AA, Wageningen, The Netherlands
| | - Teresa Oliviero
- Food Quality and Design Group, Wageningen University and Research, P.O. Box 8129, 6700 EV, Wageningen, The Netherlands
| | - Vincenzo Fogliano
- Food Quality and Design Group, Wageningen University and Research, P.O. Box 8129, 6700 EV, Wageningen, The Netherlands
| | - Chibuike C Udenigwe
- School of Nutrition Sciences, University of Ottawa, Ottawa, Ontario, K1H 8M5, Canada.
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, K1N 5E3, Canada
| |
Collapse
|
4
|
Apud GR, Kristof I, Ledesma SC, Stivala MG, Aredes Fernandez PA. Health-promoting peptides in fermented beverages. Rev Argent Microbiol 2024; 56:336-345. [PMID: 38599912 DOI: 10.1016/j.ram.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 11/15/2023] [Accepted: 02/03/2024] [Indexed: 04/12/2024] Open
Abstract
Since ancient times, the consumption of fermented low-alcoholic beverages has enjoyed widespread popularity in various countries, because of their distinct flavors and health benefits. Several studies have demonstrated that light to moderate alcohol consumption is associated with beneficial effects on human health, mainly in cardiovascular disease prevention. Fermented beverages have different non-ethanol components that confer beneficial health effects. These bioactive compounds are mainly peptides that have often been overlooked or poorly explored in numerous fermented beverages. The aim of this review is to provide knowledge and generate interest in the biological activities of peptides that are present and/or released during the fermentation process of widely consumed traditional fermented beverages. Additionally, a brief description of the microorganisms involved in these beverages is provided. Furthermore, this review also explores topics related to the detection, isolation, and identification of peptides, addressing the structure-activity relationships of both antioxidant and angiotensin-converting enzyme inhibitory (ACE-I) activities.
Collapse
Affiliation(s)
- Gisselle Raquel Apud
- Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Ayacucho 491, 4000 San Miguel de Tucumán, Argentina
| | - Irina Kristof
- Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Ayacucho 491, 4000 San Miguel de Tucumán, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Silvana Cecilia Ledesma
- Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Ayacucho 491, 4000 San Miguel de Tucumán, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Maria Gilda Stivala
- Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Ayacucho 491, 4000 San Miguel de Tucumán, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Pedro Adrian Aredes Fernandez
- Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Ayacucho 491, 4000 San Miguel de Tucumán, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina.
| |
Collapse
|
5
|
Carrera-Alvarado G, Toldrá F, Mora L. Effect of thermal pretreatment and gastrointestinal digestion on the bioactivity of dry-cured ham bone enzymatic hydrolyzates. Food Res Int 2024; 188:114513. [PMID: 38823886 DOI: 10.1016/j.foodres.2024.114513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 04/29/2024] [Accepted: 05/07/2024] [Indexed: 06/03/2024]
Abstract
This study reports the effect of thermal pretreatment and the use of different commercial proteolytic enzymes (Protamex, Flavourzyme, Protana prime, and Alcalase) on the free amino acid content (FAA), peptide profile, and antioxidant, antidiabetic, antihypertensive, and anti-inflammatory potential (DPPH, FRAP, and ABTS assay, DPP-IV, ACE-I, and NEP inhibitory activities) of dry-cured ham bone hydrolyzates. The effect of in vitro digestion was also determined. Thermal pretreatment significantly increased the degree of hydrolysis, the FAA, and the DPP-IV and ACE-I inhibitory activities. The type of peptidase used was the most significant factor influencing antioxidant activity and neprilysin inhibitory activity. Protana prime hydrolyzates failed to inhibit DPP-IV and neprilysin enzymes and had low values of ACE-I inhibitory activity. After in vitro digestion, bioactivities kept constant in most cases or even increased in ACE-I inhibitory activity. Therefore, hydrolyzates from dry-cured ham bones could serve as a potential source of functional food ingredients for health benefits.
Collapse
Affiliation(s)
- Gisela Carrera-Alvarado
- Instituto de Agroquímica y Tecnología de Alimentos (CSIC), Avenue Agustín Escardino 7, 46980 Valencia, Paterna, Spain.
| | - Fidel Toldrá
- Instituto de Agroquímica y Tecnología de Alimentos (CSIC), Avenue Agustín Escardino 7, 46980 Valencia, Paterna, Spain.
| | - Leticia Mora
- Instituto de Agroquímica y Tecnología de Alimentos (CSIC), Avenue Agustín Escardino 7, 46980 Valencia, Paterna, Spain.
| |
Collapse
|
6
|
Shea Z, Ogando do Granja M, Fletcher EB, Zheng Y, Bewick P, Wang Z, Singer WM, Zhang B. A Review of Bioactive Compound Effects from Primary Legume Protein Sources in Human and Animal Health. Curr Issues Mol Biol 2024; 46:4203-4233. [PMID: 38785525 PMCID: PMC11120442 DOI: 10.3390/cimb46050257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/22/2024] [Accepted: 04/30/2024] [Indexed: 05/25/2024] Open
Abstract
The global demand for sustainable and nutritious food sources has catalyzed interest in legumes, known for their rich repertoire of health-promoting compounds. This review delves into the diverse array of bioactive peptides, protein subunits, isoflavones, antinutritional factors, and saponins found in the primary legume protein sources-soybeans, peas, chickpeas, and mung beans. The current state of research on these compounds is critically evaluated, with an emphasis on the potential health benefits, ranging from antioxidant and anticancer properties to the management of chronic diseases such as diabetes and hypertension. The extensively studied soybean is highlighted and the relatively unexplored potential of other legumes is also included, pointing to a significant, underutilized resource for developing health-enhancing foods. The review advocates for future interdisciplinary research to further unravel the mechanisms of action of these bioactive compounds and to explore their synergistic effects. The ultimate goal is to leverage the full spectrum of benefits offered by legumes, not only to advance human health but also to contribute to the sustainability of food systems. By providing a comprehensive overview of the nutraceutical potential of legumes, this manuscript sets a foundation for future investigations aimed at optimizing the use of legumes in the global pursuit of health and nutritional security.
Collapse
Affiliation(s)
- Zachary Shea
- United States Department of Agriculture–Agricultural Research Service, Raleigh Agricultural Research Station, Raleigh, NC 27606, USA;
| | - Matheus Ogando do Granja
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA 24061, USA; (M.O.d.G.); (E.B.F.); (Y.Z.); (P.B.); (Z.W.)
| | - Elizabeth B. Fletcher
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA 24061, USA; (M.O.d.G.); (E.B.F.); (Y.Z.); (P.B.); (Z.W.)
| | - Yaojie Zheng
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA 24061, USA; (M.O.d.G.); (E.B.F.); (Y.Z.); (P.B.); (Z.W.)
| | - Patrick Bewick
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA 24061, USA; (M.O.d.G.); (E.B.F.); (Y.Z.); (P.B.); (Z.W.)
| | - Zhibo Wang
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA 24061, USA; (M.O.d.G.); (E.B.F.); (Y.Z.); (P.B.); (Z.W.)
- Donald Danforth Plant Science Center, Olivette, MO 63132, USA
| | - William M. Singer
- Center for Advanced Innovation in Agriculture, Virginia Tech, Blacksburg, VA 24061, USA;
| | - Bo Zhang
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA 24061, USA; (M.O.d.G.); (E.B.F.); (Y.Z.); (P.B.); (Z.W.)
| |
Collapse
|
7
|
Pipaliya R, Basaiawmoit B, Sakure AA, Maurya R, Bishnoi M, Kondepudi KK, Singh BP, Paul S, Liu Z, Sarkar P, Patel A, Hati S. Peptidomics-based identification of antihypertensive and antidiabetic peptides from sheep milk fermented using Limosilactobacillus fermentum KGL4 MTCC 25515 with anti-inflammatory activity: in silico, in vitro, and molecular docking studies. Front Chem 2024; 12:1389846. [PMID: 38746020 PMCID: PMC11091447 DOI: 10.3389/fchem.2024.1389846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/01/2024] [Indexed: 05/16/2024] Open
Abstract
This study investigated the synthesis of bioactive peptides from sheep milk through fermentation with Limosilactobacillus fermentum KGL4 MTCC 25515 strain and assessed lipase inhibition, ACE inhibition, α-glucosidase inhibition, and α-amylase inhibition activities during the fermentation process. The study observed the highest activities, reaching 74.82%, 70.02%, 72.19%, and 67.08% (lipase inhibition, ACE inhibition, α-glucosidase inhibition, and α-amylase inhibition) after 48 h at 37°C, respectively. Growth optimization experiments revealed that a 2.5% inoculation rate after 48 h of fermentation time resulted in the highest proteolytic activity at 9.88 mg/mL. Additionally, fractions with less than 3 kDa of molecular weight exhibited superior ACE-inhibition and anti-diabetic activities compared to other fractions. Fermentation of sheep milk with KGL4 led to a significant reduction in the excessive production of NO, TNF-α, IL-6, and IL-1β produced in RAW 267.4 cells upon treatment with LPS. Peptides were purified utilizing SDS-PAGE and electrophoresis on 2D gels, identifying a maximum number of proteins bands ranging 10-70 kDa. Peptide sequences were cross-referenced with AHTPDB and BIOPEP databases, confirming potential antihypertensive and antidiabetic properties. Notably, the peptide (GPFPILV) exhibited the highest HPEPDOCK score against both α-amylase and ACE.
Collapse
Affiliation(s)
- Rinkal Pipaliya
- Department of Dairy Microbiology, SMC College of Dairy Science, Kamdhenu University, Anand, Gujarat, India
| | - Bethsheba Basaiawmoit
- Department of Rural Development and Agricultural Production, North-Eastern Hill University, Tura Campus, Chasingre, Meghalaya, India
| | - Amar A. Sakure
- Departmentof Agriculture Biotechnology, Anand Agricultural University, Anand, Gujarat, India
| | - Ruchika Maurya
- Regional Center for Biotechnology, Faridabad, Haryana, India
- Healthy Gut Research Group, Food and Nutritional Biotechnology Division, National Agri-Food Biotechnology Institute, SAS Nagar, Punjab, India
| | - Mahendra Bishnoi
- Healthy Gut Research Group, Food and Nutritional Biotechnology Division, National Agri-Food Biotechnology Institute, SAS Nagar, Punjab, India
| | - Kanthi Kiran Kondepudi
- Healthy Gut Research Group, Food and Nutritional Biotechnology Division, National Agri-Food Biotechnology Institute, SAS Nagar, Punjab, India
| | - Brij Pal Singh
- Department of Microbiology, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendergarh, India
| | - Souparno Paul
- Department of Microbiology, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendergarh, India
| | - Zhenbin Liu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi’an, China
| | - Preetam Sarkar
- Department of Food Process Engineering, National Institute of Technology, Rourkela, India
| | - Ashish Patel
- Department of Animal Genetics and Breeding, College of Veterinary Science, Kamdhenu University, Anand, Gujarat, India
| | - Subrota Hati
- Department of Dairy Microbiology, SMC College of Dairy Science, Kamdhenu University, Anand, Gujarat, India
| |
Collapse
|
8
|
Sanou A, Konaté K, Belemnaba L, Sama H, Kaboré K, Dakuyo R, Nitiéma M, Dicko MH. In Vivo Diuretic Activity and Anti-Hypertensive Potential of Hibiscus sabdariffa Extract by Inhibition of Angiotensin-Converting Enzyme and Hypertension Precursor Enzymes. Foods 2024; 13:534. [PMID: 38397511 PMCID: PMC10888337 DOI: 10.3390/foods13040534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 02/25/2024] Open
Abstract
Aqueous extracts of calyx from Hibiscus sabdariffa (HS) (roselle) are highly appreciated for their nutritional and therapeutic effects, especially as anti-hypertensive substances. This study aimed to evaluate their anti-hypertensive potential through an in vitro inhibition assay of angiotensin-converting enzyme (ACE) and hypertension precursor enzymes and to assess the in vivo diuretic activity of HS. Results showed that HS extract inhibited enzymes belonging to several classes, such as α-amylase, trypsin, chymotrypsin, xanthine oxidase, lipoxygenase, and angiotensin-converting enzyme. In particular, enzymatic kinetics of ACE indicated a competitive inhibition fashion of HS extract. Furthermore, the extracts showed remarkable diuretic and natriuretic effects at doses of 50 mg/kg/bw, 100 mg/kg/b.w, and 200 mg/kg.b.w. These activities can be explained by the high content of phenolic compounds and essential amino acids. Roselle could be a potential source of nutraceuticals and anti-hypertensive bioactive compounds.
Collapse
Affiliation(s)
- Abdoudramane Sanou
- Laboratory Biochemistry, Biotechnology, Food Technology and Nutrition, Department of Biohemistry and Microbiology, University Joseph KI-ZERBO, Ouagadougou 03 BP 7021, Burkina Faso
| | - Kiessoun Konaté
- Laboratory Biochemistry, Biotechnology, Food Technology and Nutrition, Department of Biohemistry and Microbiology, University Joseph KI-ZERBO, Ouagadougou 03 BP 7021, Burkina Faso
- Applied Sciences and Technologies Training and Research Unit, Department of Biochemistry and Microbiology, University of Dedougou, Dedougou 09 BP 176, Burkina Faso
| | - Lazare Belemnaba
- Department of Traditional Medicine and Pharmacopoeia and Pharmacy, Institute of Research in Health Sciences/National Centre for Scientific and Technological Research (MEPHATRA PH/IRSS/CNRST), Ouagadougou 03 BP 7034, Burkina Faso
| | - Hemayoro Sama
- Laboratory Biochemistry, Biotechnology, Food Technology and Nutrition, Department of Biohemistry and Microbiology, University Joseph KI-ZERBO, Ouagadougou 03 BP 7021, Burkina Faso
| | - Kabakdé Kaboré
- Laboratory Biochemistry, Biotechnology, Food Technology and Nutrition, Department of Biohemistry and Microbiology, University Joseph KI-ZERBO, Ouagadougou 03 BP 7021, Burkina Faso
| | - Roger Dakuyo
- Laboratory Biochemistry, Biotechnology, Food Technology and Nutrition, Department of Biohemistry and Microbiology, University Joseph KI-ZERBO, Ouagadougou 03 BP 7021, Burkina Faso
| | - Mathieu Nitiéma
- Department of Traditional Medicine and Pharmacopoeia and Pharmacy, Institute of Research in Health Sciences/National Centre for Scientific and Technological Research (MEPHATRA PH/IRSS/CNRST), Ouagadougou 03 BP 7034, Burkina Faso
| | - Mamoudou Hama Dicko
- Laboratory Biochemistry, Biotechnology, Food Technology and Nutrition, Department of Biohemistry and Microbiology, University Joseph KI-ZERBO, Ouagadougou 03 BP 7021, Burkina Faso
| |
Collapse
|
9
|
Şensu E, Ayar EN, Okudan EŞ, Özçelik B, Yücetepe A. Characterization of Proteins Extracted from Ulva sp., Padina sp., and Laurencia sp. Macroalgae Using Green Technology: Effect of In Vitro Digestion on Antioxidant and ACE-I Inhibitory Activity. ACS OMEGA 2023; 8:48689-48703. [PMID: 38162757 PMCID: PMC10753567 DOI: 10.1021/acsomega.3c05041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 08/25/2023] [Indexed: 01/03/2024]
Abstract
Macroalgal proteins were extracted from Ulva rigida (URPE) (green), Padina pavonica (PPPE) (brown), and Laurencia obtusa (LOPE) (red) using ultrasound-assisted enzymatic extraction, which is one of the green extraction technologies. Techno-functional, characteristic, and digestibility properties, and biological activities including antioxidant (AOA) and angiotensin-I converting enzyme (ACE-I) inhibitory activities were also investigated. According to the results, the extraction yield (EY) (94.74%) was detected in the extraction of L. obtusa, followed by U. rigida and P. pavonica. PPPE showed the highest ACE-I inhibitory activity before in vitro digestion. In contrast to PPPE, LOPE (20.90 ± 0.00%) and URPE (20.20 ± 0.00%) showed higher ACE-I inhibitory activity after in vitro digestion. The highest total phenolic content (TPC) (77.86 ± 1.00 mg GAE/g) was determined in LOPE. On the other hand, the highest AOACUPRAC (74.69 ± 1.78 mg TE/g) and AOAABTS (251.29 ± 5.0 mg TE/g) were detected in PPPE. After in vitro digestion, LOPE had the highest TPC (22.11 ± 2.18 mg GAE/g), AOACUPRAC (8.41 ± 0.06 mg TE/g), and AOAABTS (88.32 ± 0.65 mg TE/g) (p < 0.05). In vitro protein digestibility of three macroalgal protein extracts ranged from 84.35 ± 2.01% to 94.09 ± 0.00% (p < 0.05). Three macroalgae showed high oil holding capacity (OHC), especially PPPE (410.13 ± 16.37%) (p < 0.05), but they showed minimum foaming and emulsifying properties. The quality of the extracted macroalgal proteins was assessed using FTIR, SDS-PAGE, and DSC analyses. According to our findings, the method applied for macroalgal protein extraction could have a potential the promise of ultrasonication application as an environmentally friendly technology for food industry. Moreover, URPE, PPPE, and LOPE from sustainable sources may be attractive in terms of nourishment for people because of their digestibility, antioxidant properties, and ACE-I inhibitory activities.
Collapse
Affiliation(s)
- Eda Şensu
- Department
of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak TR-34469, Istanbul, Turkey
- Department
of Food Technology, Istanbul Gelisim Higher Vocational School, Istanbul Gelisim
University, Avcılar, Istanbul 34310, Turkey
| | - Eda Nur Ayar
- Department
of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak TR-34469, Istanbul, Turkey
| | | | - Beraat Özçelik
- Department
of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak TR-34469, Istanbul, Turkey
- BIOACTIVE
Research & Innovation Food Manufac. Indust. Trade Ltd., Katar Street, Teknokent ARI-3, B110, Sarıyer 34467, Istanbul, Turkey
| | - Aysun Yücetepe
- Department
of Food Engineering, Faculty of Engineering, Aksaray University, TR-68100 Aksaray, Turkey
| |
Collapse
|
10
|
Garbacz K, Wawrzykowski J, Czelej M, Czernecki T, Waśko A. Recent Trends in the Application of Oilseed-Derived Protein Hydrolysates as Functional Foods. Foods 2023; 12:3861. [PMID: 37893754 PMCID: PMC10605994 DOI: 10.3390/foods12203861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
Oilseed-derived proteins have emerged as an excellent alternative to animal sources for the production of bioactive peptides. The bioactivities exhibited by peptides derived from plant proteins encompass a wide range of health-promoting and disease-preventing effects. Peptides demonstrate potential capabilities in managing diseases associated with free radicals and regulating blood pressure. They can also exhibit properties that lower blood sugar levels and modify immune responses. In addition to their bioactivities, plant-derived bioactive peptides also possess various functional properties that contribute to their versatility. An illustration of this potential can be the ability of peptides to significantly improve food preservation and reduce lipid content. Consequently, plant-derived bioactive peptides hold great promise as ingredients to develop functional products. This comprehensive review aims to provide an overview of the research progress made in the elucidation of the biological activities and functional properties of oilseed-derived proteins. The ultimate objective is to enhance the understanding of plant-derived bioactive peptides and provide valuable insights for further research and use in the food and medicine industries.
Collapse
Affiliation(s)
- Katarzyna Garbacz
- Biolive Innovation Sp. z o. o., 3 Dobrzańskiego Street, 20-262 Lublin, Poland
- Department of Biotechnology, Microbiology and Human Nutrition, Faculty of Food Science and Biotechnology, University of Life Sciences in Lublin, Skromna 8, 20-704 Lublin, Poland
| | - Jacek Wawrzykowski
- Department of Biochemistry, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka 12, 20-033 Lublin, Poland
| | - Michał Czelej
- Biolive Innovation Sp. z o. o., 3 Dobrzańskiego Street, 20-262 Lublin, Poland
- Department of Biotechnology, Microbiology and Human Nutrition, Faculty of Food Science and Biotechnology, University of Life Sciences in Lublin, Skromna 8, 20-704 Lublin, Poland
| | - Tomasz Czernecki
- Department of Biotechnology, Microbiology and Human Nutrition, Faculty of Food Science and Biotechnology, University of Life Sciences in Lublin, Skromna 8, 20-704 Lublin, Poland
| | - Adam Waśko
- Department of Biotechnology, Microbiology and Human Nutrition, Faculty of Food Science and Biotechnology, University of Life Sciences in Lublin, Skromna 8, 20-704 Lublin, Poland
| |
Collapse
|
11
|
Li Y, Yang N, Shi F, Ye F, Huang J. Isolation and identification of angiotensin-converting enzyme inhibitory peptides from Tartary buckwheat albumin. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:5019-5027. [PMID: 36967483 DOI: 10.1002/jsfa.12573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/23/2023] [Accepted: 03/26/2023] [Indexed: 06/08/2023]
Abstract
BACKGROUND Tartary buckwheat protein peptides have been shown to be able to inhibit angiotensin-converting enzyme (ACE), but the exact protein type has been less studied for ACE activity inhibition, and only a few types of ACE inhibitory peptides have been reported. In this study, we purified and identified ACE inhibitory peptides from albumin hydrolysate (AH). RESULTS Albumin, globulin, prolamin and glutelin were extracted from Tartary buckwheat, and their ACE active peptides were obtained by a pepsin-trypsin sequential hydrolysis process. All four hydrolysates exhibited ACE inhibitory activity, and AH displayed the strongest ACE inhibition activity and the highest peptide yield (82.28%). At 0.2 mg mL-1 , the inhibition rate of AH was 79.89%, followed by globulin hydrolysate at 71.84%, while prolamin hydrolysate and glutelin hydrolysate showed lower inhibition rates. The peptides with the highest inhibition rate were then isolated from AH using gel filtration chromatography and reversed-phase high-performance liquid chromatography, and identified using nanoscale high-performance liquid chromatography-tandem mass spectrometry. After isolation and purification, 42 ACE inhibitory peptides were identified in the fraction with the highest inhibition rate, 14 of which were completely novel discoveries in this study. These 14 peptides showed potent ACE inhibitory effects through computer analysis. CONCLUSION Tartary buckwheat albumin can be used as a good source of ACE inhibitory peptides and can be further developed and utilized as edible supplements or drugs. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yongfu Li
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi, China
| | - Nan Yang
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi, China
| | - Feng Shi
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Fei Ye
- Wuxi Zhengda Biology Co. Ltd, Wuxi, China
| | - Jinrong Huang
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, China
| |
Collapse
|
12
|
Arouna N, Gabriele M, Tomassi E, Pucci L. Traditional Fermentation Affects the Nutraceutical Properties of Parkia biglobosa Seeds. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2023:10.1007/s11130-023-01064-8. [PMID: 37378802 DOI: 10.1007/s11130-023-01064-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/08/2023] [Indexed: 06/29/2023]
Abstract
Parkia biglobosa seeds (African locust bean) play a crucial role in the diet and health of Western African populations. The seeds are spontaneously fermented to produce condiments used for food seasoning and stews preparation. Hence, to understand the health benefits of seed-based products from P. biglobosa, total polyphenol content, in vitro and ex vivo antioxidant properties, as well as antihypertensive activity, of fermented and non-fermented seeds were investigated. The Folin-Ciocalteu method was used to determine total polyphenol content; 2,2-diphenyl-1-picrylhydrazyl (DPPH) and ferric reducing antioxidant power (FRAP) tests were used to estimate the in vitro antioxidant activity. The ex vivo antioxidant and antihypertensive activities were evaluated by using cellular antioxidant activity in human red blood cells (CAA-RBC) and angiotensin-converting enzyme (ACE) inhibitory activity assays, respectively. The fermented seeds showed a huge increase in polyphenol content and in vitro antioxidant activities compared to non-fermented ones. The fermented seeds showed a higher potency of biological antioxidant activity than non-fermented ones by exhibiting greater protection of erythrocytes from oxidative damage at a very low dose of extracts. Both fermented and non-fermented seeds have been shown to contain peptides with ACE-inhibitory activity; however, the non-fermented seeds exerted a higher ACE-inhibitory activity than fermented ones. In conclusion, traditional fermentation positively impacted the nutraceutical and health benefits of P. biglobosa seeds. However, the non-fermented seeds should not be ignored. Both fermented and non-fermented seeds can be used as valuable ingredients for the formulation of functional foods.
Collapse
Affiliation(s)
- Nafiou Arouna
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100 - 80055, Portici, Naples, Italy
| | - Morena Gabriele
- Institute of Agricultural Biology and Biotechnology, Italian National Research Council, Via Moruzzi 1, Pisa, 56124, Italy.
| | - Elena Tomassi
- Institute of Agricultural Biology and Biotechnology, Italian National Research Council, Via Moruzzi 1, Pisa, 56124, Italy
| | - Laura Pucci
- Institute of Agricultural Biology and Biotechnology, Italian National Research Council, Via Moruzzi 1, Pisa, 56124, Italy
| |
Collapse
|
13
|
Oliveira-Alves SC, Andrade F, Sousa J, Bento-Silva A, Duarte B, Caçador I, Salazar M, Mecha E, Serra AT, Bronze MR. Soilless Cultivated Halophyte Plants: Volatile, Nutritional, Phytochemical, and Biological Differences. Antioxidants (Basel) 2023; 12:1161. [PMID: 37371891 PMCID: PMC10295272 DOI: 10.3390/antiox12061161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
The use of halophyte plants appears as a potential solution for degraded soil, food safety, freshwater scarcity, and coastal area utilization. These plants have been considered an alternative crop soilless agriculture for sustainable use of natural resources. There are few studies carried out with cultivated halophytes using a soilless cultivation system (SCS) that report their nutraceutical value, as well as their benefits on human health. The objective of this study was to evaluate and correlate the nutritional composition, volatile profile, phytochemical content, and biological activities of seven halophyte species cultivated using a SCS (Disphyma crassifolium L., Crithmum maritimum L., Inula crithmoides L., Mesembryanthemum crystallinum L., Mesembryanthemum nodiflorum L., Salicornia ramosissima J. Woods, and Sarcocornia fruticosa (Mill.) A. J. Scott.). Among these species, results showed that S. fruticosa had a higher content in protein (4.44 g/100 g FW), ash (5.70 g/100 g FW), salt (2.80 g/100 g FW), chloride (4.84 g/100 g FW), minerals (Na, K, Fe, Mg, Mn, Zn, Cu), total phenolics (0.33 mg GAE/g FW), and antioxidant activity (8.17 µmol TEAC/g FW). Regarding the phenolic classes, S. fruticosa and M. nodiflorum were predominant in the flavonoids, while M. crystallinum, C. maritimum, and S. ramosissima were in the phenolic acids. Moreover, S. fruticosa, S. ramosissima, M. nodiflorum, M. crystallinum, and I. crithmoides showed ACE-inhibitory activity, an important target control for hypertension. Concerning the volatile profile, C. maritimum, I. crithmoides, and D. crassifolium were abundant in terpenes and esters, while M. nodiflorum, S. fruticosa, and M. crystallinum were richer in alcohols and aldehydes, and S. ramosissima was richer in aldehydes. Considering the environmental and sustainable roles of cultivated halophytes using a SCS, these results indicate that these species could be considered an alternative to conventional table salt, due to their added nutritional and phytochemical composition, with potential contribution for the antioxidant and anti-hypertensive effects.
Collapse
Affiliation(s)
- Sheila C. Oliveira-Alves
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (S.C.O.-A.); (F.A.); (J.S.); (E.M.); (A.T.S.)
- ITQB-NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Fábio Andrade
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (S.C.O.-A.); (F.A.); (J.S.); (E.M.); (A.T.S.)
| | - João Sousa
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (S.C.O.-A.); (F.A.); (J.S.); (E.M.); (A.T.S.)
| | - Andreia Bento-Silva
- Faculdade de Farmácia, Universidade de Lisboa, Av. Gama Pinto, 1649-003 Lisboa, Portugal;
| | - Bernardo Duarte
- MARE—Marine and Environmental Sciences Centre & ARNET–Aquatic Research Network Associated Laboratory, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal; (B.D.); (I.C.)
- Departamento de Biologia Vegetal, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Isabel Caçador
- MARE—Marine and Environmental Sciences Centre & ARNET–Aquatic Research Network Associated Laboratory, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal; (B.D.); (I.C.)
- Departamento de Biologia Vegetal, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Miguel Salazar
- Riafresh, Sítio do Besouro, CX 547-B, 8005-421 Faro, Portugal;
- MED—Mediterranean Institute for Agriculture, Environment and Development, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Elsa Mecha
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (S.C.O.-A.); (F.A.); (J.S.); (E.M.); (A.T.S.)
- ITQB-NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Ana Teresa Serra
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (S.C.O.-A.); (F.A.); (J.S.); (E.M.); (A.T.S.)
- ITQB-NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Maria Rosário Bronze
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (S.C.O.-A.); (F.A.); (J.S.); (E.M.); (A.T.S.)
- ITQB-NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
- Faculdade de Farmácia, Universidade de Lisboa, Av. Gama Pinto, 1649-003 Lisboa, Portugal;
| |
Collapse
|
14
|
Santos-Sánchez G, Aiello G, Rivardo F, Bartolomei M, Bollati C, Arnoldi A, Cruz-Chamorro I, Lammi C. Antioxidant Effect Assessment and Trans Epithelial Analysis of New Hempseed Protein Hydrolysates. Antioxidants (Basel) 2023; 12:antiox12051099. [PMID: 37237964 DOI: 10.3390/antiox12051099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/09/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
Hempseed (Cannabis sativa) is one of the most promising sources of plant proteins. It contains approximately 24% (w/w) protein, and edestin accounts for approximately 60-80% (w/w) of its total proteins. In a framework of research aimed at fostering the proteins recovered from the press cake by-products generated after the extraction of hempseed oil, two hempseed protein hydrolysates (HH1 and HH2) were produced at an industrial level using a mixture of different enzymes from Aspergillus niger, Aspergillus oryzae, and Bacillus licheniformis for different times (5 h and 18 h). Using a combination of different direct antioxidant tests (DPPH, TEAC, FRAP, and ORAC assays, respectively), it has been demonstrated that HHs exert potent, direct antioxidant activity. A crucial feature of bioactive peptides is their intestinal bioavailability; for this reason, in order to solve this peculiar issue, the ability of HH peptides to be transported by differentiated human intestinal Caco-2 cells has been evaluated. Notably, by using mass spectrometry analysis (HPLC Chip ESI-MS/MS), the stable peptides transported by intestinal cells have been identified, and dedicated experiments confirmed that the trans-epithelial transported HH peptide mixtures retain their antioxidant activity, suggesting that these hempseed hydrolysates may be considered sustainable antioxidant ingredients to be exploited for further application, i.e., nutraceutical and/or food industries.
Collapse
Affiliation(s)
- Guillermo Santos-Sánchez
- Instituto de Biomedicina de Sevilla, IBiS, Hospital Universitario Virgen del Rocío, CSIC, Universidad de Sevilla, 41013 Seville, Spain
- Departamento de Bioquímica Médica y Biología Molecular e Inmunología, Facultad de Medicina, Universidad de Sevilla, 41009 Seville, Spain
- Department of Pharmaceutical Sciences, University of Milan, via Mangiagalli 25, 20133 Milan, Italy
| | - Gilda Aiello
- Department of Human Science and Quality of Life Promotion, Telematic University San Raffaele, 00166 Rome, Italy
| | - Fabrizio Rivardo
- A. Costantino & C. Spa, Via Francesco Romana 11-15, 10083 Favria, Italy
| | - Martina Bartolomei
- Department of Pharmaceutical Sciences, University of Milan, via Mangiagalli 25, 20133 Milan, Italy
| | - Carlotta Bollati
- Department of Pharmaceutical Sciences, University of Milan, via Mangiagalli 25, 20133 Milan, Italy
| | - Anna Arnoldi
- Department of Pharmaceutical Sciences, University of Milan, via Mangiagalli 25, 20133 Milan, Italy
| | - Ivan Cruz-Chamorro
- Instituto de Biomedicina de Sevilla, IBiS, Hospital Universitario Virgen del Rocío, CSIC, Universidad de Sevilla, 41013 Seville, Spain
- Departamento de Bioquímica Médica y Biología Molecular e Inmunología, Facultad de Medicina, Universidad de Sevilla, 41009 Seville, Spain
- Department of Pharmaceutical Sciences, University of Milan, via Mangiagalli 25, 20133 Milan, Italy
| | - Carmen Lammi
- Department of Pharmaceutical Sciences, University of Milan, via Mangiagalli 25, 20133 Milan, Italy
| |
Collapse
|
15
|
Dhiman A, Thakur K, Parmar V, Sharma S, Sharma R, Kaur G, Singh B, Suhag R. New insights into tailoring physicochemical and techno-functional properties of plant proteins using conventional and emerging technologies. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2023. [DOI: 10.1007/s11694-023-01919-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
16
|
Properties of ACE inhibitory peptides isolated from Sipunculus nudus L and a DSPE-PEG modification for sustained release anti-hypertension agent. Process Biochem 2023. [DOI: 10.1016/j.procbio.2023.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
17
|
Gabriele M, Arouna N, Árvay J, Longo V, Pucci L. Sourdough Fermentation Improves the Antioxidant, Antihypertensive, and Anti-Inflammatory Properties of Triticum dicoccum. Int J Mol Sci 2023; 24:ijms24076283. [PMID: 37047259 PMCID: PMC10094579 DOI: 10.3390/ijms24076283] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/17/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
The fermentation process has been widely used to improve plant-based foods’ nutritional and nutraceutical properties. This study aimed to investigate and compare the impact of sourdough fermentation on the bioactive content and profile, antioxidant and antihypertensive activities, as well as the anti-inflammatory properties of fermented (FS) and non-fermented (NFS) flour from Tuscan Triticum dicoccum wheat (spelt) on tumor necrosis factor-alpha (TNF-α)-inflamed human intestinal epithelial cells (HT-29). FS showed significantly higher total phenolic and flavonoid content, in vitro and ex vivo antioxidant activities, and ACE-inhibitory activities than NFS. Gallic acid was identified by HPLC-DAD as the most representative polyphenol, followed by rutin, trans-ferulic acid, iso-quercitrin, and quercetin, in the fermented spelt sample. Instead, rutin and gallic acid were identified as the predominant compounds in the non-fermented ones. Moreover, FS exhibited a better protective effect on inflamed HT-29 cells by significantly counteracting the TNFα-induced alterations, lowering the expression of IL-8, COX-2, and ICAM-1 inflammatory mediator while enhancing antioxidant enzyme HO-1 gene expression. In conclusion, sourdough fermentation positively affected the nutraceutical and functional properties of spelt, which may represent a valuable ingredient for the formulation of functional foods and a key product for managing hypertension and inflammatory intestinal diseases.
Collapse
Affiliation(s)
- Morena Gabriele
- Italian National Research Council, Institute of Agricultural Biology and Biotechnology, Via Moruzzi 1, 56124 Pisa, Italy; (V.L.); (L.P.)
- Correspondence: ; Tel.: +39-050-6212752
| | - Nafiou Arouna
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Naples, Italy;
| | - Július Árvay
- Institute of Food Sciences, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture, 949 76 Nitra, Slovakia;
| | - Vincenzo Longo
- Italian National Research Council, Institute of Agricultural Biology and Biotechnology, Via Moruzzi 1, 56124 Pisa, Italy; (V.L.); (L.P.)
| | - Laura Pucci
- Italian National Research Council, Institute of Agricultural Biology and Biotechnology, Via Moruzzi 1, 56124 Pisa, Italy; (V.L.); (L.P.)
| |
Collapse
|
18
|
Landim APM, Tiburski JH, Mellinger CG, Juliano P, Rosenthal A. Potential Application of High Hydrostatic Pressure on the Production of Hydrolyzed Proteins with Antioxidant and Antihypertensive Properties and Low Allergenicity: A Review. Foods 2023; 12:foods12030630. [PMID: 36766158 PMCID: PMC9914325 DOI: 10.3390/foods12030630] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/19/2023] [Accepted: 01/24/2023] [Indexed: 02/05/2023] Open
Abstract
The high hydrostatic pressure (HHP) process has been studied for several applications in food technology and has been commercially implemented in several countries, mainly for non-thermal pasteurization and shelf-life extension of food products. HHP processing has been demonstrated to accelerate proteolytic hydrolysis at a specific combination of pressure and pressure-holding time for a given protein source and enzyme. The enzymatic hydrolysis of proteins is a well-known alternative to producing biologically active peptides, with antioxidant and antihypertensive capacity, from different food protein sources. However, some of these protein sources contain allergenic epitopes which are often not degraded by traditional hydrolysis. Moreover, the peptide profile and related biological activity of a hydrolysate depend on the protein source, the enzymes used, the parameters of the proteolysis process (pH, temperature, time of hydrolysis), and the use of other technologies such as HHP. The present review aims to provide an update on the use of HHP for improving enzymatic hydrolysis, with a particular focus on studies which evaluated hydrolysate antihypertensive and antioxidant capacity, as well as residual allergenicity. Overall, HHP has been shown to improve the biological properties of hydrolysates. While protein allergenicity can be reduced with traditional hydrolysis, HHP can further reduce the allergenicity. Compared with traditional hydrolysis methods, HHP-assisted protein hydrolysis offers a greater opportunity to add value to protein-rich products through conversion into high-end hydrolysate products with enhanced nutritional and functional properties.
Collapse
Affiliation(s)
- Ana Paula Miguel Landim
- Embrapa Agroindústria de Alimentos, Rio de Janeiro 23020-470, RJ, Brazil
- Postgraduate Program in Food Science and Technology, Federal Rural University of Rio de Janeiro (UFRRJ), Seropédica 23897-000, RJ, Brazil
| | - Julia Hauck Tiburski
- Department of Food Technology, Federal Rural University of Rio de Janeiro (UFRRJ), Seropédica 23897-000, RJ, Brazil
| | - Caroline Grassi Mellinger
- Embrapa Agroindústria de Alimentos, Rio de Janeiro 23020-470, RJ, Brazil
- Postgraduate Program in Food Science and Technology, Federal Rural University of Rio de Janeiro (UFRRJ), Seropédica 23897-000, RJ, Brazil
| | - Pablo Juliano
- CSIRO Agriculture and Food, Werribee, VIC 3030, Australia
| | - Amauri Rosenthal
- Embrapa Agroindústria de Alimentos, Rio de Janeiro 23020-470, RJ, Brazil
- Postgraduate Program in Food Science and Technology, Federal Rural University of Rio de Janeiro (UFRRJ), Seropédica 23897-000, RJ, Brazil
- Correspondence: ; Tel./Fax: +55-21-3622-9620
| |
Collapse
|
19
|
Ma K, Wang Z, Ju X, Huang J, He R. Rapeseed peptide inhibits HepG2 cell proliferation by regulating the mitochondrial and P53 signaling pathways. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:1474-1483. [PMID: 36168817 DOI: 10.1002/jsfa.12243] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 05/12/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Rapeseed peptide, extracted from rapeseed protein, is known to have a variety of biological activities. In this study, the anti-proliferation effect and molecular mechanism of rapeseed peptide on HepG2 cells were investigated. RESULTS In vitro anticancer experiments showed that the rapeseed peptide NDGNQPL could inhibit HepG2 cell proliferation in a concentration-dependent manner [half maximal inhibitory concentration (IC50 ), 1.56 mmol L-1 ). HepG2 cells were induced by NDGNQPL at a 0.5 mmol L-1 concentration and exhibited a 28.39 ± 0.80% apoptosis rate and a cell cycle arrest in the G0/G1 phase. Meanwhile, rapeseed peptide induced a decrease in mitochondrial membrane potential, an increase in reactive oxygen species (ROS) release, and changes in the nuclear morphology of HepG2 cells, indicating that rapeseed peptide could induce cell apoptosis through the mitochondrial pathway. In addition, rapeseed peptide activated the proliferation-related P53 signaling pathway, in which the expression levels of P53, P21, and cleaved-caspase3 were up-regulated, while the expression levels of murine double minute 2 (MDM2) were down-regulated. In molecular docking simulations, NDGNQPL exhibited a good affinity for the MDM2 molecule, which supported the notion that the rapeseed peptide is able to inhibit MDM2, a negative regulator of P53. CONCLUSION The current results indicate that the rapeseed-derived NDGNQPL peptide has the potential to inhibit the proliferation of HepG2 cells and promote human health. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Keer Ma
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
| | - Zhigao Wang
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
| | - Xingrong Ju
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
| | - Jiankang Huang
- Thyroid and Breast Surgery, Second People's Hospital of Anhui Province, Hefei, China
| | - Rong He
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
| |
Collapse
|
20
|
In Silico Prospecting for Novel Bioactive Peptides from Seafoods: A Case Study on Pacific Oyster ( Crassostrea gigas). Molecules 2023; 28:molecules28020651. [PMID: 36677709 PMCID: PMC9867001 DOI: 10.3390/molecules28020651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/28/2022] [Accepted: 01/03/2023] [Indexed: 01/11/2023] Open
Abstract
Pacific oyster (Crassostrea gigas), an abundant bivalve consumed across the Pacific, is known to possess a wide range of bioactivities. While there has been some work on its bioactive hydrolysates, the discovery of bioactive peptides (BAPs) remains limited due to the resource-intensive nature of the existing discovery pipeline. To overcome this constraint, in silico-based prospecting is employed to accelerate BAP discovery. Major oyster proteins were digested virtually under a simulated gastrointestinal condition to generate virtual peptide products that were screened against existing databases for peptide bioactivities, toxicity, bitterness, stability in the intestine and in the blood, and novelty. Five peptide candidates were shortlisted showing antidiabetic, anti-inflammatory, antihypertensive, antimicrobial, and anticancer potential. By employing this approach, oyster BAPs were identified at a faster rate, with a wider applicability reach. With the growing market for peptide-based nutraceuticals, this provides an efficient workflow for candidate scouting and end-use investigation for targeted functional product preparation.
Collapse
|
21
|
Magouz O, Mehanna N, Khalifa M, Sakr H, Gensberger-Reigl S, Dalabasmaz S, Pischetsrieder M. Profiles, antioxidative and ACE inhibitory activity of peptides released from fermented buttermilk before and after simulated gastrointestinal digestion. INNOV FOOD SCI EMERG 2023. [DOI: 10.1016/j.ifset.2022.103266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
22
|
Enzymatic Modification of Plant Proteins for Improved Functional and Bioactive Properties. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02971-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
23
|
Uruc K, Tekin A, Sahingil D, Hayaloglu A. An alternative plant-based fermented milk with kefir culture using apricot (Prunus armeniaca L.) seed extract: Changes in texture, volatiles and bioactivity during storage. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.103189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
24
|
Screening and Molecular Mechanisms of Novel ACE-Inhibitory Peptides from Gracilariopsis lemaneiformis. Int J Mol Sci 2022; 23:ijms232314850. [PMID: 36499176 PMCID: PMC9739792 DOI: 10.3390/ijms232314850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/10/2022] [Accepted: 11/19/2022] [Indexed: 12/05/2022] Open
Abstract
Candidate peptides with novel angiotensin-I-converting enzyme (ACE) inhibitor activity were obtained from hydrolysates of Gracilariopsis lemaneiformis by virtual screening method. Our results showed that G. lemaneiformis peptides (GLP) could significantly lower blood pressure in spontaneously hypertensive rats (SHR). At least 101 peptide sequences of GLP were identified by LC-MS/MS analysis and subjected to virtual screening. A total of 20 peptides with the highest docking score were selected and chemically synthesized in order to verify their ACE-inhibitory activities. Among them, SFYYGK, RLVPVPY, and YIGNNPAKG showed good effects with IC50 values of 6.45 ± 0.22, 9.18 ± 0.42, and 11.23 ± 0.23 µmoL/L, respectively. Molecular docking studies revealed that three peptides interacted with the active center of ACE by hydrogen bonding, hydrophobic interactions, and electrostatic forces. These peptides could form stable complexes with ACE. Furthermore, SFYYGK, RLVPVPY, and YIGNNPAKG significantly reduced systolic blood pressure (SBP) in SHR. YIGNNPAKG exhibited the highest antihypertensive effect, with the largest decrease in SBP (approximately 23 mmHg). In conclusion, SFYYGK, RLVPVPY, and YIGNNPAKG can function as potent therapeutic candidates for hypertension treatment.
Collapse
|
25
|
Impact of Gastrointestinal Digestion Simulation on the Formation of Angiotensin-I-Converting Enzyme Inhibitory (ACE-I) Peptides from Germinated Lamtoro Gung Flour. Foods 2022; 11:foods11233769. [PMID: 36496578 PMCID: PMC9737618 DOI: 10.3390/foods11233769] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 11/25/2022] Open
Abstract
The germination of lamtoro gung has been shown to increase the angiotensin-I-converting enzyme inhibitory (ACE-I) activity in previous studies. The 48 h germinated flour had the highest ACE-I activity. Administration of the gastrointestinal digestion (GID) simulation with commercial enzymes was expected to increase the ACE-I activity. However, the GID simulation to increase ACE-I in the germinated lamtoro gung flour has not been found. Therefore, this study aimed to evaluate the GID simulation of ACE-I peptides in sprouted lamtoro gung flour. This study also identified and characterised the peptide with the ACE-I activity. The GID simulation was performed using commercial pepsin (pH 2) and pancreatin (pH 7.5). Both simulations occurred at 37 °C for 240 min. The degree of hydrolysis, peptide concentration, and ACE-I activity was analysed. Samples with the highest ACE-I activity were then fractionated and identified, to determine the peptide responsible for the ACE-I activity. The 180 min GID simulation in the test sample showed the highest ACE-I activity (89.70%). This result was supported by an increased degree of hydrolysis (DH) and peptide concentrations throughout the GID simulation. The <1 kDa peptide fraction had the highest inhibitory activity and had the most elevated peptide portion (54.69%). Peptide sequences containing crucial amino acids were found in the <1 kDa peptide fraction. PRPPKPP, PPPPPGARAP, and PFPPSNPPP had proline in the C and N terminal residues. The peptides obtained also had other biological activities, such as a DPP IV inhibitor, an alpha-glucosidase inhibitor, and antioxidative activity. Based on the toxicity prediction, those peptides are non-toxic and safe to consume.
Collapse
|
26
|
Zhang B, Liu J, Wen H, Jiang F, Wang E, Zhang T. Structural requirements and interaction mechanisms of ACE inhibitory peptides: molecular simulation and thermodynamics studies on LAPYK and its modified peptides. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2022.06.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
27
|
García-Castro A, Román-Gutiérrez AD, Castañeda-Ovando A, Cariño-Cortés R, Acevedo-Sandoval OA, López-Perea P, Guzmán-Ortiz FA. Cereals as a Source of Bioactive Compounds with Anti-Hypertensive Activity and Their Intake in Times of COVID-19. Foods 2022; 11:3231. [PMID: 37430980 PMCID: PMC9601750 DOI: 10.3390/foods11203231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/08/2022] [Accepted: 10/11/2022] [Indexed: 11/16/2022] Open
Abstract
Cereals have phytochemical compounds that can diminish the incidence of chronic diseases such as hypertension. The angiotensin-converting enzyme 2 (ACE2) participates in the modulation of blood pressure and is the principal receptor of the virus SARS-CoV-2. The inhibitors of the angiotensin-converting enzyme (ACE) and the block receptors of angiotensin II regulate the expression of ACE2; thus, they could be useful in the treatment of patients infected with SARS-CoV-2. The inferior peptides from 1 to 3 kDa and the hydrophobic amino acids are the best candidates to inhibit ACE, and these compounds are present in rice, corn, wheat, oats, sorghum, and barley. In addition, the vitamins C and E, phenolic acids, and flavonoids present in cereals show a reduction in the oxidative stress involved in the pathogenesis of hypertension. The influence of ACE on hypertension and COVID-19 has turned into a primary point of control and treatment from the nutritional perspective. The objective of this work was to describe the inhibitory effect of the angiotensin-converting enzyme that the bioactive compounds present in cereals possess in order to lower blood pressure and how their consumption could be associated with reducing the virulence of COVID-19.
Collapse
Affiliation(s)
- Abigail García-Castro
- Área Académica de Química, Universidad Autónoma del Estado de Hidalgo, Carretera Pachuca–Tulancingo, Km 4.5 s/n, Mineral de la Reforma, Hidalgo 42184, Mexico
| | - Alma Delia Román-Gutiérrez
- Área Académica de Química, Universidad Autónoma del Estado de Hidalgo, Carretera Pachuca–Tulancingo, Km 4.5 s/n, Mineral de la Reforma, Hidalgo 42184, Mexico
| | - Araceli Castañeda-Ovando
- Área Académica de Química, Universidad Autónoma del Estado de Hidalgo, Carretera Pachuca–Tulancingo, Km 4.5 s/n, Mineral de la Reforma, Hidalgo 42184, Mexico
| | - Raquel Cariño-Cortés
- Área Académica de Medicina, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Elíseo Ramírez Ulloa, 400, Doctores, Pachuca de Soto 42090, Mexico
| | - Otilio Arturo Acevedo-Sandoval
- Área Académica de Química, Universidad Autónoma del Estado de Hidalgo, Carretera Pachuca–Tulancingo, Km 4.5 s/n, Mineral de la Reforma, Hidalgo 42184, Mexico
| | - Patricia López-Perea
- Área de Ingeniería Agroindustrial, Universidad Politécnica Francisco I. Madero, Francisco I. Madero, Hidalgo 42660, Mexico
| | - Fabiola Araceli Guzmán-Ortiz
- CONACYT, Universidad Autónoma del Estado de Hidalgo, Carretera Pachuca-Tulancingo Km 4.5 s/n, Mineral de la Reforma, Hidalgo 42184, Mexico
| |
Collapse
|
28
|
The Effect of Soybean Peptides on Improving Quality and the ACE Inhibitory Bioactivity of Extruded Rice. Processes (Basel) 2022. [DOI: 10.3390/pr10101921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
It is crucial to address the dietary problems of hypertensive patients. The effect and mechanism of different contents of soybean protein on cooking quality and angiotensin-converting enzyme (ACE) inhibitory action in the extruded rice were firstly investigated. The results showed that the extruded rice with soybean protein possessed the higher taste value (90.32 ± 2.31), hardness (2.65 ± 0.01 g), and good pasting quality (p ≤ 0.05). Meanwhile, the soybean protein notably retarded the starch digestibility; the sample with 6% soybean protein showed the fewest rapidly digestible starch (RDS) content (78.82 ± 0.01 mg g−1) and the most slowly digestible starch (SDS) content (8.97 ± 0.45 mg g−1). Importantly, the ACE inhibition rate improved from 17.09 ± 0.01% to 74.02 ± 0.65% in the 6% soybean protein sample because of the production of peptides. The peptide composition of samples were compared, which showed that the effective ACE-inhibitory peptides usually contain 2~20 amino acids, and Pro, Leu, Ile, Val, Phe, and Ala were the main components. Overall, moderate soybean protein would give a good quality and lower ACE activity in extruded food.
Collapse
|
29
|
Preparation, Characterization and In Vitro Stability of a Novel ACE-Inhibitory Peptide from Soybean Protein. Foods 2022; 11:foods11172667. [PMID: 36076853 PMCID: PMC9455805 DOI: 10.3390/foods11172667] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 12/12/2022] Open
Abstract
A soy protein isolate was hydrolyzed with Alcalase®, Flavourzyme® and their combination, and the resulting hydrolysates (A, F and A + F) were ultrafiltered and analyzed through SDS-PAGE. Fractions with MW < 1 kDa were investigated for their ACE-inhibitory activity, and the most active one (A < 1 kDa) was purified by semi-preparative RP-HPLC, affording three further subfractions. NMR analysis and Edman degradation of the most active subfraction (A1) enabled the identification of four putative sequences (ALKPDNR, VVPD, NDRP and NDTP), which were prepared by solid-phase synthesis. The comparison of their ACE-inhibitory activities suggested that the novel peptide NDRP might be the main agent responsible for A1 fraction ACE inhibition (ACE inhibition = 87.75 ± 0.61%; IC50 = 148.28 ± 9.83 μg mL−1). NDRP acts as a non-competitive inhibitor and is stable towards gastrointestinal simulated digestion. The Multiple Reaction Monitoring (MRM) analysis confirmed the presence of NDRP in A < 1 kDa.
Collapse
|
30
|
Sandhiutami NMD, Dewi RS, Rahma F, Yang F. Potential Use of Some Indonesian Plants to Inhibits Angiotensin-converting Enzyme In Vitro. Open Access Maced J Med Sci 2022. [DOI: 10.3889/oamjms.2022.10251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND: Some Indonesian plants, such as Vaccinium varingiaefolium Miq., Plectranthus scutellarioides (L.) R.Br., Syzygium myrtifolium Walp., and Eclipta prostrata (L.) L., are rich of flavonoid and anthocyanin. Flavonoid, flavan-3-ol, quercetin, anthocyanin, and tannin compounds can reduce systemic vascular resistance because they cause vasodilation and are thought to be able to influence the function of angiotensin-converting enzyme (ACE) and inhibit ACE activity, which plays an important role in the process of hypertension.
AIM: This study aims to determine the potential of some Indonesian plants to inhibit ACE activity.
METHODS: Testing of ACE inhibitory activity is carried out by the hippuric acid compounds formed as a result of the reaction between the substrate and the enzyme, then measured spectrophotometrically. The inhibitory and IC50 values of each test sample were compared with the positive control of Captopril.
RESULTS: The four plant extracts contained secondary metabolites, such as flavonoids, tannins, saponins, quinones, steroids, triterpenoids, and essential oils. Ethanol extract of V. varingiaefolium Miq., P. scutellarioides (L.) R.Br., S. myrtifolium Walp., and E. prostrata (L.) L. each had an IC50 value of ACE inhibition activity of 131.4 ppm, 206. 7 ppm, 151.2 ppm, and 196.0 ppm. The IC50 value of the Captopril with inhibition of ACE activity is 11.1 ppm.
CONCLUSION: This study shows that some Indonesian plants have the activity to inhibit the ACE and potential antihypertensive drug candidates with ACE inhibitory activity.
Collapse
|
31
|
Fadimu GJ, Gill H, Farahnaky A, Truong T. Improving the enzymolysis efficiency of lupin protein by ultrasound pretreatment: Effect on antihypertensive, antidiabetic and antioxidant activities of the hydrolysates. Food Chem 2022; 383:132457. [DOI: 10.1016/j.foodchem.2022.132457] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 02/08/2022] [Accepted: 02/11/2022] [Indexed: 12/15/2022]
|
32
|
Expeller-Pressed Pomegranate Seed (Punica granatum L.) as a Protein Source for the Production of Antioxidant Peptides. Int J Pept Res Ther 2022. [DOI: 10.1007/s10989-022-10432-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
33
|
Bouchard J, Valookaran AF, Aloud BM, Raj P, Malunga LN, Thandapilly SJ, Netticadan T. Impact of oats in the prevention/management of hypertension. Food Chem 2022; 381:132198. [PMID: 35123221 DOI: 10.1016/j.foodchem.2022.132198] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 01/16/2022] [Accepted: 01/17/2022] [Indexed: 12/24/2022]
Abstract
Oats are a rich source of a soluble fibre, beta-glucan, phenolic compounds, as well as functional lipid and protein components that could potentially aid in preventing and managing hypertension. Processing techniques commonly used to manufacture oat based foods have been shown to improve its physiological efficacy. Hypertension is a common condition that is a risk factor for cardiovascular disease, a primary cause of mortality worldwide. Though exercise and pharmacological interventions are often used in the management of hypertension, diet is an incredibly important factor. One preclinical study and a handful of clinical studies have shown that oat components/products are effective in lowering blood pressure. However, research in this area is limited and more studies are needed to elucidate the anti-hypertensive potential of oats.
Collapse
Affiliation(s)
- Jenny Bouchard
- Richardson Center for Functional Foods and Nutraceuticals, Winnipeg, MB, Canada; Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB, Canada; Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, MB, Canada
| | - Aleena Francis Valookaran
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, MB, Canada; Canadian Centre for Agri-Food Research in Health and Medicine , Winnipeg, MB, Canada
| | | | - Pema Raj
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, MB, Canada; Canadian Centre for Agri-Food Research in Health and Medicine , Winnipeg, MB, Canada
| | - Lovemore Nkhata Malunga
- Richardson Center for Functional Foods and Nutraceuticals, Winnipeg, MB, Canada; Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB, Canada; Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, MB, Canada
| | - Sijo Joseph Thandapilly
- Richardson Center for Functional Foods and Nutraceuticals, Winnipeg, MB, Canada; Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB, Canada; Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, MB, Canada.
| | - Thomas Netticadan
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, MB, Canada; Canadian Centre for Agri-Food Research in Health and Medicine , Winnipeg, MB, Canada; Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
34
|
Fadimu GJ, Farahnaky A, Gill H, Truong T. Influence of ultrasonic pretreatment on structural properties and biological activities of lupin protein hydrolysate. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15549] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Gbemisola J. Fadimu
- School of Science RMIT University GPO Box 2476 Melbourne Victoria 3001 Australia
| | - Asgar Farahnaky
- School of Science RMIT University GPO Box 2476 Melbourne Victoria 3001 Australia
| | - Harsharn Gill
- School of Science RMIT University GPO Box 2476 Melbourne Victoria 3001 Australia
| | - Tuyen Truong
- School of Science RMIT University GPO Box 2476 Melbourne Victoria 3001 Australia
| |
Collapse
|
35
|
Zhang P, Chang C, Liu H, Yan Q, Jiang Z. Efficient enzymatic production of angiotensin I-converting enzyme inhibitory peptides from three protein-rich materials by electrolyzed water pretreatment. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
36
|
Samtiya M, Acharya S, Pandey KK, Aluko RE, Udenigwe CC, Dhewa T. Production, Purification, and Potential Health Applications of Edible Seeds' Bioactive Peptides: A Concise Review. Foods 2021; 10:foods10112696. [PMID: 34828976 PMCID: PMC8621896 DOI: 10.3390/foods10112696] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/26/2021] [Accepted: 11/01/2021] [Indexed: 12/14/2022] Open
Abstract
Edible seeds play a significant role in contributing essential nutritional needs and impart several health benefits to improve the quality of human life. Previous literature evidence has confirmed that edible seed proteins, their enzymatic hydrolysates, and bioactive peptides (BAPs) have proven and potential attributes to ameliorate numerous chronic disorders through the modulation of activities of several molecular markers. Edible seed-derived proteins and peptides have gained much interest from researchers worldwide as ingredients to formulate therapeutic functional foods and nutraceuticals. In this review, four main methods are discussed (enzymatic hydrolysis, gastrointestinal digestion, fermentation, and genetic engineering) that are used for the production of BAPs, including their purification and characterization. This article’s main aim is to provide current knowledge regarding several health-promoting properties of edible seed BAPs in terms of antihypertensive, anti-cancer, antioxidative, anti-inflammatory, and hypoglycemic activities.
Collapse
Affiliation(s)
- Mrinal Samtiya
- Department of Nutrition Biology, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendergarh 123031, India;
| | - Sovon Acharya
- Research and Development Unit, Abiocis Bio-Science Pvt. Ltd., Hyderabad 500026, India; (S.A.); (K.K.P.)
| | - Kush Kumar Pandey
- Research and Development Unit, Abiocis Bio-Science Pvt. Ltd., Hyderabad 500026, India; (S.A.); (K.K.P.)
| | - Rotimi E. Aluko
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- Correspondence: (R.E.A.); (T.D.)
| | - Chibuike C. Udenigwe
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1H 8M5, Canada;
| | - Tejpal Dhewa
- Department of Nutrition Biology, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendergarh 123031, India;
- Correspondence: (R.E.A.); (T.D.)
| |
Collapse
|
37
|
Ma K, Wang Y, Wang M, Wang Z, Wang X, Ju X, He R. Antihypertensive activity of the ACE-renin inhibitory peptide derived from Moringa oleifera protein. Food Funct 2021; 12:8994-9006. [PMID: 34382048 DOI: 10.1039/d1fo01103k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Moringa oleifera (MO) leaf is a potential plant protein resource with high nutritional and medicinal value. The study aims to investigate the hypotensive activity and stability of MO leaf peptides. MO leaf protein was extracted and then hydrolyzed with Alcalase to produce the MO leaf protein hydrolysate (MOPH). The MOPH was separated into peptide fractions with different molecular weights by membrane ultrafiltration. The MOPH and ultrafiltration fractions were evaluated for antihypertensive activity. Inhibition of the angiotensin-converting enzyme (84.71 ± 0.07%) and renin (43.72 ± 0.02%) was significantly higher for <1 kDa peptides when compared to other fractions. Oral administration of the <1 kDa component in spontaneously hypertensive rats positively lowers the blood pressure (∼17 mmHg). The <1 kDa component was isolated and purified subsequently; the final active component was identified by mass spectrometry and amino acid sequence analysis. Two highly active ACE (angiotensin-converting enzyme) and renin dual inhibitory peptides Leu-Gly-Phe-Phe (LGF) and Gly-Leu-Phe-Phe (GLFF) were obtained. The two peptides exhibited a good dual inhibitory activity of ACE and renin with IC50 values of LGF (0.29 ± 0.13 mM, 1.88 ± 0.08 mM) and GLFF (0.31 ± 0.04 mM, 2.80 ± 0.08 mM). Furthermore, in vivo models, LGF and GLFF significantly reduced the systolic blood pressure (19.4 mmHg; 18.2 mmHg) and diastolic blood pressure (12 mmHg; 13.8 mmHg) of SHRs (spontaneously hypertensive rats). The peptide transmembrane transport experiments and simulated gastrointestinal digestion experiments with LGF and GLFF showed that they can resist gastrointestinal digestion in a complete form. Thus, bioactive peptides from MO leaf may possess the potential to be used for treating hypertension in humans.
Collapse
Affiliation(s)
- Keer Ma
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China.
| | - Yujiao Wang
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China.
| | - Mingjie Wang
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China.
| | - Zhigao Wang
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China.
| | - Xuefeng Wang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China.
| | - Xingrong Ju
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China.
| | - Rong He
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China.
| |
Collapse
|
38
|
He Z, Liu G, Qiao Z, Cao Y, Song M. Novel Angiotensin-I Converting Enzyme Inhibitory Peptides Isolated From Rice Wine Lees: Purification, Characterization, and Structure-Activity Relationship. Front Nutr 2021; 8:746113. [PMID: 34568409 PMCID: PMC8460919 DOI: 10.3389/fnut.2021.746113] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 08/17/2021] [Indexed: 11/24/2022] Open
Abstract
The bioactive peptides that can inhibit angiotensin-I converting enzyme (ACE, EC. 3. 4.15.1) are considered as possible cures of hypertension. Food-derived angiotensin-I converting enzyme inhibitory (ACEi) peptides have gained more attention because of their reduced side effects. In this study, we reported the method for purifying ACEi peptides from the lees of traditional Chinese rice wine and evaluated the product's biochemical properties. After three steps of reversed-phase high-performance liquid chromatography (RP-HPLC), for the first time, we isolated, purified, and identified two novel peptides: LIIPQH and LIIPEH, both of which showed strong ACEi activity (IC50-values of 120.10 ± 9.31 and 60.49±5.78 μg/ml, respectively). They were further categorized as mixed-type ACE inhibitors and were stable against both ACE and gastrointestinal enzymes during in vitro digestion. Together, these results suggest that the rice wine lees that produced as a by-product during rice wine production can be utilized in various fields related to functional foods and antihypertensive medicine.
Collapse
Affiliation(s)
- Zeqi He
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou, China
| | - Guo Liu
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou, China
| | - Zijiao Qiao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou, China
| | - Yong Cao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou, China
| | - Mingyue Song
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou, China
| |
Collapse
|
39
|
Kaewsahnguan T, Noitang S, Sangtanoo P, Srimongkol P, Saisavoey T, Reamtong O, Choowongkomon K, Karnchanatat A. A novel angiotensin I-converting enzyme inhibitory peptide derived from the trypsin hydrolysates of salmon bone proteins. PLoS One 2021; 16:e0256595. [PMID: 34473745 PMCID: PMC8412326 DOI: 10.1371/journal.pone.0256595] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 08/10/2021] [Indexed: 11/18/2022] Open
Abstract
When fish are processed, fish bone becomes a key component of the waste, but to date very few researchers have sought to use fish bone to prepare protein hydrolysates as a means of adding value to the final product. This study, therefore, examines the potential of salmon bone, through an analysis of the benefits of its constituent components, namely fat, moisture, protein, and ash. In particular, the study seeks to optimize the process of enzymatic hydrolysis of salmon bone with trypsin in order to produce angiotensin-I converting enzyme (ACE) inhibitory peptides making use of response surface methodology in combination with central composite design (CCD). Optimum hydrolysis conditions concerning DH (degree of hydrolysis) and ACE-inhibitory activity were initially determined using the response surface model. Having thus determined which of the salmon bone protein hydrolysates (SBPH) offered the greatest level of ACE-inhibitory activity, these SBPH were duly selected to undergo ultrafiltration for further fractionation. It was found that the greatest ACE-inhibitory activity was achieved by the SBPH fraction which had a molecular weight lower than 0.65 kDa. This fraction underwent further purification using RP-HPLC, revealing that the F7 fraction offered the best ACE-inhibitory activity. For ACE inhibition, the ideal peptide in the context of the F7 fraction comprised eight amino acids: Phe-Cys-Leu-Tyr-Glu-Leu-Ala-Arg (FCLYELAR), while analysis of the Lineweaver-Burk plot revealed that the FCLYELAR peptide can serve as an uncompetitive ACE inhibitor. An examination of the molecular docking process showed that the FCLYELAR peptide was primarily able to provide ACE-inhibitory qualities as a consequence of the hydrogen bond interactions taking place between ACE and the peptide. Furthermore, upon isolation form the SBPH, the ACE-inhibitory peptide demonstrated ACE-inhibitory capabilities in vitro, underlining its potential for applications in the food and pharmaceutical sectors.
Collapse
Affiliation(s)
- Thanakrit Kaewsahnguan
- Program in Biotechnology, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok, Thailand
| | - Sajee Noitang
- Research Unit in Bioconversion/Bioseparation for Value-Added Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Pathumwan, Bangkok, Thailand
| | - Papassara Sangtanoo
- Research Unit in Bioconversion/Bioseparation for Value-Added Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Pathumwan, Bangkok, Thailand
| | - Piroonporn Srimongkol
- Research Unit in Bioconversion/Bioseparation for Value-Added Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Pathumwan, Bangkok, Thailand
| | - Tanatorn Saisavoey
- Research Unit in Bioconversion/Bioseparation for Value-Added Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Pathumwan, Bangkok, Thailand
| | - Onrapak Reamtong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Ratchathewi, Bangkok, Thailand
| | - Kiattawee Choowongkomon
- Department of Biochemistry, Faculty of Science, Kasetsart University, Chatuchak, Bangkok, Thailand
| | - Aphichart Karnchanatat
- Research Unit in Bioconversion/Bioseparation for Value-Added Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Pathumwan, Bangkok, Thailand
- * E-mail:
| |
Collapse
|
40
|
Trinidad-Calderón PA, Acosta-Cruz E, Rivero-Masante MN, Díaz-Gómez JL, García-Lara S, López-Castillo LM. Maize bioactive peptides: From structure to human health. J Cereal Sci 2021. [DOI: 10.1016/j.jcs.2021.103232] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
41
|
Trinidad-Calderón PA, Acosta-Cruz E, Rivero-Masante MN, Díaz-Gómez JL, García-Lara S, López-Castillo LM. Maize bioactive peptides: From structure to human health. J Cereal Sci 2021. [DOI: https://doi.org/10.1016/j.jcs.2021.103232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
42
|
Sitanggang AB, Putri JE, Palupi NS, Hatzakis E, Syamsir E, Budijanto S. Enzymatic Preparation of Bioactive Peptides Exhibiting ACE Inhibitory Activity from Soybean and Velvet Bean: A Systematic Review. Molecules 2021; 26:3822. [PMID: 34201554 PMCID: PMC8270263 DOI: 10.3390/molecules26133822] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/19/2021] [Accepted: 06/21/2021] [Indexed: 12/11/2022] Open
Abstract
The Angiotensin-I-converting enzyme (ACE) is a peptidase with a significant role in the regulation of blood pressure. Within this work, a systematic review on the enzymatic preparation of Angiotensin-I-Converting Enzyme inhibitory (ACEi) peptides is presented. The systematic review is conducted by following PRISMA guidelines. Soybeans and velvet beans are known to have high protein contents that make them suitable as sources of parent proteins for the production of ACEi peptides. Endopeptidase is commonly used in the preparation of soybean-based ACEi peptides, whereas for velvet bean, a combination of both endo- and exopeptidase is frequently used. Soybean glycinin is the preferred substrate for the preparation of ACEi peptides. It contains proline as one of its major amino acids, which exhibits a potent significance in inhibiting ACE. The best enzymatic treatments for producing ACEi peptides from soybean are as follows: proteolytic activity by Protease P (Amano-P from Aspergillus sp.), a temperature of 37 °C, a reaction time of 18 h, pH 8.2, and an E/S ratio of 2%. On the other hand, the best enzymatic conditions for producing peptide hydrolysates with high ACEi activity are through sequential hydrolytic activity by the combination of pepsin-pancreatic, an E/S ratio for each enzyme is 10%, the temperature and reaction time for each proteolysis are 37 °C and 0.74 h, respectively, pH for pepsin is 2.0, whereas for pancreatin it is 7.0. As an underutilized pulse, the studies on the enzymatic hydrolysis of velvet bean proteins in producing ACEi peptides are limited. Conclusively, the activity of soybean-based ACEi peptides is found to depend on their molecular sizes, the amino acid residues, and positions. Hydrophobic amino acids with nonpolar side chains, positively charged, branched, and cyclic or aromatic residues are generally preferred for ACEi peptides.
Collapse
Affiliation(s)
- Azis Boing Sitanggang
- Department of Food Science and Technology, Kampus IPB Darmaga, IPB University, Bogor 16680, Indonesia; (J.E.P.); (N.S.P.); (E.S.); (S.B.)
| | - Jessica Eka Putri
- Department of Food Science and Technology, Kampus IPB Darmaga, IPB University, Bogor 16680, Indonesia; (J.E.P.); (N.S.P.); (E.S.); (S.B.)
| | - Nurheni Sri Palupi
- Department of Food Science and Technology, Kampus IPB Darmaga, IPB University, Bogor 16680, Indonesia; (J.E.P.); (N.S.P.); (E.S.); (S.B.)
| | - Emmanuel Hatzakis
- Department of Food Science and Technology, The Ohio State University, 2015 Fyffe Rd, Columbus, OH 43210, USA;
| | - Elvira Syamsir
- Department of Food Science and Technology, Kampus IPB Darmaga, IPB University, Bogor 16680, Indonesia; (J.E.P.); (N.S.P.); (E.S.); (S.B.)
| | - Slamet Budijanto
- Department of Food Science and Technology, Kampus IPB Darmaga, IPB University, Bogor 16680, Indonesia; (J.E.P.); (N.S.P.); (E.S.); (S.B.)
| |
Collapse
|
43
|
Aiemratchanee P, Panyawechamontri K, Phaophu P, Reamtong O, Panbangred W. In vitro
antihypertensive activity of bioactive peptides derived from porcine blood corpuscle and plasma proteins. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.14853] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Panida Aiemratchanee
- Department of Biotechnology Faculty of Science Mahidol University Bangkok10400Thailand
- Department of Research and Development Betagro Science Center Co., Ltd. Pathumthani12120Thailand
- Mahidol University‐Osaka University Collaborative Research Center for Bioscience and Biotechnology Faculty of Science Mahidol University Bangkok10400Thailand
| | - Kulachatr Panyawechamontri
- Department of Biotechnology Faculty of Science Mahidol University Bangkok10400Thailand
- Mahidol University‐Osaka University Collaborative Research Center for Bioscience and Biotechnology Faculty of Science Mahidol University Bangkok10400Thailand
| | - Phutthaphorn Phaophu
- Department of Biotechnology Faculty of Science Mahidol University Bangkok10400Thailand
- Mahidol University‐Osaka University Collaborative Research Center for Bioscience and Biotechnology Faculty of Science Mahidol University Bangkok10400Thailand
| | - Onrapak Reamtong
- Department of Molecular Tropical Medicine and Genetics Faculty of Tropical Medicine Mahidol University Bangkok10400Thailand
| | - Watanalai Panbangred
- Department of Biotechnology Faculty of Science Mahidol University Bangkok10400Thailand
- Mahidol University‐Osaka University Collaborative Research Center for Bioscience and Biotechnology Faculty of Science Mahidol University Bangkok10400Thailand
| |
Collapse
|
44
|
Conventional Processing Affects Nutritional and Antinutritional Components and In Vitro Protein Digestibility in Kabau ( Archidendron bubalinum). INTERNATIONAL JOURNAL OF FOOD SCIENCE 2021; 2021:3057805. [PMID: 33564673 PMCID: PMC7850839 DOI: 10.1155/2021/3057805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 01/01/2021] [Accepted: 01/15/2021] [Indexed: 11/18/2022]
Abstract
Kabau, an unexplored crop, was analyzed to determine its nutrition and antinutrition components and in vitro protein digestibility (IVPD). Some conventional processes, such as steaming, frying, and boiling, were carried out to study their effect. The results indicated that all of the techniques reduced carbohydrate content. Frying significantly increased the fat content of Kabau and reduced other nutritional components. In general, all the methods significantly reduced phytic acid, tannin, and trypsin inhibitors, as much as 94.95–96.26%, 20–35%, and 89.22–92.88%, respectively. The reduction of antinutritional components resulted in higher IVPD on boiled and steamed Kabau, 69.47% and 61.48%, respectively.
Collapse
|
45
|
Chan-Zapata I, Sandoval-Castro C, Segura-Campos MR. Proteins and peptides from vegetable food sources as therapeutic adjuvants for the type 2 diabetes mellitus. Crit Rev Food Sci Nutr 2020; 62:2673-2682. [PMID: 33297733 DOI: 10.1080/10408398.2020.1857331] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Proteins and peptides are fundamental components of the cereals, pseudocereals, and legumes, giving them numerous health-beneficial properties. Previous studies have demonstrated that these molecules exerted effects on current therapeutic targets related to type 2 diabetes mellitus, such as incretin hormones (responsible for appetite suppression), dipeptidyl peptidase IV (an enzyme involved in the inactivation and degradation of the incretin hormones), and glucose transporters (molecules that transport glucose in or out of cells). Therefore, this review presents the current biological activity of protein derivatives and peptides isolated from cereals, pseudocereals, and legumes on these therapeutic markers, highlighting their potential as a possible pharmacological treatment for type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Ivan Chan-Zapata
- Facultad de Ingeniería Química, Universidad Autónoma de Yucatán, Mérida, Yucatán, México
| | - Carlos Sandoval-Castro
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Yucatán. Carretera Mérida-Xmatkuil Km, Mérida, Yucatán, México
| | | |
Collapse
|
46
|
Sitanggang AB, Lesmana M, Budijanto S. Membrane-based preparative methods and bioactivities mapping of tempe-based peptides. Food Chem 2020; 329:127193. [PMID: 32516711 DOI: 10.1016/j.foodchem.2020.127193] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 05/29/2020] [Accepted: 05/29/2020] [Indexed: 11/26/2022]
Abstract
This study was aimed to produce bioactive peptides from optimally fermented tempe, and map their overall bioactivities. There were three preparative methods utilized for producing tempe-based peptides, such as water-facilitated extraction, alcalase, and papain hydrolysis, and in combination with membrane filtration. Fermenting soybean at 144 h was selected as the optimum time based on protein content and degree of hydrolysis. Through SDS-PAGE analysis, an increased degree of hydrolysis with longer fermentation time was confirmed. The best preparative method for producing bioactive peptides was through papain hydrolysis and followed by 5 kDa membrane filtration. By this, the enhancement was distinct for antioxidant activity, ACE-, α-glucosidase-, and Kunitz trypsin-inhibitory activity. The annotated peptide sequences resulting from Nano LC Ultimate 3000 Series System tandem Q Exactive™ Hybrid Quadrupole-Orbitrap™ Mass Spectrometer were matched with the BIOPEP database. The major bioactivities of tempe peptides obtained were as an ACE inhibitor, antioxidant, and antithrombotic.
Collapse
Affiliation(s)
- Azis Boing Sitanggang
- Department of Food Science and Technology, IPB University, Kampus IPB Darmaga, Bogor 16680, Indonesia; Southeast Asian Food and Agricultural Science and Technology (SEAFAST) Center, IPB University, Kampus IPB Darmaga, Bogor 16680, Indonesia.
| | - Monica Lesmana
- Department of Food Science and Technology, IPB University, Kampus IPB Darmaga, Bogor 16680, Indonesia
| | - Slamet Budijanto
- Department of Food Science and Technology, IPB University, Kampus IPB Darmaga, Bogor 16680, Indonesia; Southeast Asian Food and Agricultural Science and Technology (SEAFAST) Center, IPB University, Kampus IPB Darmaga, Bogor 16680, Indonesia
| |
Collapse
|
47
|
Multifunctional bioactive peptides derived from quinoa protein hydrolysates: Inhibition of α-glucosidase, dipeptidyl peptidase-IV and angiotensin I converting enzymes. J Cereal Sci 2020. [DOI: 10.1016/j.jcs.2020.103130] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
48
|
Chai KF, Voo AYH, Chen WN. Bioactive peptides from food fermentation: A comprehensive review of their sources, bioactivities, applications, and future development. Compr Rev Food Sci Food Saf 2020; 19:3825-3885. [PMID: 33337042 DOI: 10.1111/1541-4337.12651] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 09/03/2020] [Accepted: 09/20/2020] [Indexed: 12/14/2022]
Abstract
Bioactive peptides (BPs) are specific protein fragments that exert various beneficial effects on human bodies and ultimately influence health, depending on their structural properties and amino acid composition and sequences. By offering promising solutions to solve diverse health issues, the production, characterization, and applications of food-derived BPs have drawn great interest in the current literature and are of particular interest to the food and pharmaceutical industries. The microbial fermentation of protein from various sources is indubitably a novel way to produce BPs with numerous beneficial health effects. Apart from its lower cost as compared to enzymes, the BPs produced from microbial fermentation can be purified without further hydrolysis. Despite these features, current literature shows dearth of information on the BPs produced from food via microbial fermentation. Hence, there is a strong necessity to explore the BPs obtained from food fermentation for the development of commercial nutraceuticals and functional foods. As such, this review focuses on the production of BPs from different food sources, including the extensively studied milk and milk products, with emphasis on microbial fermentation. The structure-activity (antihypertensive, antioxidant, antimicrobial, opiate-like, anti-inflammatory, anticancer/antiproliferative, antithrombotic, hypolipidemic, hypocholesterolemic, and mineral binding) relationship, potential applications, future development, and challenges of BPs obtained from food fermentation are also discussed.
Collapse
Affiliation(s)
- Kong Fei Chai
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
| | - Amanda Ying Hui Voo
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
| | - Wei Ning Chen
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
| |
Collapse
|
49
|
Nardo AE, Suárez S, Quiroga AV, Añón MC. Amaranth as a Source of Antihypertensive Peptides. FRONTIERS IN PLANT SCIENCE 2020; 11:578631. [PMID: 33101347 PMCID: PMC7546275 DOI: 10.3389/fpls.2020.578631] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 09/07/2020] [Indexed: 05/24/2023]
Abstract
Amaranth is an ancestral crop used by pre-Columbian cultures for 6000 to 8000 years. Its grains have a relevant chemical composition not only from a nutritional point of view but also due to the contribution of components with good techno-functional properties and important potential as bioactive compounds. Numerous studies have shown that amaranth storage proteins possess encrypted sequences that, once released, exhibit different physiological activities. One of the most studied is antihypertensive activity. This review summarizes the progress made over the last years (2008-2020) related to this topic. Studies related to inhibition of different enzymes of the Renin-Angiotensin-Aldosterone system, in particular Angiotensin Converting Enzyme (ACE) and Renin, as well as those referring to potential modulation mechanisms of tissue or local Renin-Angiotensin-Aldosterone system, are analyzed, including in silico, in vitro, in vivo, and ex vivo assays. Furthermore, the potential use of these bioactive peptides or products containing them, in the elaboration of functional food matrices is discussed. Finally, the most relevant conclusions and future requirements in research and development of food products are presented.
Collapse
Affiliation(s)
| | | | | | - María Cristina Añón
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), Comisión de Investigaciones Científicas (CIC-PBA) and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET- CCT La Plata), La Plata, Argentina
| |
Collapse
|
50
|
Arouna N, Gabriele M, Pucci L. The Impact of Germination on Sorghum Nutraceutical Properties. Foods 2020; 9:foods9091218. [PMID: 32887248 PMCID: PMC7555581 DOI: 10.3390/foods9091218] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/21/2020] [Accepted: 08/28/2020] [Indexed: 12/12/2022] Open
Abstract
Sorghum is a gluten-free cereal representing a staple food in many countries of Africa, where germination is traditionally used for the preparation of several sorghum-based products. This study focused on the effect of germination on total phenolic content, in vitro and ex vivo antioxidant activity, and antihypertensive action of sorghum from Togo. Total phenolic content was estimated as Folin–Ciocalteu reducing capacity, while antioxidant activities were assessed using 2,2-diphenyl-1-picrylhydrazyl (DPPH) and Ferric Reducing Antioxidant Power (FRAP) in vitro tests and ex vivo by the cellular antioxidant activity (CAA) assay on human erythrocytes. The antihypertensive effect of germinated and non-germinated sorghum peptides fraction was evaluated as angiotensin-converting enzyme (ACE) inhibitory activity. Despite our findings demonstrated no impact of germination on the total phenolic content, non-germinated sorghum showed significantly higher in vitro antioxidant activities than the germinated one; further, non-germinated sorghum displayed significantly higher ACE inhibition than germinated sorghum that, instead, at lower doses, exhibited better erythrocytes protection from peroxyl radicals. In conclusion, the germination process negatively impacted the in vitro antioxidant activity and the antihypertensive effect of sorghum while improved erythrocytes protection. This study evidenced better nutraceutical potential of non-germinated sorghum that, besides good antioxidant activity, represents an important source of ACE-inhibitory peptides. However, the germination process might have positively impacted the profile of bioactive compounds involved in the protection of human erythrocytes from oxidative damage.
Collapse
|