1
|
Zhang T, Celiker B, Shao Y, Gai J, Hill M, Wang C, Zheng L. Comparison of Shared Class I HLA-Bound Noncanonical Neoepitopes between Normal and Neoplastic Tissues of Pancreatic Adenocarcinoma. Clin Cancer Res 2025; 31:1956-1965. [PMID: 39699517 PMCID: PMC12079097 DOI: 10.1158/1078-0432.ccr-24-2251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 10/04/2024] [Accepted: 12/17/2024] [Indexed: 12/20/2024]
Abstract
PURPOSE Developing T-cell or vaccine therapies for pancreatic ductal adenocarcinoma (PDAC) has been challenging because of a lack of knowledge regarding immunodominant, cancer-specific antigens as PDAC are characterized by a scarcity of genomic mutation-associated neoepitopes, and effective approaches to discover them are limited. EXPERIMENTAL DESIGN An advanced mass spectrometry approach was employed to compare the immunopeptidome of PDAC tissues and matched normal tissues from the same patients. RESULTS This study identified HLA class I-binding variant peptides derived from canonical proteins, which had single amino-acid substitutions not attributed to genetic mutations or RNA editing. These amino-acid substitutions appeared to result from translational errors. The variant peptides were predominantly found in tumor tissues, with certain peptides common among multiple patients. Importantly, several of these variant peptides were more immunogenic than their wild-type counterparts. CONCLUSIONS The shared noncanonical neoepitopes identified in this study offer promising candidates for vaccine and T-cell therapy development, potentially providing new avenues for immunotherapy in PDAC. See related commentary by Yuan et al., p. 1821.
Collapse
Affiliation(s)
- Tengyi Zhang
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Betul Celiker
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Yingkuan Shao
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Breast Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Cancer Institute, Ministry of Education, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jessica Gai
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Mark Hill
- Immuno-Oncology Discovery and Translational Medicine, Bristol Myers Squibb Company, Seattle, Washington
| | - Chunyu Wang
- Department of Biological Sciences, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York
| | - Lei Zheng
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
- The Cancer Convergence Institute at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
2
|
de Wit AS, Bianchi F, van den Bogaart G. Antigen presentation of post-translationally modified peptides in major histocompatibility complexes. Immunol Cell Biol 2025; 103:161-177. [PMID: 39609891 PMCID: PMC11792782 DOI: 10.1111/imcb.12839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/16/2024] [Accepted: 11/07/2024] [Indexed: 11/30/2024]
Abstract
T cells of the adaptive immune system recognize pathogens and malignantly transformed cells through a process called antigen presentation. During this process, peptides are displayed on major histocompatibility complex (MHC) class I and II molecules. Self-reactive T cells are typically removed or suppressed during T-cell development and through peripheral tolerance mechanisms, ensuring that only T cells recognizing peptides that are either absent or present in low abundance under normal conditions remain. This selective process allows T cells to respond to peptides derived from foreign proteins while ignoring those from self-proteins. However, T cells can also respond to peptides derived from proteins that have undergone post-translational modifications (PTMs). Over 200 different PTMs have been described, and while they are essential for protein function, localization and stability, their dysregulation is often associated with disease conditions. PTMs can affect the proteolytic processing of proteins and prevent MHC binding, thereby changing the repertoire of peptides presented on MHC molecules. However, it is also increasingly evident that many peptides presented on MHC molecules carry PTMs, which can alter their immunogenicity. As a result, the presentation of post-translationally modified peptides by MHC molecules plays a significant role in various diseases, as well as autoimmune disorders and allergies. This review will provide an overview of the impact of PTMs on antigen presentation and their implications for immune recognition and disease.
Collapse
Affiliation(s)
- Alexine S de Wit
- Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology InstituteUniversity of GroningenGroningenThe Netherlands
| | - Frans Bianchi
- Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology InstituteUniversity of GroningenGroningenThe Netherlands
| | - Geert van den Bogaart
- Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology InstituteUniversity of GroningenGroningenThe Netherlands
| |
Collapse
|
3
|
Arshad S, Cameron B, Joglekar AV. Immunopeptidomics for autoimmunity: unlocking the chamber of immune secrets. NPJ Syst Biol Appl 2025; 11:10. [PMID: 39833247 PMCID: PMC11747513 DOI: 10.1038/s41540-024-00482-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 12/17/2024] [Indexed: 01/22/2025] Open
Abstract
T cells mediate pathogenesis of several autoimmune disorders by recognizing self-epitopes presented on Major Histocompatibility Complex (MHC) or Human Leukocyte Antigen (HLA) complex. The majority of autoantigens presented to T cells in various autoimmune disorders are not known, which has impeded autoantigen identification. Recent advances in immunopeptidomics have started to unravel the repertoire of antigenic epitopes presented on MHC. In several autoimmune diseases, immunopeptidomics has led to the identification of novel autoantigens and has enhanced our understanding of the mechanisms behind autoimmunity. Especially, immunopeptidomics has provided key evidence to explain the genetic risk posed by HLA alleles. In this review, we shed light on how immunopeptidomics can be leveraged to discover potential autoantigens. We highlight the application of immunopeptidomics in Type 1 Diabetes (T1D), Systemic Lupus Erythematosus (SLE), and Rheumatoid Arthritis (RA). Finally, we highlight the practical considerations of implementing immunopeptidomics successfully and the technical challenges that need to be addressed. Overall, this review will provide an important context for using immunopeptidomics for understanding autoimmunity.
Collapse
Affiliation(s)
- Sanya Arshad
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Systems Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Benjamin Cameron
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Systems Immunology, University of Pittsburgh, Pittsburgh, PA, USA
- Graduate Program in Microbiology and Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Alok V Joglekar
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA.
- Center for Systems Immunology, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
4
|
Pandey A, Rohweder PJ, Chan LM, Ongpipattanakul C, Chung DH, Paolella B, Quimby FM, Nguyen N, Verba KA, Evans MJ, Craik CS. Therapeutic Targeting and Structural Characterization of a Sotorasib-Modified KRAS G12C-MHC I Complex Demonstrate the Antitumor Efficacy of Hapten-Based Strategies. Cancer Res 2025; 85:329-341. [PMID: 39656104 PMCID: PMC11733532 DOI: 10.1158/0008-5472.can-24-2450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/11/2024] [Accepted: 11/11/2024] [Indexed: 01/30/2025]
Abstract
Antibody-based therapies have emerged as a powerful strategy for the management of diverse cancers. Unfortunately, tumor-specific antigens remain challenging to identify and target. Recent work established that inhibitor-modified peptide adducts derived from KRAS G12C are competent for antigen presentation via MHC I and can be targeted by antibody-based therapeutics, offering a means to directly target an intracellular oncoprotein at the cell surface with combination therapies. Here, we validated the antigen display of "haptenated" KRAS G12C peptide fragments on tumors in mouse models treated with the FDA-approved KRAS G12C covalent inhibitor sotorasib using PET/CT imaging of an 89Zr-labeled P1B7 IgG antibody, which selectively binds sotorasib-modified KRAS G12C-MHC I complexes. Targeting this peptide-MHC I complex with radioligand therapy using 225Ac- or 177Lu-P1B7 IgG effectively inhibited tumor growth in combination with sotorasib. Elucidation of the 3.1 Å cryo-EM structure of P1B7 bound to a haptenated KRAS G12C peptide-MHC I complex confirmed that the sotorasib-modified KRAS G12C peptide is presented via a canonical binding pose and showed that P1B7 binds the complex in a T-cell receptor-like manner. Together, these findings demonstrate the potential value of targeting unique oncoprotein-derived, haptenated MHC I complexes with radioligand therapeutics and provide a structural framework for developing next generation antibodies. Significance: Radioligand therapy using an antibody targeting KRAS-derived, sotorasib-modified MHC I complexes elicits antitumor effects superior to those of sotorasib alone and provides a potential strategy to repurpose sotorasib as a hapten to overcome resistance.
Collapse
Affiliation(s)
- Apurva Pandey
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California
| | - Peter J. Rohweder
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California
| | - Lieza M. Chan
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, California
| | - Chayanid Ongpipattanakul
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California
| | - Dong hee Chung
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California
| | - Bryce Paolella
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California
| | - Fiona M. Quimby
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California
| | - Ngoc Nguyen
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California
| | - Kliment A. Verba
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, California
| | - Michael J. Evans
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California
| | - Charles S. Craik
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California
| |
Collapse
|
5
|
Adams C, Laukens K, Bittremieux W, Boonen K. Machine learning-based peptide-spectrum match rescoring opens up the immunopeptidome. Proteomics 2024; 24:e2300336. [PMID: 38009585 DOI: 10.1002/pmic.202300336] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/18/2023] [Accepted: 10/23/2023] [Indexed: 11/29/2023]
Abstract
Immunopeptidomics is a key technology in the discovery of targets for immunotherapy and vaccine development. However, identifying immunopeptides remains challenging due to their non-tryptic nature, which results in distinct spectral characteristics. Moreover, the absence of strict digestion rules leads to extensive search spaces, further amplified by the incorporation of somatic mutations, pathogen genomes, unannotated open reading frames, and post-translational modifications. This inflation in search space leads to an increase in random high-scoring matches, resulting in fewer identifications at a given false discovery rate. Peptide-spectrum match rescoring has emerged as a machine learning-based solution to address challenges in mass spectrometry-based immunopeptidomics data analysis. It involves post-processing unfiltered spectrum annotations to better distinguish between correct and incorrect peptide-spectrum matches. Recently, features based on predicted peptidoform properties, including fragment ion intensities, retention time, and collisional cross section, have been used to improve the accuracy and sensitivity of immunopeptide identification. In this review, we describe the diverse bioinformatics pipelines that are currently available for peptide-spectrum match rescoring and discuss how they can be used for the analysis of immunopeptidomics data. Finally, we provide insights into current and future machine learning solutions to boost immunopeptide identification.
Collapse
Affiliation(s)
- Charlotte Adams
- Adrem Data Lab, Department of Computer Science, University of Antwerp, Antwerp, Belgium
- Laboratory of Protein Science, Proteomics and Epigenetic Signaling (PPES), Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Kris Laukens
- Adrem Data Lab, Department of Computer Science, University of Antwerp, Antwerp, Belgium
| | - Wout Bittremieux
- Adrem Data Lab, Department of Computer Science, University of Antwerp, Antwerp, Belgium
| | - Kurt Boonen
- Laboratory of Protein Science, Proteomics and Epigenetic Signaling (PPES), Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- ImmuneSpec BV, Niel, Belgium
| |
Collapse
|
6
|
Fasoulis R, Rigo MM, Lizée G, Antunes DA, Kavraki LE. APE-Gen2.0: Expanding Rapid Class I Peptide-Major Histocompatibility Complex Modeling to Post-Translational Modifications and Noncanonical Peptide Geometries. J Chem Inf Model 2024; 64:1730-1750. [PMID: 38415656 PMCID: PMC10936522 DOI: 10.1021/acs.jcim.3c01667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 02/29/2024]
Abstract
The recognition of peptides bound to class I major histocompatibility complex (MHC-I) receptors by T-cell receptors (TCRs) is a determinant of triggering the adaptive immune response. While the exact molecular features that drive the TCR recognition are still unknown, studies have suggested that the geometry of the joint peptide-MHC (pMHC) structure plays an important role. As such, there is a definite need for methods and tools that accurately predict the structure of the peptide bound to the MHC-I receptor. In the past few years, many pMHC structural modeling tools have emerged that provide high-quality modeled structures in the general case. However, there are numerous instances of non-canonical cases in the immunopeptidome that the majority of pMHC modeling tools do not attend to, most notably, peptides that exhibit non-standard amino acids and post-translational modifications (PTMs) or peptides that assume non-canonical geometries in the MHC binding cleft. Such chemical and structural properties have been shown to be present in neoantigens; therefore, accurate structural modeling of these instances can be vital for cancer immunotherapy. To this end, we have developed APE-Gen2.0, a tool that improves upon its predecessor and other pMHC modeling tools, both in terms of modeling accuracy and the available modeling range of non-canonical peptide cases. Some of the improvements include (i) the ability to model peptides that have different types of PTMs such as phosphorylation, nitration, and citrullination; (ii) a new and improved anchor identification routine in order to identify and model peptides that exhibit a non-canonical anchor conformation; and (iii) a web server that provides a platform for easy and accessible pMHC modeling. We further show that structures predicted by APE-Gen2.0 can be used to assess the effects that PTMs have in binding affinity in a more accurate manner than just using solely the sequence of the peptide. APE-Gen2.0 is freely available at https://apegen.kavrakilab.org.
Collapse
Affiliation(s)
- Romanos Fasoulis
- Department
of Computer Science, Rice University, Houston, Texas 77005, United States
| | - Mauricio M. Rigo
- Department
of Computer Science, Rice University, Houston, Texas 77005, United States
| | - Gregory Lizée
- Department
of Melanoma Medical Oncology—Research, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, United States
| | - Dinler A. Antunes
- Department
of Biology and Biochemistry, University
of Houston, Houston, Texas 77004, United States
| | - Lydia E. Kavraki
- Department
of Computer Science, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
7
|
Admon A. The biogenesis of the immunopeptidome. Semin Immunol 2023; 67:101766. [PMID: 37141766 DOI: 10.1016/j.smim.2023.101766] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/26/2023] [Accepted: 04/26/2023] [Indexed: 05/06/2023]
Abstract
The immunopeptidome is the repertoire of peptides bound and presented by the MHC class I, class II, and non-classical molecules. The peptides are produced by the degradation of most cellular proteins, and in some cases, peptides are produced from extracellular proteins taken up by the cells. This review attempts to first describe some of its known and well-accepted concepts, and next, raise some questions about a few of the established dogmas in this field: The production of novel peptides by splicing is questioned, suggesting here that spliced peptides are extremely rare, if existent at all. The degree of the contribution to the immunopeptidome by degradation of cellular protein by the proteasome is doubted, therefore this review attempts to explain why it is likely that this contribution to the immunopeptidome is possibly overstated. The contribution of defective ribosome products (DRiPs) and non-canonical peptides to the immunopeptidome is noted and methods are suggested to quantify them. In addition, the common misconception that the MHC class II peptidome is mostly derived from extracellular proteins is noted, and corrected. It is stressed that the confirmation of sequence assignments of non-canonical and spliced peptides should rely on targeted mass spectrometry using spiking-in of heavy isotope-labeled peptides. Finally, the new methodologies and modern instrumentation currently available for high throughput kinetics and quantitative immunopeptidomics are described. These advanced methods open up new possibilities for utilizing the big data generated and taking a fresh look at the established dogmas and reevaluating them critically.
Collapse
Affiliation(s)
- Arie Admon
- Faculty of Biology, Technion-Israel Institute of Technology, Israel.
| |
Collapse
|
8
|
Ahn R, Cui Y, White FM. Antigen discovery for the development of cancer immunotherapy. Semin Immunol 2023; 66:101733. [PMID: 36841147 DOI: 10.1016/j.smim.2023.101733] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 02/25/2023]
Abstract
Central to successful cancer immunotherapy is effective T cell antitumor immunity. Multiple targeted immunotherapies engineered to invigorate T cell-driven antitumor immunity rely on identifying the repertoire of T cell antigens expressed on the tumor cell surface. Mass spectrometry-based survey of such antigens ("immunopeptidomics") combined with other omics platforms and computational algorithms has been instrumental in identifying and quantifying tumor-derived T cell antigens. In this review, we discuss the types of tumor antigens that have emerged for targeted cancer immunotherapy and the immunopeptidomics methods that are central in MHC peptide identification and quantification. We provide an overview of the strength and limitations of mass spectrometry-driven approaches and how they have been integrated with other technologies to discover targetable T cell antigens for cancer immunotherapy. We highlight some of the emerging cancer immunotherapies that successfully capitalized on immunopeptidomics, their challenges, and mass spectrometry-based strategies that can support their development.
Collapse
Affiliation(s)
- Ryuhjin Ahn
- David H. Koch Institute for Integrative Cancer Research, Cambridge, MA 02139, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Yufei Cui
- David H. Koch Institute for Integrative Cancer Research, Cambridge, MA 02139, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Forest M White
- David H. Koch Institute for Integrative Cancer Research, Cambridge, MA 02139, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
9
|
Neoantigens: promising targets for cancer therapy. Signal Transduct Target Ther 2023; 8:9. [PMID: 36604431 PMCID: PMC9816309 DOI: 10.1038/s41392-022-01270-x] [Citation(s) in RCA: 394] [Impact Index Per Article: 197.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/14/2022] [Accepted: 11/27/2022] [Indexed: 01/07/2023] Open
Abstract
Recent advances in neoantigen research have accelerated the development and regulatory approval of tumor immunotherapies, including cancer vaccines, adoptive cell therapy and antibody-based therapies, especially for solid tumors. Neoantigens are newly formed antigens generated by tumor cells as a result of various tumor-specific alterations, such as genomic mutation, dysregulated RNA splicing, disordered post-translational modification, and integrated viral open reading frames. Neoantigens are recognized as non-self and trigger an immune response that is not subject to central and peripheral tolerance. The quick identification and prediction of tumor-specific neoantigens have been made possible by the advanced development of next-generation sequencing and bioinformatic technologies. Compared to tumor-associated antigens, the highly immunogenic and tumor-specific neoantigens provide emerging targets for personalized cancer immunotherapies, and serve as prospective predictors for tumor survival prognosis and immune checkpoint blockade responses. The development of cancer therapies will be aided by understanding the mechanism underlying neoantigen-induced anti-tumor immune response and by streamlining the process of neoantigen-based immunotherapies. This review provides an overview on the identification and characterization of neoantigens and outlines the clinical applications of prospective immunotherapeutic strategies based on neoantigens. We also explore their current status, inherent challenges, and clinical translation potential.
Collapse
|
10
|
Post-Translational Modifications in Tumor-Associated Antigens as a Platform for Novel Immuno-Oncology Therapies. Cancers (Basel) 2022; 15:cancers15010138. [PMID: 36612133 PMCID: PMC9817968 DOI: 10.3390/cancers15010138] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/19/2022] [Accepted: 12/23/2022] [Indexed: 12/28/2022] Open
Abstract
Post-translational modifications (PTMs) are generated by adding small chemical groups to amino acid residues after the translation of proteins. Many PTMs have been reported to correlate with tumor progression, growth, and survival by modifying the normal functions of the protein in tumor cells. PTMs can also elicit humoral and cellular immune responses, making them attractive targets for cancer immunotherapy. This review will discuss how the acetylation, citrullination, and phosphorylation of proteins expressed by tumor cells render the corresponding tumor-associated antigen more antigenic and affect the immune response in multiple cancers. In addition, the role of glycosylated protein mucins in anti-cancer immunotherapy will be considered. Mucin peptides in combination with stimulating adjuvants have, in fact, been utilized to produce anti-tumor antibodies and vaccines. Finally, we will also outline the results of the clinical trial exploiting glycosylated-MUC1 as a vaccine in different cancers. Overall, PTMs in TAAs could be considered in future therapies to result in lasting anti-tumor responses.
Collapse
|
11
|
Shah S, Al-Omari A, Cook KW, Paston SJ, Durrant LG, Brentville VA. What do cancer-specific T cells 'see'? DISCOVERY IMMUNOLOGY 2022; 2:kyac011. [PMID: 38567060 PMCID: PMC10917189 DOI: 10.1093/discim/kyac011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/18/2022] [Accepted: 12/02/2022] [Indexed: 04/04/2024]
Abstract
Complex cellular interactions between the immune system and cancer can impact tumour development, growth, and progression. T cells play a key role in these interactions; however, the challenge for T cells is to recognize tumour antigens whilst minimizing cross-reactivity with antigens associated with healthy tissue. Some tumour cells, including those associated with viral infections, have clear, tumour-specific antigens that can be targeted by T cells. A high mutational burden can lead to increased numbers of mutational neoantigens that allow very specific immune responses to be generated but also allow escape variants to develop. Other cancer indications and those with low mutational burden are less easily distinguished from normal tissue. Recent studies have suggested that cancer-associated alterations in tumour cell biology including changes in post-translational modification (PTM) patterns may also lead to novel antigens that can be directly recognized by T cells. The PTM-derived antigens provide tumour-specific T-cell responses that both escape central tolerance and avoid the necessity for individualized therapies. PTM-specific CD4 T-cell responses have shown tumour therapy in murine models and highlight the importance of CD4 T cells as well as CD8 T cells in reversing the immunosuppressive tumour microenvironment. Understanding which cancer-specific antigens can be recognized by T cells and the way that immune tolerance and the tumour microenvironment shape immune responses to cancer is vital for the future development of cancer therapies.
Collapse
Affiliation(s)
- Sabaria Shah
- Scancell Limited, University of Nottingham Biodiscovery Institute, University Park, Nottingham, UK
| | - Abdullah Al-Omari
- Scancell Limited, University of Nottingham Biodiscovery Institute, University Park, Nottingham, UK
| | - Katherine W Cook
- Scancell Limited, University of Nottingham Biodiscovery Institute, University Park, Nottingham, UK
| | - Samantha J Paston
- Scancell Limited, University of Nottingham Biodiscovery Institute, University Park, Nottingham, UK
| | - Lindy G Durrant
- Scancell Limited, University of Nottingham Biodiscovery Institute, University Park, Nottingham, UK
- Division of Cancer and Stem Cells, School of Medicine, University of Nottingham Biodiscovery Institute, University Park, Nottingham, UK
| | - Victoria A Brentville
- Scancell Limited, University of Nottingham Biodiscovery Institute, University Park, Nottingham, UK
| |
Collapse
|
12
|
Zhang Z, Rohweder PJ, Ongpipattanakul C, Basu K, Bohn MF, Dugan EJ, Steri V, Hann B, Shokat KM, Craik CS. A covalent inhibitor of K-Ras(G12C) induces MHC class I presentation of haptenated peptide neoepitopes targetable by immunotherapy. Cancer Cell 2022; 40:1060-1069.e7. [PMID: 36099883 PMCID: PMC10393267 DOI: 10.1016/j.ccell.2022.07.005] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 05/26/2022] [Accepted: 07/11/2022] [Indexed: 12/27/2022]
Abstract
Immunotargeting of tumor-specific antigens is a powerful therapeutic strategy. Immunotherapies directed at MHC-I complexes have expanded the scope of antigens and enabled the direct targeting of intracellular oncoproteins at the cell surface. We asked whether covalent drugs that alkylate mutated residues on oncoproteins could act as haptens to generate unique MHC-I-restricted neoantigens. Here, we report that KRAS G12C mutant cells treated with the covalent inhibitor ARS1620 present ARS1620-modified peptides in MHC-I complexes. Using ARS1620-specific antibodies identified by phage display, we show that these haptenated MHC-I complexes can serve as tumor-specific neoantigens and that a bispecific T cell engager construct based on a hapten-specific antibody elicits a cytotoxic T cell response against KRAS G12C cells, including those resistant to direct KRAS G12C inhibition. With multiple K-RAS G12C inhibitors in clinical use or undergoing clinical trials, our results present a strategy to enhance their efficacy and overcome the rapidly arising tumor resistance.
Collapse
Affiliation(s)
- Ziyang Zhang
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Peter J Rohweder
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Chayanid Ongpipattanakul
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Koli Basu
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Markus-Frederik Bohn
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800, Kongens Lyngby, Denmark
| | - Eli J Dugan
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Veronica Steri
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA; Preclinical Therapeutics Core, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Byron Hann
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA; Preclinical Therapeutics Core, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Kevan M Shokat
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA.
| | - Charles S Craik
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
13
|
Cook K, Xue W, Atabani S, Symonds P, Al Omari A, Daniels I, Shah S, Choudhury RH, Weston D, Metheringham R, Brentville V, Durrant L. Vaccine Can Induce CD4-Mediated Responses to Homocitrullinated Peptides via Multiple HLA-Types and Confer Anti-Tumor Immunity. Front Immunol 2022; 13:873947. [PMID: 35464453 PMCID: PMC9028767 DOI: 10.3389/fimmu.2022.873947] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
Homocitrullination is the post translation modification (PTM) of the amino acid lysine to homocitrulline also referred to as carbamylation. This PTM has mainly been studied in relation to autoimmune diseases including rheumatoid arthritis. Homocitrullination of lysines alters their charge which can lead to generation of neoepitopes that are differentially presented by MHC-II and induce modification-specific immune responses. Homocitrullination is often considered a process which triggers autoimmune disease by bypassing self-tolerance however, we suggest that homocitrullination may also have an alternative role in immune responses including protection against cancer. Here we demonstrate that immune responses to homocitrullinated peptides from three different proteins can be induced via multiple HLA-types. Immunization of Balb/c or HLA-transgenic DR4 and DR1 mice can induce modification-specific CD4 mediated IFNγ responses. Healthy human donors show a clear repertoire for the homocitrullinated Vimentin peptide (Vim116-135Hcit), with modification-specific and oligoclonal responses. Importantly, in vivo homocitrulline specific Vim116-135Hcit,Cyk8 371-388Hcit and Aldo 140-157Hcit responses are able to confer an anti-tumor effect in the murine B16 melanoma model. The Vim116-135Hcit anti-tumor response was dependent upon tumor expression of MHC-II suggesting the direct recognition of PTMs on tumor is an important anti-tumor mechanism. Cancer patients also have a CD4 repertoire for Vim116-135Hcit. Together these results suggest that homocitrulline-specific immune responses can be generated in healthy mice and detected in human donors through a variety of HLA-restrictions. Immunization can induce responses to Vim116-135Hcit,Aldolase 140-157Hcit and Cyk8 371-388Hcit which provide anti-tumor therapy across several HLA-types. Our results advance our understanding of homocitrulline-specific immune responses, with implications for a number of fields beyond autoimmunity, including tumor immune surveillance.
Collapse
Affiliation(s)
- Katherine Cook
- Scancell Limited, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Wei Xue
- Scancell Limited, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Suha Atabani
- Scancell Limited, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
- The Cancer Vaccine Group, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Peter Symonds
- Scancell Limited, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Abdullah Al Omari
- Scancell Limited, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Ian Daniels
- Scancell Limited, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Sabaria Shah
- Scancell Limited, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Ruhul Hasan Choudhury
- Scancell Limited, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Daisy Weston
- Scancell Limited, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Rachael Metheringham
- Scancell Limited, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Victoria Brentville
- Scancell Limited, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Lindy Durrant
- Scancell Limited, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
- The Cancer Vaccine Group, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
- *Correspondence: Lindy Durrant,
| |
Collapse
|
14
|
Yewdell JW. MHC Class I Immunopeptidome: Past, Present, and Future. Mol Cell Proteomics 2022; 21:100230. [PMID: 35395404 PMCID: PMC9243166 DOI: 10.1016/j.mcpro.2022.100230] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 12/14/2022] Open
Abstract
In the 35 years since the revelation that short peptides bound to major histocompatibility complex class I and II molecules are the secret of the major histocompatibility complex–restricted nature of T-cell recognition, there has been enormous progress in characterizing the immunopeptidome, the repertoire of peptide presented for immunosurveillance. Here, the major milestones in the journey are marked, the contribution of proteasome-mediated splicing to the immunopeptidome is discussed, and exciting recent findings relating the immunopeptidome to the translatome revealed by ribosome profiling (RiboSeq) is detailed. Finally, what is needed for continued progress is opined about, which includes the infusion of talented young scientists into the antigen-processing field, currently undergoing a renaissance; thanks in part to the astounding success of T-cell–based cancer immunotherapy. Concise history of the discoveries leading to the molecular explanation for the phenomenon of the MHC class I–restricted nature of T-cell recognition. Historical review of how MS became a critical technique for defining MHC class I–associated peptides and understanding how peptides are generated from proteins biosynthesized by the antigen-presenting cell. Critical review of recent findings linking the translatome to the MHC class I immunopeptidome and the controversy regarding contribution of proteasome-mediated peptide splicing to the immunopeptidome. Speculative discussion of the future contributions of MS to understanding the generation of the MHC class I immunopeptidome.
Collapse
Affiliation(s)
- Jonathan W Yewdell
- Cellular Biology Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA.
| |
Collapse
|
15
|
Zhao Y, Sun M, Zhang N, Liu X, Yue C, Feng L, Ji S, Liu X, Qi J, Wong CC, Gao GF, Liu WJ. Phosphosite-dependent presentation of dual phosphorylated peptides by MHC class I molecules. iScience 2022; 25:104013. [PMID: 35310951 PMCID: PMC8931367 DOI: 10.1016/j.isci.2022.104013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/14/2022] [Accepted: 02/25/2022] [Indexed: 11/30/2022] Open
Abstract
Phosphopeptides presented by major histocompatibility complex (MHC) class I have been regarded as a pivotal type of cancer neoantigens that are recognized by T cells. The structural basis of single-phosphorylated peptide presentation has been well studied. Diphosphorylation with one interval between two sites is one of the prevalent forms of multisite-phosphorylated peptides. Herein, we determined the molecular basis of presentation of two P4/P6 double pS-containing peptides by HLA-B27 and compared them with unmodified and single-phosphorylated peptide complexes. These data clarified not only the HLA allele-specific presentation of phosphopeptides by MHC class I molecules but also the cooperativity of peptide conformation within P4 and P6 phosphorylation sites. The phosphorylation of P6 site can influence the binding mode of P4 phosphorylated site to HLA-B27. And we found the diphospho-dependent attenuated effect of peptide binding affinity. This study provides insights into the MHC presentation features of diphosphopeptides, which is different from monophosphopeptides. Diphosphorylation with an interval is prevalent among multiphosphorylated peptides Diphosphopeptide presentation is HLA specific and different from monophosphopeptide The cooperativity of peptide conformation within P4 and P6 phosphorylation sites The diphosphorylation attenuates peptide binding affinity to HLA-B27
Collapse
Affiliation(s)
- Yingze Zhao
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing 100052, China
- Research Unit of Adaptive Evolution and Control of Emerging Viruses (2018RU009), Chinese Academy of Medical Sciences, Beijing 102206, China
| | - Mingwei Sun
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - Nan Zhang
- Center for Precision Medicine Multi-Omics Research, Peking University Health Science Center, Peking University, Beijing 100191, China
| | - Xueyuan Liu
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing 100052, China
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Can Yue
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing 100052, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Feng
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing 100052, China
| | - Shushen Ji
- Center for Precision Medicine Multi-Omics Research, Peking University Health Science Center, Peking University, Beijing 100191, China
| | - Xiao Liu
- Center for Precision Medicine Multi-Omics Research, Peking University Health Science Center, Peking University, Beijing 100191, China
| | - Jianxun Qi
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - Catherine C.L. Wong
- Center for Precision Medicine Multi-Omics Research, Peking University Health Science Center, Peking University, Beijing 100191, China
- Corresponding author
| | - George F. Gao
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing 100052, China
- Research Unit of Adaptive Evolution and Control of Emerging Viruses (2018RU009), Chinese Academy of Medical Sciences, Beijing 102206, China
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
- Corresponding author
| | - William J. Liu
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing 100052, China
- Research Unit of Adaptive Evolution and Control of Emerging Viruses (2018RU009), Chinese Academy of Medical Sciences, Beijing 102206, China
- Corresponding author
| |
Collapse
|
16
|
Dao T, Mun SS, Molvi Z, Korontsvit T, Klatt MG, Khan AG, Nyakatura EK, Pohl MA, White TE, Balderes PJ, Lorenz IC, O'Reilly RJ, Scheinberg DA. A TCR mimic monoclonal antibody reactive with the "public" phospho-neoantigen pIRS2/HLA-A*02:01 complex. JCI Insight 2022; 7:151624. [PMID: 35260532 PMCID: PMC8983142 DOI: 10.1172/jci.insight.151624] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 01/26/2022] [Indexed: 02/06/2023] Open
Abstract
Phosphopeptides derived from dysregulated protein phosphorylation in cancer cells can be processed and presented by MHC class I and class II molecules and, therefore, represent an untapped class of tumor-specific antigens that could be used as widely expressed “public” cancer neoantigens (NeoAgs). We generated a TCR mimic (TCRm) mAb, 6B1, specific for a phosphopeptide derived from insulin receptor substrate 2 (pIRS2) presented by HLA-A*02:01. The pIRS2 epitope’s presentation by HLA-A*02:01 was confirmed by mass spectrometry. The TCRm 6B1 specifically bound to pIRS2/HLA-A2 complex on tumor cell lines that expressed pIRS2 in the context of HLA-A*02:01. Bispecific mAbs engaging CD3 of T cells were able to kill tumor cell lines in a pIRS2- and HLA-A*02:01–restricted manner. Structure modeling shows a prerequisite for an arginine or lysine at the first position to bind mAb. Therefore, 6B1 could recognize phosphopeptides derived from various phosphorylated proteins with similar amino acid compositions. This raised the possibility that a TCRm specific for the pIRS2/HLA-A2 complex could target a range of phosphopeptides presented by HLA-A*02:01 in various tumor cells. This is the first TCRm mAb to our knowledge targeting a phosphopeptide/MHC class I complex; the potential of this class of agents for clinical applications warrants further investigation.
Collapse
Affiliation(s)
- Tao Dao
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center (MSKCC), New York, New York, USA
| | - Sung Soo Mun
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center (MSKCC), New York, New York, USA
| | - Zaki Molvi
- Immunology Program, Weill Cornell Medicine, New York, New York, USA
| | - Tatyana Korontsvit
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center (MSKCC), New York, New York, USA
| | - Martin G Klatt
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center (MSKCC), New York, New York, USA
| | - Abdul G Khan
- Tri-Institutional Therapeutics Discovery Institute, New York, New York, USA
| | | | - Mary Ann Pohl
- Tri-Institutional Therapeutics Discovery Institute, New York, New York, USA
| | - Thomas E White
- Tri-Institutional Therapeutics Discovery Institute, New York, New York, USA
| | - Paul J Balderes
- Tri-Institutional Therapeutics Discovery Institute, New York, New York, USA
| | - Ivo C Lorenz
- Tri-Institutional Therapeutics Discovery Institute, New York, New York, USA
| | - Richard J O'Reilly
- Immunology Program, Weill Cornell Medicine, New York, New York, USA.,Weill Cornell Medicine, New York, New York, USA
| | - David A Scheinberg
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center (MSKCC), New York, New York, USA.,Weill Cornell Medicine, New York, New York, USA
| |
Collapse
|
17
|
Barbosa CRR, Barton J, Shepherd AJ, Mishto M. Mechanistic diversity in MHC class I antigen recognition. Biochem J 2021; 478:4187-4202. [PMID: 34940832 PMCID: PMC8786304 DOI: 10.1042/bcj20200910] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/16/2021] [Accepted: 11/18/2021] [Indexed: 12/20/2022]
Abstract
Throughout its evolution, the human immune system has developed a plethora of strategies to diversify the antigenic peptide sequences that can be targeted by the CD8+ T cell response against pathogens and aberrations of self. Here we provide a general overview of the mechanisms that lead to the diversity of antigens presented by MHC class I complexes and their recognition by CD8+ T cells, together with a more detailed analysis of recent progress in two important areas that are highly controversial: the prevalence and immunological relevance of unconventional antigen peptides; and cross-recognition of antigenic peptides by the T cell receptors of CD8+ T cells.
Collapse
Affiliation(s)
- Camila R. R. Barbosa
- Centre for Inflammation Biology and Cancer Immunology (CIBCI) & Peter Gorer Department of Immunobiology, King's College London, SE1 1UL London, U.K
- Francis Crick Institute, NW1 1AT London, U.K
| | - Justin Barton
- Department of Biological Sciences and Institute of Structural and Molecular Biology, Birkbeck, University of London, WC1E 7HX London, U.K
| | - Adrian J. Shepherd
- Department of Biological Sciences and Institute of Structural and Molecular Biology, Birkbeck, University of London, WC1E 7HX London, U.K
| | - Michele Mishto
- Centre for Inflammation Biology and Cancer Immunology (CIBCI) & Peter Gorer Department of Immunobiology, King's College London, SE1 1UL London, U.K
- Francis Crick Institute, NW1 1AT London, U.K
| |
Collapse
|
18
|
Mukherjee S, Sanchez-Bernabeu A, Demmers LC, Wu W, Heck AJR. The HLA Ligandome Comprises a Limited Repertoire of O-GlcNAcylated Antigens Preferentially Associated With HLA-B*07:02. Front Immunol 2021; 12:796584. [PMID: 34925382 PMCID: PMC8671986 DOI: 10.3389/fimmu.2021.796584] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 11/15/2021] [Indexed: 12/30/2022] Open
Abstract
Mass-spectrometry based immunopeptidomics has provided unprecedented insights into antigen presentation, not only charting an enormous ligandome of self-antigens, but also cancer neoantigens and peptide antigens harbouring post-translational modifications. Here we concentrate on the latter, focusing on the small subset of HLA Class I peptides (less than 1%) that has been observed to be post-translationally modified (PTM) by a O-linked N-acetylglucosamine (GlcNAc). Just like neoantigens these modified antigens may have specific immunomodulatory functions. Here we compiled from literature, and a new dataset originating from the JY B cell lymphoblastoid cell line, a concise albeit comprehensive list of O-GlcNAcylated HLA class I peptides. This cumulative list of O-GlcNAcylated HLA peptides were derived from normal and cancerous origin, as well as tissue specimen. Remarkably, the overlap in detected O-GlcNAcylated HLA peptides as well as their source proteins is strikingly high. Most of the O-GlcNAcylated HLA peptides originate from nuclear proteins, notably transcription factors. From this list, we extract that O-GlcNAcylated HLA Class I peptides are preferentially presented by the HLA-B*07:02 allele. This allele loads peptides with a Proline residue anchor at position 2, and features a binding groove that can accommodate well the recently proposed consensus sequence for O-GlcNAcylation, P(V/A/T/S)g(S/T), essentially explaining why HLA-B*07:02 is a favoured binding allele. The observations drawn from the compiled list, may assist in the prediction of novel O-GlcNAcylated HLA antigens, which will be best presented by patients harbouring HLA-B*07:02 or related alleles that use Proline as anchoring residue.
Collapse
Affiliation(s)
- Soumya Mukherjee
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands.,Netherlands Proteomics Centre, Utrecht University, Utrecht, Netherlands
| | - Alvaro Sanchez-Bernabeu
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands.,Netherlands Proteomics Centre, Utrecht University, Utrecht, Netherlands
| | - Laura C Demmers
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands.,Netherlands Proteomics Centre, Utrecht University, Utrecht, Netherlands
| | - Wei Wu
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands.,Netherlands Proteomics Centre, Utrecht University, Utrecht, Netherlands
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands.,Netherlands Proteomics Centre, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
19
|
Fotakis G, Trajanoski Z, Rieder D. Computational cancer neoantigen prediction: current status and recent advances. IMMUNO-ONCOLOGY TECHNOLOGY 2021; 12:100052. [PMID: 35755950 PMCID: PMC9216660 DOI: 10.1016/j.iotech.2021.100052] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Over the last few decades, immunotherapy has shown significant therapeutic efficacy in a broad range of cancer types. Antitumor immune responses are contingent on the recognition of tumor-specific antigens, which are termed neoantigens. Tumor neoantigens are ideal targets for immunotherapy since they can be recognized as non-self antigens by the host immune system and thus are able to elicit an antitumor T-cell response. There are an increasing number of studies that highlight the importance of tumor neoantigens in immunoediting and in the sensitivity to immune checkpoint blockade. Therefore, one of the most fundamental tasks in the field of immuno-oncology research is the identification of patient-specific neoantigens. To this end, a plethora of computational approaches have been developed in order to predict tumor-specific aberrant peptides and quantify their likelihood of binding to patients' human leukocyte antigen molecules in order to be recognized by T cells. In this review, we systematically summarize and present the most recent advances in computational neoantigen prediction, and discuss the challenges and novel methods that are being developed to resolve them. Tumors have the ability to acquire immune escape mechanisms. Tumor-specific aberrant peptides (neoantigens) can elicit an immune response by the host immune system. The identification of neoantigens is one of the most fundamental tasks in the field of immuno-oncology research. A plethora of computational approaches have been developed in order to predict patient-specificneoantigens.
Collapse
Affiliation(s)
- G Fotakis
- Institute of Bioinformatics, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Z Trajanoski
- Institute of Bioinformatics, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - D Rieder
- Institute of Bioinformatics, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
20
|
Yi X, Liao Y, Wen B, Li K, Dou Y, Savage SR, Zhang B. caAtlas: An immunopeptidome atlas of human cancer. iScience 2021; 24:103107. [PMID: 34622160 PMCID: PMC8479791 DOI: 10.1016/j.isci.2021.103107] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 08/10/2021] [Accepted: 09/03/2021] [Indexed: 01/24/2023] Open
Abstract
Comprehensive characterization of tumor antigens is essential for the design of cancer immunotherapies, and mass spectrometry (MS)-based immunopeptidomics enables high-throughput identification of major histocompatibility complex (MHC)-bound peptide antigens in vivo. Here we construct an immunopeptidome atlas of human cancer through an extensive collection of 43 published immunopeptidomic datasets and standardized analysis of 81.6 million MS/MS spectra using an open search engine. Our analysis greatly expands the current knowledge of MHC-bound antigens, including an unprecedented characterization of post-translationally modified antigens and their cancer-association. We also perform systematic analysis of cancer-testis antigens, cancer-associated antigens, and neoantigens. We make all these data together with annotated MS/MS spectra supporting identification of each antigen in an easily browsable web portal named cancer antigen atlas (caAtlas). caAtlas provides a central resource for the selection and prioritization of MHC-bound peptides for in vitro HLA binding assay and immunogenicity testing, which will pave the way to eventual development of cancer immunotherapies. Extensive collection of 43 immunopeptidomic datasets with 1018 samples Standardized and rigorous identification of HLA-bound peptides, including PTM peptides Comprehensive annotation of CT antigens and cancer-associated antigens User-friendly data dissemination through the caAtlas web portal
Collapse
Affiliation(s)
- Xinpei Yi
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yuxing Liao
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Bo Wen
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Kai Li
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yongchao Dou
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sara R Savage
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Bing Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
21
|
Bauzá-Martinez J, Heck AJR, Wu W. HLA-B and cysteinylated ligands distinguish the antigen presentation landscape of extracellular vesicles. Commun Biol 2021; 4:825. [PMID: 34211107 PMCID: PMC8249458 DOI: 10.1038/s42003-021-02364-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 06/16/2021] [Indexed: 02/06/2023] Open
Abstract
Extracellular vesicles can modulate diverse processes ranging from proliferation and tissue repair, to chemo-resistance and cellular differentiation. With the advent of tissue and immunological targeting, extracellular vesicles are also increasingly viewed as promising vectors to deliver peptide-based cancer antigens to the human immune system. Despite the clinical relevance and therapeutic potential of such 'cell-free' approaches, the natural antigen presentation landscape exported in extracellular vesicles is still largely uncharted, due to the challenging nature of such preparations and analyses. In the context of therapeutic vesicle production, a critical evaluation of the similarity in vesicular antigen presentation is also urgently needed. In this work, we compared the HLA-I peptide ligandomes of extracellular vesicles against that of whole-cells of the same cell line. We found that extracellular vesicles not only over-represent HLA-B complexes and peptide ligands, but also cysteinylated peptides that may modulate immune responses. Collectively, these findings describe the pre-existing provision of vesicular HLA complexes that may be utilized to carry peptide vaccines, as well as the propensity for different peptide and post-translationally modified ligands to be presented, and will outline critical considerations in devising novel EV vaccination strategies.
Collapse
Affiliation(s)
- Julia Bauzá-Martinez
- grid.5477.10000000120346234Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands ,grid.4818.50000 0001 0791 5666Netherlands Proteomics Centre, Utrecht, The Netherlands
| | - Albert J. R. Heck
- grid.5477.10000000120346234Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands ,grid.4818.50000 0001 0791 5666Netherlands Proteomics Centre, Utrecht, The Netherlands
| | - Wei Wu
- grid.5477.10000000120346234Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands ,grid.4818.50000 0001 0791 5666Netherlands Proteomics Centre, Utrecht, The Netherlands
| |
Collapse
|
22
|
Béraud E, Collignon A, Franceschi C, Olive D, Lombardo D, Mas E. Investigation of a new tumor-associated glycosylated antigen as target for dendritic cell vaccination in pancreatic cancer. Oncoimmunology 2021; 1:56-61. [PMID: 22720212 PMCID: PMC3376954 DOI: 10.4161/onci.1.1.18459] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Glycoproteins, as valuable targets for dendritic cell (DC)-vaccination in cancers, remain an open question. Glycosylated structures, which are aberrantly modified during cancerisation, impact positively or negatively on glycoprotein immunogenicity. Here is presented an oncofetal glycovariant of bile-salt-dependent-lipase, expressed on human tumoral pancreas and efficiently processed by DC's, inducing T-lymphocyte activation.
Collapse
Affiliation(s)
- Evelyne Béraud
- INSERM; Marseille, France; Aix-Marseille Univ ; Centre de Recherche en Oncologie biologique et Oncopharmacologie; Marseille, France
| | | | | | | | | | | |
Collapse
|
23
|
Digging deeper into the immunopeptidome: characterization of post-translationally modified peptides presented by MHC I. JOURNAL OF PROTEINS AND PROTEOMICS 2021; 12:151-160. [PMID: 36619276 PMCID: PMC9807509 DOI: 10.1007/s42485-021-00066-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 05/14/2021] [Accepted: 05/18/2021] [Indexed: 01/11/2023]
Abstract
Peptides presented by MHC molecules on the cell surface, or the immunopeptidome, play an important role in the adaptive arm of the immune response. Antigen processing for MHC class I molecules is a ubiquitous pathway present in all nucleated cells which generates and presents peptides of both self and non-self-origin. Peptides with post-translational modifications represent one category of peptides presented by MHC class I molecules. However, owing to the complexity of self-peptides presented by cells, the diversity of peptides with post-translational modifications is not well-studied. In this study, we carried out MHC Class I immunopeptidomics analysis of Loucy T-cell leukemia and A375 malignant melanoma cell line to characterize the diversity of post-translational modifications of MHC class I-bound peptides. Using high resolution mass spectrometry, we identified 25,761 MHC-bound peptides across both cell lines using Bolt and Sequest search engines. The enrichment method was highly specific as ~ 90% of the peptides were of typical length (8-12 amino acids long) and the motifs were expected based on previously reported motifs for MHC I alleles. Among the MHC-bound peptides, we identified phosphorylation as a major post-translational modification followed by deamidation. We observed site-specific localization of these post-translational modifications, at position P4 for phosphorylated peptides and position P3 for deamidated peptides. We identified a smaller number of peptides with acetylated and methylated lysine, possibly due to very low stoichiometric levels of these PTMs compared to phosphorylation and deamidation. Using PEAKS de novo sequencing algorithm, we identified spliced peptides that accounted for ~ 5-7% of MHC-bound peptides that were otherwise similar in their features as normal MHC-bound peptides. We validated the identity of several post-translationally modified peptides and spliced peptides through mass spectrometric analysis of synthetic peptides. Our study confirms post-translationally modified peptides to be present at low stoichiometric levels along with unusual spliced peptides through unbiased identification using high resolution mass spectrometry. Supplementary Information The online version contains supplementary material available at 10.1007/s42485-021-00066-x.
Collapse
|
24
|
Andlauer TFM, Link J, Martin D, Ryner M, Hermanrud C, Grummel V, Auer M, Hegen H, Aly L, Gasperi C, Knier B, Müller-Myhsok B, Jensen PEH, Sellebjerg F, Kockum I, Olsson T, Pallardy M, Spindeldreher S, Deisenhammer F, Fogdell-Hahn A, Hemmer B. Treatment- and population-specific genetic risk factors for anti-drug antibodies against interferon-beta: a GWAS. BMC Med 2020; 18:298. [PMID: 33143745 PMCID: PMC7641861 DOI: 10.1186/s12916-020-01769-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 08/28/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Upon treatment with biopharmaceuticals, the immune system may produce anti-drug antibodies (ADA) that inhibit the therapy. Up to 40% of multiple sclerosis patients treated with interferon β (IFNβ) develop ADA, for which a genetic predisposition exists. Here, we present a genome-wide association study on ADA and predict the occurrence of antibodies in multiple sclerosis patients treated with different interferon β preparations. METHODS We analyzed a large sample of 2757 genotyped and imputed patients from two cohorts (Sweden and Germany), split between a discovery and a replication dataset. Binding ADA (bADA) levels were measured by capture-ELISA, neutralizing ADA (nADA) titers using a bioassay. Genome-wide association analyses were conducted stratified by cohort and treatment preparation, followed by fixed-effects meta-analysis. RESULTS Binding ADA levels and nADA titers were correlated and showed a significant heritability (47% and 50%, respectively). The risk factors differed strongly by treatment preparation: The top-associated and replicated variants for nADA presence were the HLA-associated variants rs77278603 in IFNβ-1a s.c.- (odds ratio (OR) = 3.55 (95% confidence interval = 2.81-4.48), p = 2.1 × 10-26) and rs28366299 in IFNβ-1b s.c.-treated patients (OR = 3.56 (2.69-4.72), p = 6.6 × 10-19). The rs77278603-correlated HLA haplotype DR15-DQ6 conferred risk specifically for IFNβ-1a s.c. (OR = 2.88 (2.29-3.61), p = 7.4 × 10-20) while DR3-DQ2 was protective (OR = 0.37 (0.27-0.52), p = 3.7 × 10-09). The haplotype DR4-DQ3 was the major risk haplotype for IFNβ-1b s.c. (OR = 7.35 (4.33-12.47), p = 1.5 × 10-13). These haplotypes exhibit large population-specific frequency differences. The best prediction models were achieved for ADA in IFNβ-1a s.c.-treated patients. Here, the prediction in the Swedish cohort showed AUC = 0.91 (0.85-0.95), sensitivity = 0.78, and specificity = 0.90; patients with the top 30% of genetic risk had, compared to patients in the bottom 30%, an OR = 73.9 (11.8-463.6, p = 4.4 × 10-6) of developing nADA. In the German cohort, the AUC of the same model was 0.83 (0.71-0.92), sensitivity = 0.80, specificity = 0.76, with an OR = 13.8 (3.0-63.3, p = 7.5 × 10-4). CONCLUSIONS We identified several HLA-associated genetic risk factors for ADA against interferon β, which were specific for treatment preparations and population backgrounds. Genetic prediction models could robustly identify patients at risk for developing ADA and might be used for personalized therapy recommendations and stratified ADA screening in clinical practice. These analyses serve as a roadmap for genetic characterizations of ADA against other biopharmaceutical compounds.
Collapse
Affiliation(s)
- Till F M Andlauer
- Department of Neurology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Ismaninger Str 22, 81675, Munich, Germany.
- Max Planck Institute of Psychiatry, Kraepelinstr 2-10, 80804, Munich, Germany.
| | - Jenny Link
- Department of Clinical Neuroscience, Karolinska Institutet, Visionsgatan 18, 17176, Stockholm, Sweden
| | - Dorothea Martin
- Department of Neurology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Ismaninger Str 22, 81675, Munich, Germany
| | - Malin Ryner
- Department of Clinical Neuroscience, Karolinska Institutet, Visionsgatan 18, 17176, Stockholm, Sweden
| | - Christina Hermanrud
- Department of Clinical Neuroscience, Karolinska Institutet, Visionsgatan 18, 17176, Stockholm, Sweden
| | - Verena Grummel
- Department of Neurology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Ismaninger Str 22, 81675, Munich, Germany
| | - Michael Auer
- Department of Neurology, Medical University of Innsbruck, Anichstr 35, 6020, Innsbruck, Austria
| | - Harald Hegen
- Department of Neurology, Medical University of Innsbruck, Anichstr 35, 6020, Innsbruck, Austria
| | - Lilian Aly
- Department of Neurology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Ismaninger Str 22, 81675, Munich, Germany
- Institute of Experimental Neuroimmunology, Technical University of Munich, Trogerstr 9, 81675, Munich, Germany
| | - Christiane Gasperi
- Department of Neurology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Ismaninger Str 22, 81675, Munich, Germany
| | - Benjamin Knier
- Department of Neurology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Ismaninger Str 22, 81675, Munich, Germany
- Institute of Experimental Neuroimmunology, Technical University of Munich, Trogerstr 9, 81675, Munich, Germany
| | - Bertram Müller-Myhsok
- Max Planck Institute of Psychiatry, Kraepelinstr 2-10, 80804, Munich, Germany
- Institute of Translational Medicine, University of Liverpool, Crown Street, Liverpool, L69 3BX, UK
- Munich Cluster for Systems Neurology (SyNergy), Feodor-Lynen-Str. 17, 81377, Munich, Germany
| | | | - Finn Sellebjerg
- DMSC, Department of Neurology, Rigshospitalet, University of Copenhagen, 2100, Copenhagen, Denmark
| | - Ingrid Kockum
- Department of Clinical Neuroscience, Karolinska Institutet, Visionsgatan 18, 17176, Stockholm, Sweden
| | - Tomas Olsson
- Department of Clinical Neuroscience, Karolinska Institutet, Visionsgatan 18, 17176, Stockholm, Sweden
| | - Marc Pallardy
- Inflammation, Microbiome and Immunosurveillance, Université Paris-Saclay, INSERM, Faculté de Pharmacie, rue JB Clément, 92290, Châtenay-Malabry, France
| | - Sebastian Spindeldreher
- Novartis Institutes for Biomedical Research, Novartis Pharma AG, 4056, Basel, Switzerland
- Integrated Biologix GmbH, Steinenvorstadt 33, 4051, Basel, Switzerland
| | - Florian Deisenhammer
- Department of Neurology, Medical University of Innsbruck, Anichstr 35, 6020, Innsbruck, Austria
| | - Anna Fogdell-Hahn
- Department of Clinical Neuroscience, Karolinska Institutet, Visionsgatan 18, 17176, Stockholm, Sweden
| | - Bernhard Hemmer
- Department of Neurology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Ismaninger Str 22, 81675, Munich, Germany.
- Munich Cluster for Systems Neurology (SyNergy), Feodor-Lynen-Str. 17, 81377, Munich, Germany.
| |
Collapse
|
25
|
Gopanenko AV, Kosobokova EN, Kosorukov VS. Main Strategies for the Identification of Neoantigens. Cancers (Basel) 2020; 12:E2879. [PMID: 33036391 PMCID: PMC7600129 DOI: 10.3390/cancers12102879] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/01/2020] [Accepted: 10/05/2020] [Indexed: 12/24/2022] Open
Abstract
Genetic instability of tumors leads to the appearance of numerous tumor-specific somatic mutations that could potentially result in the production of mutated peptides that are presented on the cell surface by the MHC molecules. Peptides of this kind are commonly called neoantigens. Their presence on the cell surface specifically distinguishes tumors from healthy tissues. This feature makes neoantigens a promising target for immunotherapy. The rapid evolution of high-throughput genomics and proteomics makes it possible to implement these techniques in clinical practice. In particular, they provide useful tools for the investigation of neoantigens. The most valuable genomic approach to this problem is whole-exome sequencing coupled with RNA-seq. High-throughput mass-spectrometry is another option for direct identification of MHC-bound peptides, which is capable of revealing the entire MHC-bound peptidome. Finally, structure-based predictions could significantly improve the understanding of physicochemical and structural features that affect the immunogenicity of peptides. The development of pipelines combining such tools could improve the accuracy of the peptide selection process and decrease the required time. Here we present a review of the main existing approaches to investigating the neoantigens and suggest a possible ideal pipeline that takes into account all modern trends in the context of neoantigen discovery.
Collapse
Affiliation(s)
| | | | - Vyacheslav S. Kosorukov
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, 115478 Moscow, Russia; (A.V.G.); (E.N.K.)
| |
Collapse
|
26
|
Huang H, Wang C, Rubelt F, Scriba TJ, Davis MM. Analyzing the Mycobacterium tuberculosis immune response by T-cell receptor clustering with GLIPH2 and genome-wide antigen screening. Nat Biotechnol 2020; 38:1194-1202. [PMID: 32341563 PMCID: PMC7541396 DOI: 10.1038/s41587-020-0505-4] [Citation(s) in RCA: 276] [Impact Index Per Article: 55.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 03/31/2020] [Indexed: 12/13/2022]
Abstract
CD4+ T cells are critical to fighting pathogens, but a comprehensive analysis of human T-cell specificities is hindered by the diversity of HLA alleles (>20,000) and the complexity of many pathogen genomes. We previously described GLIPH, an algorithm to cluster T-cell receptors (TCRs) that recognize the same epitope and to predict their HLA restriction, but this method loses efficiency and accuracy when >10,000 TCRs are analyzed. Here we describe an improved algorithm, GLIPH2, that can process millions of TCR sequences. We used GLIPH2 to analyze 19,044 unique TCRβ sequences from 58 individuals latently infected with Mycobacterium tuberculosis (Mtb) and to group them according to their specificity. To identify the epitopes targeted by clusters of Mtb-specific T cells, we carried out a screen of 3,724 distinct proteins covering 95% of Mtb protein-coding genes using artificial antigen-presenting cells (aAPCs) and reporter T cells. We found that at least five PPE (Pro-Pro-Glu) proteins are targets for T-cell recognition in Mtb.
Collapse
Affiliation(s)
- Huang Huang
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, USA
| | - Chunlin Wang
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, USA
| | - Florian Rubelt
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, USA
| | - Thomas J Scriba
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine and Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Mark M Davis
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA.
- The Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
27
|
Zaitoua AJ, Kaur A, Raghavan M. Variations in MHC class I antigen presentation and immunopeptidome selection pathways. F1000Res 2020; 9. [PMID: 33014341 PMCID: PMC7525337 DOI: 10.12688/f1000research.26935.1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/18/2020] [Indexed: 12/12/2022] Open
Abstract
Major histocompatibility class I (MHC-I) proteins mediate immunosurveillance against pathogens and cancers by presenting antigenic or mutated peptides to antigen receptors of CD8+ T cells and by engaging receptors of natural killer (NK) cells. In humans, MHC-I molecules are highly polymorphic. MHC-I variations permit the display of thousands of distinct peptides at the cell surface. Recent mass spectrometric studies have revealed unique and shared characteristics of the peptidomes of individual MHC-I variants. The cell surface expression of MHC-I–peptide complexes requires the functions of many intracellular assembly factors, including the transporter associated with antigen presentation (TAP), tapasin, calreticulin, ERp57, TAP-binding protein related (TAPBPR), endoplasmic reticulum aminopeptidases (ERAPs), and the proteasomes. Recent studies provide important insights into the structural features of these factors that govern MHC-I assembly as well as the mechanisms underlying peptide exchange. Conformational sensing of MHC-I molecules mediates the quality control of intracellular MHC-I assembly and contributes to immune recognition by CD8 at the cell surface. Recent studies also show that several MHC-I variants can follow unconventional assembly routes to the cell surface, conferring selective immune advantages that can be exploited for immunotherapy.
Collapse
Affiliation(s)
- Anita J Zaitoua
- Department of Microbiology and Immunology, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Amanpreet Kaur
- Department of Microbiology and Immunology, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Malini Raghavan
- Department of Microbiology and Immunology, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
28
|
Corbière V, Segers J, Desmet R, Lecher S, Loyens M, Petit E, Melnyk O, Locht C, Mascart F. Natural T Cell Epitope Containing Methyl Lysines on Mycobacterial Heparin-Binding Hemagglutinin. THE JOURNAL OF IMMUNOLOGY 2020; 204:1715-1723. [PMID: 32122997 DOI: 10.4049/jimmunol.1901214] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 01/30/2020] [Indexed: 11/19/2022]
Abstract
T cell epitopes are mostly nonmodified peptides, although posttranslationally modified peptide epitopes have been described, but they originated from viral or self-proteins. In this study, we provide evidence of a bacterial methylated T cell peptide epitope. The mycobacterial heparin-binding hemagglutinin (HBHA) is a protein Ag with a complex C-terminal methylation pattern and is recognized by T cells from humans latently infected with Mycobacterium tuberculosis By comparing native HBHA with recombinant HBHA produced in Mycobacterium smegmatis (rHBHA-Ms), we could link antigenic differences to differences in the methylation profile. Peptide scan analyses led to the discovery of a peptide containing methyl lysines recognized by a mAb that binds to native HBHA ∼100-fold better than to rHBHA-Ms This peptide was also recognized by T cells from latently infected humans, as evidenced by IFN-γ release upon peptide stimulation. The nonmethylated peptide did not induce IFN-γ, arguing that the methyl lysines are part of the T cell epitope.
Collapse
Affiliation(s)
- Véronique Corbière
- Laboratory of Vaccinology and Mucosal Immunity, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Jérôme Segers
- Université de Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 8204-Center for Infection and Immunity of Lille, F-59000 Lille, France; and
| | - Rémi Desmet
- Université de Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 8204-Center for Infection and Immunity of Lille, F-59000 Lille, France; and
| | - Sophie Lecher
- Université de Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 8204-Center for Infection and Immunity of Lille, F-59000 Lille, France; and
| | - Marc Loyens
- Université de Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 8204-Center for Infection and Immunity of Lille, F-59000 Lille, France; and
| | - Emmanuelle Petit
- Université de Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 8204-Center for Infection and Immunity of Lille, F-59000 Lille, France; and
| | - Oleg Melnyk
- Université de Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 8204-Center for Infection and Immunity of Lille, F-59000 Lille, France; and
| | - Camille Locht
- Université de Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 8204-Center for Infection and Immunity of Lille, F-59000 Lille, France; and
| | - Françoise Mascart
- Laboratory of Vaccinology and Mucosal Immunity, Université Libre de Bruxelles, 1070 Brussels, Belgium; .,Immunobiology Clinic, Hôpital Erasme, Université Libre de Bruxelles, 1070 Brussels, Belgium
| |
Collapse
|
29
|
Kote S, Pirog A, Bedran G, Alfaro J, Dapic I. Mass Spectrometry-Based Identification of MHC-Associated Peptides. Cancers (Basel) 2020; 12:cancers12030535. [PMID: 32110973 PMCID: PMC7139412 DOI: 10.3390/cancers12030535] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 02/15/2020] [Accepted: 02/20/2020] [Indexed: 02/06/2023] Open
Abstract
Neoantigen-based immunotherapies promise to improve patient outcomes over the current standard of care. However, detecting these cancer-specific antigens is one of the significant challenges in the field of mass spectrometry. Even though the first sequencing of the immunopeptides was done decades ago, today there is still a diversity of the protocols used for neoantigen isolation from the cell surface. This heterogeneity makes it difficult to compare results between the laboratories and the studies. Isolation of the neoantigens from the cell surface is usually done by mild acid elution (MAE) or immunoprecipitation (IP) protocol. However, limited amounts of the neoantigens present on the cell surface impose a challenge and require instrumentation with enough sensitivity and accuracy for their detection. Detecting these neopeptides from small amounts of available patient tissue limits the scope of most of the studies to cell cultures. Here, we summarize protocols for the extraction and identification of the major histocompatibility complex (MHC) class I and II peptides. We aimed to evaluate existing methods in terms of the appropriateness of the isolation procedure, as well as instrumental parameters used for neoantigen detection. We also focus on the amount of the material used in the protocols as the critical factor to consider when analyzing neoantigens. Beyond experimental aspects, there are numerous readily available proteomics suits/tools applicable for neoantigen discovery; however, experimental validation is still necessary for neoantigen characterization.
Collapse
|
30
|
Ohara M, Ohara K, Kumai T, Ohkuri T, Nagato T, Hirata-Nozaki Y, Kosaka A, Nagata M, Hayashi R, Harabuchi S, Yajima Y, Oikawa K, Harabuchi Y, Sumi Y, Furukawa H, Kobayashi H. Phosphorylated vimentin as an immunotherapeutic target against metastatic colorectal cancer. Cancer Immunol Immunother 2020; 69:989-999. [PMID: 32086539 DOI: 10.1007/s00262-020-02524-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Accepted: 02/16/2020] [Indexed: 12/31/2022]
Abstract
Colorectal cancer (CRC) patients with metastatic lesions have low 5-year survival rates. During metastasis, cancer cells often obtain unique characteristics such as epithelial-mesenchymal transition (EMT). Vimentin a biomarker contributes to EMT by changing cell shape and motility. Since abnormal phosphorylation is a hallmark of malignancy, targeting phosphorylated vimentin is a feasible approach for the treatment of metastatic tumors while sparing non-tumor cells. Recent evidence has revealed that both CD8 cytotoxic T lymphocytes (CTLs) and also CD4 helper T lymphocytes (HTLs) can distinguish post-translationally modified antigens from normal antigens. Here, we showed that the expression of phosphorylated vimentin was upregulated in metastatic sites of CRC. We also showed that a chemotherapeutic reagent augmented the expression of phosphorylated vimentin. The novel phosphorylated helper peptide epitopes from vimentin could elicit a sufficient T cell response. Notably, precursor lymphocytes that specifically reacted to these phosphorylated vimentin-derived peptides were detected in CRC patients. These results suggest that immunotherapy targeting phosphorylated vimentin could be promising for metastatic CRC patients.
Collapse
Affiliation(s)
- Mizuho Ohara
- Department of Pathology, Asahikawa Medical University, 2-1-1-1, Midorigaoka-Higashi, Asahikawa, 0788510, Japan.,Department of Surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Kenzo Ohara
- Department of Pathology, Asahikawa Medical University, 2-1-1-1, Midorigaoka-Higashi, Asahikawa, 0788510, Japan.,Department of Otolaryngology-Head and Neck surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Takumi Kumai
- Department of Pathology, Asahikawa Medical University, 2-1-1-1, Midorigaoka-Higashi, Asahikawa, 0788510, Japan. .,Department of Otolaryngology-Head and Neck surgery, Asahikawa Medical University, Asahikawa, Japan. .,Department of Innovative Head and Neck Cancer Research and Treatment (IHNCRT), Asahikawa Medical University, 2-1-1-1, Midorigaoka-Higashi, Asahikawa, 0788510, Japan.
| | - Takayuki Ohkuri
- Department of Pathology, Asahikawa Medical University, 2-1-1-1, Midorigaoka-Higashi, Asahikawa, 0788510, Japan.
| | - Toshihiro Nagato
- Department of Pathology, Asahikawa Medical University, 2-1-1-1, Midorigaoka-Higashi, Asahikawa, 0788510, Japan
| | - Yui Hirata-Nozaki
- Department of Pathology, Asahikawa Medical University, 2-1-1-1, Midorigaoka-Higashi, Asahikawa, 0788510, Japan.,Department of Otolaryngology-Head and Neck surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Akemi Kosaka
- Department of Pathology, Asahikawa Medical University, 2-1-1-1, Midorigaoka-Higashi, Asahikawa, 0788510, Japan
| | - Marino Nagata
- Department of Pathology, Asahikawa Medical University, 2-1-1-1, Midorigaoka-Higashi, Asahikawa, 0788510, Japan
| | - Ryusuke Hayashi
- Department of Pathology, Asahikawa Medical University, 2-1-1-1, Midorigaoka-Higashi, Asahikawa, 0788510, Japan.,Department of Otolaryngology-Head and Neck surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Shohei Harabuchi
- Department of Pathology, Asahikawa Medical University, 2-1-1-1, Midorigaoka-Higashi, Asahikawa, 0788510, Japan.,Department of Otolaryngology-Head and Neck surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Yuki Yajima
- Department of Pathology, Asahikawa Medical University, 2-1-1-1, Midorigaoka-Higashi, Asahikawa, 0788510, Japan
| | - Kensuke Oikawa
- Department of Pathology, Asahikawa Medical University, 2-1-1-1, Midorigaoka-Higashi, Asahikawa, 0788510, Japan
| | - Yasuaki Harabuchi
- Department of Otolaryngology-Head and Neck surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Yasuo Sumi
- Department of Surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Hiroyuki Furukawa
- Department of Surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Hiroya Kobayashi
- Department of Pathology, Asahikawa Medical University, 2-1-1-1, Midorigaoka-Higashi, Asahikawa, 0788510, Japan
| |
Collapse
|
31
|
Roudko V, Greenbaum B, Bhardwaj N. Computational Prediction and Validation of Tumor-Associated Neoantigens. Front Immunol 2020; 11:27. [PMID: 32117226 PMCID: PMC7025577 DOI: 10.3389/fimmu.2020.00027] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 01/08/2020] [Indexed: 12/30/2022] Open
Abstract
Tumor progression is typically accompanied by an accumulation of driver and passenger somatic mutations. A handful of those mutations occur in protein coding genes which introduce non-synonymous polymorphisms. Certain substitutions may give rise to novel, tumor-associated antigens or neoantigens, presentable by cancer cells to the host adaptive immune system. As antigen recognition is the core of an effective immune response, the identification of patient tumor specific antigens derived from transformed cells is of importance for immunotherapeutic approaches. Recent technological advances in DNA sequencing of tumor genomes, advances in gene expression analysis, algorithm development for antigen predictions and methods for T-cell receptor (TCR) repertoire sequencing have facilitated the selection of candidate immunogenic neoantigens. In this regard, multiple research groups have reported encouraging results of neoantigen-based cancer vaccines that generate tumor antigen specific immune responses, both in mouse models and clinical trials. Additionally, both the quantity and quality of neoantigens has been shown to have predictive value for clinical outcomes in checkpoint-blockade immunotherapy in certain tumor types. Neoantigen recognition by vaccination or through adoptive T cell therapy may have unprecedented potential to advance cancer immunotherapy in combination with other approaches. In our review we discuss three parameters regarding neoantigens: computational methods for epitope prediction, experimental methods for epitope immunogenicity validation and future directions for improvement of those methods. Within each section, we will describe the advantages and limitations of existing methods as well as highlight pressing fundamental problems to be addressed.
Collapse
Affiliation(s)
- Vladimir Roudko
- Department of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai Hospital, New York, NY, United States
- Center for Computational Immunology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai Hospital, New York, NY, United States
| | - Benjamin Greenbaum
- Center for Computational Immunology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai Hospital, New York, NY, United States
- Department of Pathology, Icahn School of Medicine at Mount Sinai Hospital, New York, NY, United States
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai Hospital, New York, NY, United States
| | - Nina Bhardwaj
- Department of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai Hospital, New York, NY, United States
| |
Collapse
|
32
|
Wang Y, Wang P, Xu J. Phosphorylation: A Fast Switch For Checkpoint Signaling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1248:347-398. [PMID: 32185718 DOI: 10.1007/978-981-15-3266-5_15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Checkpoint signaling involves a variety of upstream and downstream factors that participate in the regulation of checkpoint expression, activation, and degradation. During the process, phosphorylation plays a critical role. Phosphorylation is one of the most well-documented post-translational modifications of proteins. Of note, the importance of phosphorylation has been emphasized in aspects of cell activities, including proliferation, metabolism, and differentiation. Here we summarize how phosphorylation of specific molecules affects the immune activities with preference in tumor immunity. Of course, immune checkpoints are given extra attention in this book. There are many common pathways that are involved in signaling of different checkpoints. Some of them are integrated and presented as common activities in the early part of this chapter, especially those associated with PD-1/PD-L1 and CTLA-4, because investigations concerning them are particularly abundant and variant. Their distinct regulation is supplementarily discussed in their respective section. As for checkpoints that are so far not well explored, their related phosphorylation modulations are listed separately in the later part. We hope to provide a clear and systematic view of the phosphorylation-modulated immune signaling.
Collapse
Affiliation(s)
- Yiting Wang
- School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Ping Wang
- Shanghai Tenth People's Hospital of Tongji University, School of Medicine, School of Life Sciences and Technology, Tongji University Cancer Center, Tongji University, Shanghai, 200092, China
| | - Jie Xu
- Institutes of Biomedical Sciences, Zhongshan-Xuhui Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
33
|
Ramarathinam SH, Croft NP, Illing PT, Faridi P, Purcell AW. Employing proteomics in the study of antigen presentation: an update. Expert Rev Proteomics 2018; 15:637-645. [PMID: 30080115 DOI: 10.1080/14789450.2018.1509000] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Our immune system discriminates self from non-self by examining the peptide cargo of human leukocyte antigen (HLA) molecules displayed on the cell surface. Successful recognition of HLA-bound non-self peptides can induce T cell responses leading to, for example, the destruction of infected cells. Today, largely due to advances in technology, we have an unprecedented capability to identify the nature of these presented peptides and unravel the true complexity of antigen presentation. Areas covered: In addition to conventional linear peptides, HLA molecules also present post-translationally modified sequences comprising a wealth of chemical and structural modifications, including a novel class of noncontiguous spliced peptides. This review focuses on these emerging themes in antigen presentation and how mass spectrometry in particular has contributed to a new view of the antigenic landscape that is presented to the immune system. Expert Commentary: Advances in the sensitivity of mass spectrometers and use of hybrid fragmentation technologies will provide more information-rich spectra of HLA bound peptides leading to more definitive identification of T cell epitopes. Coupled with improvements in sample preparation and new informatics workflows, studies will access novel classes of peptide antigen and allow interrogation of rare and clinically relevant samples.
Collapse
Affiliation(s)
- Sri H Ramarathinam
- a Department of Biochemistry and Molecular Biology and Infection and Immunity Program, Biomedicine Discovery Institute , Monash University , Clayton , VIC , Australia
| | - Nathan P Croft
- a Department of Biochemistry and Molecular Biology and Infection and Immunity Program, Biomedicine Discovery Institute , Monash University , Clayton , VIC , Australia
| | - Patricia T Illing
- a Department of Biochemistry and Molecular Biology and Infection and Immunity Program, Biomedicine Discovery Institute , Monash University , Clayton , VIC , Australia
| | - Pouya Faridi
- a Department of Biochemistry and Molecular Biology and Infection and Immunity Program, Biomedicine Discovery Institute , Monash University , Clayton , VIC , Australia
| | - Anthony W Purcell
- a Department of Biochemistry and Molecular Biology and Infection and Immunity Program, Biomedicine Discovery Institute , Monash University , Clayton , VIC , Australia
| |
Collapse
|
34
|
Ohara K, Ohkuri T, Kumai T, Nagato T, Nozaki Y, Ishibashi K, Kosaka A, Nagata M, Harabuchi S, Ohara M, Oikawa K, Aoki N, Harabuchi Y, Celis E, Kobayashi H. Targeting phosphorylated p53 to elicit tumor-reactive T helper responses against head and neck squamous cell carcinoma. Oncoimmunology 2018; 7:e1466771. [PMID: 30510853 DOI: 10.1080/2162402x.2018.1466771] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 04/13/2018] [Accepted: 04/13/2018] [Indexed: 12/19/2022] Open
Abstract
The human T cell receptor is capable of distinguishing between normal and post-translationally modified peptides. Because aberrant phosphorylation of cellular proteins is a hallmark of malignant transformation, the expression of the phosphorylated epitope could be an ideal antigen to combat cancer without damaging normal tissues. p53 activates transcription factors to suppress tumors by upregulating growth arrest and apoptosis-related genes. In response to DNA damage, p53 is phosphorylated at multiple sites including Ser33 and Ser37. Here, we identified phosphorylated peptide epitopes from p53 that could elicit effective T helper responses. These epitope peptides, p5322-41/Phospho-S33 and p5322-41/Phospho-S37, induced T helper responses against tumor cells expressing the phosphorylated p53 protein. Moreover, chemotherapeutic agents augmented the responses of such CD4 T cells via upregulation of phosphorylated p53. The upregulation of phosphorylated p53 expression by chemotherapy was confirmed in in vitro and xenograft models. We evaluated phosphorylated p53 expression in the clinical samples of oropharyngeal squamous cell carcinoma and revealed that 13/24 cases (54%) were positive for phosphorylated p53. Importantly, the lymphocytes specific for the phosphorylated p53 peptide epitopes were observed in the head and neck squamous cell cancer (HNSCC) patients. These results reveal that a combination of phosphorylated p53 peptides and chemotherapy could be a novel immunologic approach to treat HNSCC patients.
Collapse
Affiliation(s)
- Kenzo Ohara
- Department of Pathology, Asahikawa Medical University, Asahikawa, Japan.,Department of Otolaryngology-Head and Neck surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Takayuki Ohkuri
- Department of Pathology, Asahikawa Medical University, Asahikawa, Japan
| | - Takumi Kumai
- Department of Pathology, Asahikawa Medical University, Asahikawa, Japan.,Department of Otolaryngology-Head and Neck surgery, Asahikawa Medical University, Asahikawa, Japan.,Department of Innovative Head & Neck Cancer Research and Treatment (IHNCRT), Asahikawa Medical University, Asahikawa, Japan
| | - Toshihiro Nagato
- Department of Pathology, Asahikawa Medical University, Asahikawa, Japan.,Department of Otolaryngology-Head and Neck surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Yui Nozaki
- Department of Pathology, Asahikawa Medical University, Asahikawa, Japan.,Department of Otolaryngology-Head and Neck surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Kei Ishibashi
- Department of Pathology, Asahikawa Medical University, Asahikawa, Japan.,Department of surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Akemi Kosaka
- Department of Pathology, Asahikawa Medical University, Asahikawa, Japan
| | - Marino Nagata
- Department of Pathology, Asahikawa Medical University, Asahikawa, Japan
| | - Shohei Harabuchi
- Department of Pathology, Asahikawa Medical University, Asahikawa, Japan.,Department of Otolaryngology-Head and Neck surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Mizuho Ohara
- Department of Pathology, Asahikawa Medical University, Asahikawa, Japan.,Department of surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Kensuke Oikawa
- Department of Pathology, Asahikawa Medical University, Asahikawa, Japan
| | - Naoko Aoki
- Department of Pathology, Asahikawa Medical University, Asahikawa, Japan
| | - Yasuaki Harabuchi
- Department of Otolaryngology-Head and Neck surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Esteban Celis
- Cancer Immunology, Inflammation and Tolerance Program, Augusta University, Georgia Cancer Center, Augusta, GA
| | - Hiroya Kobayashi
- Department of Pathology, Asahikawa Medical University, Asahikawa, Japan
| |
Collapse
|
35
|
Marino F. Gaining Insight Into Posttranslationally Modified HIV Antigens and Their Underlying Characteristics. Proteomics 2018. [PMID: 29513933 DOI: 10.1002/pmic.201800041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Mass spectrometry (MS)-based immunopeptidomics has developed as one of the leading methodologies for comprehensive characterization of in vivo presented human leukocyte antigen (HLA)-bound peptides. Unveiling the identity of HLA-bound peptides derived from diseased cells is crucial to gain knowledge on the constitution of efficient disease-specific T cell responses. The HLA-presented peptidome reflects the status of the cellular proteome, hence disease-related aberrations of posttranslational modifications (PTMs) might lead to presentation of peptides harboring PTMs. Therefore, characterization of HLA-bound PTM peptides could shed light on their relevance in immune and disease processes. In this issue, Ramarathinam et al. investigate the presentation of HIV envelope (HIVenv) peptides bound to the HLA-B*57:01 allele. Among these peptides, the authors specifically focused on a kynurenine-modified peptide. To this end, they characterize the possible origin of the kynurenine modification, its effect on HLA binding affinity, stability, conformation within the complex, and its immunogenicity compared to the native counterpart.
Collapse
Affiliation(s)
- Fabio Marino
- Departement de Medecine-Oncology, Centre Hospitalier Universitaire Vaudois, Switzerland
| |
Collapse
|
36
|
Smith AW, Ray SK, Das A, Nozaki K, Rohrer B, Banik NL. Calpain inhibition as a possible new therapeutic target in multiple sclerosis. AIMS MOLECULAR SCIENCE 2017; 4:446-462. [PMID: 40181912 PMCID: PMC11967729 DOI: 10.3934/molsci.2017.4.446] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025] Open
Abstract
Multiple sclerosis (MS), the most common chronic autoimmune inflammatory disease of the central nervous system (CNS), is characterized by demyelination and neurodegeneration. In particular, neurodegeneration is a major factor in disease progression with neuronal death and irreversible axonal damage leading to disability. MS is manageable with current therapies that are directed towards immunomodulation but there are no available therapies for neuroprotection. The complex pathophysiology and heterogeneity of MS indicate that therapeutic agents should be directed to both the inflammatory and neurodegenerative arms of the disease. Activity of the Ca2+ activated protease calpain has been previously implicated in progression of MS and its primary animal model, experimental autoimmune encephalomyelitis (EAE). The effects of calpain inhibitors in EAE involve downregulation of Th1/Th17 inflammatory responses and promotion of regulatory T cells, overall leading to decreased inflammatory cell infiltration in CNS tissues. Furthermore, analysis of brains, spinal cords and optic nerves from EAE animals revealed decreases in axon degeneration, motor neuron and retinal ganglion cell death. This resulted in improved severity of paralysis and preservation of visual function. Taken together, the studies presented in this brief review suggest that use of calpain inhibitors in combination with an immunomodulatory agent may be a potential therapeutic strategy for MS and optic neuritis.
Collapse
Affiliation(s)
- Amena W. Smith
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC, USA
| | - Swapan K. Ray
- Department of Pathology, Microbiology and Immunology, University of South Carolina, Columbia, SC, USA
| | - Arabinda Das
- Department of Neurosurgery, Medical University of South Carolina, Charleston, SC, USA
| | - Kenkichi Nozaki
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC, USA
| | - Baerbel Rohrer
- Department of Ophthalmology, Medical University of South Carolina, Charleston, SC, USA
| | - Naren L. Banik
- Department of Neurosurgery, Medical University of South Carolina, Charleston, SC, USA
- Research Service, Ralph H. Johnson VA Medical Center, Charleston, SC, USA
| |
Collapse
|
37
|
Barnea E, Melamed Kadosh D, Haimovich Y, Satumtira N, Dorris ML, Nguyen MT, Hammer RE, Tran TM, Colbert RA, Taurog JD, Admon A. The Human Leukocyte Antigen (HLA)-B27 Peptidome in Vivo, in Spondyloarthritis-susceptible HLA-B27 Transgenic Rats and the Effect of Erap1 Deletion. Mol Cell Proteomics 2017; 16:642-662. [PMID: 28188227 DOI: 10.1074/mcp.m116.066241] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 02/05/2017] [Indexed: 01/20/2023] Open
Abstract
HLA-B27 is a class I major histocompatibility (MHC-I) allele that confers susceptibility to the rheumatic disease ankylosing spondylitis (AS) by an unknown mechanism. ERAP1 is an aminopeptidase that trims peptides in the endoplasmic reticulum for binding to MHC-I molecules. ERAP1 shows genetic epistasis with HLA-B27 in conferring susceptibility to AS. Male HLA-B27 transgenic rats develop arthritis and serve as an animal model of AS, whereas female B27 transgenic rats remain healthy. We used large scale quantitative mass spectrometry to identify over 15,000 unique HLA-B27 peptide ligands, isolated after immunoaffinity purification of the B27 molecules from the spleens of HLA-B27 transgenic rats. Heterozygous deletion of Erap1, which reduced the Erap1 level to less than half, had no qualitative or quantitative effects on the B27 peptidome. Homozygous deletion of Erap1 affected approximately one-third of the B27 peptidome but left most of the B27 peptidome unchanged, suggesting the possibility that some of the HLA-B27 immunopeptidome is not processed in the presence of Erap1. Deletion of Erap1 was permissive for the AS-like phenotype, increased mean peptide length and increased the frequency of C-terminal hydrophobic residues and of N-terminal Ala, Ser, or Lys. The presence of Erap1 increased the frequency of C-terminal Lys and Arg, of Glu and Asp at intermediate residues, and of N-terminal Gly. Several peptides of potential interest in AS pathogenesis, previously identified in human cell lines, were isolated. However, rats susceptible to arthritis had B27 peptidomes similar to those of non-susceptible rats, and no peptides were found to be uniquely associated with arthritis. Whether specific B27-bound peptides are required for AS pathogenesis remains to be determined. Data are available via ProteomeXchange with identifier PXD005502.
Collapse
Affiliation(s)
- Eilon Barnea
- From the ‡Department of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Dganit Melamed Kadosh
- From the ‡Department of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Yael Haimovich
- From the ‡Department of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Nimman Satumtira
- §Department of Internal Medicine, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390-8884
| | - Martha L Dorris
- §Department of Internal Medicine, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390-8884
| | - Mylinh T Nguyen
- ¶Department of Biochemistry, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390-8816
| | - Robert E Hammer
- ¶Department of Biochemistry, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390-8816
| | - Tri M Tran
- ‖NIAMS, National Institutes of Health, Bethesda, Maryland 20892-1560
| | - Robert A Colbert
- ‖NIAMS, National Institutes of Health, Bethesda, Maryland 20892-1560
| | - Joel D Taurog
- §Department of Internal Medicine, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390-8884;
| | - Arie Admon
- From the ‡Department of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel;
| |
Collapse
|
38
|
Alpízar A, Marino F, Ramos-Fernández A, Lombardía M, Jeko A, Pazos F, Paradela A, Santiago C, Heck AJR, Marcilla M. A Molecular Basis for the Presentation of Phosphorylated Peptides by HLA-B Antigens. Mol Cell Proteomics 2016; 16:181-193. [PMID: 27920218 DOI: 10.1074/mcp.m116.063800] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 11/16/2016] [Indexed: 01/04/2023] Open
Abstract
As aberrant protein phosphorylation is a hallmark of tumor cells, the display of tumor-specific phosphopeptides by Human Leukocyte Antigen (HLA) class I molecules can be exploited in the treatment of cancer by T-cell-based immunotherapy. Yet, the characterization and prediction of HLA-I phospholigands is challenging as the molecular determinants of the presentation of such post-translationally modified peptides are not fully understood. Here, we employed a peptidomic workflow to identify 256 unique phosphorylated ligands associated with HLA-B*40, -B*27, -B*39, or -B*07. Remarkably, these phosphopeptides showed similar molecular features. Besides the specific anchor motifs imposed by the binding groove of each allotype, the predominance of phosphorylation at peptide position 4 (P4) became strikingly evident, as was the enrichment of basic residues at P1. To determine the structural basis of this observation, we carried out a series of peptide binding assays and solved the crystal structures of HLA-B*40 in complex with a phosphorylated ligand or its nonphosphorylated counterpart. Overall, our data provide a clear explanation to the common motif found in the phosphopeptidomes associated to different HLA-B molecules. The high prevalence of phosphorylation at P4 is dictated by the presence of the conserved residue Arg62 in the heavy chain, a structural feature shared by most HLA-B alleles. In contrast, the preference for basic residues at P1 is allotype-dependent and might be linked to the structure of the A pocket. This molecular understanding of the presentation of phosphopeptides by HLA-B molecules provides a base for the improved prediction and identification of phosphorylated neo-antigens, as potentially used for cancer immunotherapy.
Collapse
Affiliation(s)
- Adán Alpízar
- From the ‡Proteomics Unit, Spanish National Biotechnology Centre (CSIC), Darwin 3, 28049, Madrid, Spain
| | - Fabio Marino
- §Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Science Faculty, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands.,¶Netherlands Proteomics Centre, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Antonio Ramos-Fernández
- ‖Proteobotics SL, Spanish National Biotechnology Centre (CSIC), Darwin 3, 28049, Madrid, Spain
| | - Manuel Lombardía
- From the ‡Proteomics Unit, Spanish National Biotechnology Centre (CSIC), Darwin 3, 28049, Madrid, Spain
| | - Anita Jeko
- §Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Science Faculty, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands.,¶Netherlands Proteomics Centre, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Florencio Pazos
- **Computational Systems Biology Group, Spanish National Biotechnology Centre (CSIC), Darwin 3, 28049, Madrid, Spain
| | - Alberto Paradela
- From the ‡Proteomics Unit, Spanish National Biotechnology Centre (CSIC), Darwin 3, 28049, Madrid, Spain
| | - César Santiago
- ‡‡Macromolecular X-ray Crystallography Unit, Spanish National Biotechnology Centre (CSIC), Darwin 3, 28049, Madrid, Spain
| | - Albert J R Heck
- §Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Science Faculty, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands; .,¶Netherlands Proteomics Centre, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Miguel Marcilla
- From the ‡Proteomics Unit, Spanish National Biotechnology Centre (CSIC), Darwin 3, 28049, Madrid, Spain;
| |
Collapse
|
39
|
Malaker SA, Ferracane MJ, Depontieu FR, Zarling AL, Shabanowitz J, Bai DL, Topalian SL, Engelhard VH, Hunt DF. Identification and Characterization of Complex Glycosylated Peptides Presented by the MHC Class II Processing Pathway in Melanoma. J Proteome Res 2016; 16:228-237. [PMID: 27550523 DOI: 10.1021/acs.jproteome.6b00496] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The MHC class II (MHCII) processing pathway presents peptides derived from exogenous or membrane-bound proteins to CD4+ T cells. Several studies have shown that glycopeptides are necessary to modulate CD4+ T cell recognition, though glycopeptide structures in these cases are generally unknown. Here, we present a total of 93 glycopeptides from three melanoma cell lines and one matched EBV-transformed line with most found only in the melanoma cell lines. The glycosylation we detected was diverse and comprised 17 different glycoforms. We then used molecular modeling to demonstrate that complex glycopeptides are capable of binding the MHC and may interact with complementarity determining regions. Finally, we present the first evidence of disulfide-bonded peptides presented by MHCII. This is the first large scale study to sequence glyco- and disulfide bonded MHCII peptides from the surface of cancer cells and could represent a novel avenue of tumor activation and/or immunoevasion.
Collapse
Affiliation(s)
| | - Michael J Ferracane
- Department of Medicinal Chemistry, University of Florida , Gainesville, Florida 32610, United States
| | - Florence R Depontieu
- Department of Surgery, Johns Hopkins University School of Medicine , Baltimore, Maryland 21205, United States
| | | | | | | | - Suzanne L Topalian
- Department of Surgery, Johns Hopkins University School of Medicine , Baltimore, Maryland 21205, United States
| | | | | |
Collapse
|
40
|
Marino F, Mommen GPM, Jeko A, Meiring HD, van Gaans-van den Brink JAM, Scheltema RA, van Els CACM, Heck AJR. Arginine (Di)methylated Human Leukocyte Antigen Class I Peptides Are Favorably Presented by HLA-B*07. J Proteome Res 2016; 16:34-44. [PMID: 27503676 DOI: 10.1021/acs.jproteome.6b00528] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Alterations in protein post-translational modification (PTM) are recognized hallmarks of diseases. These modifications potentially provide a unique source of disease-related human leukocyte antigen (HLA) class I-presented peptides that can elicit specific immune responses. While phosphorylated HLA peptides have already received attention, arginine methylated HLA class I peptide presentation has not been characterized in detail. In a human B-cell line we detected 149 HLA class I peptides harboring mono- and/or dimethylated arginine residues by mass spectrometry. A striking preference was observed in the presentation of arginine (di)methylated peptides for HLA-B*07 molecules, likely because the binding motifs of this allele resemble consensus sequences recognized by arginine methyl-transferases. Moreover, HLA-B*07-bound peptides preferentially harbored dimethylated groups at the P3 position, thus consecutively to the proline anchor residue. Such a proline-arginine sequence has been associated with the arginine methyl-transferases CARM1 and PRMT5. Making use of the specific neutral losses in fragmentation spectra, we found most of the peptides to be asymmetrically dimethylated, most likely by CARM1. These data expand our knowledge of the processing and presentation of arginine (di)methylated HLA class I peptides and demonstrate that these types of modified peptides can be presented for recognition by T-cells. HLA class I peptides with mono- and dimethylated arginine residues may therefore offer a novel target for immunotherapy.
Collapse
Affiliation(s)
- Fabio Marino
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University , Padualaan 8, 3584 CH Utrecht, The Netherlands.,Netherlands Proteomics Centre , Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Geert P M Mommen
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University , Padualaan 8, 3584 CH Utrecht, The Netherlands.,Netherlands Proteomics Centre , Padualaan 8, 3584 CH Utrecht, The Netherlands.,Institute for Translational Vaccinology , P.O. Box 450, 3720 AL Bilthoven, The Netherlands
| | - Anita Jeko
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University , Padualaan 8, 3584 CH Utrecht, The Netherlands.,Netherlands Proteomics Centre , Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Hugo D Meiring
- Institute for Translational Vaccinology , P.O. Box 450, 3720 AL Bilthoven, The Netherlands
| | | | - Richard A Scheltema
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University , Padualaan 8, 3584 CH Utrecht, The Netherlands.,Netherlands Proteomics Centre , Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Cécile A C M van Els
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment , P.O. Box 1, 3720 BA Bilthoven, The Netherlands
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University , Padualaan 8, 3584 CH Utrecht, The Netherlands.,Netherlands Proteomics Centre , Padualaan 8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
41
|
Morita D, Sugita M. Lipopeptides: a novel antigen repertoire presented by major histocompatibility complex class I molecules. Immunology 2016; 149:139-45. [PMID: 27402593 DOI: 10.1111/imm.12646] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 07/04/2016] [Accepted: 07/06/2016] [Indexed: 01/13/2023] Open
Abstract
Post-translationally modified peptides, such as those containing either phosphorylated or O-glycosylated serine/threonine residues, may be presented to cytotoxic T lymphocytes (CTLs) by MHC class I molecules. Most of these modified peptides are captured in the MHC class I groove in a similar manner to that for unmodified peptides. N-Myristoylated 5-mer lipopeptides have recently been identified as a novel chemical class of MHC class I-presented antigens. The rhesus classical MHC class I allele, Mamu-B*098, was found to be capable of binding N-myristoylated lipopeptides and presenting them to CTLs. A high-resolution X-ray crystallographic analysis of the Mamu-B*098:lipopeptide complex revealed that the myristic group as well as conserved C-terminal serine residue of the lipopeptide ligand functioned as anchors, whereas the short stretch of three amino acid residues located in the middle of the lipopeptides was only exposed externally with the potential to interact directly with specific T-cell receptors. Therefore, the modes of lipopeptide-ligand interactions with MHC class I and with T-cell receptors are novel and fundamentally distinct from that for MHC class I-presented peptides. Another lipopeptide-presenting MHC class I allele has now been identified, leading us to the prediction that MHC class I molecules may be separated on a functional basis into two groups: one presenting long peptides and the other presenting short lipopeptides. Since the N-myristoylation of viral proteins is often linked to pathogenesis, CTLs capable of sensing N-myristoylation may serve to control pathogenic viruses, raising the possibility for the development of a new type of lipopeptide vaccine.
Collapse
Affiliation(s)
- Daisuke Morita
- Laboratory of Cell Regulation, Institute for Virus Research, Kyoto University, Kyoto, Japan
| | - Masahiko Sugita
- Laboratory of Cell Regulation, Institute for Virus Research, Kyoto University, Kyoto, Japan
| |
Collapse
|
42
|
Stern LJ, Santambrogio L. The melting pot of the MHC II peptidome. Curr Opin Immunol 2016; 40:70-7. [PMID: 27018930 DOI: 10.1016/j.coi.2016.03.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 03/14/2016] [Accepted: 03/15/2016] [Indexed: 02/07/2023]
Abstract
Recent advances in mass spectrometry technology have facilitated detailed examination of MHC-II immunopeptidomes, for example the repertoires of peptides bound to MHC-II molecules expressed in antigen presenting cells. These studies have deepened our view of MHC-II presentation. Other studies have broadened our view of pathways leading up to peptide loading. Here we review these recent studies in the context of earlier work on conventional and non-conventional MHC-II processing. The message that emerges is that sources of antigen beyond conventional endosomal processing of endocytosed proteins are important for generation of cellular immune responses to pathogens and maintenance of central and peripheral tolerance. The multiplicity of pathways results in a broad MHC II immunopeptidome that conveys the sampled environment to patrolling T cells.
Collapse
Affiliation(s)
- Lawrence J Stern
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01655, United States; Department of Biochemistry & Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01655, United States; Graduate Program in Immunology and Microbiology, University of Massachusetts Medical School, Worcester, MA 01655, United States.
| | - Laura Santambrogio
- Department of Pathology, Albert Einstein College of Medicine, NY 10461, United States; Department of Microbiology & Immunology, Albert Einstein College of Medicine, NY 10461, United States
| |
Collapse
|
43
|
Khalili S, Rahbar MR, Dezfulian MH, Jahangiri A. In silico analyses of Wilms׳ tumor protein to designing a novel multi-epitope DNA vaccine against cancer. J Theor Biol 2015; 379:66-78. [DOI: 10.1016/j.jtbi.2015.04.026] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 02/25/2015] [Accepted: 04/20/2015] [Indexed: 02/06/2023]
|
44
|
Interactions of HIV-1 proteins as targets for developing anti-HIV-1 peptides. Future Med Chem 2015; 7:1055-77. [DOI: 10.4155/fmc.15.46] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Protein–protein interactions (PPI) are essential in every step of the HIV replication cycle. Mapping the interactions between viral and host proteins is a fundamental target for the design and development of new therapeutics. In this review, we focus on rational development of anti-HIV-1 peptides based on mapping viral–host and viral–viral protein interactions all across the HIV-1 replication cycle. We also discuss the mechanism of action, specificity and stability of these peptides, which are designed to inhibit PPI. Some of these peptides are excellent tools to study the mechanisms of PPI in HIV-1 replication cycle and for the development of anti-HIV-1 drug leads that modulate PPI.
Collapse
|
45
|
Rodriguez SN, Jiang M, Bujo H, Allen PM. Self-pMHCII complexes are variably expressed in the thymus and periphery independent of mRNA expression but dependent on the activation state of the APCs. Mol Immunol 2015; 63:428-36. [PMID: 25451972 PMCID: PMC4254551 DOI: 10.1016/j.molimm.2014.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 09/24/2014] [Accepted: 09/25/2014] [Indexed: 11/23/2022]
Abstract
Self-peptide MHCII ligands are critical for selection of CD4+ T cells in the thymus, and maintenance in the periphery. To date, no investigation as to the exact thymic and peripheral expression of a naturally occurring positive selecting self-peptide MHCII (self-pMHCII) complex has taken place. We have generated a sensitive T cell hybridoma to functionally detect the endogenous presentation of a confirmed positive selecting self-pMHCII complex for a CD4+ transgenic T cell. Using this tool to survey and quantify the expression selecting of self-pMHCII, we have shown unequivocal proof that a known CD4+ selecting ligand can be presented on both positive and negative selecting thymic APCs. We also show that peripheral presentation of this same selecting ligand is affected by the activation state of the APCs. Furthermore, discrepancies between the gene expression and self-pMHCII complex presentation of this bona fide selecting ligand suggest that functional detection self-ligand complexes will be required to establish a complete view of the naturally presented endogenous self-pMHC landscape.
Collapse
Affiliation(s)
- Stephanie N Rodriguez
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, United States
| | - Meizi Jiang
- Department of Clinical-Laboratory and Experimental-Research Medicine, Toho University, Sakura Medical Center, Sakura, Japan
| | - Hideaki Bujo
- Department of Clinical-Laboratory and Experimental-Research Medicine, Toho University, Sakura Medical Center, Sakura, Japan
| | - Paul M Allen
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, United States.
| |
Collapse
|
46
|
Kern J, Drutel R, Leanhart S, Bogacz M, Pacholczyk R. Reduction of T cell receptor diversity in NOD mice prevents development of type 1 diabetes but not Sjögren's syndrome. PLoS One 2014; 9:e112467. [PMID: 25379761 PMCID: PMC4224485 DOI: 10.1371/journal.pone.0112467] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 10/09/2014] [Indexed: 12/23/2022] Open
Abstract
Non-obese diabetic (NOD) mice are well-established models of independently developing spontaneous autoimmune diseases, Sjögren’s syndrome (SS) and type 1 diabetes (T1D). The key determining factor for T1D is the strong association with particular MHCII molecule and recognition by diabetogenic T cell receptor (TCR) of an insulin peptide presented in the context of I-Ag7 molecule. For SS the association with MHCII polymorphism is weaker and TCR diversity involved in the onset of the autoimmune phase of SS remains poorly understood. To compare the impact of TCR diversity reduction on the development of both diseases we generated two lines of TCR transgenic NOD mice. One line expresses transgenic TCRβ chain originated from a pathogenically irrelevant TCR, and the second line additionally expresses transgenic TCRαmini locus. Analysis of TCR sequences on NOD background reveals lower TCR diversity on Treg cells not only in the thymus, but also in the periphery. This reduction in diversity does not affect conventional CD4+ T cells, as compared to the TCRmini repertoire on B6 background. Interestingly, neither transgenic TCRβ nor TCRmini mice develop diabetes, which we show is due to lack of insulin B:9–23 specific T cells in the periphery. Conversely SS develops in both lines, with full glandular infiltration, production of autoantibodies and hyposalivation. It shows that SS development is not as sensitive to limited availability of TCR specificities as T1D, which suggests wider range of possible TCR/peptide/MHC interactions driving autoimmunity in SS.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Autoantibodies/immunology
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- Diabetes Mellitus, Type 1/genetics
- Diabetes Mellitus, Type 1/immunology
- Flow Cytometry
- Genetic Variation/immunology
- Insulin/genetics
- Insulin/immunology
- Mice, Inbred C57BL
- Mice, Inbred NOD
- Mice, Knockout
- Mice, Transgenic
- Molecular Sequence Data
- Peptide Fragments/genetics
- Peptide Fragments/immunology
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Salivary Glands/immunology
- Salivary Glands/metabolism
- Sjogren's Syndrome/genetics
- Sjogren's Syndrome/immunology
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- Xerostomia/immunology
Collapse
Affiliation(s)
- Joanna Kern
- Center for Biotechnology and Genomic Medicine, Georgia Regents University, Augusta, Georgia, United States of America
| | - Robert Drutel
- Center for Biotechnology and Genomic Medicine, Georgia Regents University, Augusta, Georgia, United States of America
| | - Silvia Leanhart
- Center for Biotechnology and Genomic Medicine, Georgia Regents University, Augusta, Georgia, United States of America
| | - Marek Bogacz
- Center for Biotechnology and Genomic Medicine, Georgia Regents University, Augusta, Georgia, United States of America
| | - Rafal Pacholczyk
- Center for Biotechnology and Genomic Medicine, Georgia Regents University, Augusta, Georgia, United States of America
| |
Collapse
|
47
|
Witchell TD, Eshghi A, Nally JE, Hof R, Boulanger MJ, Wunder EA, Ko AI, Haake DA, Cameron CE. Post-translational modification of LipL32 during Leptospira interrogans infection. PLoS Negl Trop Dis 2014; 8:e3280. [PMID: 25356675 PMCID: PMC4214626 DOI: 10.1371/journal.pntd.0003280] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Accepted: 09/19/2014] [Indexed: 01/08/2023] Open
Abstract
Background Leptospirosis, a re-emerging disease of global importance caused by pathogenic Leptospira spp., is considered the world's most widespread zoonotic disease. Rats serve as asymptomatic carriers of pathogenic Leptospira and are critical for disease spread. In such reservoir hosts, leptospires colonize the kidney, are shed in the urine, persist in fresh water and gain access to a new mammalian host through breaches in the skin. Methodology/Principal Findings Previous studies have provided evidence for post-translational modification (PTM) of leptospiral proteins. In the current study, we used proteomic analyses to determine the presence of PTMs on the highly abundant leptospiral protein, LipL32, from rat urine-isolated L. interrogans serovar Copenhageni compared to in vitro-grown organisms. We observed either acetylation or tri-methylation of lysine residues within multiple LipL32 peptides, including peptides corresponding to regions of LipL32 previously identified as epitopes. Intriguingly, the PTMs were unique to the LipL32 peptides originating from in vivo relative to in vitro grown leptospires. The identity of each modified lysine residue was confirmed by fragmentation pattern analysis of the peptide mass spectra. A synthetic peptide containing an identified tri-methylated lysine, which corresponds to a previously identified LipL32 epitope, demonstrated significantly reduced immunoreactivity with serum collected from leptospirosis patients compared to the peptide version lacking the tri-methylation. Further, a subset of the identified PTMs are in close proximity to the established calcium-binding and putative collagen-binding sites that have been identified within LipL32. Conclusions/Significance The exclusive detection of PTMs on lysine residues within LipL32 from in vivo-isolated L. interrogans implies that infection-generated modification of leptospiral proteins may have a biologically relevant function during the course of infection. Although definitive determination of the role of these PTMs must await further investigations, the reduced immune recognition of a modified LipL32 epitope suggests the intriguing possibility that LipL32 modification represents a novel mechanism of immune evasion within Leptospira. Leptospirosis, caused by pathogenic Leptospira spp., constitutes an increasing global public health threat. Humans are accidental hosts, and acquire the disease primarily from contact with water sources that have been contaminated with urine from infected animals. Rats are asymptomatic carriers of infection and are critical for disease transmission to humans, particularly in urban slum environments. In this study, investigation of Leptospira directly isolated from the urine of infected rats showed acetylation or tri-methylation of the highly abundant leptospiral lipoprotein, LipL32. In comparison, Leptospira grown in culture did not result in any LipL32 lysine modifications. A synthetic peptide derived from LipL32 that incorporated a tri-methylated lysine modification exhibited less reactivity with serum from leptospirosis patients compared to an unmodified version of the peptide, suggesting LipL32 modifications may alter protein recognition by the immune response. This study reports, for the first time, modification of a Leptospira protein during infection, and suggests these modifications may have a functional consequence that contributes to bacterial persistence during infection.
Collapse
Affiliation(s)
- Timothy D. Witchell
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Azad Eshghi
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Jarlath E. Nally
- School of Veterinary Medicine, University College Dublin, Belfield, Dublin, Ireland
| | - Rebecca Hof
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Martin J. Boulanger
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Elsio A. Wunder
- Department of Epidemiology of Microbial Disease, Yale School of Public Health, New Haven, Connecticut, United States of America
- Gonçalo Moniz Research Center, Oswaldo Cruz Foundation, Brazilian Ministry of Health, Salvador, Brazil
| | - Albert I. Ko
- Department of Epidemiology of Microbial Disease, Yale School of Public Health, New Haven, Connecticut, United States of America
- Gonçalo Moniz Research Center, Oswaldo Cruz Foundation, Brazilian Ministry of Health, Salvador, Brazil
| | - David A. Haake
- Division of Infectious Diseases, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California, United States of America
- Department of Medicine, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, United States of America
| | - Caroline E. Cameron
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
- * E-mail:
| |
Collapse
|
48
|
Reid RA, Redman JE, Rizkallah P, Fegan C, Pepper C, Man S. CD8 + T-cell recognition of a synthetic epitope formed by t-butyl modification. Immunology 2014; 144:495-505. [PMID: 25284607 PMCID: PMC4557686 DOI: 10.1111/imm.12398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 09/30/2014] [Accepted: 09/30/2014] [Indexed: 12/22/2022] Open
Abstract
We set out to clone Bax-specific CD8+ T-cells from peripheral blood samples of primary chronic lymphocytic leukemia patients. A number of clones were generated using a Bax peptide pool and their T-cell epitope was mapped to two peptides sharing a common 9-aa sequence (LLSYFGTPT), restricted by HLA-A*0201. However, when these T-cell clones were tested against highly purified syntheses (>95%) of the same peptide sequence, there was no functional response. Subsequent mass spectrometric analysis and HPLC fractionation suggested that the active component in the original crude peptide preparations (77% pure) was a peptide with a tert-butyl (tBu) modification of the tyrosine residue. This was confirmed by modification of the inactive wild type (wt) sequence to generate functionally active peptides. Computer modeling of peptide:HLA-A*0201 structures predicted that the tBu modification would not affect interactions between peptide residues and the HLA binding site. However these models did predict that the tBu modification of tyrosine would result in an extension of the side chain out of the peptide-binding groove up towards the TCR. This modified product formed <1% of the original P603 crude peptide preparation and <0.05% of the original 23 peptide mixture used for T-cell stimulation. The data presented here, illustrates the potential for chemical modifications to change the immunogenicity of synthetic peptides, and highlights the exquisite capacity of TCR to discriminate between structurally similar peptide sequences. Furthermore this study highlights potential pitfalls associated with the use of synthetic peptides for the monitoring and modulating of human immune responses. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Reiss A Reid
- School of Medicine, Institute of Cancer and Genetics, Cardiff UniversityCardiff, UK
| | | | - Pierre Rizkallah
- School of Medicine, Institute of Infection & Immunity, Wales Heart Research Institute, Cardiff UniversityCardiff, UK
| | - Chris Fegan
- School of Medicine, Institute of Cancer and Genetics, Cardiff UniversityCardiff, UK
| | - Chris Pepper
- School of Medicine, Institute of Cancer and Genetics, Cardiff UniversityCardiff, UK
| | - Stephen Man
- School of Medicine, Institute of Cancer and Genetics, Cardiff UniversityCardiff, UK
| |
Collapse
|
49
|
Sun M, Liu J, Qi J, Tefsen B, Shi Y, Yan J, Gao GF. Nα-terminal acetylation for T cell recognition: molecular basis of MHC class I-restricted nα-acetylpeptide presentation. THE JOURNAL OF IMMUNOLOGY 2014; 192:5509-19. [PMID: 24829406 DOI: 10.4049/jimmunol.1400199] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
As one of the most common posttranslational modifications (PTMs) of eukaryotic proteins, N(α)-terminal acetylation (Nt-acetylation) generates a class of N(α)-acetylpeptides that are known to be presented by MHC class I at the cell surface. Although such PTM plays a pivotal role in adjusting proteolysis, the molecular basis for the presentation and T cell recognition of N(α)-acetylpeptides remains largely unknown. In this study, we determined a high-resolution crystallographic structure of HLA (HLA)-B*3901 complexed with an N(α)-acetylpeptide derived from natural cellular processing, also in comparison with the unmodified-peptide complex. Unlike the α-amino-free P1 residues of unmodified peptide, of which the α-amino group inserts into pocket A of the Ag-binding groove, the N(α)-linked acetyl of the acetylated P1-Ser protrudes out of the groove for T cell recognition. Moreover, the Nt-acetylation not only alters the conformation of the peptide but also switches the residues in the α1-helix of HLA-B*3901, which may impact the T cell engagement. The thermostability measurements of complexes between N(α)-acetylpeptides and a series of MHC class I molecules derived from different species reveal reduced stability. Our findings provide the insight into the mode of N(α)-acetylpeptide-specific presentation by classical MHC class I molecules and shed light on the potential of acetylepitope-based immune intervene and vaccine development.
Collapse
Affiliation(s)
- Mingwei Sun
- School of Life Sciences, University of Science and Technology of China, Hefei 230027, China; CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jun Liu
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; and
| | - Jianxun Qi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Boris Tefsen
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yi Shi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Research Network of Immunity and Health, Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China
| | - Jinghua Yan
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - George F Gao
- School of Life Sciences, University of Science and Technology of China, Hefei 230027, China; CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; and Research Network of Immunity and Health, Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
50
|
Kumai T, Ishibashi K, Oikawa K, Matsuda Y, Aoki N, Kimura S, Hayashi S, Kitada M, Harabuchi Y, Celis E, Kobayashi H. Induction of tumor-reactive T helper responses by a posttranslational modified epitope from tumor protein p53. Cancer Immunol Immunother 2014; 63:469-78. [PMID: 24633296 PMCID: PMC11028558 DOI: 10.1007/s00262-014-1533-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 03/03/2014] [Indexed: 12/22/2022]
Abstract
Posttranslational modifications regulate the function and stability of proteins, and the immune system is able to recognize some of these modifications. Therefore, the presence of posttranslational modifications increases the diversity of potential immune responses to a determinant antigen. The stimulation of tumor-specific CD4(+) helper T lymphocytes (HTLs) is considered important for the production of anti-tumor antibodies by B cells and for the generation and persistence of CD8(+) cytotoxic T lymphocytes, and in some instances, HTLs can directly reduce tumor cell growth. Identification of MHC class II-restricted peptide epitopes from tumor-associated antigens including those generated from posttranslational protein modifications should enable the improvement of peptide-based cancer immunotherapy. We describe here an MHC class II binding peptide from the tumor protein p53, which possesses an acetylated lysine at position 120 (p53110-124/AcK120) that is effective in eliciting CD4(+) T cell responses specific for the acetylated peptide. Most importantly, the acetylated peptide-reactive CD4 HTLs recognized the corresponding naturally processed posttranslational modified epitope presented by either dendritic cells loaded with tumor cell lysates or directly on tumors expressing p53 and the restricting MHC class II molecules. Treatment of tumor cells with a histone deacetylase inhibitor augmented their recognition by the p53110-124/AcK120-reactive CD4(+) T cells. These findings prove that the epitope p53110-124/AcK120 is immunogenic for anti-tumor responses and is likely to be useful for cancer immunotherapy.
Collapse
Affiliation(s)
- Takumi Kumai
- Department of Pathology, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1, Asahikawa, 078-8510 Japan
- Department of Otolaryngology, Head and Neck Surgery, Asahikawa Medical University, Asahikawa, 078-8510 Japan
| | - Kei Ishibashi
- Department of Pathology, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1, Asahikawa, 078-8510 Japan
- Respiratory and Breast Center, Asahikawa Medical University Hospital, Asahikawa, 078-8510 Japan
| | - Kensuke Oikawa
- Department of Pathology, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1, Asahikawa, 078-8510 Japan
| | - Yoshinari Matsuda
- Respiratory and Breast Center, Asahikawa Medical University Hospital, Asahikawa, 078-8510 Japan
| | - Naoko Aoki
- Department of Pathology, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1, Asahikawa, 078-8510 Japan
| | - Shoji Kimura
- Department of Pathology, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1, Asahikawa, 078-8510 Japan
| | - Satoshi Hayashi
- Respiratory and Breast Center, Asahikawa Medical University Hospital, Asahikawa, 078-8510 Japan
| | - Masahiro Kitada
- Respiratory and Breast Center, Asahikawa Medical University Hospital, Asahikawa, 078-8510 Japan
| | - Yasuaki Harabuchi
- Department of Otolaryngology, Head and Neck Surgery, Asahikawa Medical University, Asahikawa, 078-8510 Japan
| | - Esteban Celis
- Cancer Immunology, Inflammation and Tolerance Program, Department of Medicine, Georgia Regents University Cancer Center, 1410 Laney Walker Boulevard, CN-4121, Augusta, GA 30912 USA
| | - Hiroya Kobayashi
- Department of Pathology, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1, Asahikawa, 078-8510 Japan
| |
Collapse
|