1
|
Sethi P, Ghosh T, Chowdhury S, Bir R, Verma N, Pandey S, Subramanian A, Meena V, Nischal N, Bhattacharjee S, Aravindan A, Anand RK, Goswami D, Aggarwal R, Wig N. Malarial Antibodies and Endemicity: Does It Affect SARS-CoV-2 Severity and Outcomes? Cureus 2023; 15:e46871. [PMID: 37954722 PMCID: PMC10638102 DOI: 10.7759/cureus.46871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2023] [Indexed: 11/14/2023] Open
Abstract
Background India has a disproportionately lower rate of coronavirus disease 2019 (COVID-19) severe disease and lower death rates with respect to other parts of the world. It has been proposed that malaria-endemic countries such as India are relatively protected against severe COVID-19 disease and deaths. Methods This was a cross-sectional, analytical, observational study conducted from August 2020 to July 2021 at a tertiary care COVID-19-designated center in New Delhi, India. It aimed to study the association between antimalarial antibody levels and COVID-19 disease severity and outcomes. Results One hundred forty-six patients were included in the final analysis. The mean (standard deviation {SD}) age of the study population was 44.6 (17.2) years, and there were 85 (58.2%) males. Sixty-five patients had mild disease, 14 patients had moderate disease, and 67 patients had severe disease at the time of enrolment in the study. Forty-six patients expired during the hospital stay. For the antimalarial antibody, there was a statistically significant difference between mild and moderate (p=0.018), mild and severe (p=0.016), and mild and combined moderate and severe diseases (p=0.013). However, there was no difference between the patients who survived and those who did not. Conclusion Antimalarial antibody levels may not be associated with the outcomes of COVID-19 during hospital stay. However, this study has provided some insights into the relationship between the severity and outcomes of COVID-19 and the levels of antimalarial antibodies.
Collapse
Affiliation(s)
- Prayas Sethi
- Medicine, All India Institute of Medical Sciences, New Delhi, IND
| | - Tamoghna Ghosh
- Medicine, All India Institute of Medical Sciences, New Delhi, IND
| | - Souradeep Chowdhury
- Infectious Diseases, All India Institute of Medical Sciences, New Delhi, IND
| | - Raunak Bir
- Microbiology, Employees' State Insurance Corporation (ESIC) Medical College and Hospital, Faridabad, IND
| | - Nishant Verma
- Microbiology, All India Institute of Medical Sciences, New Delhi, IND
| | - Shivam Pandey
- Biostatistics, All India Institute of Medical Sciences, New Delhi, IND
| | | | - Ved Meena
- Medicine, All India Institute of Medical Sciences, New Delhi, IND
| | - Neeraj Nischal
- Medicine, All India Institute of Medical Sciences, New Delhi, IND
| | - Sulagna Bhattacharjee
- Anesthesiology, Pain Medicine, and Critical Care, All India Institute of Medical Sciences, New Delhi, IND
| | - Ajisha Aravindan
- Anesthesiology, Pain Medicine, and Critical Care, All India Institute of Medical Sciences, New Delhi, IND
| | - Rahul K Anand
- Anesthesiology, Pain Medicine, and Critical Care, All India Institute of Medical Sciences, New Delhi, IND
| | - Devalina Goswami
- Anesthesiology, Pain Medicine, and Critical Care, All India Institute of Medical Sciences, New Delhi, IND
| | - Richa Aggarwal
- Anesthesiology, Pain Medicine, and Critical Care, All India Institute of Medical Sciences, New Delhi, IND
| | - Naveet Wig
- Medicine, All India Institute of Medical Sciences, New Delhi, IND
| |
Collapse
|
2
|
Akoolo L, Rocha SC, Parveen N. Protozoan co-infections and parasite influence on the efficacy of vaccines against bacterial and viral pathogens. Front Microbiol 2022; 13:1020029. [PMID: 36504775 PMCID: PMC9732444 DOI: 10.3389/fmicb.2022.1020029] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 11/07/2022] [Indexed: 11/26/2022] Open
Abstract
A wide range of protozoan pathogens either transmitted by vectors (Plasmodium, Babesia, Leishmania and Trypanosoma), by contaminated food or water (Entamoeba and Giardia), or by sexual contact (Trichomonas) invade various organs in the body and cause prominent human diseases, such as malaria, babesiosis, leishmaniasis, trypanosomiasis, diarrhea, and trichomoniasis. Humans are frequently exposed to multiple pathogens simultaneously, or sequentially in the high-incidence regions to result in co-infections. Consequently, synergistic or antagonistic pathogenic effects could occur between microbes that also influences overall host responses and severity of diseases. The co-infecting organisms can also follow independent trajectory. In either case, co-infections change host and pathogen metabolic microenvironments, compromise the host immune status, and affect microbial pathogenicity to influence tissue colonization. Immunomodulation by protozoa often adversely affects cellular and humoral immune responses against co-infecting bacterial pathogens and promotes bacterial persistence, and result in more severe disease symptoms. Although co-infections by protozoa and viruses also occur in humans, extensive studies are not yet conducted probably because of limited animal model systems available that can be used for both groups of pathogens. Immunosuppressive effects of protozoan infections can also attenuate vaccines efficacy, weaken immunological memory development, and thus attenuate protection against co-infecting pathogens. Due to increasing occurrence of parasitic infections, roles of acute to chronic protozoan infection on immunological changes need extensive investigations to improve understanding of the mechanistic details of specific immune responses alteration. In fact, this phenomenon should be seriously considered as one cause of breakthrough infections after vaccination against both bacterial and viral pathogens, and for the emergence of drug-resistant bacterial strains. Such studies would facilitate development and implementation of effective vaccination and treatment regimens to prevent or significantly reduce breakthrough infections.
Collapse
Affiliation(s)
- Lavoisier Akoolo
- Biorepository and Tissue Research Facility, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Sandra C. Rocha
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, United States
| | - Nikhat Parveen
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, United States,*Correspondence: Nikhat Parveen,
| |
Collapse
|
3
|
Orish VN, Boakye-Yiadom E, Ansah EK, Alhassan RK, Duedu K, Awuku YA, Owusu-Agyei S, Gyapong JO. Is malaria immunity a possible protection against severe symptoms and outcomes of COVID-19? Ghana Med J 2022; 55:56-63. [PMID: 35233116 PMCID: PMC8853697 DOI: 10.4314/gmj.v55i2s.9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Malaria-endemic areas of the world are noted for high morbidity and mortality from malaria. Also noted in these areas is the majority of persons in the population having acquired malaria immunity. Though this acquired malaria immunity does not prevent infection, it resists the multiplication of Plasmodium parasites, restricting disease to merely uncomplicated cases or asymptomatic infections. Does this acquired malaria immunity in endemic areas protect against other diseases, especially outbreak diseases like COVID-19? Does malaria activation of innate immunity resulting in trained or tolerance immunity contribute to protection against COVID-19? In an attempt to answer these questions, this review highlights the components of malaria and viral immunity and explores possible links with immunity against COVID-19. With malaria-endemic areas of the world having a fair share of cases of COVID-19, it is important to direct research in this area to evaluate and harness any benefits of acquired malaria immunity to help mitigate the effects of COVID-19 and any possible future outbreaks. Funding None declared.
Collapse
Affiliation(s)
- Verner N Orish
- Department of Microbiology and Immunology, School of Medicine, University of Health and Allied Sciences, Ho, Volta Region, Ghana
| | - Emily Boakye-Yiadom
- Department of Microbiology and Immunology, School of Medicine, University of Health and Allied Sciences, Ho, Volta Region, Ghana
| | - Evelyn K Ansah
- Centre for Malaria Research, Institute for Health Research, University of Health and Allied Sciences, Ho, Volta Region, Ghana
| | - Robert K Alhassan
- Institute of Health Research, University of Health and Allied Sciences, Ho, Volta Region, Ghana
| | - Kwabena Duedu
- Department of Biomedical Sciences, School of Basic and Biomedical Sciences, University of Health and Allied Sciences, Ho, Volta Region, Ghana
| | - Yaw A Awuku
- Department of Internal Medicine, School of Medicine, University of Health and Allied Sciences, Ho, Volta Region, Ghana
| | - Seth Owusu-Agyei
- Institute of Health Research, University of Health and Allied Sciences, Ho, Volta Region, Ghana
| | - John O Gyapong
- Institute of Health Research, University of Health and Allied Sciences, Ho, Volta Region, Ghana
| |
Collapse
|
4
|
Zhang X, He D, Gao S, Wei Y, Wang L. Aspergillus fumigatus enhances human NK cell activity by regulating M1 macrophage polarization. Mol Med Rep 2019; 20:1241-1249. [PMID: 31173233 PMCID: PMC6625407 DOI: 10.3892/mmr.2019.10365] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 04/24/2019] [Indexed: 12/22/2022] Open
Abstract
The progression of disease caused by fungal infection is closely associated with the human immune system. Macrophages and natural killer cells (NK cells) are two important types of innate immune cells that serve an important role in anti-infection immunity. There has been limited research into the interactions between fungi and macrophages. In the present in vitro study, reverse transcription-quantitative PCR, ELISA and flow cytometry were performed to reveal that the interaction between macrophages and NK cells, regulated by Aspergillus fumigatus conidia, induced macrophages to polarize into M1 macrophages by secreting large quantities of tumor necrosis factor-α, interleukin-18 and Galectin-9. In addition, when NK cells were co-cultured with the conidia of A. fumigatus-stimulated M1 macrophages, they exhibited increased activation levels and secretion of interferon-γ (IFN-γ). It was further demonstrated via antibody neutralization and gene silencing experiments that galectin-9 served an important role in the interaction between macrophages and NK cells regulated by A. fumigatus. In conclusion, it was demonstrated that A. fumigatus induced the polarization of macrophages into M1 macrophages by secreting Galectin-9, which then promoted NK cell activity and IFN-γ secretion. The results provided improved understanding of the role of innate immune cells in invasive fungal infections. The present study also provided novel insight into the study of macrophages and NK cells in inflammatory infections caused by A. fumigatus and potential strategies to control the progression of inflammation.
Collapse
Affiliation(s)
- Xiaowei Zhang
- Department of Pathogenobiology, Jilin University Mycology Research Center, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Dan He
- Department of Pathogenobiology, Jilin University Mycology Research Center, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Song Gao
- Department of Pathogenobiology, Jilin University Mycology Research Center, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yunyun Wei
- Department of Pathogenobiology, Jilin University Mycology Research Center, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Li Wang
- Department of Pathogenobiology, Jilin University Mycology Research Center, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
5
|
Ssemaganda A, Giddam AK, Zaman M, Skwarczynski M, Toth I, Stanisic DI, Good MF. Induction of Plasmodium-Specific Immune Responses Using Liposome-Based Vaccines. Front Immunol 2019; 10:135. [PMID: 30774635 PMCID: PMC6367261 DOI: 10.3389/fimmu.2019.00135] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 01/16/2019] [Indexed: 12/30/2022] Open
Abstract
In the development of vaccines, the ability to initiate both innate and subsequent adaptive immune responses need to be considered. Live attenuated vaccines achieve this naturally, while inactivated and sub-unit vaccines generally require additional help provided through delivery systems and/or adjuvants. Liposomes present an attractive adjuvant/delivery system for antigens. Here, we review the key aspects of immunity against Plasmodium parasites, liposome design considerations and their current application in the development of a malaria vaccine.
Collapse
Affiliation(s)
| | | | - Mehfuz Zaman
- Institute for Glycomics, Griffith University, Southport, QLD, Australia
| | - Mariusz Skwarczynski
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Istvan Toth
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
- School of Pharmacy, The University of Queensland, Brisbane, QLD, Australia
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | | | - Michael F. Good
- Institute for Glycomics, Griffith University, Southport, QLD, Australia
| |
Collapse
|
6
|
Mpina M, Maurice NJ, Yajima M, Slichter CK, Miller HW, Dutta M, McElrath MJ, Stuart KD, De Rosa SC, McNevin JP, Linsley PS, Abdulla S, Tanner M, Hoffman SL, Gottardo R, Daubenberger CA, Prlic M. Controlled Human Malaria Infection Leads to Long-Lasting Changes in Innate and Innate-like Lymphocyte Populations. THE JOURNAL OF IMMUNOLOGY 2017; 199:107-118. [PMID: 28576979 DOI: 10.4049/jimmunol.1601989] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 05/01/2017] [Indexed: 11/19/2022]
Abstract
Animal model studies highlight the role of innate-like lymphocyte populations in the early inflammatory response and subsequent parasite control following Plasmodium infection. IFN-γ production by these lymphocytes likely plays a key role in the early control of the parasite and disease severity. Analyzing human innate-like T cell and NK cell responses following infection with Plasmodium has been challenging because the early stages of infection are clinically silent. To overcome this limitation, we examined blood samples from a controlled human malaria infection (CHMI) study in a Tanzanian cohort, in which volunteers underwent CHMI with a low or high dose of Plasmodium falciparum sporozoites. The CHMI differentially affected NK, NKT (invariant NKT), and mucosal-associated invariant T cell populations in a dose-dependent manner, resulting in an altered composition of this innate-like lymphocyte compartment. Although these innate-like responses are typically thought of as short-lived, we found that changes persisted for months after the infection was cleared, leading to significantly increased frequencies of mucosal-associated invariant T cells 6 mo postinfection. We used single-cell RNA sequencing and TCR αβ-chain usage analysis to define potential mechanisms for this expansion. These single-cell data suggest that this increase was mediated by homeostatic expansion-like mechanisms. Together, these data demonstrate that CHMI leads to previously unappreciated long-lasting alterations in the human innate-like lymphocyte compartment. We discuss the consequences of these changes for recurrent parasite infection and infection-associated pathologies and highlight the importance of considering host immunity and infection history for vaccine design.
Collapse
Affiliation(s)
- Maxmillian Mpina
- Clinical Immunology Unit, Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, 4002 Basel, Switzerland.,University of Basel, Basel, 4001 Switzerland
| | - Nicholas J Maurice
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| | - Masanao Yajima
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109.,Department of Mathematics and Statistics, Boston University, Boston, MA 02215
| | - Chloe K Slichter
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109.,Department of Global Health, University of Washington, Seattle, WA 98195
| | - Hannah W Miller
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| | - Mukta Dutta
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| | - M Juliana McElrath
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109.,Department of Global Health, University of Washington, Seattle, WA 98195
| | | | - Stephen C De Rosa
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| | - John P McNevin
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| | | | - Salim Abdulla
- Ifakara Health Institute, Bagamoyo Research and Training Centre, Bagamoyo, Tanzania; and
| | - Marcel Tanner
- Clinical Immunology Unit, Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, 4002 Basel, Switzerland.,University of Basel, Basel, 4001 Switzerland
| | | | - Raphael Gottardo
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| | - Claudia A Daubenberger
- Clinical Immunology Unit, Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, 4002 Basel, Switzerland; .,University of Basel, Basel, 4001 Switzerland
| | - Martin Prlic
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109; .,Department of Global Health, University of Washington, Seattle, WA 98195
| |
Collapse
|
7
|
Prall TM, Graham ME, Karl JA, Wiseman RW, Ericsen AJ, Raveendran M, Alan Harris R, Muzny DM, Gibbs RA, Rogers J, O'Connor DH. Improved full-length killer cell immunoglobulin-like receptor transcript discovery in Mauritian cynomolgus macaques. Immunogenetics 2017; 69:325-339. [PMID: 28343239 PMCID: PMC5856007 DOI: 10.1007/s00251-017-0977-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 03/08/2017] [Indexed: 12/25/2022]
Abstract
Killer cell immunoglobulin-like receptors (KIRs) modulate disease progression of pathogens including HIV, malaria, and hepatitis C. Cynomolgus and rhesus macaques are widely used as nonhuman primate models to study human pathogens, and so, considerable effort has been put into characterizing their KIR genetics. However, previous studies have relied on cDNA cloning and Sanger sequencing that lack the throughput of current sequencing platforms. In this study, we present a high throughput, full-length allele discovery method utilizing Pacific Biosciences circular consensus sequencing (CCS). We also describe a new approach to Macaque Exome Sequencing (MES) and the development of the Rhexome1.0, an adapted target capture reagent that includes macaque-specific capture probe sets. By using sequence reads generated by whole genome sequencing (WGS) and MES to inform primer design, we were able to increase the sensitivity of KIR allele discovery. We demonstrate this increased sensitivity by defining nine novel alleles within a cohort of Mauritian cynomolgus macaques (MCM), a geographically isolated population with restricted KIR genetics that was thought to be completely characterized. Finally, we describe an approach to genotyping KIRs directly from sequence reads generated using WGS/MES reads. The findings presented here expand our understanding of KIR genetics in MCM by associating new genes with all eight KIR haplotypes and demonstrating the existence of at least one KIR3DS gene associated with every haplotype.
Collapse
Affiliation(s)
- Trent M Prall
- Wisconsin National Primate Research Center, University of Wisconsin, Madison, WI, 53711, USA
| | - Michael E Graham
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, WI, 53711, USA
| | - Julie A Karl
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, WI, 53711, USA
| | - Roger W Wiseman
- Wisconsin National Primate Research Center, University of Wisconsin, Madison, WI, 53711, USA
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, WI, 53711, USA
| | - Adam J Ericsen
- Wisconsin National Primate Research Center, University of Wisconsin, Madison, WI, 53711, USA
| | | | - R Alan Harris
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Donna M Muzny
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Richard A Gibbs
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Jeffrey Rogers
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - David H O'Connor
- Wisconsin National Primate Research Center, University of Wisconsin, Madison, WI, 53711, USA.
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, WI, 53711, USA.
| |
Collapse
|
8
|
Hou N, Zou Y, Piao X, Liu S, Wang L, Li S, Chen Q. T-Cell Immunoglobulin- and Mucin-Domain-Containing Molecule 3 Signaling Blockade Improves Cell-Mediated Immunity Against Malaria. J Infect Dis 2016; 214:1547-1556. [PMID: 27638944 DOI: 10.1093/infdis/jiw428] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 09/06/2016] [Indexed: 02/06/2023] Open
Abstract
Cell-mediated immune responses play important roles in immune protection against Plasmodium infection. However, impaired immunity, such as lymphocyte exhaustion, is a common phenomenon in malaria. T-cell immunoglobulin- and mucin-domain-containing molecule 3 (Tim-3) is an important regulatory molecule in cell-mediated immunity and has been implicated in malaria. In this study, it was found that Tim-3 expression on key populations of lymphocytes was significantly increased in both Plasmodium falciparum-infected patients and Plasmodium berghei ANKA (PbANKA)-infected C57BL/6 mice. Upregulation of Tim-3 led to lymphocyte exhaustion, while blocking Tim-3 signaling with an anti-Tim-3 antibody restored lymphocyte activity in Plasmodium infections. Further, anti-Tim-3 treatment accelerated the parasite clearance and relieved the symptoms of cerebral malaria in PbANKA-infected mice. In conclusion, Tim-3 on immune cells negatively regulates cell-mediated immunity against Plasmodium infection, and blocking Tim-3 signaling enhances sterile immunity and may play a protective role during malarial parasite infections.
Collapse
Affiliation(s)
- Nan Hou
- Ministry of Health Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College
| | - Yang Zou
- Beijing Tropical Medicine Research Institute, Beijing Key Laboratory for Research on Prevention and Treatment of Tropical Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing
| | - Xianyu Piao
- Ministry of Health Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College
| | - Shuai Liu
- Ministry of Health Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College
| | - Lei Wang
- Beijing Tropical Medicine Research Institute, Beijing Key Laboratory for Research on Prevention and Treatment of Tropical Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing
| | - Shanshan Li
- Ministry of Health Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College
| | - Qijun Chen
- Ministry of Health Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College.,Key Laboratory of Zoonosis, Shenyang Agriculture University, Shenyang City, People's Republic of China
| |
Collapse
|
9
|
Meadows DN, Bahous RH, Best AF, Rozen R. High Dietary Folate in Mice Alters Immune Response and Reduces Survival after Malarial Infection. PLoS One 2015; 10:e0143738. [PMID: 26599510 PMCID: PMC4658061 DOI: 10.1371/journal.pone.0143738] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 11/09/2015] [Indexed: 12/20/2022] Open
Abstract
Malaria is a significant global health issue, with nearly 200 million cases in 2013 alone. Parasites obtain folate from the host or synthesize it de novo. Folate consumption has increased in many populations, prompting concerns regarding potential deleterious consequences of higher intake. The impact of high dietary folate on the host’s immune function and response to malaria has not been examined. Our goal was to determine whether high dietary folate would affect response to malarial infection in a murine model of cerebral malaria. Mice were fed control diets (CD, recommended folate level for rodents) or folic acid-supplemented diets (FASD, 10x recommended level) for 5 weeks before infection with Plasmodium berghei ANKA. Survival, parasitemia, numbers of immune cells and other infection parameters were assessed. FASD mice had reduced survival (p<0.01, Cox proportional hazards) and higher parasitemia (p< 0.01, joint model of parasitemia and survival) compared with CD mice. FASD mice had lower numbers of splenocytes, total T cells, and lower numbers of specific T and NK cell sub-populations, compared with CD mice (p<0.05, linear mixed effects). Increased brain TNFα immunoreactive protein (p<0.01, t-test) and increased liver Abca1 mRNA (p<0.01, t-test), a modulator of TNFα, were observed in FASD mice; these variables correlated positively (rs = 0.63, p = 0.01). Bcl-xl/Bak mRNA was increased in liver of FASD mice (p<0.01, t-test), suggesting reduced apoptotic potential. We conclude that high dietary folate increases parasite replication, disturbs the immune response and reduces resistance to malaria in mice. These findings have relevance for malaria-endemic regions, when considering anti-folate anti-malarials, food fortification or vitamin supplementation programs.
Collapse
Affiliation(s)
- Danielle N. Meadows
- Department of Human Genetics, McGill University, McGill University Health Center, Montreal, Quebec, Canada
| | - Renata H. Bahous
- Department of Human Genetics, McGill University, McGill University Health Center, Montreal, Quebec, Canada
| | - Ana F. Best
- Department of Mathematics and Statistics, McGill University, Montreal, Quebec, Canada
| | - Rima Rozen
- Department of Human Genetics, McGill University, McGill University Health Center, Montreal, Quebec, Canada
- Department of Pediatrics, McGill University, McGill University Health Center, Montreal, Quebec, Canada
- * E-mail:
| |
Collapse
|
10
|
Perce-da-Silva DS, Silva LA, Lima-Junior JC, Cardoso-Oliveira J, Ribeiro-Alves M, Santos F, Porto LCMS, Oliveira-Ferreira J, Banic DM. Killer cell immunoglobulin-like receptor (KIR) gene diversity in a population naturally exposed to malaria in Porto Velho, Northern Brazil. ACTA ACUST UNITED AC 2015; 85:190-9. [PMID: 25656387 DOI: 10.1111/tan.12523] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Revised: 11/10/2014] [Accepted: 01/13/2015] [Indexed: 11/28/2022]
Abstract
Killer cell immunoglobulin-like receptors (KIR) are expressed mainly in natural killer cells and specifically recognize human leukocyte antigen (HLA) class I molecules. The repertoire of KIR genes and KIR-HLA pairs is known to play a key role in the susceptibilities to and the outcomes of several diseases, including malaria. The aim of this study was to investigate the distribution of KIR genes, KIR genotypes and KIR-HLA pair combinations in a population naturally exposed to malaria from Brazilian Amazon. All 16 KIR genes investigated were present in the studied population. Overall, 46 KIR genotypes were defined. The two most common genotypes in the Porto Velho communities, genotypes 1 and 2, were present at similar frequencies as in the Americas. Principal component analysis based on the frequencies of the KIR genes placed the Porto Velho population closer to the Venezuela Mestizos, USA California hispanic and Brazil Paraná Mixed in terms of KIR gene frequencies. This analysis highlights the multi-ethnic profile of the Porto Velho population. Most of the individuals were found to have at least one inhibitory KIR-HLA pair. Seventy-five KIR-HLA pair combinations were identified. The KIR-2DL2/3_HLA-C1, KIR3DL1_HLA-Bw4 and KIR2DL1_HLA-C2 pairs were the most common. There was no association between KIR genes, KIR genotypes or KIR-HLA pair combinations and malaria susceptibility in the studied population. This is the first report on the distribution of KIR and known HLA ligands in the Porto Velho population. Taken together, these results should provide baseline information that will be relevant to population evolutionary history, malaria and other diseases studies in populations of the Brazilian Amazon.
Collapse
Affiliation(s)
- D S Perce-da-Silva
- Laboratory of Simulids and Onchocerciasis "Malaria and Onchocerciasis Research", Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Crompton PD, Moebius J, Portugal S, Waisberg M, Hart G, Garver LS, Miller LH, Barillas-Mury C, Pierce SK. Malaria immunity in man and mosquito: insights into unsolved mysteries of a deadly infectious disease. Annu Rev Immunol 2014; 32:157-87. [PMID: 24655294 DOI: 10.1146/annurev-immunol-032713-120220] [Citation(s) in RCA: 222] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Malaria is a mosquito-borne disease caused by parasites of the obligate intracellular Apicomplexa phylum the most deadly of which, Plasmodium falciparum, prevails in Africa. Malaria imposes a huge health burden on the world's most vulnerable populations, claiming the lives of nearly one million children and pregnant women each year. Although there is keen interest in eradicating malaria, we do not yet have the necessary tools to meet this challenge, including an effective malaria vaccine and adequate vector control strategies. Here we review what is known about the mechanisms at play in immune resistance to malaria in both the human and mosquito hosts at each step in the parasite's complex life cycle with a view toward developing the tools that will contribute to the prevention of disease and death and, ultimately, to the goal of malaria eradication. In so doing, we hope to inspire immunologists to participate in defeating this devastating disease.
Collapse
|
12
|
Hansen DS, Ryg-Cornejo V, Ioannidis LJ, Chiu CY, Ly A, Nie CQ, Scalzo AA, Schofield L. The contribution of natural killer complex loci to the development of experimental cerebral malaria. PLoS One 2014; 9:e93268. [PMID: 24691125 PMCID: PMC3972225 DOI: 10.1371/journal.pone.0093268] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Accepted: 03/01/2014] [Indexed: 11/27/2022] Open
Abstract
Background The Natural Killer Complex (NKC) is a genetic region of highly linked genes encoding several receptors involved in the control of NK cell function. The NKC is highly polymorphic and allelic variability of various NKC loci has been demonstrated in inbred mice, providing evidence for NKC haplotypes. Using BALB.B6-Cmv1r congenic mice, in which NKC genes from C57BL/6 mice were introduced into the BALB/c background, we have previously shown that the NKC is a genetic determinant of malarial pathogenesis. C57BL/6 alleles are associated with increased disease-susceptibility as BALB.B6-Cmv1r congenic mice had increased cerebral pathology and death rates during P. berghei ANKA infection than cerebral malaria-resistant BALB/c controls. Methods To investigate which regions of the NKC are involved in susceptibility to experimental cerebral malaria (ECM), intra-NKC congenic mice generated by backcrossing recombinant F2 progeny from a (BALB/c x BALB.B6-Cmv1r) F1 intercross to BALB/c mice were infected with P. berghei ANKA. Results Our results revealed that C57BL/6 alleles at two locations in the NKC contribute to the development of ECM. The increased severity to severe disease in intra-NKC congenic mice was not associated with higher parasite burdens but correlated with a significantly enhanced systemic IFN-γ response to infection and an increased recruitment of CD8+ T cells to the brain of infected animals. Conclusions Polymorphisms within the NKC modulate malarial pathogenesis and acquired immune responses to infection.
Collapse
Affiliation(s)
- Diana S. Hansen
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- * E-mail:
| | - Victoria Ryg-Cornejo
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Lisa J. Ioannidis
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Chris Y. Chiu
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Ann Ly
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | | | - Anthony A. Scalzo
- Centre for Experimental Immunology, Lions Eye Institute, Nedlands, Western Australia, Australia
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Nedlands, Western Australia, Australia
| | - Louis Schofield
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, Douglas, Queensland, Australia
| |
Collapse
|
13
|
Differential association of KIR gene loci to risk of malaria in ethnic groups of Assam, Northeast India. INFECTION GENETICS AND EVOLUTION 2011; 11:1921-8. [DOI: 10.1016/j.meegid.2011.08.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2011] [Revised: 07/05/2011] [Accepted: 08/17/2011] [Indexed: 11/22/2022]
|
14
|
Lau LS, Fernandez Ruiz D, Davey GM, de Koning-Ward TF, Papenfuss AT, Carbone FR, Brooks AG, Crabb BS, Heath WR. Blood-Stage Plasmodium berghei Infection Generates a Potent, Specific CD8+ T-Cell Response Despite Residence Largely in Cells Lacking MHC I Processing Machinery. J Infect Dis 2011; 204:1989-96. [DOI: 10.1093/infdis/jir656] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
15
|
Bouzani M, Ok M, McCormick A, Ebel F, Kurzai O, Morton CO, Einsele H, Loeffler J. Human NK cells display important antifungal activity against Aspergillus fumigatus, which is directly mediated by IFN-γ release. THE JOURNAL OF IMMUNOLOGY 2011; 187:1369-76. [PMID: 21697457 DOI: 10.4049/jimmunol.1003593] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Despite the strong interest in the NK cell-mediated immunity toward malignant cells and viruses, there is a relative lack of data on the interplay between NK cells and filamentous fungi, especially Aspergillus fumigatus, which is the major cause of invasive aspergillosis. By studying the in vitro interaction between human NK cells and A. fumigatus, we found only germinated morphologies to be highly immunogenic, able to induce a Th1-like response, and capable of upregulating cytokines such as IFN-γ and TNF-α. Moreover, priming NK cells with human rIL-2 and stimulating NK cells by direct NK cell-pathogen contact were essential to induce damage against A. fumigatus. However, the most interesting finding was that NK cells did not mediate anti-Aspergillus cytotoxicity through degranulation of their cytotoxic proteins (perforin, granzymes, granulysine), but via an alternative mechanism involving soluble factor(s). To our knowledge, our study is the first to demonstrate that IFN-γ, released by NK cells, directly damages A. fumigatus, attributing new properties to both human NK cells and IFN-γ and suggesting them as possible therapeutic tools against IA.
Collapse
Affiliation(s)
- Maria Bouzani
- Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, 97080 Würzburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Moreland AJ, Guethlein LA, Reeves RK, Broman KW, Johnson RP, Parham P, O'Connor DH, Bimber BN. Characterization of killer immunoglobulin-like receptor genetics and comprehensive genotyping by pyrosequencing in rhesus macaques. BMC Genomics 2011; 12:295. [PMID: 21645414 PMCID: PMC3125267 DOI: 10.1186/1471-2164-12-295] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Accepted: 06/07/2011] [Indexed: 11/10/2022] Open
Abstract
Background Human killer immunoglobulin-like receptors (KIRs) play a critical role in governing the immune response to neoplastic and infectious disease. Rhesus macaques serve as important animal models for many human diseases in which KIRs are implicated; however, the study of KIR activity in this model is hindered by incomplete characterization of KIR genetics. Results Here we present a characterization of KIR genetics in rhesus macaques (Macaca mulatta). We conducted a survey of KIRs in this species, identifying 47 novel full-length KIR sequences. Using this expanded sequence library to build upon previous work, we present evidence supporting the existence of 22 Mamu-KIR genes, providing a framework within which to describe macaque KIRs. We also developed a novel pyrosequencing-based technique for KIR genotyping. This method provides both comprehensive KIR genotype and frequency estimates of transcript level, with implications for the study of KIRs in all species. Conclusions The results of this study significantly improve our understanding of macaque KIR genetic organization and diversity, with implications for the study of many human diseases that use macaques as a model. The ability to obtain comprehensive KIR genotypes is of basic importance for the study of KIRs, and can easily be adapted to other species. Together these findings both advance the field of macaque KIRs and facilitate future research into the role of KIRs in human disease.
Collapse
Affiliation(s)
- Anna J Moreland
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Pauza CD, Riedel DJ, Gilliam BL, Redfield RR. Targeting γδ T cells for immunotherapy of HIV disease. Future Virol 2011; 6:73-84. [PMID: 21339853 DOI: 10.2217/fvl.10.78] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Disruption of circulating γδ T-cell populations is an early and common outcome of HIV infection. T-cell receptor (TCR)-γ2δ2 cells (expressing the Vγ2 and Vδ2 chains of the γδ TCR) are depleted, even though they are minimally susceptible to direct HIV infection, and exemplify indirect cell depletion mechanisms that are important in the progression to AIDS. Among individuals with common or normally progressing HIV disease, the loss of TCR-γ2δ2 cells has a broad impact on viral immunity, control of opportunistic pathogens and resistance to malignant disease. Advanced HIV disease can result in complete loss of TCR-γ2δ2 cells that are not recovered even during antiretroviral therapy with complete virus suppression. However, normal levels of TCR-γ2δ2 were observed among natural virus suppressors (low or undetectable virus without antiretroviral therapy) irrespective of their MHC haplotype, consistent with their disease-free status. The pattern of loss and recovery of TCR-γ2δ2 cells revealed their unique features and functional capacities, and encourage the development of immune-based therapies to activate and expand this T-cell subset. New research has identified drugs that might reconstitute the TCR-γ2δ2 population, recover their functional contributions, and improve control of HIV replication and disease. Here, we review research on HIV and TCR-γδ T cells to highlight the consequences of depleting this subset and the unique features of TCR-γδ biology that argue in favor of clinical strategies to reconstitute this T-cell subset in individuals with HIV/AIDS.
Collapse
Affiliation(s)
- C David Pauza
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA
| | | | | | | |
Collapse
|
18
|
Single nucleotide polymorphism analysis of the NKG2D ligand cluster on the long arm of chromosome 6: Extensive polymorphisms and evidence of diversity between human populations. Hum Immunol 2010; 71:610-20. [DOI: 10.1016/j.humimm.2010.02.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2010] [Revised: 02/03/2010] [Accepted: 02/18/2010] [Indexed: 11/17/2022]
|
19
|
Zucchini N, Crozat K, Baranek T, Robbins SH, Altfeld M, Dalod M. Natural killer cells in immunodefense against infective agents. Expert Rev Anti Infect Ther 2009; 6:867-85. [PMID: 19053900 DOI: 10.1586/14787210.6.6.867] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Following the discovery of innate immune receptors, the topics of innate immunity and its role in defense against infective agents have recently blossomed into very active research fields, after several decades of neglect. Among innate immune cells, natural killer (NK) cells are endowed with the unique ability to recognize and kill cells infected with a variety of pathogens, irrespective of prior sensitization to these microbes. NK cells have a number of other functions, including cytokine production and immunoregulatory activities. Major advances have recently been made in the understanding of the role of NK cells in the physiopathology of infectious diseases. The cellular and molecular mechanisms regulating the acquisition of effector functions by NK cells and their triggering upon pathogenic encounters are being unraveled. The possibility that the power of NK cells could be harnessed for the design of innovative treatments against infections is a major incentive for biologists to further explore NK cell subset complexity and to identify the ligands that activate NK cell receptors.
Collapse
Affiliation(s)
- Nicolas Zucchini
- Centre d'Immunologie de Marseille-Luminy, Université de Méditerranée, Marseille, France.
| | | | | | | | | | | |
Collapse
|
20
|
Bimber BN, Moreland AJ, Wiseman RW, Hughes AL, O'Connor DH. Complete characterization of killer Ig-like receptor (KIR) haplotypes in Mauritian cynomolgus macaques: novel insights into nonhuman primate KIR gene content and organization. THE JOURNAL OF IMMUNOLOGY 2009; 181:6301-8. [PMID: 18941221 DOI: 10.4049/jimmunol.181.9.6301] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Killer Ig-like receptors (KIRs) are implicated in protection from multiple pathogens including HIV, human papillomavirus, and malaria. Nonhuman primates such as rhesus and cynomolgus macaques are important models for the study of human pathogens; however, KIR genetics in nonhuman primates are poorly defined. Understanding KIR allelic diversity and genomic organization are essential prerequisites to evaluate NK cell responses in macaques. In this study, we present a complete characterization of KIRs in Mauritian cynomolgus macaques, a geographically isolated population. In this study we demonstrate that only eight KIR haplotypes are present in the entire population and characterize the gene content of each. Using the simplified genetics of this population, we construct a model for macaque KIR genomic organization, defining four putative KIR3DL loci, one KIR3DH, two KIR2DL, and one KIR1D. We further demonstrate that loci defined in Mauritian cynomolgus macaques can be applied to rhesus macaques. The findings from this study fundamentally advance our understanding of KIR genetics in nonhuman primates and establish a foundation from which to study KIR signaling in disease pathogenesis.
Collapse
Affiliation(s)
- Benjamin N Bimber
- Department of Pathology and Laboratory Medicine, Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | | | | | | |
Collapse
|
21
|
D'Ombrain MC, Robinson LJ, Stanisic DI, Taraika J, Bernard N, Michon P, Mueller I, Schofield L. Association of early interferon-gamma production with immunity to clinical malaria: a longitudinal study among Papua New Guinean children. Clin Infect Dis 2008; 47:1380-7. [PMID: 18947328 DOI: 10.1086/592971] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND Elucidating the cellular and molecular basis of naturally acquired immunity to Plasmodium falciparum infection would assist in developing a rationally based malaria vaccine. Innate, intermediate, and adaptive immune mechanisms are all likely to contribute to immunity. Interferon-gamma (IFN-gamma) has been implicated in both protection against and the pathogenesis of malaria in humans. In addition, considerable heterogeneity exists among rapid IFN-gamma responses to P. falciparum in malaria-naive donors. The question remains whether similar heterogeneity is observed in malaria-exposed individuals and whether high, medium, or low IFN-gamma responsiveness is differentially associated with protective immunity or morbidity. METHODS A 6-month longitudinal cohort study involving 206 school-aged Papua New Guinean children was performed. Peripheral blood mononuclear cells collected at baseline were exposed to live P. falciparum-infected erythrocytes. Early IFN-gamma responses were measured, and IFN-gamma-expressing cells were characterized by flow cytometry. IFN-gamma responsiveness was then tested for associations with parasitological and clinical outcome variables. RESULTS Malaria-specific heterogeneity in early IFN-gamma responsiveness was observed among children. High-level early IFN-gamma responses were associated with protection from high-density and clinical P. falciparum infections. Parasite-induced early IFN-gamma was predominantly derived from gammadelta T cells (68% of which expressed the natural killer marker CD56) and alphabeta T cells, whereas natural killer cells and other cells made only minor contributions. The expression of CD56 in malaria-responsive, IFN-gamma-expressing gammadelta T cells correlated with IFN-gamma responsiveness. CONCLUSIONS High, early IFN-gamma production by live parasite-stimulated peripheral blood mononuclear cells is a correlate of immunity to symptomatic malaria in Papua New Guinean children, and natural killer-like gammadelta T cells may contribute to protection.
Collapse
Affiliation(s)
- Marthe C D'Ombrain
- Infection and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, University of Melbourne, Parkville, Victoria, Australia
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Kulkarni S, Martin MP, Carrington M. The Yin and Yang of HLA and KIR in human disease. Semin Immunol 2008; 20:343-52. [PMID: 18635379 PMCID: PMC3501819 DOI: 10.1016/j.smim.2008.06.003] [Citation(s) in RCA: 281] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2008] [Accepted: 06/06/2008] [Indexed: 11/28/2022]
Abstract
Killer cell immunoglobulin-like receptors (KIR) are expressed on natural killer (NK) cells and subsets of T cells. The KIR genes are polymorphic and the KIR gene complex is polygenic with varying numbers of inhibitory and activating receptors. HLA class I molecules serve as ligands for the KIR. Interactions of the independently segregating KIR and HLA loci are important for recognition of targets by NK cells as well as NK cell 'licensing'. Several disease association studies indicate a role for interactions between these loci in infectious diseases, autoimmune/inflammatory disorders, cancer and reproduction. Emerging functional data supports a mechanism based on a continuum of inhibition to activation through various compound KIR-HLA genotypes in diseases.
Collapse
Affiliation(s)
- Smita Kulkarni
- Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, USA
| | - Maureen P. Martin
- Cancer and Inflammation Program, Laboratory of Experimental Immunology, SAIC-Frederick, Frederick, Maryland 21702, USA
| | - Mary Carrington
- Cancer and Inflammation Program, Laboratory of Experimental Immunology, SAIC-Frederick, Frederick, Maryland 21702, USA
| |
Collapse
|
23
|
Binding of excreted and/or secreted products of adult hookworms to human NK cells in Necator americanus-infected individuals from Brazil. Infect Immun 2008; 76:5810-6. [PMID: 18838519 DOI: 10.1128/iai.00419-08] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The impact of the interaction between excreted and/or secreted (ES) Necator americanus products and NK cells from Necator-infected individuals was analyzed. We investigated the binding of ES products to NK cells, the expression of NK cell receptors (CD56, CD159a/NKG2A, CD314/NKG2D, CD335/NKp46, and KLRF1/NKp80), the frequency of gamma interferon (IFN-gamma)-producing NK cells after whole-blood in vitro stimulation, and the capacity of N. americanus ES products to induce NK cell chemotaxis. In contrast to those from noninfected individuals, NK cells from Necator-infected individuals demonstrated no binding with N. americanus ES products. This phenomenon was not due to alterations in NK cell receptor expression in infected subjects and could not be reproduced with NK cells from uninfected individuals by incubation with immunoregulatory cytokines (interleukin-10/transforming growth factor beta). Further, we found that a significantly greater percentage of NK cells from infected subjects than NK cells from uninfected individuals spontaneously produced IFN-gamma upon ex vivo culture. Our findings support a model whereby NK cells from Necator-infected individuals may interact with ES products, making these cells refractory to binding with exogenous ES products. During N. americanus infection, human NK cells are attracted to the site of infection by chemotactic ES products produced by adult Necator worms in the gut mucosa. Binding of ES products causes the NK cells to become activated and secrete IFN-gamma locally, thereby contributing to the adult hookworm's ability to evade host immune responses.
Collapse
|
24
|
Sirugo G, Hennig BJ, Adeyemo AA, Matimba A, Newport MJ, Ibrahim ME, Ryckman KK, Tacconelli A, Mariani-Costantini R, Novelli G, Soodyall H, Rotimi CN, Ramesar RS, Tishkoff SA, Williams SM. Genetic studies of African populations: an overview on disease susceptibility and response to vaccines and therapeutics. Hum Genet 2008; 123:557-98. [PMID: 18512079 DOI: 10.1007/s00439-008-0511-y] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2008] [Accepted: 05/07/2008] [Indexed: 01/13/2023]
Abstract
Africa is the ultimate source of modern humans and as such harbors more genetic variation than any other continent. For this reason, studies of the patterns of genetic variation in African populations are crucial to understanding how genes affect phenotypic variation, including disease predisposition. In addition, the patterns of extant genetic variation in Africa are important for understanding how genetic variation affects infectious diseases that are a major problem in Africa, such as malaria, tuberculosis, schistosomiasis, and HIV/AIDS. Therefore, elucidating the role that genetic susceptibility to infectious diseases plays is critical to improving the health of people in Africa. It is also of note that recent and ongoing social and cultural changes in sub-Saharan Africa have increased the prevalence of non-communicable diseases that will also require genetic analyses to improve disease prevention and treatment. In this review we give special attention to many of the past and ongoing studies, emphasizing those in Sub-Saharan Africans that address the role of genetic variation in human disease.
Collapse
Affiliation(s)
- Giorgio Sirugo
- Medical Research Council Laboratories, Fajara, The Gambia, West Africa.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
Natural killer (NK) cells are well recognized for their ability to provide a first line of defence against viral pathogens and they are increasingly being implicated in immune responses against certain bacterial and parasitic infections. Reciprocally, viruses have devised numerous strategies to evade the activation of NK cells and have influenced the evolution of NK-cell receptors and their ligands. NK cells contribute to host defence by their ability to rapidly secrete cytokines and chemokines, as well as to directly kill infected host cells. In addition to their participation in the immediate innate immune response against infection, interactions between NK cells and dendritic cells shape the nature of the subsequent adaptive immune response to pathogens.
Collapse
Affiliation(s)
- Lewis L Lanier
- Department of Microbiology and Immunology, and the Cancer Research Institute, University of California San Francisco, San Francisco, California 94143-0414, USA.
| |
Collapse
|
26
|
|