1
|
Roberts LB, Kelly AM, Hepworth MR. There's no place like home: How local tissue microenvironments shape the function of innate lymphoid cells. Mucosal Immunol 2025; 18:279-289. [PMID: 39900201 DOI: 10.1016/j.mucimm.2025.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/16/2025] [Accepted: 01/30/2025] [Indexed: 02/05/2025]
Abstract
Innate lymphoid cells (ILC) have emerged as critical immune effectors with key roles in orchestrating the wider immune response. While ILC are relatively rare cells they are found enriched within discrete microenvironments, predominantly within barrier tissues. An emerging body of evidence implicates complex and multi-layered interactions between cell types, tissue structure and the external environment as key determinants of ILC function within these niches. In this review we will discuss the specific components that constitute ILC-associated microenvironments and consider how they act to determine health and disease. The development of holistic, integrated models of ILC function within complex tissue environments will inform new understanding of the contextual cues and mechanisms that determine the protective versus disease-causing roles of this immune cell family.
Collapse
Affiliation(s)
- Luke B Roberts
- School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester M13 9PL United Kingdom; Lydia Becker Institute of Immunology and Inflammation, University of Manchester, United Kingdom
| | - Alanna M Kelly
- School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester M13 9PL United Kingdom; Lydia Becker Institute of Immunology and Inflammation, University of Manchester, United Kingdom
| | - Matthew R Hepworth
- School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester M13 9PL United Kingdom; Lydia Becker Institute of Immunology and Inflammation, University of Manchester, United Kingdom.
| |
Collapse
|
2
|
Zhang W, Artis D. Stressing out the intestinal microbiota via a brain-neuroglandular circuit. Cell Res 2025; 35:233-234. [PMID: 39592707 PMCID: PMC11958642 DOI: 10.1038/s41422-024-01047-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2024] Open
Affiliation(s)
- Wen Zhang
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA.
- Friedman Center for Nutrition and Inflammation, Weill Cornell Medicine, Cornell University, New York, NY, USA.
- Division of Gastroenterology and Hepatology, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA.
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA.
- Allen Discovery Center for Neuroimmune Interactions, Weill Cornell Medicine, Cornell University, New York, NY, USA.
| | - David Artis
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA.
- Friedman Center for Nutrition and Inflammation, Weill Cornell Medicine, Cornell University, New York, NY, USA.
- Division of Gastroenterology and Hepatology, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA.
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA.
- Allen Discovery Center for Neuroimmune Interactions, Weill Cornell Medicine, Cornell University, New York, NY, USA.
| |
Collapse
|
3
|
Hepworth MR. Gut GABA keeps ILC3s in check. Nat Immunol 2025; 26:335-336. [PMID: 40033121 DOI: 10.1038/s41590-025-02082-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Affiliation(s)
- Matthew R Hepworth
- School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK.
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK.
| |
Collapse
|
4
|
Wang Y, Zhang X, Liu S, Gu Z, Sun Z, Zang Y, Huang X, Wang Y, Wang Q, Lin Q, Liu R, Sun S, Xu H, Wang J, Wu T, Wang Y, Li Y, Li H, Tang Z, Qu Y, Wu L, Hu X, Guo X, Wang F, Zhou L, He D, Qi H, Xu H, Chu C. Bi-directional communication between intrinsic enteric neurons and ILC2s inhibits host defense against helminth infection. Immunity 2025; 58:465-480.e8. [PMID: 39889704 DOI: 10.1016/j.immuni.2025.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/18/2024] [Accepted: 01/08/2025] [Indexed: 02/03/2025]
Abstract
Emerging studies reveal that neurotransmitters and neuropeptides play critical roles in regulating anti-helminth immune responses, hinting at the potential of intrinsic enteric neurons (iENs) in orchestrating intestinal immunity. Whether and how iENs are activated during infection and the potential neuroimmune interactions involved remain poorly defined. Here, we found that helminth infection activated a subset of iENs. Single-nucleus RNA sequencing (snRNA-seq) of iENs revealed alterations in the transcriptional profile of interleukin (IL)-13R+ intrinsic primary afferent neurons (IPANs), including the upregulation of the neuropeptide β-calcitonin gene-related peptide (CGRP). Using genetic mouse models and engineered viral tools, we demonstrated that group 2 innate lymphoid cell (ILC2)-derived IL-13 was required to activate iENs via the IL-13R, leading to iEN production of β-CGRP, which subsequently inhibited ILC2 responses and anti-helminth immunity. Together, these results reveal a previously unrecognized bi-directional neuroimmune crosstalk in the intestine between a subset of iENs and ILC2s, which influences pathogen clearance.
Collapse
Affiliation(s)
- Yinsheng Wang
- Fudan University, Shanghai 200433, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China; Laboratory of System Immunology, School of Medicine, Westlake University, Hangzhou 310024, China; Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, China
| | - Xiaoyu Zhang
- Institute for Immunology, Tsinghua University, Beijing 100084, China; School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory for Immunological Research on Chronic Diseases, Tsinghua University, Beijing 100084, China
| | - Shaorui Liu
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China; Laboratory of System Immunology, School of Medicine, Westlake University, Hangzhou 310024, China; Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, China
| | - Zhijie Gu
- Institute for Immunology, Tsinghua University, Beijing 100084, China; School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory for Immunological Research on Chronic Diseases, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Zijia Sun
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China; Laboratory of System Immunology, School of Medicine, Westlake University, Hangzhou 310024, China; Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, China
| | - Yang Zang
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China; Laboratory of System Immunology, School of Medicine, Westlake University, Hangzhou 310024, China; Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, China
| | - Xiaobao Huang
- Department of Dermatology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Yi Wang
- Institute for Immunology, Tsinghua University, Beijing 100084, China; School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Qiang Wang
- Shanghai Immune Therapy Institute, Shanghai Jiaotong University School of Medicine-Affiliated Renji Hospital, Shanghai 200127, China
| | - Qingxia Lin
- Shanghai Immune Therapy Institute, Shanghai Jiaotong University School of Medicine-Affiliated Renji Hospital, Shanghai 200127, China
| | - Ruichao Liu
- Institute for Immunology, Tsinghua University, Beijing 100084, China; School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory for Immunological Research on Chronic Diseases, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Suhua Sun
- Institute for Immunology, Tsinghua University, Beijing 100084, China; School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory for Immunological Research on Chronic Diseases, Tsinghua University, Beijing 100084, China; Changping Laboratory, Beijing 102206, China
| | - Hongkai Xu
- Institute for Immunology, Tsinghua University, Beijing 100084, China; School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory for Immunological Research on Chronic Diseases, Tsinghua University, Beijing 100084, China
| | - Jiali Wang
- Institute for Immunology, Tsinghua University, Beijing 100084, China; School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory for Immunological Research on Chronic Diseases, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Tao Wu
- Institute for Immunology, Tsinghua University, Beijing 100084, China; School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory for Immunological Research on Chronic Diseases, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yan Wang
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China; Laboratory of System Immunology, School of Medicine, Westlake University, Hangzhou 310024, China; Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, China
| | - Yu Li
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China; Laboratory of System Immunology, School of Medicine, Westlake University, Hangzhou 310024, China; Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, China
| | - Hui Li
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China; Laboratory of System Immunology, School of Medicine, Westlake University, Hangzhou 310024, China; Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, China
| | - Zirun Tang
- Institute for Immunology, Tsinghua University, Beijing 100084, China; School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory for Immunological Research on Chronic Diseases, Tsinghua University, Beijing 100084, China
| | - Yifan Qu
- Institute for Immunology, Tsinghua University, Beijing 100084, China; School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory for Immunological Research on Chronic Diseases, Tsinghua University, Beijing 100084, China
| | - Li Wu
- Institute for Immunology, Tsinghua University, Beijing 100084, China; School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory for Immunological Research on Chronic Diseases, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xiaoyu Hu
- Institute for Immunology, Tsinghua University, Beijing 100084, China; School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory for Immunological Research on Chronic Diseases, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China; The State Key Laboratory of Membrane Biology, Beijing 100084, China
| | - Xiaohuan Guo
- Institute for Immunology, Tsinghua University, Beijing 100084, China; School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory for Immunological Research on Chronic Diseases, Tsinghua University, Beijing 100084, China
| | - Fang Wang
- Department of Dermatology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou 510060, China
| | - Lei Zhou
- Shanghai Immune Therapy Institute, Shanghai Jiaotong University School of Medicine-Affiliated Renji Hospital, Shanghai 200127, China
| | - Danyang He
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China
| | - Hai Qi
- Institute for Immunology, Tsinghua University, Beijing 100084, China; School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory for Immunological Research on Chronic Diseases, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China; Changping Laboratory, Beijing 102206, China; School of Life Sciences, Tsinghua University, Beijing 100084, China; Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing 100084, China; SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
| | - Heping Xu
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China; Laboratory of System Immunology, School of Medicine, Westlake University, Hangzhou 310024, China; Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, China.
| | - Coco Chu
- Institute for Immunology, Tsinghua University, Beijing 100084, China; School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory for Immunological Research on Chronic Diseases, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China; SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Shanxi Medical University, Taiyuan 030001, Shanxi Province, China; State Key Lab of Digestive Health, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China.
| |
Collapse
|
5
|
Sun J, Wang D, Wei Y, Wang D, Ji Z, Sun W, Wang X, Wang P, Basmadji NP, Larrarte E, Pedraz JL, Ramalingam M, Xie S, Wang R. Capsaicin-induced Ca 2+ overload and ablation of TRPV1-expressing axonal terminals for comfortable tumor immunotherapy. NANOSCALE 2025; 17:3288-3305. [PMID: 39688368 DOI: 10.1039/d4nr04454a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
As a common malignancy symptom, cancer pain significantly affects patients' quality of life. Approximately 60%-90% of patients with advanced cancer experience debilitating pain. Therefore, a comprehensive treatment system that combines cancer pain suppression and tumor treatment could provide significant benefits for these patients. Here, we designed a manganese oxide (MnO2)/Bovine serum albumin (BSA)/polydopamine (PDA) composite nanoplatform internally loaded with capsaicin for cancer pain suppression and immunotherapy. MBD&C nanoparticles (NPs) can ablate tumor-innervated sensory nerve fibers via Transient receptor potential vanilloid 1 (TRPV1) channels, thereby reducing the pain caused by various inflammatory mediators. The ablation of TRPV1+ nerve terminals can also decrease the secretion of calcitonin gene-related peptide (CGRP) and substance P (SP) in sensory nerve fibers, thus reducing the tumor pain and inhibit tumor progression. MBD&C can promote calcium influx by activating overexpressed TRPV1 channels on the tumor membrane surface, thereby achieving cancer immunotherapy induced by endogenous Ca2+ overloading. In addition, MnO2 NPs can alleviate tumor hypoxia and mitigate the immunosuppressive tumor microenvironment (TME). Ultimately, this treatment system with dual capabilities of inhibiting tumor growth and relieving cancer pain makes comfortable tumor therapy feasible and paves the way for the development of patient-centered approaches to cancer treatment in the future.
Collapse
Affiliation(s)
- Jian Sun
- Institute of Rehabilitation Medicine, School of Rehabilitation Medicine, Binzhou Medical University, Yantai 264003, People's Republic of China.
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
- Shandong Laboratory of Advanced Materials and Green Manufacturing, Yantai 264000, People's Republic of China.
- Key Laboratory of Tumor Molecular Biology, Binzhou Medical University, Yantai 264003, People's Republic of China
| | - Deqiang Wang
- Yantai Affiliated Hospital of Binzhou Medical University, Yantai 264003, People's Republic of China
| | - Yiying Wei
- Institute of Rehabilitation Medicine, School of Rehabilitation Medicine, Binzhou Medical University, Yantai 264003, People's Republic of China.
| | - Danyang Wang
- Institute of Rehabilitation Medicine, School of Rehabilitation Medicine, Binzhou Medical University, Yantai 264003, People's Republic of China.
| | - Zhengkun Ji
- Yantai Affiliated Hospital of Binzhou Medical University, Yantai 264003, People's Republic of China
| | - Wanru Sun
- Institute of Rehabilitation Medicine, School of Rehabilitation Medicine, Binzhou Medical University, Yantai 264003, People's Republic of China.
| | - Xin Wang
- Department of Rehabilitation Medicine, Clinical Medical College, Yangzhou University, Yangzhou 225000, People's Republic of China
| | - Pingyu Wang
- Key Laboratory of Tumor Molecular Biology, Binzhou Medical University, Yantai 264003, People's Republic of China
| | - Nicola Paccione Basmadji
- TECNALIA, Basque Research & Technology Alliance (BRTA) Miñano, Spain
- NanoBioCel Group, Laboratory of Pharmacy and Pharmaceutical Technology. Department of Pharmacy and Food Science, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain.
| | - Eider Larrarte
- TECNALIA, Basque Research & Technology Alliance (BRTA) Miñano, Spain
| | - José Luis Pedraz
- NanoBioCel Group, Laboratory of Pharmacy and Pharmaceutical Technology. Department of Pharmacy and Food Science, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain.
- Joint Research Laboratory (JRL) on Bioprinting and Advanced Pharma, Development, A Joint Venture of TECNALIA and University of the Basque Country (UPV/EHU), Centro de investigación Lascaray Ikergunea, Avenida Miguel de Unamuno, 01006 Vitoria-Gasteiz, Spain
- Bioaraba Health Research Institute, Jose Atxotegi, s/n, 01009 Vitoria-Gasteiz, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, 28029 Madrid, Spain
| | - Murugan Ramalingam
- NanoBioCel Group, Laboratory of Pharmacy and Pharmaceutical Technology. Department of Pharmacy and Food Science, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain.
- Joint Research Laboratory (JRL) on Bioprinting and Advanced Pharma, Development, A Joint Venture of TECNALIA and University of the Basque Country (UPV/EHU), Centro de investigación Lascaray Ikergunea, Avenida Miguel de Unamuno, 01006 Vitoria-Gasteiz, Spain
- Bioaraba Health Research Institute, Jose Atxotegi, s/n, 01009 Vitoria-Gasteiz, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, 28029 Madrid, Spain
- IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain
- School of Basic Medical Sciences, Binzhou Medical University, Yantai 264003, People's Republic of China
| | - Shuyang Xie
- Shandong Laboratory of Advanced Materials and Green Manufacturing, Yantai 264000, People's Republic of China.
- Key Laboratory of Tumor Molecular Biology, Binzhou Medical University, Yantai 264003, People's Republic of China
| | - Ranran Wang
- Institute of Rehabilitation Medicine, School of Rehabilitation Medicine, Binzhou Medical University, Yantai 264003, People's Republic of China.
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| |
Collapse
|
6
|
Kania AK, Kokkinou E, Pearce E, Pearce E. Metabolic adaptations of ILC2 and Th2 cells in type 2 immunity. Curr Opin Immunol 2024; 91:102503. [PMID: 39520759 DOI: 10.1016/j.coi.2024.102503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/14/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024]
Abstract
Type 2 immune responses play a crucial role in host defense against parasitic infections but can also promote the development of allergies and asthma. This response is orchestrated primarily by group 2 innate lymphoid cells (ILC2) and helper type 2 (Th2) cells, both of which undergo substantial metabolic reprogramming as they transition from resting to activated states. Understanding these metabolic adaptations not only provides insights into the fundamental biology of ILC2 and Th2 cells but also opens up potential therapeutic avenues for the identification of novel metabolic targets that can extend the current treatment regimens for diseases in which type 2 immune responses play pivotal roles. By integrating recent findings, this review underscores the significance of cellular metabolism in orchestrating immune functions and highlights future directions for research in this evolving field.
Collapse
Affiliation(s)
- Anna K Kania
- Bloomberg Kimmel Institute of Cancer Immunotherapy, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Efthymia Kokkinou
- Bloomberg Kimmel Institute of Cancer Immunotherapy, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Erika Pearce
- Bloomberg Kimmel Institute of Cancer Immunotherapy, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Edward Pearce
- Bloomberg Kimmel Institute of Cancer Immunotherapy, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
| |
Collapse
|
7
|
Cong J, Lv H, Xu Y. The role of nociceptive neurons in allergic rhinitis. Front Immunol 2024; 15:1430760. [PMID: 39185421 PMCID: PMC11341422 DOI: 10.3389/fimmu.2024.1430760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/25/2024] [Indexed: 08/27/2024] Open
Abstract
Allergic rhinitis (AR) is a chronic, non-infectious condition affecting the nasal mucosa, primarily mediated mainly by IgE. Recent studies reveal that AR is intricately associated not only with type 2 immunity but also with neuroimmunity. Nociceptive neurons, a subset of primary sensory neurons, are pivotal in detecting external nociceptive stimuli and modulating immune responses. This review examines nociceptive neuron receptors and elucidates how neuropeptides released by these neurons impact the immune system. Additionally, we summarize the role of immune cells and inflammatory mediators on nociceptive neurons. A comprehensive understanding of the dynamic interplay between nociceptive neurons and the immune system augments our understanding of the neuroimmune mechanisms underlying AR, thereby opening novel avenues for AR treatment modalities.
Collapse
Affiliation(s)
- Jianchao Cong
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
- Department of Rhinology and Allergy, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hao Lv
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
- Department of Rhinology and Allergy, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yu Xu
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
- Department of Rhinology and Allergy, Renmin Hospital of Wuhan University, Wuhan, China
- Research Institute of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Province Key Laboratory of Allergy and Immunology, Wuhan, China
| |
Collapse
|
8
|
Horn V, Sonnenberg GF. Group 3 innate lymphoid cells in intestinal health and disease. Nat Rev Gastroenterol Hepatol 2024; 21:428-443. [PMID: 38467885 PMCID: PMC11144103 DOI: 10.1038/s41575-024-00906-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/05/2024] [Indexed: 03/13/2024]
Abstract
The gastrointestinal tract is an immunologically rich organ, containing complex cell networks and dense lymphoid structures that safeguard this large absorptive barrier from pathogens, contribute to tissue physiology and support mucosal healing. Simultaneously, the immune system must remain tolerant to innocuous dietary antigens and trillions of normally beneficial microorganisms colonizing the intestine. Indeed, a dysfunctional immune response in the intestine underlies the pathogenesis of numerous local and systemic diseases, including inflammatory bowel disease, food allergy, chronic enteric infections or cancers. Here, we discuss group 3 innate lymphoid cells (ILC3s), which have emerged as orchestrators of tissue physiology, immunity, inflammation, tolerance and malignancy in the gastrointestinal tract. ILC3s are abundant in the developing and healthy intestine but their numbers or function are altered during chronic disease and cancer. The latest studies provide new insights into the mechanisms by which ILC3s fundamentally shape intestinal homeostasis or disease pathophysiology, and often this functional dichotomy depends on context and complex interactions with other cell types or microorganisms. Finally, we consider how this knowledge could be harnessed to improve current treatments or provoke new opportunities for therapeutic intervention to promote gut health.
Collapse
Affiliation(s)
- Veronika Horn
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Joan and Sanford I. Weill Department of Medicine, Division of Gastroenterology & Hepatology, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Department of Microbiology & Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Gregory F Sonnenberg
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA.
- Joan and Sanford I. Weill Department of Medicine, Division of Gastroenterology & Hepatology, Weill Cornell Medicine, Cornell University, New York, NY, USA.
- Department of Microbiology & Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA.
| |
Collapse
|
9
|
Kulalert W, Wells AC, Link VM, Lim AI, Bouladoux N, Nagai M, Harrison OJ, Kamenyeva O, Kabat J, Enamorado M, Chiu IM, Belkaid Y. The neuroimmune CGRP-RAMP1 axis tunes cutaneous adaptive immunity to the microbiota. Proc Natl Acad Sci U S A 2024; 121:e2322574121. [PMID: 38451947 PMCID: PMC10945812 DOI: 10.1073/pnas.2322574121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 01/22/2024] [Indexed: 03/09/2024] Open
Abstract
The somatosensory nervous system surveils external stimuli at barrier tissues, regulating innate immune cells under infection and inflammation. The roles of sensory neurons in controlling the adaptive immune system, and more specifically immunity to the microbiota, however, remain elusive. Here, we identified a mechanism for direct neuroimmune communication between commensal-specific T lymphocytes and somatosensory neurons mediated by the neuropeptide calcitonin gene-related peptide (CGRP) in the skin. Intravital imaging revealed that commensal-specific T cells are in close proximity to cutaneous nerve fibers in vivo. Correspondingly, we observed upregulation of the receptor for the neuropeptide CGRP, RAMP1, in CD8+ T lymphocytes induced by skin commensal colonization. The neuroimmune CGRP-RAMP1 signaling axis functions in commensal-specific T cells to constrain Type 17 responses and moderate the activation status of microbiota-reactive lymphocytes at homeostasis. As such, modulation of neuroimmune CGRP-RAMP1 signaling in commensal-specific T cells shapes the overall activation status of the skin epithelium, thereby impacting the outcome of responses to insults such as wounding. The ability of somatosensory neurons to control adaptive immunity to the microbiota via the CGRP-RAMP1 axis underscores the various layers of regulation and multisystem coordination required for optimal microbiota-reactive T cell functions under steady state and pathology.
Collapse
Affiliation(s)
- Warakorn Kulalert
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
| | - Alexandria C. Wells
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
| | - Verena M. Link
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
| | - Ai Ing Lim
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
| | - Nicolas Bouladoux
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
- National Institute of Allergy and Infectious Diseases Microbiome Program, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
| | - Motoyoshi Nagai
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
| | - Oliver J. Harrison
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
| | - Olena Kamenyeva
- Biological Imaging Section, Research Technology Branch, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
| | - Juraj Kabat
- Biological Imaging Section, Research Technology Branch, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
| | - Michel Enamorado
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
- Kimberly and Eric J. Waldman Department of Dermatology, Mark Lebwohl Center for Neuroinflammation and Sensation, Marc and Jennifer Lipschultz Precision Immunology Institute, and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY10029
| | - Isaac M. Chiu
- Department of Immunology, Harvard Medical School, Boston, MA02115
| | - Yasmine Belkaid
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
- National Institute of Allergy and Infectious Diseases Microbiome Program, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
- Unite Metaorganisme, Immunology Department, Pasteur Institute, 75015 Paris, France
| |
Collapse
|
10
|
Huang J, Deng K, Liu Y, Xia M, Lei M, Wu M. Global research trends on innate lymphoid cells in the brain, gut and lung field: a bibliometric and visualized analysis. Front Immunol 2024; 15:1336666. [PMID: 38384457 PMCID: PMC10879818 DOI: 10.3389/fimmu.2024.1336666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 01/17/2024] [Indexed: 02/23/2024] Open
Abstract
Background ILCs play important roles in the brain, gut, and lungs. Researchers are attempting to establish a research framework on the brain-gut-lung axis using ILCs. However, no one has yet conducted a bibliometric analysis to summarize the findings. In this study, we utilized bibliometrics to analyze the emerging trends and focal areas of ILCs in the brain, intestine, and lung. We aim to provide references for future research on the brain-gut-lung axis. Methods To conduct a comprehensive bibliometric analysis on ILCs in the fields of brain, intestine, and lung, we utilized software such as HistCite, VOSviewer, and CiteSpace. Our analysis focused on various aspects, including the number of publications, countries, authors, journals, co-cited documents, and keywords. This approach allowed us to gain valuable insights into the research landscape surrounding ILCs in these specific fields. Results A total of 8411 articles or reviews on ILCs in the fields of brain, intestine, and lung were included. The number of published articles has shown a consistent upward trend since 2003. A total of 45279 authors from 99 countries have contributed to these articles. The United States has the highest number of publications (n=3044) and the most cited articles (TGCS=210776). The top three published authors in this field are David Artis, Marco Colonna and Andrew NJ McKenzie. The journal Immunity is the most authoritative choice for researchers. The main research focuses in this field include NK cell, ILC2, tumor immunity, multiple sclerosis, inflammatory bowel disease, airway inflammation, RORγT, and immunotherapy. In recent years, cancer and tumor microenvironment have emerged as hot keywords, particularly immunotherapy, PD-1 related directions, indicating a potential shift in research focus. Conclusion European and American countries have been pivotal in conducting research on ILCs, while China has produced a significant number of publications, its impact is still limited. Tumors are likely to emerge as the next focal points in this field. The connection and regulation between the brain and the lung are not yet fully understood, and further investigation is necessary to explore the role of ILCs in the brain-lung axis.
Collapse
Affiliation(s)
- Jianliang Huang
- Zhangjiajie Hospital Affiliated to Hunan Normal University, Zhangjiajie, China
| | - Kun Deng
- The Key Laboratory of Carcinogenesis of the National Health Commission, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Ying Liu
- Medical College of Jishou University, Jishou, China
| | - Mingkai Xia
- Zhangjiajie Hospital Affiliated to Hunan Normal University, Zhangjiajie, China
| | - Mingsheng Lei
- Zhangjiajie Hospital Affiliated to Hunan Normal University, Zhangjiajie, China
- Zhangjiajie College, Zhangjiajie, China
| | - Minghua Wu
- The Key Laboratory of Carcinogenesis of the National Health Commission, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| |
Collapse
|
11
|
Kulalert W, Wells AC, Link VM, Lim AI, Bouladoux N, Nagai M, Harrison OJ, Kamenyeva O, Kabat J, Enamorado M, Chiu IM, Belkaid Y. The neuroimmune CGRP-RAMP1 axis tunes cutaneous adaptive immunity to the microbiota. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.26.573358. [PMID: 38234748 PMCID: PMC10793430 DOI: 10.1101/2023.12.26.573358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
The somatosensory nervous system surveils external stimuli at barrier tissues, regulating innate immune cells under infection and inflammation. The roles of sensory neurons in controlling the adaptive immune system, and more specifically immunity to the microbiota, however, remain elusive. Here, we identified a novel mechanism for direct neuroimmune communication between commensal-specific T lymphocytes and somatosensory neurons mediated by the neuropeptide Calcitonin Gene-Related Peptide (CGRP) in the skin. Intravital imaging revealed that commensal-specific T cells are in close proximity to cutaneous nerve fibers in vivo . Correspondingly, we observed upregulation of the receptor for the neuropeptide CGRP, RAMP1, in CD8 + T lymphocytes induced by skin commensal colonization. Neuroimmune CGRP-RAMP1 signaling axis functions in commensal-specific T cells to constrain Type 17 responses and moderate the activation status of microbiota-reactive lymphocytes at homeostasis. As such, modulation of neuroimmune CGRP-RAMP1 signaling in commensal-specific T cells shapes the overall activation status of the skin epithelium, thereby impacting the outcome of responses to insults such as wounding. The ability of somatosensory neurons to control adaptive immunity to the microbiota via the CGRP-RAMP1 axis underscores the various layers of regulation and multisystem coordination required for optimal microbiota-reactive T cell functions under steady state and pathology. Significance statement Multisystem coordination at barrier surfaces is critical for optimal tissue functions and integrity, in response to microbial and environmental cues. In this study, we identified a novel neuroimmune crosstalk mechanism between the sensory nervous system and the adaptive immune response to the microbiota, mediated by the neuropeptide CGRP and its receptor RAMP1 on skin microbiota-induced T lymphocytes. The neuroimmune CGPR-RAMP1 axis constrains adaptive immunity to the microbiota and overall limits the activation status of the skin epithelium, impacting tissue responses to wounding. Our study opens the door to a new avenue to modulate adaptive immunity to the microbiota utilizing neuromodulators, allowing for a more integrative and tailored approach to harnessing microbiota-induced T cells to promote barrier tissue protection and repair.
Collapse
|
12
|
Wang P, Kljavin N, Nguyen TTT, Storm EE, Marsh B, Jiang J, Lin W, Menon H, Piskol R, de Sauvage FJ. Adrenergic nerves regulate intestinal regeneration through IL-22 signaling from type 3 innate lymphoid cells. Cell Stem Cell 2023; 30:1166-1178.e8. [PMID: 37597516 DOI: 10.1016/j.stem.2023.07.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 06/23/2023] [Accepted: 07/25/2023] [Indexed: 08/21/2023]
Abstract
The intestinal epithelium has high intrinsic turnover rate, and the precise renewal of the epithelium is dependent on the microenvironment. The intestine is innervated by a dense network of peripheral nerves that controls various aspects of intestinal physiology. However, the role of neurons in regulating epithelial cell regeneration remains largely unknown. Here, we investigated the effects of gut-innervating adrenergic nerves on epithelial cell repair following irradiation (IR)-induced injury. We observed that adrenergic nerve density in the small intestine increased post IR, while chemical adrenergic denervation impaired epithelial regeneration. Single-cell RNA sequencing experiments revealed a decrease in IL-22 signaling post IR in denervated animals. Combining pharmacologic and genetic tools, we demonstrate that β-adrenergic receptor signaling drives IL-22 production from type 3 innate lymphoid cells (ILC3s) post IR, which in turn promotes epithelial regeneration. These results define an adrenergic-ILC3 axis important for intestinal regeneration.
Collapse
Affiliation(s)
- Putianqi Wang
- Molecular Oncology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Noelyn Kljavin
- Molecular Oncology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Thi Thu Thao Nguyen
- Oncology Bioinformatics, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Elaine E Storm
- Molecular Oncology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Bryan Marsh
- Molecular Oncology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Jian Jiang
- Research Pathology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - William Lin
- Research Pathology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Hari Menon
- Microchemistry, Proteomics, Lipidomics and Next Generation Sequencing, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Robert Piskol
- Oncology Bioinformatics, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | | |
Collapse
|
13
|
Sun XH. Serotonin suppresses lung ILC2 activation and proliferation. Cell Mol Immunol 2023; 20:546-547. [PMID: 37012397 PMCID: PMC10203116 DOI: 10.1038/s41423-023-00996-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 02/24/2023] [Indexed: 04/05/2023] Open
Affiliation(s)
- Xiao-Hong Sun
- Oklahoma Medical Research Foundation, Program in Arthritis and Clinical Immunology, Oklahoma City, OK, USA.
| |
Collapse
|
14
|
Si Y, Zhang Y, Zuloaga K, Yang Q. The role of innate lymphocytes in regulating brain and cognitive function. Neurobiol Dis 2023; 179:106061. [PMID: 36870457 PMCID: PMC11194859 DOI: 10.1016/j.nbd.2023.106061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 02/26/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Mounting evidence indicates complex interaction between the immune system and the nervous system, challenging the traditional view about the immune privilege of the brain. Innate lymphoid cells (ILCs) and innate-like T cells are unique families of immune cells that functionally mirror traditional T cells but may function via antigen- and T cell antigen receptor (TCR)-independent mechanisms. Recent work indicates that various ILCs and innate-like T cell subsets are present in the brain barrier tissue, where they play important roles in regulating brain barrier integrity, brain homeostasis and cognitive function. In this review, we discuss recent advances in understanding the intricate roles for innate and innate-like lymphocytes in regulating brain and cognitive function.
Collapse
Affiliation(s)
- Youwen Si
- Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| | - Yuanyue Zhang
- Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| | - Kristen Zuloaga
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY, 12208, USA
| | - Qi Yang
- Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA; Rutgers Institute for Translational Medicine and Science, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA; Department of Pediatrics, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA.
| |
Collapse
|
15
|
Donnelly RP. Cytokines 2022: 10th Annual Meeting of the International Cytokine & Interferon Society. J Interferon Cytokine Res 2023; 43:55-58. [PMID: 36695718 DOI: 10.1089/jir.2022.29050.rad] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Affiliation(s)
- Raymond P Donnelly
- Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| |
Collapse
|
16
|
Tsou AM, Yano H, Parkhurst CN, Mahlakõiv T, Chu C, Zhang W, He Z, Jarick KJ, Zhong C, Putzel GG, Hatazaki M, Lorenz IC, Andrew D, Balderes P, Klose CSN, Lira SA, Artis D. Neuropeptide regulation of non-redundant ILC2 responses at barrier surfaces. Nature 2022; 611:787-793. [PMID: 36323781 PMCID: PMC10225046 DOI: 10.1038/s41586-022-05297-6] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 08/31/2022] [Indexed: 11/06/2022]
Abstract
Emerging studies indicate that cooperation between neurons and immune cells regulates antimicrobial immunity, inflammation and tissue homeostasis. For example, a neuronal rheostat provides excitatory or inhibitory signals that control the functions of tissue-resident group 2 innate lymphoid cells (ILC2s) at mucosal barrier surfaces1-4. ILC2s express NMUR1, a receptor for neuromedin U (NMU), which is a prominent cholinergic neuropeptide that promotes ILC2 responses5-7. However, many functions of ILC2s are shared with adaptive lymphocytes, including the production of type 2 cytokines8,9 and the release of tissue-protective amphiregulin (AREG)10-12. Consequently, there is controversy regarding whether innate lymphoid cells and adaptive lymphocytes perform redundant or non-redundant functions13-15. Here we generate a new genetic tool to target ILC2s for depletion or gene deletion in the presence of an intact adaptive immune system. Transgenic expression of iCre recombinase under the control of the mouse Nmur1 promoter enabled ILC2-specific deletion of AREG. This revealed that ILC2-derived AREG promotes non-redundant functions in the context of antiparasite immunity and tissue protection following intestinal damage and inflammation. Notably, NMU expression levels increased in inflamed intestinal tissues from both mice and humans, and NMU induced AREG production in mouse and human ILC2s. These results indicate that neuropeptide-mediated regulation of non-redundant functions of ILC2s is an evolutionarily conserved mechanism that integrates immunity and tissue protection.
Collapse
Affiliation(s)
- Amy M Tsou
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, New York, NY, USA
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Weill Cornell Medical College, New York, NY, USA
| | - Hiroshi Yano
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, New York, NY, USA
- Joan and Sanford I. Weill Department of Medicine, Division of Gastroenterology and Hepatology, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Christopher N Parkhurst
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, New York, NY, USA
- Joan and Sanford I. Weill Department of Medicine, Division of Gastroenterology and Hepatology, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Tanel Mahlakõiv
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, New York, NY, USA
| | - Coco Chu
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, New York, NY, USA
| | - Wen Zhang
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, New York, NY, USA
- Joan and Sanford I. Weill Department of Medicine, Division of Gastroenterology and Hepatology, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Zhengxiang He
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Katja J Jarick
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Microbiology, Infectious Diseases and Immunology, Berlin, Germany
| | - Connie Zhong
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, New York, NY, USA
| | - Gregory G Putzel
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, New York, NY, USA
| | - Mai Hatazaki
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, New York, NY, USA
| | - Ivo C Lorenz
- Tri-Institutional Therapeutics Discovery Institute, New York, NY, USA
| | - David Andrew
- Tri-Institutional Therapeutics Discovery Institute, New York, NY, USA
| | - Paul Balderes
- Tri-Institutional Therapeutics Discovery Institute, New York, NY, USA
| | - Christoph S N Klose
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Microbiology, Infectious Diseases and Immunology, Berlin, Germany
| | - Sergio A Lira
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - David Artis
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, New York, NY, USA.
- Joan and Sanford I. Weill Department of Medicine, Division of Gastroenterology and Hepatology, Weill Cornell Medicine, Cornell University, New York, NY, USA.
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA.
- Friedman Center for Nutrition and Inflammation, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA.
| |
Collapse
|
17
|
Zhang W, Lyu M, Bessman NJ, Xie Z, Arifuzzaman M, Yano H, Parkhurst CN, Chu C, Zhou L, Putzel GG, Li TT, Jin WB, Zhou J, Hu H, Tsou AM, Guo CJ, Artis D. Gut-innervating nociceptors regulate the intestinal microbiota to promote tissue protection. Cell 2022; 185:4170-4189.e20. [PMID: 36240781 PMCID: PMC9617796 DOI: 10.1016/j.cell.2022.09.008] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/14/2022] [Accepted: 08/29/2022] [Indexed: 11/06/2022]
Abstract
Nociceptive pain is a hallmark of many chronic inflammatory conditions including inflammatory bowel diseases (IBDs); however, whether pain-sensing neurons influence intestinal inflammation remains poorly defined. Employing chemogenetic silencing, adenoviral-mediated colon-specific silencing, and pharmacological ablation of TRPV1+ nociceptors, we observed more severe inflammation and defective tissue-protective reparative processes in a murine model of intestinal damage and inflammation. Disrupted nociception led to significant alterations in the intestinal microbiota and a transmissible dysbiosis, while mono-colonization of germ-free mice with Gram+Clostridium spp. promoted intestinal tissue protection through a nociceptor-dependent pathway. Mechanistically, disruption of nociception resulted in decreased levels of substance P, and therapeutic delivery of substance P promoted tissue-protective effects exerted by TRPV1+ nociceptors in a microbiota-dependent manner. Finally, dysregulated nociceptor gene expression was observed in intestinal biopsies from IBD patients. Collectively, these findings indicate an evolutionarily conserved functional link between nociception, the intestinal microbiota, and the restoration of intestinal homeostasis.
Collapse
Affiliation(s)
- Wen Zhang
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
| | - Mengze Lyu
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
| | - Nicholas J Bessman
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
| | - Zili Xie
- Department of Anesthesiology, The Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO, USA
| | - Mohammad Arifuzzaman
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
| | - Hiroshi Yano
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
| | - Christopher N Parkhurst
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
| | - Coco Chu
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
| | - Lei Zhou
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
| | - Gregory G Putzel
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
| | - Ting-Ting Li
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
| | - Wen-Bing Jin
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
| | - Jordan Zhou
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
| | - Hongzhen Hu
- Department of Anesthesiology, The Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO, USA
| | - Amy M Tsou
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA; Friedman Center for Nutrition and Inflammation, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA; Division of Pediatric Gastroenterology, Hepatology and Nutrition, Weill Cornell Medical College, New York, NY, USA
| | - Chun-Jun Guo
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA; Friedman Center for Nutrition and Inflammation, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
| | - David Artis
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA; Friedman Center for Nutrition and Inflammation, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA.
| |
Collapse
|
18
|
Kogame T, Egawa G, Nomura T, Kabashima K. Waves of layered immunity over innate lymphoid cells. Front Immunol 2022; 13:957711. [PMID: 36268032 PMCID: PMC9578251 DOI: 10.3389/fimmu.2022.957711] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 09/13/2022] [Indexed: 11/13/2022] Open
Abstract
Innate lymphoid cells (ILCs) harbor tissue-resident properties in border zones, such as the mucosal membranes and the skin. ILCs exert a wide range of biological functions, including inflammatory response, maintenance of tissue homeostasis, and metabolism. Since its discovery, tremendous effort has been made to clarify the nature of ILCs, and scientific progress revealed that progenitor cells of ILC can produce ILC subsets that are functionally reminiscent of T-cell subsets such as Th1, Th2, and Th17. Thus, now it comes to the notion that ILC progenitors are considered an innate version of naïve T cells. Another important discovery was that ILC progenitors in the different tissues undergo different modes of differentiation pathways. Furthermore, during the embryonic phase, progenitor cells in different developmental chronologies give rise to the unique spectra of immune cells and cause a wave to replenish the immune cells in tissues. This observation leads to the concept of layered immunity, which explains the ontology of some cell populations, such as B-1a cells, γδ T cells, and tissue-resident macrophages. Thus, recent reports in ILC biology posed a possibility that the concept of layered immunity might disentangle the complexity of ILC heterogeneity. In this review, we compare ILC ontogeny in the bone marrow with those of embryonic tissues, such as the fetal liver and embryonic thymus, to disentangle ILC heterogeneity in light of layered immunity.
Collapse
|