1
|
Ren J, Oh SH, Na D. Untranslated region engineering strategies for gene overexpression, fine-tuning, and dynamic regulation. J Microbiol 2025; 63:e2501033. [PMID: 40195839 DOI: 10.71150/jm.2501033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Accepted: 03/10/2025] [Indexed: 04/09/2025]
Abstract
Precise and tunable gene expression is crucial for various biotechnological applications, including protein overexpression, fine-tuned metabolic pathway engineering, and dynamic gene regulation. Untranslated regions (UTRs) of mRNAs have emerged as key regulatory elements that modulate transcription and translation. In this review, we explore recent advances in UTR engineering strategies for bacterial gene expression optimization. We discuss approaches for enhancing protein expression through AU-rich elements, RG4 structures, and synthetic dual UTRs, as well as ProQC systems that improve translation fidelity. Additionally, we examine strategies for fine-tuning gene expression using UTR libraries and synthetic terminators that balance metabolic flux. Finally, we highlight riboswitches and toehold switches, which enable dynamic gene regulation in response to environmental or metabolic cues. The integration of these UTR-based regulatory tools provides a versatile and modular framework for optimizing bacterial gene expression, enhancing metabolic engineering, and advancing synthetic biology applications.
Collapse
Affiliation(s)
- Jun Ren
- Department of Biomedical Engineering, Chung-Ang University, Seoul 06974, Republic of Korea
| | - So Hee Oh
- Department of Biomedical Engineering, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Dokyun Na
- Department of Biomedical Engineering, Chung-Ang University, Seoul 06974, Republic of Korea
| |
Collapse
|
2
|
Peng JH, Lo SC, Yu YN, Yang YT, Chen YC, Tsai AI, Wu DY, Huang CH, Su TT, Huang CC, Chiang EPI. Carbon fluxes rewiring in engineered E. coli via reverse tricarboxylic acid cycle pathway under chemolithotrophic condition. J Biol Eng 2025; 19:20. [PMID: 40001153 PMCID: PMC11863533 DOI: 10.1186/s13036-025-00489-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND A transgenic strain of Escherichia coli has been engineered to directly assimilate gaseous CO2 into its biomass through hydrogen-powered anaerobic respiration. This was achieved by expressing key components of the reverse tricarboxylic acid (rTCA) cycle, including genes encoding α-ketoglutarate: ferredoxin oxidoreductase (KOR) and ATP-dependent citrate lyase (ACL) from Chlorobium tepidum. These enzymes were selected for their essential roles in enabling CO2 fixation and integration into central metabolism. RESULTS This study found that KOR alone can support cellular maintenance under chemolithotrophic conditions, while additional expression of ACL enhances CO2 assimilation. Using isotopic 13CO2 tracing, it was demonstrated that KOR alone facilitates CO2 assimilation into TCA metabolites. However, co-expression of ACL with KOR redirected carbon fluxes from TCA cycle toward essential metabolic pathways, particularly those involved in protein and nucleotide biosynthesis. Compared to KOR alone, ACL co-expression significantly increased isotopic enrichments in amino acids (e.g., methionine, threonine, glycine) and nucleotides (e.g., deoxythymidine, deoxycytidine). These results suggest that ACL supports the synthesis of nitrogen-containing metabolites when inorganic nitrogen is sufficient, while KOR alone sustains core metabolic functions under chemolithotrophic conditions. CONCLUSIONS This study demonstrates a novel strategy to engineer E. coli for CO2 fixation using only one or two heterologous enzymes under chemolithotrophic conditions. These findings reveal the minimal genetic and nutritional requirements for CO2 assimilation and provide insights into metabolic flux partitioning in engineered strains. This research paves the way for sustainable applications in carbon fixation and biotechnological innovation.
Collapse
Affiliation(s)
- Jian-Hau Peng
- Doctoral Program in Microbial Genomics, National Chung Hsing University and Academia Sinica, Taichung City and Taipei City, 402 and 115, Taiwan
- Advanced Plant and Food Crop Biotechnology Center, National Chung Hsing University, Taichung City, 402, Taiwan
- Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, Taichung City, 402, Taiwan
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung City, 402, Taiwan
| | - Shou-Chen Lo
- Department of Life Sciences, National Chung Hsing University, Taichung City, 402, Taiwan
| | - Yu-Ning Yu
- Department of Life Sciences, National Chung Hsing University, Taichung City, 402, Taiwan
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung City, 402, Taiwan
| | - Ya-Tang Yang
- Department of Electrical Engineering, National Tsing Hua University, Hsinchu City, 30013, Taiwan
| | - Yu-Chieh Chen
- Department of Life Sciences, National Chung Hsing University, Taichung City, 402, Taiwan
| | - An-I Tsai
- Department of Life Sciences, National Chung Hsing University, Taichung City, 402, Taiwan
| | - Dong-Yan Wu
- Department of Life Sciences, National Chung Hsing University, Taichung City, 402, Taiwan
| | - Chu-Han Huang
- Department of Life Sciences, National Chung Hsing University, Taichung City, 402, Taiwan
| | - Tien-Tsai Su
- Department of Life Sciences, National Chung Hsing University, Taichung City, 402, Taiwan
| | - Chieh-Chen Huang
- Doctoral Program in Microbial Genomics, National Chung Hsing University and Academia Sinica, Taichung City and Taipei City, 402 and 115, Taiwan.
- Department of Life Sciences, National Chung Hsing University, Taichung City, 402, Taiwan.
- Advanced Plant and Food Crop Biotechnology Center, National Chung Hsing University, Taichung City, 402, Taiwan.
- Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, Taichung City, 402, Taiwan.
| | - En-Pei Isabel Chiang
- Doctoral Program in Microbial Genomics, National Chung Hsing University and Academia Sinica, Taichung City and Taipei City, 402 and 115, Taiwan.
- Advanced Plant and Food Crop Biotechnology Center, National Chung Hsing University, Taichung City, 402, Taiwan.
- Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, Taichung City, 402, Taiwan.
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung City, 402, Taiwan.
| |
Collapse
|
3
|
Wang Y, Liu J, Yi Y, Zhu L, Liu M, Zhang Z, Xie Q, Jiang L. Insights into the synthesis, engineering, and functions of microbial pigments in Deinococcus bacteria. Front Microbiol 2024; 15:1447785. [PMID: 39119139 PMCID: PMC11306087 DOI: 10.3389/fmicb.2024.1447785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 07/05/2024] [Indexed: 08/10/2024] Open
Abstract
The ability of Deinococcus bacteria to survive in harsh environments, such as high radiation, extreme temperature, and dryness, is mainly attributed to the generation of unique pigments, especially carotenoids. Although the limited number of natural pigments produced by these bacteria restricts their industrial potential, metabolic engineering and synthetic biology can significantly increase pigment yield and expand their application prospects. In this study, we review the properties, biosynthetic pathways, and functions of key enzymes and genes related to these pigments and explore strategies for improving pigment production through gene editing and optimization of culture conditions. Additionally, studies have highlighted the unique role of these pigments in antioxidant activity and radiation resistance, particularly emphasizing the critical functions of deinoxanthin in D. radiodurans. In the future, Deinococcus bacterial pigments will have broad application prospects in the food industry, drug production, and space exploration, where they can serve as radiation indicators and natural antioxidants to protect astronauts' health during long-term space flights.
Collapse
Affiliation(s)
- Yuxian Wang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Jiayu Liu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Yuanyang Yi
- Institute of Applied Microbiology, Xinjiang Academy of Agricultural Sciences/ Xinjiang Key Laboratory of Special Environmental Microbiology, Urumqi, China
- College of Life Sciences, Xinjiang Normal University, Urumqi, China
| | - Liying Zhu
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, China
| | - Minghui Liu
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, China
| | - Zhidong Zhang
- Institute of Applied Microbiology, Xinjiang Academy of Agricultural Sciences/ Xinjiang Key Laboratory of Special Environmental Microbiology, Urumqi, China
| | - Qiong Xie
- China Astronaut Research and Training Center, Beijing, China
| | - Ling Jiang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| |
Collapse
|
4
|
Chandran EM, Mohan E. Sustainable biohydrogen production from lignocellulosic biomass sources - metabolic pathways, production enhancement, and challenges. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:102129-102157. [PMID: 37684507 DOI: 10.1007/s11356-023-29617-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 08/27/2023] [Indexed: 09/10/2023]
Abstract
Hydrogen production from biological processes has been hailed as a promising strategy for generating sustainable energy. Fermentative hydrogen production processes such as dark and photofermentation are considered more sustainable and economical than other biological methods such as biophotolysis. However, these methods have constraints such as low hydrogen yield and conversion efficiency, so practical implementations still need to be made. The present review provides an assessment and feasibility of producing biohydrogen through dark and photofermentation techniques utilizing various lignocellulosic biomass wastes as substrates. Furthermore, this review includes information about the strategies to increase the productivity rate of biohydrogen in an eco-friendly and sustainable manner, like integration of dark and photofermentation techniques, pretreatment of biomass, genetic modification of microorganisms, and application of nanoadditives.
Collapse
Affiliation(s)
- Eniyan Moni Chandran
- Department of Mechanical Engineering, University College of Engineering, Nagercoil, Anna University Constituent College, Nagercoil, India
| | - Edwin Mohan
- Department of Mechanical Engineering, University College of Engineering, Nagercoil, Anna University Constituent College, Nagercoil, India.
| |
Collapse
|
5
|
Cortada-Garcia J, Daly R, Arnold SA, Burgess K. Streamlined identification of strain engineering targets for bioprocess improvement using metabolic pathway enrichment analysis. Sci Rep 2023; 13:12990. [PMID: 37563133 PMCID: PMC10415327 DOI: 10.1038/s41598-023-39661-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 07/28/2023] [Indexed: 08/12/2023] Open
Abstract
Metabolomics is a powerful tool for the identification of genetic targets for bioprocess optimisation. However, in most cases, only the biosynthetic pathway directed to product formation is analysed, limiting the identification of these targets. Some studies have used untargeted metabolomics, allowing a more unbiased approach, but data interpretation using multivariate analysis is usually not straightforward and requires time and effort. Here we show, for the first time, the application of metabolic pathway enrichment analysis using untargeted and targeted metabolomics data to identify genetic targets for bioprocess improvement in a more streamlined way. The analysis of an Escherichia coli succinate production bioprocess with this methodology revealed three significantly modulated pathways during the product formation phase: the pentose phosphate pathway, pantothenate and CoA biosynthesis and ascorbate and aldarate metabolism. From these, the two former pathways are consistent with previous efforts to improve succinate production in Escherichia coli. Furthermore, to the best of our knowledge, ascorbate and aldarate metabolism is a newly identified target that has so far never been explored for improving succinate production in this microorganism. This methodology therefore represents a powerful tool for the streamlined identification of strain engineering targets that can accelerate bioprocess optimisation.
Collapse
Affiliation(s)
- Joan Cortada-Garcia
- Institute of Quantitative Biology, Biochemistry and Biotechnology, School of Biological Sciences, University of Edinburgh, Edinburgh, EH8 9AB, UK
| | - Rónán Daly
- Institute of Infection, Immunity and Inflammation, Glasgow Polyomics, University of Glasgow, Glasgow, G61 1QH, UK
| | - S Alison Arnold
- Ingenza Ltd., Roslin Innovation Centre, Roslin, EH25 9RG, UK
| | - Karl Burgess
- Institute of Quantitative Biology, Biochemistry and Biotechnology, School of Biological Sciences, University of Edinburgh, Edinburgh, EH8 9AB, UK.
| |
Collapse
|
6
|
Li J, Lu J, Ma Z, Li J, Chen X, Diao M, Xie N. A Green Route for High-Yield Production of Tetramethylpyrazine From Non-Food Raw Materials. Front Bioeng Biotechnol 2022; 9:792023. [PMID: 35145961 PMCID: PMC8823705 DOI: 10.3389/fbioe.2021.792023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 12/06/2021] [Indexed: 11/13/2022] Open
Abstract
2,3,5,6-Tetramethylpyrazine (TMP) is an active pharmaceutical ingredient originally isolated from Ligusticum wallichii for curing cardiovascular and cerebrovascular diseases and is widely used as a popular flavoring additive in the food industry. Hence, there is a great interest in developing new strategies to produce this high-value compound in an ecological and economical way. Herein, a cost-competitive combinational approach was proposed to accomplish green and high-efficiency production of TMP. First, microbial cell factories were constructed to produce acetoin (3-hydroxy-2-butanone, AC), an endogenous precursor of TMP, by introducing a biosynthesis pathway coupled with an intracellular NAD+ regeneration system to the wild-type Escherichia coli. To further improve the production of (R)-AC, the metabolic pathways of by-products were impaired or blocked stepwise by gene manipulation, resulting in 40.84 g/L (R)-AC with a high optical purity of 99.42% in shake flasks. Thereafter, an optimal strain designated GXASR11 was used to convert the hydrolysates of inexpensive feedstocks into (R)-AC and achieved a titer of 86.04 g/L within 48 h in a 5-L fermenter under optimized fermentation conditions. To the best of our knowledge, this is the highest (R)-AC production with high optical purity (≥98%) produced from non-food raw materials using recombinant E. coli. The supernatant of fermentation broth was mixed with diammonium phosphate (DAP) to make a total volume of 20 ml and transferred to a high-pressure microreactor. Finally, 56.72 g/L TMP was obtained in 3 h via the condensation reaction with a high conversion rate (85.30%) under optimal reaction conditions. These results demonstrated a green and sustainable approach to efficiently produce high-valued TMP, which realized value addition of low-cost renewables.
Collapse
Affiliation(s)
- Jing Li
- Life Science and Technology College, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi, China
| | - Jian Lu
- Life Science and Technology College, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi, China
| | - Zhilin Ma
- Life Science and Technology College, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi, China
| | - Jianxiu Li
- State Key Laboratory of Non-food Biomass and Enzyme Technology, National Engineering Research Center for Non-food Biorefinery, Guangxi Biomass Engineering Technology Research Center, Guangxi Key Laboratory of Biorefinery, Guangxi Academy of Sciences, Nanning, Guangxi, China
| | - Xianrui Chen
- State Key Laboratory of Non-food Biomass and Enzyme Technology, National Engineering Research Center for Non-food Biorefinery, Guangxi Biomass Engineering Technology Research Center, Guangxi Key Laboratory of Biorefinery, Guangxi Academy of Sciences, Nanning, Guangxi, China
| | - Mengxue Diao
- State Key Laboratory of Non-food Biomass and Enzyme Technology, National Engineering Research Center for Non-food Biorefinery, Guangxi Biomass Engineering Technology Research Center, Guangxi Key Laboratory of Biorefinery, Guangxi Academy of Sciences, Nanning, Guangxi, China
| | - Nengzhong Xie
- State Key Laboratory of Non-food Biomass and Enzyme Technology, National Engineering Research Center for Non-food Biorefinery, Guangxi Biomass Engineering Technology Research Center, Guangxi Key Laboratory of Biorefinery, Guangxi Academy of Sciences, Nanning, Guangxi, China
| |
Collapse
|
7
|
Effects of the Quinone Oxidoreductase WrbA on Escherichia coli Biofilm Formation and Oxidative Stress. Antioxidants (Basel) 2021; 10:antiox10060919. [PMID: 34204135 PMCID: PMC8229589 DOI: 10.3390/antiox10060919] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/30/2021] [Accepted: 06/02/2021] [Indexed: 12/31/2022] Open
Abstract
The effects of natural compounds on biofilm formation have been extensively studied, with the goal of identifying biofilm formation antagonists at sub-lethal concentrations. Salicylic and cinnamic acids are some examples of these compounds that interact with the quinone oxidoreductase WrbA, a potential biofilm modulator and an antibiofilm compound biomarker. However, WrbA’s role in biofilm development is still poorly understood. To investigate the key roles of WrbA in biofilm maturation and oxidative stress, Escherichia coli wild-type and ∆wrbA mutant strains were used. Furthermore, we reported the functional validation of WrbA as a molecular target of salicylic and cinnamic acids. The lack of WrbA did not impair planktonic growth, but rather affected the biofilm formation through a mechanism that depends on reactive oxygen species (ROS). The loss of WrbA function resulted in an ROS-sensitive phenotype that showed reductions in biofilm-dwelling cells, biofilm thickness, matrix polysaccharide content, and H2O2 tolerance. Endogenous oxidative events in the mutant strain generated a stressful condition to which the bacterium responded by increasing the catalase activity to compensate for the lack of WrbA. Cinnamic and salicylic acids inhibited the quinone oxidoreductase activity of purified recombinant WrbA. The effects of these antibiofilm molecules on WrbA function was proven for the first time.
Collapse
|
8
|
Gudz KY, Permyakova ES, Matveev AT, Bondarev AV, Manakhov AM, Sidorenko DA, Filippovich SY, Brouchkov AV, Golberg DV, Ignatov SG, Shtansky DV. Pristine and Antibiotic-Loaded Nanosheets/Nanoneedles-Based Boron Nitride Films as a Promising Platform to Suppress Bacterial and Fungal Infections. ACS APPLIED MATERIALS & INTERFACES 2020; 12:42485-42498. [PMID: 32845601 DOI: 10.1021/acsami.0c10169] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In recent years, bacteria inactivation during their direct physical contact with surface nanotopography has become one of the promising strategies for fighting infection. Contact-killing ability has been reported for several nanostructured surfaces, e.g., black silicon, carbon nanotubes, zinc oxide nanorods, and copper oxide nanosheets. Herein, we demonstrate that Gram-negative antibiotic-resistant Escherichia coli (E. coli) bacteria are killed as a result of their physical destruction while contacting nanostructured h-BN surfaces. BN films, made of spherical nanoparticles formed by numerous nanosheets and nanoneedles with a thickness <15 nm, have been obtained through a reaction of ammonia with amorphous boron. The contact-killing bactericidal effect of BN nanostructures has been compared with a toxic effect of gentamicin released from them. For a wider protection against bacterial and fungal infection, the films have been saturated with a mixture of gentamicin and amphotericin B. Such BN films demonstrate a high antibiotic/antimycotic agent loading capacity and a fast initial and sustained release of therapeutic agents for 170-260 h depending on the loaded dose. The pristine BN films possess high antibacterial activity against E. coli K-261 strain at their initial concentration of 104 cells/mL, attaining >99% inactivation of colony forming units after 24 h, same as gentamicin-loaded (150 μg/cm2) BN sample. The BN films loaded with a mixture of gentamicin (150 and 300 μg/cm2) and amphotericin B (100 μg/cm2) effectively inhibit the growth of E. coli K-261 and Neurospora crassa strains. During immersion in the normal saline solution, the BN film generates reactive oxygen species (ROS), which can lead to accelerated oxidative stress at the site of physical cell damage. The obtained results are valuable for further development of nanostructured surfaces having contact killing, ROS, and biocide release abilities.
Collapse
Affiliation(s)
- Kristina Y Gudz
- National University of Science and Technology "MISIS", Leninsky prospect 4, Moscow 119049, Russia
| | - Elizaveta S Permyakova
- National University of Science and Technology "MISIS", Leninsky prospect 4, Moscow 119049, Russia
| | - Andrei T Matveev
- National University of Science and Technology "MISIS", Leninsky prospect 4, Moscow 119049, Russia
| | - Andrey V Bondarev
- Department of Control Engineering, Faculty of Electrical Engineering, Czech Technical University in Prague, Technicka 2, Prague 6 16627, Czech Republic
| | - Anton M Manakhov
- National University of Science and Technology "MISIS", Leninsky prospect 4, Moscow 119049, Russia
| | - Daria A Sidorenko
- National University of Science and Technology "MISIS", Leninsky prospect 4, Moscow 119049, Russia
| | - Svetlana Y Filippovich
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky prospect 33, bld. 2, Moscow 119071, Russia
| | - Anatoli V Brouchkov
- Lomonosov Moscow State University, GSP1, Leninskie Gory, Moscow 119991 Russia
| | - Dmitri V Golberg
- Centre for Materials Science and School of Chemistry and Physics, Queensland University of Technology (QUT), Second George St., Brisbane, QLD 4000, Australia
- International Centre for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), Namiki 1-1, Tsukuba, Ibaraki 3050044, Japan
| | - Sergei G Ignatov
- State Research Center for Applied Microbiology and Biotechnology, Obolensk, Moscow Region 142279, Russia
| | - Dmitry V Shtansky
- National University of Science and Technology "MISIS", Leninsky prospect 4, Moscow 119049, Russia
| |
Collapse
|
9
|
Roeva O, Zoteva D, Castillo O. Joint set-up of parameters in genetic algorithms and the artificial bee colony algorithm: an approach for cultivation process modelling. Soft comput 2020. [DOI: 10.1007/s00500-020-05272-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
10
|
Liang L, Liu R, Freed EF, Eckert CA. Synthetic Biology and Metabolic Engineering Employing Escherichia coli for C2-C6 Bioalcohol Production. Front Bioeng Biotechnol 2020; 8:710. [PMID: 32719784 PMCID: PMC7347752 DOI: 10.3389/fbioe.2020.00710] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 06/08/2020] [Indexed: 12/18/2022] Open
Abstract
Biofuel production from renewable and sustainable resources is playing an increasingly important role within the fuel industry. Among biofuels, bioethanol has been most widely used as an additive for gasoline. Higher alcohols can be blended at a higher volume compared to ethanol and generate lower greenhouse gas (GHG) emissions without a need to change current fuel infrastructures. Thus, these fuels have the potential to replace fossil fuels in support of more environmentally friendly processes. This review summarizes the efforts to enhance bioalcohol production in engineered Escherichia coli over the last 5 years and analyzes the current challenges for increasing productivities for industrial applications.
Collapse
Affiliation(s)
- Liya Liang
- Renewable and Sustainable Energy Institute, University of Colorado Boulder, Boulder, CO, United States
| | - Rongming Liu
- Renewable and Sustainable Energy Institute, University of Colorado Boulder, Boulder, CO, United States
| | - Emily F. Freed
- Renewable and Sustainable Energy Institute, University of Colorado Boulder, Boulder, CO, United States
| | - Carrie A. Eckert
- Renewable and Sustainable Energy Institute, University of Colorado Boulder, Boulder, CO, United States
- National Renewable Energy Laboratory, Golden, CO, United States
| |
Collapse
|