1
|
Kim W, Yiu CCY, Wang Y, Zhou W, Selomulya C. Toward Diverse Plant Proteins for Food Innovation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2408150. [PMID: 39119828 DOI: 10.1002/advs.202408150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Indexed: 08/10/2024]
Abstract
This review highlights the development of plant proteins from a wide variety of sources, as most of the research and development efforts to date have been limited to a few sources including soy, chickpea, wheat, and pea. The native structure of plant proteins during production and their impact on food colloids including emulsions, foams, and gels are considered in relation to their fundamental properties, while highlighting the recent developments in the production and processing technologies with regard to their impacts on the molecular properties and aggregation of the proteins. The ability to quantify structural, morphological, and rheological properties can provide a better understanding of the roles of plant proteins in food systems. The applications of plant proteins as dairy and meat alternatives are discussed from the perspective of food structure formation. Future directions on the processing of plant proteins and potential applications are outlined to encourage the generation of more diverse plant-based products.
Collapse
Affiliation(s)
- Woojeong Kim
- School of Chemical Engineering, UNSW, Sydney, NSW, 2052, Australia
| | | | - Yong Wang
- School of Chemical Engineering, UNSW, Sydney, NSW, 2052, Australia
| | - Weibiao Zhou
- Department of Food Science and Technology, National University of Singapore, Singapore, 117542, Singapore
| | | |
Collapse
|
2
|
Xi Y, Yu M, Cao R, Li X, Zeng X, Li J. Decoding the interaction mechanism between bis(2-methyl-3-furyl) disulfide and oral mucin. Food Chem 2024; 436:137762. [PMID: 37866101 DOI: 10.1016/j.foodchem.2023.137762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 10/08/2023] [Accepted: 10/13/2023] [Indexed: 10/24/2023]
Abstract
The interactions between mucin and aroma compounds have been shown to affect aroma perception. This study aimed to investigate the binding behavior between mucin and bis(2-methyl-3-furyl) disulfide and reveal the interaction mechanism at different pH levels. Based on our results, the binding percentages between mucin and bis(2-methyl-3-furyl) disulfide ranged from 37.03 % to 71.87 % at different contents. The complexes formation between mucin and bis(2-methyl-3-furyl) disulfide was confirmed by turbidity, particle size, zeta-potential, and surface hydrophobicity analyses. According to the results of multispectral techniques and molecular dynamic simulation, mucin could interact with bis(2-methyl-3-furyl) disulfide by hydrogen bonding, hydrophobic interactions, and van der Waals force. Furthermore, the binding constants of mucin to bis(2-methyl-3-furyl) disulfide were 1.26 × 103, 1.14 × 103, and 9.13 × 103 L mol-1 at pH 5.0, 7.0, and 8.5, respectively. These findings contribute to the comprehensive knowledge on the interaction mechanism between bis(2-methyl-3-furyl) disulfide and mucin, providing insights for flavor modulation in meat products.
Collapse
Affiliation(s)
- Yu Xi
- Key Laboratory of Green and Low-carbon Processing Technology for Plant-based Food of China National Light Industry Council, and Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, NO. 33 Fucheng Road, Beijing 100048, China
| | - Meihong Yu
- Key Laboratory of Green and Low-carbon Processing Technology for Plant-based Food of China National Light Industry Council, and Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, NO. 33 Fucheng Road, Beijing 100048, China
| | - Rui Cao
- Key Laboratory of Green and Low-carbon Processing Technology for Plant-based Food of China National Light Industry Council, and Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, NO. 33 Fucheng Road, Beijing 100048, China
| | - Xuejie Li
- Key Laboratory of Green and Low-carbon Processing Technology for Plant-based Food of China National Light Industry Council, and Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, NO. 33 Fucheng Road, Beijing 100048, China
| | - Xiangquan Zeng
- Key Laboratory of Green and Low-carbon Processing Technology for Plant-based Food of China National Light Industry Council, and Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, NO. 33 Fucheng Road, Beijing 100048, China
| | - Jian Li
- Key Laboratory of Green and Low-carbon Processing Technology for Plant-based Food of China National Light Industry Council, and Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, NO. 33 Fucheng Road, Beijing 100048, China.
| |
Collapse
|
3
|
Doshi N, Guo W, Chen F, Venema P, Shum HC, de Vries R, Li X. Simple and complex coacervation in systems involving plant proteins. SOFT MATTER 2024; 20:1966-1977. [PMID: 38334990 DOI: 10.1039/d3sm01275a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Plant-based foods are gaining popularity as alternatives to meat and dairy products due to sustainability and health concerns. As a consequence, there is a renewed interest in the phase behaviour of plant proteins and of mixtures of plant proteins and polysaccharides, in particular in the cases where coacervation is found to occur, i.e., liquid-liquid phase separation (LLPS) into two phases, one of which is rich in biopolymers and one of which is poor in biopolymer. Here we review recent research into both simple and complex coacervation in systems involving plant proteins, and their applications in food- as well as other technologies, such as microencapsulation, microgel production, adhesives, biopolymer films, and more.
Collapse
Affiliation(s)
- Nirzar Doshi
- Physical Chemistry and Soft Matter, Wageningen University and Research, Wageningen 6708 WE, The Netherlands.
- Laboratory of Physics and Physical Chemistry of Foods, Wageningen University, Bornse Weilanden 9, 6708, WG, Wageningen, The Netherlands
| | - Wei Guo
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, New Territories, Shatin, Hong Kong, China
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Feipeng Chen
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Paul Venema
- Laboratory of Physics and Physical Chemistry of Foods, Wageningen University, Bornse Weilanden 9, 6708, WG, Wageningen, The Netherlands
| | - Ho Cheung Shum
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, New Territories, Shatin, Hong Kong, China
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Renko de Vries
- Physical Chemistry and Soft Matter, Wageningen University and Research, Wageningen 6708 WE, The Netherlands.
| | - Xiufeng Li
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, New Territories, Shatin, Hong Kong, China
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China.
| |
Collapse
|
4
|
Yavuz-Düzgün M, Ayar EN, Şensu E, Topkaya C, Özçelik B. A comparative study on the encapsulation of black carrot extract in potato protein-pectin complexes. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2023; 60:2628-2638. [PMID: 37599846 PMCID: PMC10439065 DOI: 10.1007/s13197-023-05787-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 04/27/2023] [Accepted: 06/01/2023] [Indexed: 08/22/2023]
Abstract
This manuscript reveals the effect of the emulsification step on the black carrot extract (BCE) stabilization by potato protein isolate (PPI)-citrus pectin (CP) coacervates. The effect of core-to-wall ratio and concentration of wall material were also investigated. This was the first attempt to compare the characteristics of emulsified core particles (ECP) and non-emulsified core particles (NECP) coated with complex coacervates. Potato protein was used as an encapsulating agent by complex coacervation for the first time, and it showed excellent characteristics for the encapsulation. Non-hygroscopic particles were produced with emulsification while most of NECPs were slightly hygroscopic. The mean particle diameter of powders ranged from 65.05 to 152.47 μm which is suitable with SEM micrographs. ECPs showed lower particle size values with increased wall concentration at the constant core-to-wall ratio. Encapsulation efficiency (EE) increased, and anthocyanin retention (AR) decreased when emulsification was included. EE of NECP and ECP was between 69.26-82.84% and 85.48-90.15% while AR was between 79.08-102.16% and 53.90-83.37%, respectively. FT-IR and ζ-potential values proved the complexation between PPI and CP in ECPs as well as the interaction of PP, CP, and BCE in NECPs. DSC thermograms proved the success of the encapsulation procedure and thermo-stability of the BCE-loaded particles. Supplementary Information The online version contains supplementary material available at 10.1007/s13197-023-05787-z.
Collapse
Affiliation(s)
- Merve Yavuz-Düzgün
- Department of Gastronomy and Culinary Arts, Faculty of Applied Sciences, Altinbas University, Esentepe, Büyükdere Cd. No:147 Şişli, 34394 Istanbul, Turkey
- Chemical and Metallurgical Engineering Faculty Food Engineering Department, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey
| | - Eda Nur Ayar
- Chemical and Metallurgical Engineering Faculty Food Engineering Department, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey
| | - Eda Şensu
- Chemical and Metallurgical Engineering Faculty Food Engineering Department, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey
| | - Cansu Topkaya
- Chemical and Metallurgical Engineering Faculty Food Engineering Department, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey
| | - Beraat Özçelik
- Chemical and Metallurgical Engineering Faculty Food Engineering Department, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey
- BIOACTIVE Research & Innovation Food Manufacturing Industry Trade LTD Co, 34469 Maslak, Istanbul, Turkey
| |
Collapse
|
5
|
Liu G, Hu M, Du X, Qi B, Lu K, Zhou S, Xie F, Li Y. Study on the interaction between succinylated soy protein isolate and chitosan and its utilization in the development of oil-in-water bilayer emulsions. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107309] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
6
|
Dib T, Pan H, Chen S. Recent Advances in Pectin-based Nanoencapsulation for Enhancing the Bioavailability of Bioactive Compounds: Curcumin Oral Bioavailability. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2021.2012796] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Thamila Dib
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Zhejiang R & D Center for Food Technology and Equipment, Zhejiang University, Hangzhou, PR China
| | - Haibo Pan
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Zhejiang R & D Center for Food Technology and Equipment, Zhejiang University, Hangzhou, PR China
| | - Shiguo Chen
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Zhejiang R & D Center for Food Technology and Equipment, Zhejiang University, Hangzhou, PR China
| |
Collapse
|
7
|
Microencapsulation and controlled release of α-tocopherol by complex coacervation between pea protein and tragacanth gum: A comparative study with arabic and tara gums. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.102951] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
8
|
Tamang N, Shrestha P, Khadka B, Mondal MH, Saha B, Bhattarai A. A Review of Biopolymers' Utility as Emulsion Stabilizers. Polymers (Basel) 2021; 14:127. [PMID: 35012149 PMCID: PMC8747219 DOI: 10.3390/polym14010127] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/17/2021] [Accepted: 12/22/2021] [Indexed: 11/16/2022] Open
Abstract
Polysaccharides, polynucleotides, and polypeptides are basic natural polymers. They have various applications based on their properties. This review mostly discusses the application of natural polymers as emulsion stabilizers. Natural emulsion stabilizers are polymers of amino acid, nucleic acid, carbohydrate, etc., which are derived from microorganisms, bacteria, and other organic materials. Plant and animal proteins are basic sources of natural emulsion stabilizers. Pea protein-maltodextrin and lentil protein feature entrapment capacity up to 88%, (1-10% concentrated), zein proteins feature 74-89% entrapment efficiency, soy proteins in various concentrations increase dissolution, retention, and stability to the emulsion and whey proteins, egg proteins, and proteins from all other animals are applicable in membrane formation and encapsulation to stabilize emulsion/nanoemulsion. In pharmaceutical industries, phospholipids, phosphatidyl choline (PC), phosphatidyl ethanol-amine (PE), and phosphatidyl glycerol (PG)-based stabilizers are very effective as emulsion stabilizers. Lecithin (a combination of phospholipids) is used in the cosmetics and food industries. Various factors such as temperature, pH, droplets size, etc. destabilize the emulsion. Therefore, the emulsion stabilizers are used to stabilize, preserve and safely deliver the formulated drugs, also as a preservative in food and stabilizer in cosmetic products. Natural emulsion stabilizers offer great advantages because they are naturally degradable, ecologically effective, non-toxic, easily available in nature, non-carcinogenic, and not harmful to health.
Collapse
Affiliation(s)
- Nirmala Tamang
- Department of Chemistry, Mahendra Morang Adarsh Multiple Campus (M.M.A.M.C.), Tribhuvan University, Biratnagar 56613, Nepal;
| | - Pooja Shrestha
- Central Department of Biotechnology, Tribhuvan University, Kirtipur 44618, Nepal; (P.S.); (B.K.)
| | - Binita Khadka
- Central Department of Biotechnology, Tribhuvan University, Kirtipur 44618, Nepal; (P.S.); (B.K.)
| | | | - Bidyut Saha
- Homogeneous Catalysis Laboratory, Department of Chemistry, The University of Burdwan, Burdwan 713104, India
| | - Ajaya Bhattarai
- Department of Chemistry, Mahendra Morang Adarsh Multiple Campus (M.M.A.M.C.), Tribhuvan University, Biratnagar 56613, Nepal;
| |
Collapse
|
9
|
|
10
|
Li X, van der Gucht J, Erni P, de Vries R. Core-Shell Microcapsules from Unpurified Legume Flours. ACS APPLIED MATERIALS & INTERFACES 2021; 13:37598-37608. [PMID: 34325505 PMCID: PMC8397242 DOI: 10.1021/acsami.1c06896] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 07/20/2021] [Indexed: 06/13/2023]
Abstract
Plant-based ingredients are key building blocks for future sustainable advanced materials. Functionality is typically higher for highly purified plant-based ingredients, but this is at the expense of their sustainability value. Here, a method is introduced for creating a soft functional material, with structural elements ranging from the nanometer to the millimeter scale, directly from legume flours. Globulins from soy and pea flours are extracted in their native state at acidic pH and mixed with gum arabic, resulting in liquid-liquid phase separation into a dilute phase and a viscoelastic complex coacervate. Interfacial tensions of the coacervates, determined via AFM-based probing of capillary condensation, are found to be very low (γ = 48.5 and 32.3 μN/m for, respectively, soy and pea), thus promoting the deposition of a shell of coacervate material around oil droplets. Despite the complex nature of the starting material, the dependence of interfacial tensions on salt concentrations follows a scaling law previously shown to hold for model complex coacervates. Curing of the coacervate material into a strong and purely elastic hydrogel is shown to be possible via simple heating, both in bulk and as a shell around oil droplets, thus providing proof of principle for the fabrication of precise core-shell microcapsules directly from legume flours.
Collapse
Affiliation(s)
- Xiufeng Li
- Physical
Chemistry and Soft Matter, Wageningen University
and Research, 6708 WE Wageningen, The Netherlands
| | - Jasper van der Gucht
- Physical
Chemistry and Soft Matter, Wageningen University
and Research, 6708 WE Wageningen, The Netherlands
| | - Philipp Erni
- Corporate
Research Division, Materials Science Department, Firmenich SA, 1217 Geneva, Switzerland
| | - Renko de Vries
- Physical
Chemistry and Soft Matter, Wageningen University
and Research, 6708 WE Wageningen, The Netherlands
| |
Collapse
|
11
|
Elucidating the pH influence on pulsed electric fields-induced self-assembly of chitosan-zein-poly(vinyl alcohol)-polyethylene glycol nanostructured composites. J Colloid Interface Sci 2021; 588:531-546. [PMID: 33429349 DOI: 10.1016/j.jcis.2020.12.075] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 12/20/2020] [Accepted: 12/21/2020] [Indexed: 11/20/2022]
Abstract
HYPOTHESIS The high incompatibility of bio-based materials such as protein and polysaccharides require a series of modifications to develop stable microstructures effectively. By modifying the density and charge of surface residues, pulsed electric fields processing can improve inter/intramolecular interactions, compatibility, and microstructure of bio-based nanostructured composites. EXPERIMENT In this work, the impact of pulsed electric fields at a specific energy of 60-700 kJ/kg (electric field strength = 1.6 kV/cm) on self-assembly of zein-chitosan-poly(vinyl alcohol)-polyethylene glycol composite dispersion was investigated at pH 4.0, 5.7, and 6.8. FINDINGS Superior complex coacervated matrices were assembled at pH 4.0 and 5.7 before and after pulsed electric fields treatment at a specific energy of 390-410 kJ/kg. The compact and homogenous behaviour was attributable to pulsed electric fields-induced alteration of functional group interactions in a pH-dependent manner. Irrespective of the pH, very high electric field intensity caused excessive system perturbation leading to severe fragmentation and poor development of coacervates. The crucial insights from this study reveal that the self-assembly behaviour and integration of biopolymer-based systems possessing different local charges can be enhanced by optimising pulsed electric fields processing parameters and the properties of the colloidal systems such as the pH.
Collapse
|
12
|
Physicochemical and microstructural properties of composite edible film obtained by complex coacervation between chitosan and whey protein isolate. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106471] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
13
|
Rashidinejad A, Bahrami A, Rehman A, Rezaei A, Babazadeh A, Singh H, Jafari SM. Co-encapsulation of probiotics with prebiotics and their application in functional/synbiotic dairy products. Crit Rev Food Sci Nutr 2020; 62:2470-2494. [PMID: 33251846 DOI: 10.1080/10408398.2020.1854169] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Oral administration of live probiotics along with prebiotics has been suggested with numerous beneficial effects for several conditions including certain infectious disorders, diarrheal illnesses, some inflammatory bowel diseases, and most recently, irritable bowel syndrome. Though, delivery of such viable bacteria to the host intestine is a major challenge, due to the poor survival of the ingested probiotic bacteria during the gastric transit, especially within the stomach where the pH is highly acidic. Although microencapsulation has been known as a promising approach for improving the viability of probiotics in the human digestive tract, the success rate is not satisfactory. For this reason, co-encapsulation of probiotics with probiotics has been practised as a novel alternative approach for further improvement of the oral delivery of viable probiotics toward their targeted release in the host intestine. This paper discusses the co-encapsulation technologies used for delivery of probiotics toward better stability and viability, as well the incorporation of co-encapsulated probiotics and prebiotics in functional/synbiotic dairy foods. The common encapsulation technologies (and the materials) used for this purpose, the stability and survival of co-encapsulated probiotics in the food, and the release behavior of the co-encapsulated probiotics in the gastrointestinal tract have also been explained. Most studies reported a significant improvement particularly in the viability of bacteria associated with the presence of prebiotics. Nevertheless, the previous research has mostly been carried out in the simulated digestion, meaning that future systematic research is to be carried out to investigate the efficacy of the co-encapsulation on the survival of the bacteria in the gut in vivo.
Collapse
Affiliation(s)
- Ali Rashidinejad
- Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Akbar Bahrami
- Program of Applied Science and Technology, Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University, North Carolina Research Campus, Kannapolis, North Carolina, USA
| | - Abdur Rehman
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Jiangsu, People's Republic of China
| | - Atefe Rezaei
- Department of Food Science and Technology, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran.,Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Afshin Babazadeh
- Center for Motor Neuron Disease Research, Faculty of medicine, health and human sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Harjinder Singh
- Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Seid Mahdi Jafari
- Department of Food Materials & Process Design Engendering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| |
Collapse
|
14
|
Jo YJ, van der Schaaf US. Fabrication and characterization of double (W 1/O/W 2) emulsions loaded with bioactive peptide/polysaccharide complexes in the internal water (W 1) phase for controllable release of bioactive peptide. Food Chem 2020; 344:128619. [PMID: 33234434 DOI: 10.1016/j.foodchem.2020.128619] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 09/13/2020] [Accepted: 11/08/2020] [Indexed: 01/11/2023]
Abstract
The objective of this study was to develop food-grade double emulsions containing bioactive peptide (BP)/polysaccharide (P) complexes and to investigate their thermal stability (e.g., BP release) at different temperatures. The BP/P complexes were formed via electrostatic interactions, and successfully encapsulated into the internal water phase of double emulsions with different oil phases. All emulsions clearly showed temperature dependence during storage. BP/P complex-loaded double emulsions showed higher thermal stability and lower release of encapsulated BP (45 °C: < 1%, 65 °C: < 30%) over time, which effectively prevented BP release within the emulsion system. For the effect of the oil phase, the BP released from double emulsions was in the order of MCT > coconut > canola oil. Thus, we concluded that BP release can be controlled in double emulsions by differently charged polysaccharides and oil types and that BP/P-loaded double emulsions can be utilized as functional ingredients for developing heat-sensitive food products.
Collapse
Affiliation(s)
- Yeon-Ji Jo
- Department of Agriculture Food and Nutritional Science, University of Alberta, T6G 2P5 Alberta, Canada; Animal Resources Research Center, Konkuk University, 05029 Seoul, Republic of Korea.
| | - Ulrike Sabine van der Schaaf
- Institute of Process Engineering in Life Science, Chair for Food Process Engineering, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| |
Collapse
|
15
|
Wang Y, Pillai PK, Nickerson MT. Effect of molecular mass and degree of substitution of carboxymethyl cellulose on the formation electrostatic complexes with lentil protein isolate. Food Res Int 2019; 126:108652. [DOI: 10.1016/j.foodres.2019.108652] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 08/12/2019] [Accepted: 08/31/2019] [Indexed: 11/26/2022]
|
16
|
Effect of pH on the formation of electrostatic complexes between lentil protein isolate and a range of anionic polysaccharides, and their resulting emulsifying properties. Food Chem 2019; 298:125023. [DOI: 10.1016/j.foodchem.2019.125023] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 06/11/2019] [Accepted: 06/15/2019] [Indexed: 11/19/2022]
|
17
|
Paula DDA, Martins EMF, Costa NDA, de Oliveira PM, de Oliveira EB, Ramos AM. Use of gelatin and gum arabic for microencapsulation of probiotic cells from Lactobacillus plantarum by a dual process combining double emulsification followed by complex coacervation. Int J Biol Macromol 2019; 133:722-731. [PMID: 31002903 DOI: 10.1016/j.ijbiomac.2019.04.110] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 03/22/2019] [Accepted: 04/15/2019] [Indexed: 02/07/2023]
Abstract
The objectives of this study were i) to microencapsulate probiotic cells of Lactobacillus plantarum through a dual process consisting of emulsification followed by complex coacervation using gelatin and gum arabic, ii) to characterize the lyophilized microcapsules, iii) to evaluate their behavior in simulated in vitro gastrointestinal conditions and iv) to evaluate the survival of microencapsulated probiotic cells during 45 days of storage at 8 °C, 25 °C and -18 °C. The optimized conditions for complex coacervation consisted of a 50:50 biopolymer ratio and pH = 4.0. Emulsification was followed by complex coacervation using gelatin and gum arabic. The microcapsules presented dispersibility of 0.183 ± 0.17 g·mL-1, moisture content of 4.5%, water activity of 0.34 ± 0.03 and hygroscopicity of 9.20 ± 0.43 g of absorbed water per 100 g. Their size ranged from 66.07 ± 3.04 μm to 105.66 ± 3.24 μm. Viability of the encapsulated L. plantarum cells was 8.6 log CFU·g-1 and the encapsulation efficiency was 97.78%. After in vitro simulation of gastrointestinal conditions, viability of the encapsulated cells was 80.4% whereas it was only 25.0% for the free cells at 37 °C. Probiotic cell viability was maintained during storage at 8 °C and - 18 °C for 45 days.
Collapse
Affiliation(s)
- Daniele de Almeida Paula
- Food Technology Department, Federal University of Viçosa (UFV), P.H. Rolfs Avenue, Campus, 36570-900 Viçosa, MG, Brazil.
| | - Eliane Maurício Furtado Martins
- Federal Institute of Education, Science and Technology of Southeast of Minas Gerais, Food Science and Technology Department, Av. Dr. José Sebastião da Paixão - Lindo Vale, 36180-000 Rio Pomba, Minas Gerais, Brazil
| | - Nataly de Almeida Costa
- Food Technology Department, Federal University of Viçosa (UFV), P.H. Rolfs Avenue, Campus, 36570-900 Viçosa, MG, Brazil
| | - Patrícia Martins de Oliveira
- Food Technology Department, Federal University of Viçosa (UFV), P.H. Rolfs Avenue, Campus, 36570-900 Viçosa, MG, Brazil
| | - Eduardo Basílio de Oliveira
- Food Technology Department, Federal University of Viçosa (UFV), P.H. Rolfs Avenue, Campus, 36570-900 Viçosa, MG, Brazil
| | - Afonso Mota Ramos
- Food Technology Department, Federal University of Viçosa (UFV), P.H. Rolfs Avenue, Campus, 36570-900 Viçosa, MG, Brazil
| |
Collapse
|
18
|
Guo Y, Bao YH, Chai YY. Preparation of microcapsule antioxidative wall materials of pine nut oil by the Maillard reaction. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:2793-2801. [PMID: 30430591 DOI: 10.1002/jsfa.9488] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 10/17/2018] [Accepted: 11/09/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Maillard reaction products contribute to the amelioration of the biological functions or physical properties of foods and can be used to make dependable antioxidant wall materials for microcapsules of pine nut oil. The present study aimed to analyze the effects of temperature on the Maillard reaction of dry heat processes using gelatin/gum arabic (GE/GA) or gelatin/gum arabic/maltodextrin (GE/GA/MD) models and the products of the Maillard reaction as encapsulants to protect pine nut oil, as well as to evaluate the characteristics of the microcapsules. RESULTS The grafting degree of the product increased with the temperature increments during the Maillard reaction. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed that the polysaccharide covalently linked to the protein. The antioxidant capability of the Maillard products at 80 °C was the highest. The 2,2-diphenyl-1-picrylhydrazyl radical-scavenging activity, lipid peroxidation-inhibiting activity and reducing power of the GE/GA/MD model were higher than those of the GE/GA model. With in vitro digestion of Maillard products, GE/GA/MD pine nut oil microcapsules exhibited greater oil release in artificial gastric and enteric juices. Microencapsulated pine nut oil had more stable oxygen, which protected the oil, compared to unencapsulated pine nut oil. CONCLUSION Temperature affects the degree of the Maillard reaction on GE/GA and GE/GA/MD models. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yang Guo
- College of Forestry, Northeast Forestry University, Harbin, China
| | - Yi-Hong Bao
- College of Forestry, Northeast Forestry University, Harbin, China
| | - Yang-Yang Chai
- College of Forestry, Northeast Forestry University, Harbin, China
| |
Collapse
|
19
|
Stounbjerg L, Vestergaard C, Andreasen B, Ipsen R. Associative phase separation of potato protein and anionic polysaccharides. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.01.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
20
|
Complex coacervation: Principles, mechanisms and applications in microencapsulation. Int J Biol Macromol 2019; 121:1276-1286. [DOI: 10.1016/j.ijbiomac.2018.10.144] [Citation(s) in RCA: 203] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 10/19/2018] [Accepted: 10/19/2018] [Indexed: 11/17/2022]
|
21
|
Cereal biopolymers for nano- and microtechnology: A myriad of opportunities for novel (functional) food applications. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2018.10.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
22
|
Warnakulasuriya SN, Nickerson MT. Review on plant protein-polysaccharide complex coacervation, and the functionality and applicability of formed complexes. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2018; 98:5559-5571. [PMID: 29951999 DOI: 10.1002/jsfa.9228] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Revised: 04/27/2018] [Accepted: 06/24/2018] [Indexed: 06/08/2023]
Abstract
Controlling the interactions between plant proteins and polysaccharides can lead to the development of novel electrostatic complexed structures that can give unique functionality. This in turn can broaden the diversity of applications that they may be suitable for. Overwhelmingly in the literature, work and reviews relating to coacervation have involved the use of animal proteins. However, with the increasing demand for plant-based protein alternatives by industry and consumers, a greater understanding of how they interact with polysaccharides is essential to control structure, functionality and applicability. This review discusses the factors governing the nature of protein-polysaccharide interactions, their functional attributes and industrial applications, with special attention given to plant proteins. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
| | - Michael T Nickerson
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, Canada
| |
Collapse
|
23
|
|
24
|
Mancer D, Allemann E, Daoud K. Metformin hydrochloride microencapsulation by complex coacervation: Study of size distribution and encapsulation yield using response surface methodology. J Drug Deliv Sci Technol 2018. [DOI: 10.1016/j.jddst.2018.03.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
25
|
Li Y, Zhang X, Zhao Y, Ding J, Lin S. Investigation on complex coacervation between fish skin gelatin from cold-water fish and gum arabic: Phase behavior, thermodynamic, and structural properties. Food Res Int 2018; 107:596-604. [DOI: 10.1016/j.foodres.2018.02.053] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 01/30/2018] [Accepted: 02/21/2018] [Indexed: 10/17/2022]
|
26
|
Ghorbani Gorji E, Waheed A, Ludwig R, Toca-Herrera JL, Schleining G, Ghorbani Gorji S. Complex Coacervation of Milk Proteins with Sodium Alginate. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:3210-3220. [PMID: 29489360 DOI: 10.1021/acs.jafc.7b03915] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Beta-lactoglobulin (BLG) and bovine serum albumin (BSA) coacervate formation with sodium alginate (ALG) was investigated by turbidimetric analysis, zeta potential, particle size, viscosity, transmission electron microscopy (TEM) and isothermal titration calorimetric (ITC) measurements as a function of pH (1.0-7.0) and protein/alginate mixing ratio (1:1, 1.5:1, 2:1, 1:0, and 0:1 wt.). Critical pH values of phase transitions for BSA-ALG complexes (pHC, pHφ1, and pHφφ2) representing the formation of soluble and insoluble complexes of a protein-ALG mixture (2:1) at pH 4.8, 4.2, and 1.8, respectively. In the case of BLG-ALG, critical pH values (pHC, pHφ1, and pHφ2) were found to be 4.8, 4.2, and 1.6, respectively. The pHopt values, expressed by the highest optical density, were pH 2.8 for BSA-ALG and 2.4 for BLG-ALG. TEM and zeta-potential results showed that maximum coacervate formation occurred at pH 4.2 for both protein-polysaccharide solutions. The interaction between BLG-ALG and BSA-ALG was spontaneously exothermic at pH 4.2 according to ITC measurements. The findings of this study provide insights to a thorough understanding about the nature of interactions between milk proteins and ALG and formulate new applications for food, pharmaceutical, nutraceutical, and cosmetics applications.
Collapse
Affiliation(s)
- Elham Ghorbani Gorji
- Department of Food Science and Technology , University of Natural Resources and Life Sciences (BOKU) , 1180 Vienna , Austria
| | - Abdul Waheed
- Faculty of Agriculture , University of Hohenheim , 70599 Stuttgart , Germany
| | - Roland Ludwig
- Department of Food Science and Technology , University of Natural Resources and Life Sciences (BOKU) , 1180 Vienna , Austria
| | - José Luis Toca-Herrera
- Institute for Biophysics, Department of Nanobiotechnology , University of Natural Resources and Life Sciences Vienna (BOKU) , Muthgasse 11 , A-1190 Vienna , Austria
| | - Gerhard Schleining
- Department of Food Science and Technology , University of Natural Resources and Life Sciences (BOKU) , 1180 Vienna , Austria
| | - Sara Ghorbani Gorji
- The University of Queensland, School of Agriculture and Food Science , Brisbane 4072 , Queensland , Australia
| |
Collapse
|
27
|
Sharif HR, Williams PA, Sharif MK, Abbas S, Majeed H, Masamba KG, Safdar W, Zhong F. Current progress in the utilization of native and modified legume proteins as emulsifiers and encapsulants – A review. Food Hydrocoll 2018. [DOI: 10.1016/j.foodhyd.2017.01.002] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
28
|
Eratte D, Dowling K, Barrow CJ, Adhikari B. Recent advances in the microencapsulation of omega-3 oil and probiotic bacteria through complex coacervation: A review. Trends Food Sci Technol 2018. [DOI: 10.1016/j.tifs.2017.10.014] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
29
|
Antonov YA, Zhuravleva I, Volodine A, Moldenaers P, Cardinaels R. Effect of the Helix-Coil Transition in Bovine Skin Gelatin on Its Associative Phase Separation with Lysozyme. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:13530-13542. [PMID: 29131633 DOI: 10.1021/acs.langmuir.7b01477] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
It is known that the formation of electrostatic polyelectrolyte complexes can induce conformational changes in the interacting macromolecules. However, the opposite effect, namely, that of the helix-coil transition of one of the interacting polyelectrolytes on its associative phase separation with another polyelectrolyte and the possible phase transitions in such systems, has not been determined. Atomic force and confocal laser scanning microscopy, phase analysis, dynamic and electrophoretic light scattering, turbidimetry, absorption, and fluorescence measurements as well as differential scanning calorimetry and rheology were used to study the effect of the helix-coil transition in bovine skin gelatin (Gel) on its associative phase separation with hen egg white lysozyme (Lys) at different temperatures (18-40 °C) and various Lys/Gel weight ratios (0.01-100) at low ionic strength (0.01) and pH 7.0. The effects of the main variables on the phase state, the phase diagram, and the main complexation and binding parameters as well as the temperature and enthalpy of the helix-coil transition of Gel within the complexes were investigated. Associative phase separation is observed only for the system with Gel in the helix state. Effective charge and structure and the solution and rheological behavior of the formed complexes proved to be dependent on the [An-]/[Cat+] charge ratio. The localization of Lys within the complex particles has irregular character without the formation of a single center of binding. The binding of Lys with Gel does not lead to the disruption of its tertiary structure or to an appreciable change in the thermodynamic parameters of the thermal transitions of Lys. Gel in the coil state interacts only weakly with Lys, forming water-soluble complex associates. It is suggested that the Voorn-Overbeek model could potentially describe the stronger binding and phase separation in the case of Gel in the helix state.
Collapse
Affiliation(s)
- Yurij A Antonov
- N. M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences , Kosygin Str. 4., 119334 Moscow, Russia
| | - Irina Zhuravleva
- N. M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences , Kosygin Str. 4., 119334 Moscow, Russia
| | - Alexander Volodine
- Department of Physics and Astronomy, Laboratory of Solid State Physics and Magnetism, KU Leuven , Celestijnenlaan 200D, Box 2414, B-3001 Leuven, Belgium
| | - Paula Moldenaers
- Soft Matter Rheology and Technology, Department of Chemical Engineering, KU Leuven , Celestijnenlaan 200f, Box 2424, B-3001 Leuven, Belgium
| | - Ruth Cardinaels
- Soft Matter Rheology and Technology, Department of Chemical Engineering, KU Leuven , Celestijnenlaan 200f, Box 2424, B-3001 Leuven, Belgium
- Polymer Technology, Department of Mechanical Engineering, TU Eindhoven , Box 513, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
30
|
Carvalho da Silva L, Alves do Nascimento M, Guabiraba Mendes L, Ferro Furtado R, Correia da Costa JM, Luiz Herzog Cardoso A. Optimization of cashew gum and chitosan for microencapsulation of pequi oil by complex coacervation. J FOOD PROCESS PRES 2017. [DOI: 10.1111/jfpp.13538] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
31
|
Advances in microencapsulation of polyunsaturated fatty acids (PUFAs)-rich plant oils using complex coacervation: A review. Food Hydrocoll 2017. [DOI: 10.1016/j.foodhyd.2017.03.007] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
32
|
Soukoulis C, Bohn T. A comprehensive overview on the micro- and nano-technological encapsulation advances for enhancing the chemical stability and bioavailability of carotenoids. Crit Rev Food Sci Nutr 2017; 58:1-36. [DOI: 10.1080/10408398.2014.971353] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Christos Soukoulis
- Environmental Research and Innovation Department, Luxembourg Institute of Science and Technology, Belvaux, Luxembourg
| | - Torsten Bohn
- Environmental Research and Innovation Department, Luxembourg Institute of Science and Technology, Belvaux, Luxembourg
- Department of Population Health, Luxembourg Institute of Health, Strassen, Luxembourg
| |
Collapse
|
33
|
Raksa A, Sawaddee P, Raksa P, Aldred AK. Microencapsulation, chemical characterization, and antibacterial activity of Citrus hystrix DC (Kaffir Lime) peel essential oil. MONATSHEFTE FUR CHEMIE 2017. [DOI: 10.1007/s00706-017-2015-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
34
|
Calderón-Oliver M, Pedroza-Islas R, Escalona-Buendía HB, Pedraza-Chaverri J, Ponce-Alquicira E. Comparative study of the microencapsulation by complex coacervation of nisin in combination with an avocado antioxidant extract. Food Hydrocoll 2017. [DOI: 10.1016/j.foodhyd.2016.07.028] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
35
|
Microencapsulation using biopolymers as an alternative to produce food enhanced with phytosterols and omega-3 fatty acids: A review. Food Hydrocoll 2016. [DOI: 10.1016/j.foodhyd.2016.06.003] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
36
|
Chang PG, Gupta R, Timilsena YP, Adhikari B. Optimisation of the complex coacervation between canola protein isolate and chitosan. J FOOD ENG 2016. [DOI: 10.1016/j.jfoodeng.2016.07.008] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
37
|
Razzak MA, Kim M, Chung D. Elucidation of aqueous interactions between fish gelatin and sodium alginate. Carbohydr Polym 2016; 148:181-8. [DOI: 10.1016/j.carbpol.2016.04.035] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 04/03/2016] [Accepted: 04/08/2016] [Indexed: 11/27/2022]
|
38
|
Kaushik P, Dowling K, McKnight S, Barrow C, Adhikari B. Microencapsulation of flaxseed oil in flaxseed protein and flaxseed gum complex coacervates. Food Res Int 2016. [DOI: 10.1016/j.foodres.2016.05.015] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
39
|
Cho H, Jung H, Lee H, Kwak HK, Hwang KT. Formation of electrostatic complexes using sodium caseinate with high-methoxyl pectin and carboxymethyl cellulose and their application in stabilisation of curcumin. Int J Food Sci Technol 2016. [DOI: 10.1111/ijfs.13137] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Hyunnho Cho
- Department of Food and Nutrition, and Research Institute of Human Ecology; Seoul National University; Seoul 08826 Korea
| | - Hana Jung
- Department of Food and Nutrition, and Research Institute of Human Ecology; Seoul National University; Seoul 08826 Korea
- Department of Home Economics; Korea National Open University; Seoul 03087 Korea
| | - HeeJae Lee
- Department of Food and Nutrition, and Research Institute of Human Ecology; Seoul National University; Seoul 08826 Korea
| | - Ho-Kyung Kwak
- Department of Home Economics; Korea National Open University; Seoul 03087 Korea
| | - Keum Taek Hwang
- Department of Food and Nutrition, and Research Institute of Human Ecology; Seoul National University; Seoul 08826 Korea
| |
Collapse
|
40
|
Ye Q, Biviano M, Mettu S, Zhou M, Dagastine R, Ashokkumar M. Modification of pea protein isolate for ultrasonic encapsulation of functional liquids. RSC Adv 2016. [DOI: 10.1039/c6ra17585f] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
This study reports on the ultrasonic processing of pea protein isolate (PPI) in phosphate-buffered saline (PBS, pH 7.4) and Tris/HCl (pH 8) buffer systems in order to modify its properties for use in the encapsulation of functional liquids.
Collapse
Affiliation(s)
- Qianyu Ye
- School of Chemistry
- The University of Melbourne
- Melbourne
- Australia
| | - Matthew Biviano
- Department of Chemical and Biomolecular Engineering
- The University of Melbourne
- Melbourne
- Australia
| | - Srinivas Mettu
- Department of Chemical and Biomolecular Engineering
- The University of Melbourne
- Melbourne
- Australia
| | - Meifang Zhou
- School of Chemistry
- The University of Melbourne
- Melbourne
- Australia
| | - Raymond Dagastine
- Department of Chemical and Biomolecular Engineering
- The University of Melbourne
- Melbourne
- Australia
| | | |
Collapse
|
41
|
|
42
|
Microencapsulation of omega-3 fatty acids: A review of microencapsulation and characterization methods. J Funct Foods 2015. [DOI: 10.1016/j.jff.2014.06.029] [Citation(s) in RCA: 155] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
|
43
|
Bakry AM, Abbas S, Ali B, Majeed H, Abouelwafa MY, Mousa A, Liang L. Microencapsulation of Oils: A Comprehensive Review of Benefits, Techniques, and Applications. Compr Rev Food Sci Food Saf 2015; 15:143-182. [DOI: 10.1111/1541-4337.12179] [Citation(s) in RCA: 423] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 09/15/2015] [Accepted: 09/17/2015] [Indexed: 12/12/2022]
Affiliation(s)
- Amr M. Bakry
- the State Key Laboratory of Food Science and Technology, School of Food Science and Technology; Jiangnan Univ; Wuxi Jiangsu 214122 PR China
- the Dept. of Dairy Science, Faculty of Agriculture; Suez Canal Univ; Ismailia 41522 Egypt
| | - Shabbar Abbas
- the State Key Laboratory of Food Science and Technology, School of Food Science and Technology; Jiangnan Univ; Wuxi Jiangsu 214122 PR China
- the Dept. of Biosciences; COMSATS Inst. of Information Technology; Park Road Islamabad 45550 Pakistan
| | - Barkat Ali
- the State Key Laboratory of Food Science and Technology, School of Food Science and Technology; Jiangnan Univ; Wuxi Jiangsu 214122 PR China
| | - Hamid Majeed
- the State Key Laboratory of Food Science and Technology, School of Food Science and Technology; Jiangnan Univ; Wuxi Jiangsu 214122 PR China
| | - Mohamed Y. Abouelwafa
- the State Key Laboratory of Food Science and Technology, School of Food Science and Technology; Jiangnan Univ; Wuxi Jiangsu 214122 PR China
- the Dept. of Dairy Science, Faculty of Agriculture; Suez Canal Univ; Ismailia 41522 Egypt
| | - Ahmed Mousa
- the State Key Laboratory of Food Science and Technology, School of Food Science and Technology; Jiangnan Univ; Wuxi Jiangsu 214122 PR China
- the Dept. of Dairy Science, Faculty of Environmental Agricultural Science; Suez Canal Univ; 45516 El Arish Egypt
| | - Li Liang
- the State Key Laboratory of Food Science and Technology, School of Food Science and Technology; Jiangnan Univ; Wuxi Jiangsu 214122 PR China
| |
Collapse
|
44
|
Belščak-Cvitanović A, Đorđević V, Karlović S, Pavlović V, Komes D, Ježek D, Bugarski B, Nedović V. Protein-reinforced and chitosan-pectin coated alginate microparticles for delivery of flavan-3-ol antioxidants and caffeine from green tea extract. Food Hydrocoll 2015. [DOI: 10.1016/j.foodhyd.2015.05.039] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
45
|
Eratte D, Wang B, Dowling K, Barrow CJ, Adhikari BP. Complex coacervation with whey protein isolate and gum arabic for the microencapsulation of omega-3 rich tuna oil. Food Funct 2015; 5:2743-50. [PMID: 25008146 DOI: 10.1039/c4fo00296b] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Tuna oil rich in omega-3 fatty acids was microencapsulated in whey protein isolate (WPI)-gum arabic (GA) complex coacervates, and subsequently dried using spray and freeze drying to produce solid microcapsules. The oxidative stability, oil microencapsulation efficiency, surface oil and morphology of these solid microcapsules were determined. The complex coacervation process between WPI and GA was optimised in terms of pH, and WPI-to-GA ratio, using zeta potential, turbidity, and morphology of the microcapsules. The optimum pH and WPI-to-GA ratio for complex coacervation was found to be 3.75 and 3 : 1, respectively. The spray dried solid microcapsules had better stability against oxidation, higher oil microencapsulation efficiency and lower surface oil content compared to the freeze dried microcapsules. The surface of the spray dried microcapsules did not show microscopic pores while the surface of the freeze dried microcapsules was more porous. This study suggests that solid microcapsules of omega-3 rich oils can be produced using WPI-GA complex coacervates followed by spray drying and these microcapsules can be quite stable against oxidation. These microcapsules can have many potential applications in the functional food and nutraceuticals industry.
Collapse
Affiliation(s)
- Divya Eratte
- School of Health Science, Federation University Australia, Mount Helen, VIC 3353, Australia
| | | | | | | | | |
Collapse
|
46
|
Ahmadi N, Nasirpour A, Sheikhzeinodin M, Keramat J. Microencapsulation of ubiquinone using complex coacervation for functional yoghurt. Food Sci Biotechnol 2015. [DOI: 10.1007/s10068-015-0116-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
47
|
Dong D, Qi Z, Hua Y, Chen Y, Kong X, Zhang C. Microencapsulation of flaxseed oil by soya proteins-gum arabic complex coacervation. Int J Food Sci Technol 2015. [DOI: 10.1111/ijfs.12812] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Die Dong
- State Key Laboratory of Food Science and Technology; School of Food Science and Technology; Jiangnan University; 1800 Lihu Avenue Wuxi 214122 Jiangsu Province China
| | - Zhengliang Qi
- MOE Key Laboratory of Industrial Fermentation Microbiology; College of Biotechnology; Tianjin University of Science & Technology; Tianjin 300457 China
| | - Yufei Hua
- State Key Laboratory of Food Science and Technology; School of Food Science and Technology; Jiangnan University; 1800 Lihu Avenue Wuxi 214122 Jiangsu Province China
| | - Yeming Chen
- State Key Laboratory of Food Science and Technology; School of Food Science and Technology; Jiangnan University; 1800 Lihu Avenue Wuxi 214122 Jiangsu Province China
| | - Xiangzhen Kong
- State Key Laboratory of Food Science and Technology; School of Food Science and Technology; Jiangnan University; 1800 Lihu Avenue Wuxi 214122 Jiangsu Province China
| | - Caimeng Zhang
- State Key Laboratory of Food Science and Technology; School of Food Science and Technology; Jiangnan University; 1800 Lihu Avenue Wuxi 214122 Jiangsu Province China
| |
Collapse
|
48
|
Chen J, Wang Q, Liu CM, Gong J. Issues deserve attention in encapsulating probiotics: Critical review of existing literature. Crit Rev Food Sci Nutr 2015; 57:1228-1238. [DOI: 10.1080/10408398.2014.977991] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Jun Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- Guelph Food Research Center, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada
| | - Qi Wang
- Guelph Food Research Center, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada
| | - Cheng-Mei Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Joshua Gong
- Guelph Food Research Center, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada
| |
Collapse
|
49
|
Kaushik P, Dowling K, Barrow CJ, Adhikari B. Complex coacervation between flaxseed protein isolate and flaxseed gum. Food Res Int 2015. [DOI: 10.1016/j.foodres.2015.03.046] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
50
|
Microgels formed by electrostatic complexation of gelatin and OSA starch: Potential fat or starch mimetics. Food Hydrocoll 2015. [DOI: 10.1016/j.foodhyd.2015.01.021] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|