1
|
Hanafy NA. Chitosan nanoparticles as drug carriers and gene delivery systems: Advances and challenges. FUNDAMENTALS AND BIOMEDICAL APPLICATIONS OF CHITOSAN NANOPARTICLES 2025:267-308. [DOI: 10.1016/b978-0-443-14088-4.00015-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
2
|
Lakkakula J, Srilekha GKP, Kalra P, Varshini SA, Penna S. Exploring the promising role of chitosan delivery systems in breast cancer treatment: A comprehensive review. Carbohydr Res 2024; 545:109271. [PMID: 39270442 DOI: 10.1016/j.carres.2024.109271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/03/2024] [Accepted: 09/07/2024] [Indexed: 09/15/2024]
Abstract
Breast cancer presents a significant global health challenge, driving the development of novel treatment strategies for therapeutic interventions. Nanotechnology has emerged as a promising avenue for addressing this challenge, with Chitosan (CS) nanoparticles receiving prominence due to their unique characteristics and multitude of potential applications. This review provides a comprehensive overview of the role of Chitosan nanoparticles in breast cancer therapy. The review begins by emphasizing the prevalence and importance of breast cancer as a major health issue, underscoring the necessity for effective treatments. It then delves into the application of Chitosan nanoparticles in breast cancer therapy. One key aspect discussed is their role as carriers for anticancer drugs, enabling targeted delivery and improved cellular uptake. Furthermore, the review explores modified Chitosan nanoparticles and strategies for enhancing their efficacy and specificity in breast cancer treatment. It also examines Chitosan conjugates and hybrids, which offer innovative approaches for combination therapy. Additionally, metal and magnetic Chitosan nanoparticles are discussed spanning their capacity to assist in imaging, hyperthermia, as well as targeted drug delivery. In conclusion, the review summarizes the current research landscape regarding Chitosan nanoparticles for breast cancer therapy and offers insights into future directions. Overall, the review highlights the versatility, potential benefits, and future prospects of Chitosan nanoparticles in combating breast cancer.
Collapse
Affiliation(s)
- Jaya Lakkakula
- Amity Institute of Biotechnology, Amity University, Mumbai - Pune Expressway, Bhatan Post - Somathne, Panvel, Mumbai, Maharashtra, India, 410206; Centre for Computational Biology and Translational Research, Amity Institute of Biotechnology, Amity University, Mumbai - Pune Expressway, Bhatan Post - Somathne, Panvel, Mumbai, Maharashtra, India, 410206
| | - G K P Srilekha
- Amity Institute of Biotechnology, Amity University, Mumbai - Pune Expressway, Bhatan Post - Somathne, Panvel, Mumbai, Maharashtra, India, 410206
| | - Palak Kalra
- Amity Institute of Biotechnology, Amity University, Mumbai - Pune Expressway, Bhatan Post - Somathne, Panvel, Mumbai, Maharashtra, India, 410206
| | - S A Varshini
- Ramaiah University of Applied Sciences, Bangalore, India
| | - Suprasanna Penna
- Amity Institute of Biotechnology, Amity University, Mumbai - Pune Expressway, Bhatan Post - Somathne, Panvel, Mumbai, Maharashtra, India, 410206.
| |
Collapse
|
3
|
Al-Shadidi JRMH, Al-Shammari S, Al-Mutairi D, Alkhudhair D, Thu HE, Hussain Z. Chitosan Nanoparticles for Targeted Cancer Therapy: A Review of Stimuli-Responsive, Passive, and Active Targeting Strategies. Int J Nanomedicine 2024; 19:8373-8400. [PMID: 39161363 PMCID: PMC11332424 DOI: 10.2147/ijn.s472433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 08/09/2024] [Indexed: 08/21/2024] Open
Abstract
Despite all major advancements in drug discovery and development in the pharmaceutical industry, cancer is still one of the most arduous challenges for the scientific community. The implications of nanotechnology have certainly resolved major issues related to conventional anticancer modalities; however, the undesired recognition of nanoparticles (NPs) by the mononuclear phagocyte system (MPS), their poor stability in biological fluids, premature release of payload, and low biocompatibility have restricted their clinical translation. In recent decades, chitosan (CS)-based nanodelivery systems (eg, polymeric NPs, micelles, liposomes, dendrimers, conjugates, solid lipid nanoparticles, etc.) have attained promising recognition from researchers for improving the pharmacokinetics and pharmacodynamics of chemotherapeutics. However, the specialty of this review is to mainly focus on and critically discuss the targeting potential of various CS-based NPs for treatment of different types of cancer. Based on their delivery mechanisms, we classified CS-based NPs into stimuli-responsive, passive, or active targeting nanosystems. Moreover, various functionalization strategies (eg, grafting with polyethylene glycol (PEG), hydrophobic substitution, tethering of stimuli-responsive linkers, and conjugation of targeting ligands) adapted to the architecture of CS-NPs for target-specific delivery of chemotherapeutics have also been considered. Nevertheless, CS-NPs based therapeutics hold great promise for improving therapeutic outcomes while mitigating the off-target effects of chemotherapeutics, a long-term safety profile and clinical testing in humans are warranted for their successful clinical translation.
Collapse
Affiliation(s)
- Jafar R M H Al-Shadidi
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Shahad Al-Shammari
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Danah Al-Mutairi
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Dalal Alkhudhair
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Hnin Ei Thu
- Department of Pharmacology, Faculty of Dentistry, Universiti Teknologi MARA, Sungai Buloh Campus, Selangor Branch, Selangor, Malaysia
| | - Zahid Hussain
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates
| |
Collapse
|
4
|
Dashti N, Akbari V, Varshosaz J, Soleimanbeigi M, Rostami M. Co-delivery of carboplatin and doxorubicin using ZIF-8 coated chitosan-poly(N-isopropyl acrylamide) nanoparticles through a dual pH/thermo responsive strategy to breast cancer cells. Int J Biol Macromol 2024; 269:131971. [PMID: 38705336 DOI: 10.1016/j.ijbiomac.2024.131971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/04/2024] [Accepted: 04/27/2024] [Indexed: 05/07/2024]
Abstract
A dual pH/temperature sensitive core-shell nanoformulation has been developed based on ZIF-8 coated with chitosan-poly(N-isopropyl acrylamide) (CS-PNIPAAm) for co-delivery of doxorubicin (DOX) and carboplatin (CBP) in breast cancer cells. The resulting nanoparticles (NPs) had particle sizes around 200 nm and a zeta potential of about +30 mV. The CBP and DOX loading contents in the final NPs were 11.6 % and 55.54 %, respectively. NPs showed a pH and thermoresponsive drug release profile with a sustained prolonged release under physiological conditions. The in vitro cytotoxicity experiments showed a significant synergism of CBP and DOX to induce the IC50 of 1.96 μg/mL in MCF-7 cells and 4.54 μg/mL in MDA-MB-231 cells. Also, the final NPs were safer than free DOX and CBP on normal cells. The in vitro study confirmed the higher potency of the designed NPs in combination therapy against breast cancer cells with lower side effects than free drugs.
Collapse
Affiliation(s)
- Narges Dashti
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Vajihe Akbari
- Department of Pharmaceutics, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Jaleh Varshosaz
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Monireh Soleimanbeigi
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahboubeh Rostami
- Novel Drug Delivery Systems Research Center and Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
5
|
Zhou Q, Liu Q, Wang Y, Chen J, Schmid O, Rehberg M, Yang L. Bridging Smart Nanosystems with Clinically Relevant Models and Advanced Imaging for Precision Drug Delivery. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308659. [PMID: 38282076 PMCID: PMC11005737 DOI: 10.1002/advs.202308659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Indexed: 01/30/2024]
Abstract
Intracellular delivery of nano-drug-carriers (NDC) to specific cells, diseased regions, or solid tumors has entered the era of precision medicine that requires systematic knowledge of nano-biological interactions from multidisciplinary perspectives. To this end, this review first provides an overview of membrane-disruption methods such as electroporation, sonoporation, photoporation, microfluidic delivery, and microinjection with the merits of high-throughput and enhanced efficiency for in vitro NDC delivery. The impact of NDC characteristics including particle size, shape, charge, hydrophobicity, and elasticity on cellular uptake are elaborated and several types of NDC systems aiming for hierarchical targeting and delivery in vivo are reviewed. Emerging in vitro or ex vivo human/animal-derived pathophysiological models are further explored and highly recommended for use in NDC studies since they might mimic in vivo delivery features and fill the translational gaps from animals to humans. The exploration of modern microscopy techniques for precise nanoparticle (NP) tracking at the cellular, organ, and organismal levels informs the tailored development of NDCs for in vivo application and clinical translation. Overall, the review integrates the latest insights into smart nanosystem engineering, physiological models, imaging-based validation tools, all directed towards enhancing the precise and efficient intracellular delivery of NDCs.
Collapse
Affiliation(s)
- Qiaoxia Zhou
- Institute of Lung Health and Immunity (LHI), Helmholtz MunichComprehensive Pneumology Center (CPC‐M)Member of the German Center for Lung Research (DZL)85764MunichGermany
- Department of Forensic PathologyWest China School of Preclinical and Forensic MedicineSichuan UniversityNo. 17 Third Renmin Road NorthChengdu610041China
- Burning Rock BiotechBuilding 6, Phase 2, Standard Industrial Unit, No. 7 LuoXuan 4th Road, International Biotech IslandGuangzhou510300China
| | - Qiongliang Liu
- Institute of Lung Health and Immunity (LHI), Helmholtz MunichComprehensive Pneumology Center (CPC‐M)Member of the German Center for Lung Research (DZL)85764MunichGermany
- Department of Thoracic SurgeryShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai200080China
| | - Yan Wang
- Qingdao Central HospitalUniversity of Health and Rehabilitation Sciences (Qingdao Central Medical Group)Qingdao266042China
| | - Jie Chen
- Department of Respiratory MedicineNational Key Clinical SpecialtyBranch of National Clinical Research Center for Respiratory DiseaseXiangya HospitalCentral South UniversityChangshaHunan410008China
- Center of Respiratory MedicineXiangya HospitalCentral South UniversityChangshaHunan410008China
- Clinical Research Center for Respiratory Diseases in Hunan ProvinceChangshaHunan410008China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory DiseaseChangshaHunan410008China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalChangshaHunan410008P. R. China
| | - Otmar Schmid
- Institute of Lung Health and Immunity (LHI), Helmholtz MunichComprehensive Pneumology Center (CPC‐M)Member of the German Center for Lung Research (DZL)85764MunichGermany
| | - Markus Rehberg
- Institute of Lung Health and Immunity (LHI), Helmholtz MunichComprehensive Pneumology Center (CPC‐M)Member of the German Center for Lung Research (DZL)85764MunichGermany
| | - Lin Yang
- Institute of Lung Health and Immunity (LHI), Helmholtz MunichComprehensive Pneumology Center (CPC‐M)Member of the German Center for Lung Research (DZL)85764MunichGermany
| |
Collapse
|
6
|
Kumar N, Singh S, Sharma P, Kumar B, Kumar A. Single-, Dual-, and Multi-Stimuli-Responsive Nanogels for Biomedical Applications. Gels 2024; 10:61. [PMID: 38247784 PMCID: PMC10815403 DOI: 10.3390/gels10010061] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/06/2024] [Accepted: 01/11/2024] [Indexed: 01/23/2024] Open
Abstract
In recent years, stimuli-responsive nanogels that can undergo suitable transitions under endogenous (e.g., pH, enzymes and reduction) or exogenous stimuli (e.g., temperature, light, and magnetic fields) for on-demand drug delivery, have received significant interest in biomedical fields, including drug delivery, tissue engineering, wound healing, and gene therapy due to their unique environment-sensitive properties. Furthermore, these nanogels have become very popular due to some of their special properties such as good hydrophilicity, high drug loading efficiency, flexibility, and excellent biocompatibility and biodegradability. In this article, the authors discuss current developments in the synthesis, properties, and biomedical applications of stimulus-responsive nanogels. In addition, the opportunities and challenges of nanogels for biomedical applications are also briefly predicted.
Collapse
Affiliation(s)
- Naveen Kumar
- Department of Chemistry, S.D. College Muzaffarnagar, Muzaffarnagar 251001, Uttar Pradesh, India
| | - Sauraj Singh
- College of Pharmacy, Gachon University, Incheon 13120, Republic of Korea;
| | - Piyush Sharma
- Department of Zoology, S.D. College Muzaffarnagar, Muzaffarnagar 251001, Uttar Pradesh, India;
| | - Bijender Kumar
- Creative Research Center for Nanocellulose Future Composites, Department of Mechanical Engineering, Inha University, Incheon 22212, Republic of Korea;
| | - Anuj Kumar
- School of Materials Science and Technology, Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India
| |
Collapse
|
7
|
Zaiki Y, Iskandar A, Wong TW. Functionalized chitosan for cancer nano drug delivery. Biotechnol Adv 2023; 67:108200. [PMID: 37331671 DOI: 10.1016/j.biotechadv.2023.108200] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 05/18/2023] [Accepted: 06/11/2023] [Indexed: 06/20/2023]
Abstract
Chitosan is a biotechnological derivative of chitin receiving a widespread pharmaceutical and biomedical applications. It can be used to encapsulate and deliver cancer therapeutics with inherent pH-dependent solubility to confer drug targeting at tumour microenvironment and anti-cancer activity synergizing cancer cytotoxic drug actions. To further reduce the off-target and by-stander adverse effects of drugs, a high targeted drug delivery efficiency at the lowest possible drug doses is clinically required. The chitosan has been functionalized with covalent conjugates or complexes and processed into nanoparticles to encapsulate and control drug release, to avoid premature drug clearance, to deliver drugs passively and actively to cancer site at tissue, cell or subcellular levels, and to promote cancer cell uptake of nanoparticles through membrane permeabilization at higher specificity and scale. Nanomedicine developed using functionalized chitosan translates to significant preclinical improvements. Future challenges related to nanotoxicity, manufacturability, selection precision of conjugates and complexes as a function of cancer omics and their biological responses from administration site to cancer target need critical assessments.
Collapse
Affiliation(s)
- Yazid Zaiki
- Non-Destructive Biomedical and Pharmaceutical Research Centre, Smart Manufacturing Research Institute, Universiti Teknologi MARA Selangor, 42300 Puncak Alam, Selangor, Malaysia; Particle Design Research Group, Faculty of Pharmacy, Universiti Teknologi MARA Selangor, 42300 Puncak Alam, Selangor, Malaysia
| | - Athirah Iskandar
- Non-Destructive Biomedical and Pharmaceutical Research Centre, Smart Manufacturing Research Institute, Universiti Teknologi MARA Selangor, 42300 Puncak Alam, Selangor, Malaysia; Particle Design Research Group, Faculty of Pharmacy, Universiti Teknologi MARA Selangor, 42300 Puncak Alam, Selangor, Malaysia
| | - Tin Wui Wong
- Non-Destructive Biomedical and Pharmaceutical Research Centre, Smart Manufacturing Research Institute, Universiti Teknologi MARA Selangor, 42300 Puncak Alam, Selangor, Malaysia; Particle Design Research Group, Faculty of Pharmacy, Universiti Teknologi MARA Selangor, 42300 Puncak Alam, Selangor, Malaysia; Sino-Malaysia Molecular Oncology and Traditional Chinese Medicine Delivery Joint Research Centre, Medical College, Yangzhou University, 136, Jiangyang Middle Road, Yangzhou, Jiangsu Province, China; Faculty of Pharmacy, Universiti Malaya, 50603 Kuala Lumpur, Malaysia.
| |
Collapse
|
8
|
Tian B, Hua S, Liu J. Multi-functional chitosan-based nanoparticles for drug delivery: Recent advanced insight into cancer therapy. Carbohydr Polym 2023; 315:120972. [PMID: 37230614 DOI: 10.1016/j.carbpol.2023.120972] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 04/26/2023] [Accepted: 04/29/2023] [Indexed: 05/27/2023]
Abstract
Cancer therapy continues to be a major global concern, with conventional treatments suffering from low efficacy, untargeted drug delivery, and severe side effects. Recent research in nanomedicine suggests that nanoparticles' unique physicochemical properties can be leveraged to surmount the limitations of conventional cancer treatment. Chitosan-based nanoparticles have gained significant attention due to their high drug-carrying capacity, non-toxicity, biocompatibility, and long circulation time. Chitosan is utilized in cancer therapies as a carrier to accurately deliver active ingredients to tumor sites. This review focuses on clinical studies and current market offerings of anticancer drugs. The unique nature of tumor microenvironments presents new opportunities for the development of smart drug delivery systems, and this review explores the design and preparation of chitosan-based smart nanoparticles. Further, we discuss the therapeutic efficacies of these nanoparticles based on various in vitro and in vivo findings. Finally, we present a forward-looking perspective on the challenges and prospects of chitosan-based nanoparticles in cancer therapy, intending to provide fresh ideas for advancing cancer treatment strategies.
Collapse
Affiliation(s)
- Bingren Tian
- Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, China; Key Laboratory of Ningxia Stem Cell and Regenerative Medicine, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, China.
| | - Shiyao Hua
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao
| | - Jiayue Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao.
| |
Collapse
|
9
|
Ramezanpour A, Ansari L, Rahimkhoei V, Sharifi S, Bigham A, Lighvan ZM, Rezaie J, Szafert S, Mahdavinia G, Akbari A, Jabbari E. Recent advances in carbohydrate-based paclitaxel delivery systems. Polym Bull (Berl) 2023. [DOI: 10.1007/s00289-023-04759-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
10
|
Conjugation of folic acid with poly (NVCL-co-PEGMA)-grafted chitosan as a new doxorubicin delivery system. Int J Biol Macromol 2023; 236:123933. [PMID: 36907294 DOI: 10.1016/j.ijbiomac.2023.123933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/22/2023] [Accepted: 03/02/2023] [Indexed: 03/14/2023]
Abstract
This paper aimed to investigate the synthesis of a novel drug delivery system (DDS) to target tumors and implement the controlled release of doxorubicin (DOX). Chitosan was modified with 3-mercaptopropyltrimethoxysilane and subjected to graft polymerization to implement grafting with the biocompatible thermosensitive copolymer of poly (NVCL-co-PEGMA). A folate receptor-targeting agent was obtained by attaching folic acid. The DDS loading capacity for DOX via physisorption was obtained to be 846.45 mg/g. The synthesized DDS showed temperature- and pH-sensitive drug release behavior in vitro. A temperature of 37 °C and a pH of 7.4 hindered the DOX release, whereas a temperature of 40 °C and a pH of 5.5 led to DOX release acceleration. In addition, the release of DOX was found to occur in a Fickian diffusion mechanism. The MTT assay tests indicated that the synthesized DDS was not detectably toxic to cell lines of breast cancer, while the toxicity of the DOX-loaded DDS was found to be substantial. The cell absorption enhancement of folic acid led to higher cytotoxicity of the DOX-loaded DDS than bare DOX. As a result, the proposed DDS could be a promising alternative for the targeted therapy of breast cancer through controlled drug release.
Collapse
|
11
|
Zarepour A, Egil AC, Cokol Cakmak M, Esmaeili Rad M, Cetin Y, Aydinlik S, Ozaydin Ince G, Zarrabi A. Fabrication of a Dual-Drug-Loaded Smart Niosome-g-Chitosan Polymeric Platform for Lung Cancer Treatment. Polymers (Basel) 2023; 15:298. [PMID: 36679179 PMCID: PMC9860619 DOI: 10.3390/polym15020298] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/29/2022] [Accepted: 01/03/2023] [Indexed: 01/11/2023] Open
Abstract
Changes in weather conditions and lifestyle lead to an annual increase in the amount of lung cancer, and therefore it is one of the three most common types of cancer, making it important to find an appropriate treatment method. This research aims to introduce a new smart nano-drug delivery system with antibacterial and anticancer capabilities that could be applied for the treatment of lung cancer. It is composed of a niosomal carrier containing curcumin as an anticancer drug and is coated with a chitosan polymeric shell, alongside Rose Bengal (RB) as a photosensitizer with an antibacterial feature. The characterization results confirmed the successful fabrication of lipid-polymeric carriers with a size of nearly 80 nm and encapsulation efficiency of about 97% and 98% for curcumin and RB, respectively. It had the Korsmeyer-Peppas release pattern model with pH and temperature responsivity so that nearly 60% and 35% of RB and curcumin were released at 37 °C and pH 5.5. Moreover, it showed nearly 50% toxicity against lung cancer cells over 72 h and antibacterial activity against Escherichia coli. Accordingly, this nanoformulation could be considered a candidate for the treatment of lung cancer; however, in vivo studies are needed for better confirmation.
Collapse
Affiliation(s)
- Atefeh Zarepour
- Biomedical Engineering Department, Faculty of Engineering & Natural Sciences, Istinye University, Istanbul 34396, Türkiye
| | - Abdurrahim Can Egil
- Faculty of Engineering and Natural Sciences, Materials Science and Nano-Engineering Program, Sabanci University, Istanbul 34956, Türkiye
| | - Melike Cokol Cakmak
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Tuzla 34956, Türkiye
| | - Monireh Esmaeili Rad
- Faculty of Engineering and Natural Sciences, Materials Science and Nano-Engineering Program, Sabanci University, Istanbul 34956, Türkiye
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Tuzla 34956, Türkiye
| | - Yuksel Cetin
- TUBITAK Marmara Research Center, Life Sciences Medical Biotechnology, Gebze 41470, Türkiye
| | - Seyma Aydinlik
- TUBITAK Marmara Research Center, Life Sciences, Industrial Biotechnology, Gebze 41470, Türkiye
| | - Gozde Ozaydin Ince
- Faculty of Engineering and Natural Sciences, Materials Science and Nano-Engineering Program, Sabanci University, Istanbul 34956, Türkiye
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Tuzla 34956, Türkiye
- Center of Excellence for Functional Surfaces and Interfaces (EFSUN), Sabanci University, Istanbul 34956, Türkiye
| | - Ali Zarrabi
- Biomedical Engineering Department, Faculty of Engineering & Natural Sciences, Istinye University, Istanbul 34396, Türkiye
| |
Collapse
|
12
|
Liu M, Lai W, Chen M, Wang P, Liu J, Fang X, Yang Y, Wang C. Prominent Enhancement of Peptide-mediated Targeting Efficiency for Human Hepatocellular Carcinomas With Composition-engineered Protein Corona on Gold Nanoparticles. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
13
|
Afarid M, Mahmoodi S, Baghban R. Recent achievements in nano-based technologies for ocular disease diagnosis and treatment, review and update. J Nanobiotechnology 2022; 20:361. [PMID: 35918688 PMCID: PMC9344723 DOI: 10.1186/s12951-022-01567-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/19/2022] [Indexed: 11/10/2022] Open
Abstract
Ocular drug delivery is one of the most challenging endeavors among the various available drug delivery systems. Despite having suitable drugs for the treatment of ophthalmic disease, we have not yet succeeded in achieving a proper drug delivery approach with the least adverse effects. Nanotechnology offers great opportunities to overwhelm the restrictions of common ocular delivery systems, including low therapeutic effects and adverse effects because of invasive surgery or systemic exposure. The present review is dedicated to highlighting and updating the recent achievements of nano-based technologies for ocular disease diagnosis and treatment. While further effort remains, the progress illustrated here might pave the way to new and very useful ocular nanomedicines.
Collapse
Affiliation(s)
- Mehrdad Afarid
- Poostchi Ophthalmology Research Center, Department of Ophthalmology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shirin Mahmoodi
- Department of Medical Biotechnology, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Roghayyeh Baghban
- Poostchi Ophthalmology Research Center, Department of Ophthalmology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
14
|
Atmaca H, Oguz F, Ilhan S. Drug delivery systems for cancer treatment: a review of marine-derived polysaccharides. Curr Pharm Des 2022; 28:1031-1045. [DOI: 10.2174/1381612828666220211153931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 01/15/2022] [Indexed: 11/22/2022]
Abstract
Abstract:
Cancer is a disease characterized by uncontrolled cell proliferation and the spread of cells to other tissues and remains one of the worldwide problems waiting to be solved. There are various treatment strategies for cancer, such as chemotherapy, surgery, radiotherapy, and immunotherapy, although it varies according to its type and stage. Many chemotherapeutic agents have limited clinical use due to lack of efficacy, off-target toxicity, metabolic instability, or poor pharmacokinetics. One possible solution to this high rate of clinical failure is to design drug delivery systems that deliver drugs in a controlled and specific manner and are not toxic to normal cells.
Marine systems contain biodiversity, including components and materials that can be used in biomedical applications and therapy. Biomaterials such as chitin, chitosan, alginate, carrageenan, fucoidan, hyaluronan, agarose, and ulvan obtained from marine organisms have found use in DDSs today. These polysaccharides are biocompatible, non-toxic, biodegradable, and cost-effective, making them ideal raw materials for increasingly complex DDSs with a potentially regulated release. In this review, the contributions of polysaccharides from the marine environment to the development of anticancer drugs in DDSs will be discussed.
Collapse
Affiliation(s)
- Harika Atmaca
- Department of Biology, Faculty of Science and Letters, Manisa Celal Bayar University, Muradiye, Manisa, Turkey
| | - Ferdi Oguz
- Department of Biology, The Institute of Natural and Applied Sciences, Manisa Celal Bayar University, Muradiye, Manisa, Turkey
| | - Suleyman Ilhan
- Department of Biology, Faculty of Science and Letters, Manisa Celal Bayar University, Muradiye, Manisa, Turkey
| |
Collapse
|
15
|
Jaiswal S, Dutta PK, Kumar S, Koh J, Lee MC, Lim JW, Pandey S, Garg P. Synthesis, characterization and application of chitosan-N-(4-hydroxyphenyl)-methacrylamide derivative as a drug and gene carrier. Int J Biol Macromol 2022; 195:75-85. [PMID: 34883163 DOI: 10.1016/j.ijbiomac.2021.11.204] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 11/28/2021] [Accepted: 11/29/2021] [Indexed: 01/16/2023]
Abstract
The aim of this study was to develop a green method to fabricate a novel CS modified N-(4-hydroxyphenyl)- methacrylamide conjugate (CSNHMA) and to evaluate its biomedical potential. CSNHMA has been prepared by a simple method via aza Michael addition reaction between CS and N- (4-hydroxyphenyl)-methacrylamide (NHMA) in ethanol. Its structural and morphological properties were characterized by various analysis techniques. The obtained results confirmed that a highly porous network structure of CSNHMA was successfully synthesized via aza Michael addition reaction. Consequently, it was analyzed as a drug and gene carrier. CSNHMA/pGL3 showed an enhanced buffering capacity due to the presence of NHMA moiety leading to higher transfection efficiency in all cancer cells (A549, HeLa and HepG2) as compared to native CS and Lipofectamine®. Therefore, these findings clearly support the possibility of using CSNHMA as a good transfection agent. For in vitro drug release study, we prepared CSNHMA nanoparticles (NPs) and curcumin loaded CSNHMA NPs of size <230 nm respectively via the non-toxic ionic gelation route and the encapsulation efficiency of drug was found to be 77.03%. In vitro drug release studies demonstrated a faster and sustained release of curcumin loaded CSNHMA NPs at pH 5.0 compared to physiological pH.
Collapse
Affiliation(s)
- Shefali Jaiswal
- Polymer Research Laboratory, Department of Chemistry, Motilal Nehru National Institute of Technology, Allahabad 211004, India.
| | - Pradip Kumar Dutta
- Polymer Research Laboratory, Department of Chemistry, Motilal Nehru National Institute of Technology, Allahabad 211004, India.
| | - Santosh Kumar
- Division of Chemical Engineering, Konkuk University, Seoul 05029, Republic of Korea.
| | - Joonseok Koh
- Division of Chemical Engineering, Konkuk University, Seoul 05029, Republic of Korea.
| | - Myung Chul Lee
- Department of Biosystems & Biomaterial Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea.
| | - Jae Woon Lim
- Department of Biosystems & Biomaterial Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea.
| | - Shambhavi Pandey
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| | - Pankaj Garg
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
16
|
Madamsetty VS, Tavakol S, Moghassemi S, Dadashzadeh A, Schneible JD, Fatemi I, Shirvani A, Zarrabi A, Azedi F, Dehshahri A, Aghaei Afshar A, Aghaabbasi K, Pardakhty A, Mohammadinejad R, Kesharwani P. Chitosan: A versatile bio-platform for breast cancer theranostics. J Control Release 2021; 341:733-752. [PMID: 34906606 DOI: 10.1016/j.jconrel.2021.12.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 12/07/2021] [Accepted: 12/07/2021] [Indexed: 12/11/2022]
Abstract
Breast cancer is considered one of the utmost neoplastic diseases globally, with a high death rate of patients. Over the last decades, many approaches have been studied to early diagnose and treat it, such as chemotherapy, hormone therapy, immunotherapy, and MRI and biomarker tests; do not show the optimal efficacy. These existing approaches are accompanied by severe side effects, thus recognizing these challenges, a great effort has been done to find out the new remedies for breast cancer. Main finding: Nanotechnology opened a new horizon to the treatment of breast cancer. Many nanoparticulate platforms for the diagnosis of involved biomarkers and delivering antineoplastic drugs are under either clinical trials or just approved by the Food and Drug Administration (FDA). It is well known that natural phytochemicals are successfully useful to treat breast cancer because these natural compounds are safer, available, cheaper, and have less toxic effects. Chitosan is a biocompatible and biodegradable polymer. Further, it has outstanding features, like chemical functional groups that can easily modify our interest with an exceptional choice of promising applications. Abundant studies were directed to assess the chitosan derivative-based nanoformulation's abilities in delivering varieties of drugs. However, the role of chitosan in diagnostics and theranostics not be obligated. The present servey will discuss the application of chitosan as an anticancer drug carrier such as tamoxifen, doxorubicin, paclitaxel, docetaxel, etc. and also, its role as a theranostics (i.e. photo-responsive and thermo-responsive) moieties. The therapeutic and theranostic potential of chitosan in cancer is promising and it seems that to have a good potential to get to the clinic.
Collapse
Affiliation(s)
- Vijay Sagar Madamsetty
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Jacksonville, FL 32224, USA
| | - Shima Tavakol
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran 1449614525, Iran
| | - Saeid Moghassemi
- Pôle de Recherche en Gynécologie, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Arezoo Dadashzadeh
- Pôle de Recherche en Gynécologie, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - John D Schneible
- NC State University, Department of Chemical and Biomolecular Engineering, 911 Partners Way, Raleigh 27695, USA
| | - Iman Fatemi
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, Iran
| | - Abdolsamad Shirvani
- Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, 34485 Istanbul, Turkey
| | - Fereshteh Azedi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran 1449614525, Iran; Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - Ali Dehshahri
- Pharmaceutical Sciences Research center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abbas Aghaei Afshar
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, Iran
| | - Kian Aghaabbasi
- Department of Biotechnology, University of Guilan, University Campus 2, Khalij Fars Highway 5th km of Ghazvin Road, Rasht, Iran
| | - Abbas Pardakhty
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman 7616911319, Iran
| | - Reza Mohammadinejad
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, Iran.
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
17
|
Rizwanullah M, Ahmad MZ, Ghoneim MM, Alshehri S, Imam SS, Md S, Alhakamy NA, Jain K, Ahmad J. Receptor-Mediated Targeted Delivery of Surface-ModifiedNanomedicine in Breast Cancer: Recent Update and Challenges. Pharmaceutics 2021; 13:2039. [PMID: 34959321 PMCID: PMC8708551 DOI: 10.3390/pharmaceutics13122039] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/15/2021] [Accepted: 11/17/2021] [Indexed: 12/24/2022] Open
Abstract
Breast cancer therapeutic intervention continues to be ambiguous owing to the lack of strategies for targeted transport and receptor-mediated uptake of drugs by cancer cells. In addition to this, sporadic tumor microenvironment, prominent restrictions with conventional chemotherapy, and multidrug-resistant mechanisms of breast cancer cells possess a big challenge to even otherwise optimal and efficacious breast cancer treatment strategies. Surface-modified nanomedicines can expedite the cellular uptake and delivery of drug-loaded nanoparticulate constructs through binding with specific receptors overexpressed aberrantly on the tumor cell. The present review elucidates the interesting yet challenging concept of targeted delivery approaches by exploiting different types of nanoparticulate systems with multiple targeting ligands to target overexpressed receptors of breast cancer cells. The therapeutic efficacy of these novel approaches in preclinical models is also comprehensively discussed in this review. It is concluded from critical analysis of related literature that insight into the translational gap between laboratories and clinical settings would provide the possible future directions to plug the loopholes in the process of development of these receptor-targeted nanomedicines for the treatment of breast cancer.
Collapse
Affiliation(s)
- Md. Rizwanullah
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India;
| | - Mohammad Zaki Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran 11001, Saudi Arabia;
| | - Mohammed M. Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia;
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (S.A.); (S.S.I.)
| | - Syed Sarim Imam
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (S.A.); (S.S.I.)
| | - Shadab Md
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (S.M.); (N.A.A.)
| | - Nabil A. Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (S.M.); (N.A.A.)
| | - Keerti Jain
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)—Raebareli, Lucknow 226002, India;
| | - Javed Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran 11001, Saudi Arabia;
| |
Collapse
|
18
|
Mukhtar M, Fényes E, Bartos C, Zeeshan M, Ambrus R. Chitosan biopolymer, its derivatives and potential applications in nano-therapeutics: A comprehensive review. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110767] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
19
|
Nandgude T, Pagar R. Plausible role of chitosan in drug and gene delivery against resistant breast cancer cells. Carbohydr Res 2021; 506:108357. [PMID: 34146935 DOI: 10.1016/j.carres.2021.108357] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 05/19/2021] [Accepted: 05/24/2021] [Indexed: 01/02/2023]
Abstract
Breast cancer is the highest global spread of invasive cancer in women. While significant progress has been made in breast cancer, diagnostic and therapeutic effective prevention and treatment options remain scarce. Concerning chitosan-based chemotherapeutic therapies, the studies reported cell migration resistance, improved drug absorption, membrane interaction and permeability, immune stimulating behavior, and extended in-vitro drug release. However, chitosan has been practically restricted mostly to unmodified forms. Targeted distribution is ensured by chitosan-based ligand conjugated carrier systems in conjunction with active moieties such as DNA, RNA, proteins, and therapeutic agents. The purpose of this context is to emphasize the efficient drug delivery to breast cancer cell lines using chitosan. Chitosan also exhibited excellent capabilities in gene packaging. For the interaction of bioactive molecules and the regulation of the drug release profile, chemical modification of chitosan is beneficial. This article discusses the various chitosan-based ligand conjugated carrier systems. From the studies reviewed it can be concluded that chitosan derivatives are promising materials for targeted and non-viral gene delivery in treatment of breast cancer.
Collapse
Affiliation(s)
- Tanaji Nandgude
- Department of Pharmaceutics, Dr. D.Y. Patil Institute of Pharmaceutical Science & Research, Pimpri, Pune, 411018, Maharashtra, India.
| | - Roshani Pagar
- Department of Pharmaceutics, Dr. D.Y. Patil Institute of Pharmaceutical Science & Research, Pimpri, Pune, 411018, Maharashtra, India.
| |
Collapse
|
20
|
Tian B, Liu Y, Liu J. Chitosan-based nanoscale and non-nanoscale delivery systems for anticancer drugs: A review. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110533] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
21
|
Shi H, Liang N, Liu J, Li S, Gong X, Yan P, Sun S. AIE-active polymeric micelles based on modified chitosan for bioimaging-guided targeted delivery and controlled release of paclitaxel. Carbohydr Polym 2021; 269:118327. [PMID: 34294339 DOI: 10.1016/j.carbpol.2021.118327] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 06/05/2021] [Accepted: 06/07/2021] [Indexed: 12/30/2022]
Abstract
In this study, a novel polymer based on aggregation-induced emission (AIE) fluorogen, biotin and disulfide bonds modified chitosan (TPE-bi(SS-CS-Bio)) was designed and synthesized. The polymer could self-assemble into micelles in aqueous media and encapsulate paclitaxel (PTX) into the core with high drug loading. Fluorescence study indicated that the micelles exhibited excellent AIE feature with intense blue fluorescence emitted. In vitro drug release study indicated that the micelles could disassemble rapidly in the presence of high level of glutathione. The modification by biotin could enhance the cellular uptake of the micelles. The drug-loaded micelles possessed remarkable cytotoxicity against MCF-7 cells, and their distribution in the cells could be traced due to the excellent AIE feature. In vivo antitumor efficacy study demonstrated the superior antitumor activity of the PTX-loaded TPE-bi(SS-CS-Bio) micelles. These results indicated that TPE-bi(SS-CS-Bio) has the ability of biological imaging and can be used as a potential carrier for PTX.
Collapse
Affiliation(s)
- Haohui Shi
- Key Laboratory of Functional Inorganic Materials Chemistry (Ministry of Education), School of Chemistry and Material Science, Heilongjiang University, Harbin 150080, China
| | - Na Liang
- College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin 150025, China.
| | - Jiyang Liu
- Key Laboratory of Functional Inorganic Materials Chemistry (Ministry of Education), School of Chemistry and Material Science, Heilongjiang University, Harbin 150080, China
| | - Siyi Li
- Key Laboratory of Functional Inorganic Materials Chemistry (Ministry of Education), School of Chemistry and Material Science, Heilongjiang University, Harbin 150080, China
| | - Xianfeng Gong
- Key Laboratory of Functional Inorganic Materials Chemistry (Ministry of Education), School of Chemistry and Material Science, Heilongjiang University, Harbin 150080, China
| | - Pengfei Yan
- Key Laboratory of Functional Inorganic Materials Chemistry (Ministry of Education), School of Chemistry and Material Science, Heilongjiang University, Harbin 150080, China
| | - Shaoping Sun
- Key Laboratory of Functional Inorganic Materials Chemistry (Ministry of Education), School of Chemistry and Material Science, Heilongjiang University, Harbin 150080, China.
| |
Collapse
|
22
|
Han Q, Huang L, Luo Q, Wang Y, Wu M, Sun S, Zhang H, Wang Y. Synthesis and biological evaluation of biotin-conjugated Portulaca oleracea polysaccharides. RSC Adv 2021; 11:18084-18092. [PMID: 35480215 PMCID: PMC9033186 DOI: 10.1039/d1ra02226a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 05/11/2021] [Indexed: 12/27/2022] Open
Abstract
Biotinylated Portulaca oleracea polysaccharide (Bio-POP) conjugates were successfully prepared by the esterification reaction. The biotinylated polysaccharide products were an off-white powder with an average degree of substitution of 42.5%. After grafting biotin onto POP, the thermal stability of Bio-POP conjugates was much higher than that of POP and the surface topography of Bio-POP was a loose and porous cross-linked structure. The cytotoxicity assay in vitro demonstrated that POP, biotin, and Bio-POP conjugates exhibited different cytotoxicity to HeLa, MCF-7, LO-2, and A549, in particular POP inhibited the growth of the A549 cell line more than other cell lines. The nuclear staining method demonstrated that Bio-POP conjugates can interfere with the apoptosis of A549 cells to some extent and the immunofluorescence staining photograph illustrated that Bio-POP conjugates induced A549 cells to exhibit immune activity. Therefore, the combination of biotin and Portulaca oleracea polysaccharides had immune synergistic therapeutic effects on A549 cells and can be applied in the field of anti-tumor conjugate drugs.
Collapse
Affiliation(s)
- Qianqian Han
- Institute of Environmental Toxicology and Environmental Ecology, Yancheng Teachers University Yancheng City Jiangsu Province 224051 People's Republic of China
- Chemistry and Chemical Engineering, Nanjing University of Technology Nanjing City Jiangsu Province 210009 People's Republic of China
| | - Lirong Huang
- Cardio-Thoracic Surgery, Yancheng First People's Hospital Yancheng 224006 China
| | - Qiang Luo
- Institute of Environmental Toxicology and Environmental Ecology, Yancheng Teachers University Yancheng City Jiangsu Province 224051 People's Republic of China
- Chemistry and Chemical Engineering, Nanjing University of Technology Nanjing City Jiangsu Province 210009 People's Republic of China
| | - Ying Wang
- Institute of Environmental Toxicology and Environmental Ecology, Yancheng Teachers University Yancheng City Jiangsu Province 224051 People's Republic of China
- Chemistry and Chemical Engineering, Nanjing University of Technology Nanjing City Jiangsu Province 210009 People's Republic of China
| | - Mingliang Wu
- Institute of Environmental Toxicology and Environmental Ecology, Yancheng Teachers University Yancheng City Jiangsu Province 224051 People's Republic of China
| | - Shixin Sun
- Institute of Environmental Toxicology and Environmental Ecology, Yancheng Teachers University Yancheng City Jiangsu Province 224051 People's Republic of China
| | - Hongmei Zhang
- Institute of Environmental Toxicology and Environmental Ecology, Yancheng Teachers University Yancheng City Jiangsu Province 224051 People's Republic of China
| | - Yanqing Wang
- Institute of Environmental Toxicology and Environmental Ecology, Yancheng Teachers University Yancheng City Jiangsu Province 224051 People's Republic of China
| |
Collapse
|
23
|
Wang G, Li R, Parseh B, Du G. Prospects and challenges of anticancer agents' delivery via chitosan-based drug carriers to combat breast cancer: a review. Carbohydr Polym 2021; 268:118192. [PMID: 34127212 DOI: 10.1016/j.carbpol.2021.118192] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/08/2021] [Accepted: 05/10/2021] [Indexed: 12/12/2022]
Abstract
Breast cancer (BC) is considered as one the most prevalent cancers worldwide. Due to its high resistance to chemotherapy and high probability of metastasis, BC is one of the leading causes of cancer-related deaths. The controlled release of chemotherapy drugs to the precise site of the tumor tissue will increase the therapeutic efficacy and decrease side effects of systemic administration. Among various drug delivery systems, natural polymers-based drug carriers have gained significant attention for cancer therapy. Chitosan, a natural polymer obtained by de-acetylation of chitin, holds huge potential for drug delivery applications because chitosan is non-toxic, non-immunogenic, biocompatible, chemically modifiable, and can be processed to form various formulations. In the current review, we will discuss the prospects and challenges of chitosan-based drug delivery systems in treating BC.
Collapse
Affiliation(s)
- Guiqiu Wang
- Guangxi Medical College, Nanning, Guangxi 530023, China
| | - Rilun Li
- Guangxi Medical College, Nanning, Guangxi 530023, China
| | - Benyamin Parseh
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Gang Du
- The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China.
| |
Collapse
|
24
|
Jaiswal S, Dutta P, Kumar S, Chawla R. Chitosan modified by organo-functionalities as an efficient nanoplatform for anti-cancer drug delivery process. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102407] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
25
|
Pang B, Yang H, Wang L, Chen J, Jin L, Shen B. Aptamer modified MoS2 nanosheets application in targeted photothermal therapy for breast cancer. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.125506] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
26
|
Yu H, Wu W, Lin X, Feng Y. Polysaccharide-Based Nanomaterials for Ocular Drug Delivery: A Perspective. Front Bioeng Biotechnol 2020; 8:601246. [PMID: 33363130 PMCID: PMC7758246 DOI: 10.3389/fbioe.2020.601246] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/05/2020] [Indexed: 12/30/2022] Open
Abstract
Ocular drug delivery is one of the most challenging issues in ophthalmology because of the complex physiological structure of the eye. Polysaccharide-based nanomaterials have been extensively investigated in recent years as ideal carriers for enhancing the bioavailability of drugs in the ocular system because of their biocompatibility and drug solubilization. From this perspective, we discuss the structural instability of polysaccharides and its impact on the synthesis process; examine the potential for developing bioactive polysaccharide-based ocular drug nanocarriers; propose four strategies for designing novel drug delivery nanomaterials; and suggest reviewing the behavior of nanomaterials in ocular tissues.
Collapse
Affiliation(s)
- Haozhe Yu
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China
| | - Wenyu Wu
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China
| | - Xiang Lin
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, China
| | - Yun Feng
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China
| |
Collapse
|
27
|
Recent advancement and development of chitin and chitosan-based nanocomposite for drug delivery: Critical approach to clinical research. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2020.10.019] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
28
|
Sanità G, Carrese B, Lamberti A. Nanoparticle Surface Functionalization: How to Improve Biocompatibility and Cellular Internalization. Front Mol Biosci 2020; 7:587012. [PMID: 33324678 PMCID: PMC7726445 DOI: 10.3389/fmolb.2020.587012] [Citation(s) in RCA: 259] [Impact Index Per Article: 51.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 11/05/2020] [Indexed: 12/14/2022] Open
Abstract
The use of nanoparticles (NP) in diagnosis and treatment of many human diseases, including cancer, is of increasing interest. However, cytotoxic effects of NPs on cells and the uptake efficiency significantly limit their use in clinical practice. The physico-chemical properties of NPs including surface composition, superficial charge, size and shape are considered the key factors that affect the biocompatibility and uptake efficiency of these nanoplatforms. Thanks to the possibility of modifying physico-chemical properties of NPs, it is possible to improve their biocompatibility and uptake efficiency through the functionalization of the NP surface. In this review, we summarize some of the most recent studies in which NP surface modification enhances biocompatibility and uptake. Furthermore, the most used techniques used to assess biocompatibility and uptake are also reported.
Collapse
Affiliation(s)
- Gennaro Sanità
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | | | - Annalisa Lamberti
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| |
Collapse
|
29
|
Mehrotra N, Kharbanda S, Singh H. Peptide-based combination nanoformulations for cancer therapy. Nanomedicine (Lond) 2020; 15:2201-2217. [PMID: 32914691 DOI: 10.2217/nnm-2020-0220] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Research in cancer therapy is moving towards the use of biomolecules in combination with conventional approaches for improved disease outcome. Among the biomolecules explored, peptides are strong contenders due to their small size, high specificity, low systemic toxicity and wide inter/intracellular targets. The use of nanoformulations for such combination approaches can lead to further improvement in efficacy by reducing off-target cytotoxicity, increasing circulation time, tumor penetration and accumulation. This review focuses on nanodelivery systems for peptide-based combinations with chemo, immuno, radiation and hormone therapy. It gives an overview of the latest therapeutic research being conducted using combination nanoformulations with anticancer peptides, cell penetrating/tumor targeting peptides, peptide nanocarriers, peptidomimetics, peptide-based hormones and peptide vaccines. The challenges hindering clinical translation are also discussed.
Collapse
Affiliation(s)
- Neha Mehrotra
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Surender Kharbanda
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Harpal Singh
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi, 110016, India
| |
Collapse
|
30
|
Fathi M, Abdolahinia ED, Barar J, Omidi Y. Smart stimuli-responsive biopolymeric nanomedicines for targeted therapy of solid tumors. Nanomedicine (Lond) 2020; 15:2171-2200. [DOI: 10.2217/nnm-2020-0146] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Solid tumors form a permissive microenvironment with irregular features, including high pressured tumor interstitial fluid with acidic pH, co-adaptation of cancer cells with other cells like the immune system cells, abnormal metabolism and anomalous overexpression of various pieces of molecular machinery. The functional expressions of several oncomarkers in different solid tumors have led to the development of targeted drug-delivery systems (DDSs). As a new class of DDSs, stimuli-responsive nanomedicines (SRNMs) have been developed using advanced nanobiomaterials such as biopolymers that show excellent biocompatibility with low inherent immunogenicity. In this review, we aim to overview different types of SRNMs, present deep insights into the stimuli-responsive biopolymers and discuss the most up-to-date progress in the design and development of SRNMs used as advanced DDSs for targeted therapy of cancer.
Collapse
Affiliation(s)
- Marziyeh Fathi
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elaheh Dalir Abdolahinia
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jaleh Barar
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yadollah Omidi
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
| |
Collapse
|
31
|
Methotrexate-conjugated chitosan-grafted pH- and thermo-responsive magnetic nanoparticles for targeted therapy of ovarian cancer. Int J Biol Macromol 2020; 154:1175-1184. [DOI: 10.1016/j.ijbiomac.2019.10.272] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 10/08/2019] [Accepted: 10/30/2019] [Indexed: 12/15/2022]
|
32
|
Li S, Zhao W, Liang N, Xu Y, Kawashima Y, Sun S. Multifunctional micelles self-assembled from hyaluronic acid conjugate for enhancing anti-tumor effect of paclitaxel. REACT FUNCT POLYM 2020. [DOI: 10.1016/j.reactfunctpolym.2020.104608] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
33
|
Chen X, Niu S, Bremner DH, Zhang X, Zhang H, Zhang Y, Li S, Zhu LM. Co-delivery of doxorubicin and oleanolic acid by triple-sensitive nanocomposite based on chitosan for effective promoting tumor apoptosis. Carbohydr Polym 2020; 247:116672. [PMID: 32829800 DOI: 10.1016/j.carbpol.2020.116672] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 12/16/2022]
Abstract
Nanocomposites as "stevedores" for co-delivery of multidrugs hold great promise in addressing the drawbacks of traditional cancer chemotherapy. In this work, our strategy presents a new avenue for the stepwise release of two co-delivered agents into the tumor cells. The hybrid nanocomposite consists of a pH-responsive chitosan (CS), a thermosensitive poly(N-vinylcaprolactam) (PNVCL) and a functionalized cell-penetrating peptide (H6R6). Doxorubicin (DOX) and oleanolic acid (OA) are loaded into the nanocomposite (H6R6-CS-g-PNVCL). The system displayed a suitable size (∼190 nm), a high DOX loading (13.2 %) and OA loading efficiency (7.3 %). The tumor microenvironment triggered the nanocomposite to be selectively retained in tumor cells, then releasing the drugs. Both in vitro and in vivo studies showed a significant enhancement in antitumor activity of the co-delivered system in comparison to mono-delivery. This approach which relies on redox, pH and temperature effects utilizing co-delivery nanosystems may be beneficial for future applications in cancer chemotherapy.
Collapse
Affiliation(s)
- Xia Chen
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, PR China
| | - Shiwei Niu
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, PR China; Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming, 650500, PR China
| | - David H Bremner
- School of Science, Engineering and Technology, Kydd Building, Abertay University, Dundee, DD1 1HG, Scotland, UK
| | - Xuejing Zhang
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, PR China
| | - Hongmei Zhang
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, PR China
| | - Yanyan Zhang
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, PR China
| | - Shude Li
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Kunming Medical University, Kunming, 650500, PR China.
| | - Li-Min Zhu
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, PR China.
| |
Collapse
|
34
|
Wang F, Li J, Tang X, Huang K, Chen L. Polyelectrolyte three layer nanoparticles of chitosan/dextran sulfate/chitosan for dual drug delivery. Colloids Surf B Biointerfaces 2020; 190:110925. [DOI: 10.1016/j.colsurfb.2020.110925] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/17/2020] [Accepted: 03/01/2020] [Indexed: 10/24/2022]
|
35
|
Smart and selective cancer-killing peptides with cell penetrating sequence and dual-targeting mechanism. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2019.124185] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
36
|
Alqaraghuli HGJ, Kashanian S, Rafipour R. A Review on Targeting Nanoparticles for Breast Cancer. Curr Pharm Biotechnol 2020; 20:1087-1107. [PMID: 31364513 DOI: 10.2174/1389201020666190731130001] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 07/10/2019] [Accepted: 07/12/2019] [Indexed: 12/11/2022]
Abstract
Chemotherapeutic agents have been used extensively in breast cancer remedy. However, most anticancer drugs cannot differentiate between cancer cells and normal cells, leading to toxic side effects. Also, the resulted drug resistance during chemotherapy reduces treatment efficacy. The development of targeted drug delivery offers great promise in breast cancer treatment both in clinical applications and in pharmaceutical research. Conjugation of nanocarriers with targeting ligands is an effective therapeutic strategy to treat cancer diseases. In this review, we focus on active targeting methods for breast cancer cells through the use of chemical ligands such as antibodies, peptides, aptamers, vitamins, hormones, and carbohydrates. Also, this review covers all information related to these targeting ligands, such as their subtypes, advantages, disadvantages, chemical modification methods with nanoparticles and recent published studies (from 2015 to present). We have discussed 28 different targeting methods utilized for targeted drug delivery to breast cancer cells with different nanocarriers delivering anticancer drugs to the tumors. These different targeting methods give researchers in the field of drug delivery all the information and techniques they need to develop modern drug delivery systems.
Collapse
Affiliation(s)
- Hasanain Gomhor J Alqaraghuli
- Faculty of Chemistry, Razi University, Kermanshah, Iran.,Department of Sciences, College of Basic Education, Al- Muthanna University, Al-Muthanna, Iraq
| | - Soheila Kashanian
- Faculty of Chemistry, Sensor and Biosensor Research Center (SBRC) & Nanoscience and Nanotechnology Research Center (NNRC), Razi University, Kermanshah, Iran.,Nano Drug Delivery Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ronak Rafipour
- Department of Chemistry, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran
| |
Collapse
|
37
|
Tian B, Hua S, Tian Y, Liu J. Chemical and physical chitosan hydrogels as prospective carriers for drug delivery: a review. J Mater Chem B 2020; 8:10050-10064. [DOI: 10.1039/d0tb01869d] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This review summarizes and discusses recent research progress in chemical and physical chitosan hydrogels for drug delivery.
Collapse
Affiliation(s)
- Bingren Tian
- School of Chemical Engineering and Technology
- Xinjiang University
- Urumchi 830046
- China
| | - Shiyao Hua
- School of Pharmacy
- Ningxia Medical University
- Yinchuan 750004
- China
| | - Yu Tian
- School of Computer Science and Engineering
- Beihang University
- Beijing 100083
- China
| | - Jiayue Liu
- School of Pharmacy
- Ningxia Medical University
- Yinchuan 750004
- China
| |
Collapse
|
38
|
Niu S, Williams GR, Wu J, Wu J, Zhang X, Chen X, Li S, Jiao J, Zhu LM. A chitosan-based cascade-responsive drug delivery system for triple-negative breast cancer therapy. J Nanobiotechnology 2019; 17:95. [PMID: 31506085 PMCID: PMC6737697 DOI: 10.1186/s12951-019-0529-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 08/31/2019] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND It is extremely difficult to develop targeted treatments for triple-negative breast (TNB) cancer, because these cells do not express any of the key biomarkers usually exploited for this goal. RESULTS In this work, we develop a solution in the form of a cascade responsive nanoplatform based on thermo-sensitive poly(N-vinylcaprolactam) (PNVCL)-chitosan (CS) nanoparticles (NPs). These are further modified with the cell penetrating peptide (CPP) and loaded with the chemotherapeutic drug doxorubicin (DOX). The base copolymer was optimized to undergo a phase change at the elevated temperatures of the tumor microenvironment. The acid-responsive properties of CS provide a second trigger for drug release, and the inclusion of CPP should ensure the formulations accumulate in cancerous tissue. The resultant CPP-CS-co-PNVCL NPs could self-assemble in aqueous media into spherical NPs of size < 200 nm and with low polydispersity. They are able to accommodate a high DOX loading (14.8% w/w). The NPs are found to be selectively taken up by cancerous cells both in vitro and in vivo, and result in less off-target cytotoxicity than treatment with DOX alone. In vivo experiments employing a TNB xenograft mouse model demonstrated a significant reduction in tumor volume and prolonging of life span, with no obvious systemic toxicity. CONCLUSIONS The system developed in this work has the potential to provide new therapies for hard-to-treat cancers.
Collapse
Affiliation(s)
- Shiwei Niu
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, People's Republic of China
| | - Gareth R Williams
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK
| | - Jianrong Wu
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, People's Republic of China
| | - Junzi Wu
- School of Basic Medicine, Yunnan University of Traditional Chinese Medicine, Kunming, 650500, People's Republic of China
| | - Xuejing Zhang
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, People's Republic of China
| | - Xia Chen
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, People's Republic of China
| | - Shude Li
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Kunming Medical University, Kunming, 650500, People's Republic of China
| | - Jianlin Jiao
- Technology Transfer Center, Kunming Medical University, Kunming, 650031, China.
| | - Li-Min Zhu
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, People's Republic of China.
| |
Collapse
|
39
|
Novel therapeutic interventions in cancer treatment using protein and peptide-based targeted smart systems. Semin Cancer Biol 2019; 69:249-267. [PMID: 31442570 DOI: 10.1016/j.semcancer.2019.08.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 08/19/2019] [Accepted: 08/20/2019] [Indexed: 01/12/2023]
Abstract
Cancer, being the most prevalent and resistant disease afflicting any gender, age or social status, is the ultimate challenge for the scientific community. The new generation therapeutics for cancer management has shifted the approach to personalized/precision medicine, making use of patient- and tumor-specific markers for specifying the targeted therapies for each patient. Peptides targeting these cancer-specific signatures hold enormous potential for cancer therapy and diagnosis. The rapid advancements in the combinatorial peptide libraries served as an impetus to the development of multifunctional peptide-based materials for targeted cancer therapy. The present review outlines benefits and shortcomings of peptides as cancer therapeutics and the potential of peptide modified nanomedicines for targeted delivery of anticancer agents.
Collapse
|