1
|
Zhong Y, Wang Z, Quan L, Wu Y, Hu D, Cheng J, Zheng Y, Cheng F. Reversible fluorescence/photochromic switching of repeated-response cellulose-based hydrogels for information encryption. J Colloid Interface Sci 2025; 679:393-402. [PMID: 39366268 DOI: 10.1016/j.jcis.2024.09.204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/15/2024] [Accepted: 09/26/2024] [Indexed: 10/06/2024]
Abstract
The rapid development of anti-counterfeiting technology has brought new challenges to the repeatability and stability of reversible fluorescence/photochromic switching hydrogels. To address this issue, a series of chemical cross-linked cellulose-based intelligent responsive hydrogels were synthesized by free-radical graft copolymerization in a hydrothermal process. This strategy allows for the creation of a chemical cross-linked three-dimensional structure that anchors photochromic ammonium molybdate and fluorescent carbon dots together, resulting in enhanced stability and mechanical properties. Especially, the tensile and compressive strength of hydrogel reached a maximum value of 280 kPa and 560 kPa, respectively, which far exceeds that of some reported hydrogels. The resultant hydrogels exhibited desired reversible fluorescence/photochromic switching, reversible printing and erasing of patterns, and information encryption/decryption. Notably, the change of photochromism from yellow to green can be realized, and the self-fading process can be shortened to 25 min at 60 °C instead of 6 h at room temperature. More importantly, the fluorescence quenching phenomenon of the hydrogel occurs gradually after 2 min of continuous irradiation, and it can be recovered by selective treatment with ethanol. Overall, this study provides a simple strategy for the preparation of environmentally friendly reversible fluorescence/photochromic switching cellulose-based hydrogels for information encryption.
Collapse
Affiliation(s)
- Yu Zhong
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Zhiqi Wang
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Lingqi Quan
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Yiqiang Wu
- College of Material Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Dongying Hu
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China.
| | - Jun Cheng
- Guangxi Normal University for Nationalities, Chongzuo 532200, China
| | - Yanjie Zheng
- Guangxi Normal University for Nationalities, Chongzuo 532200, China.
| | - Fangchao Cheng
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China; College of Material Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China.
| |
Collapse
|
2
|
Youn J, Kang P, Crowe J, Thornsbury C, Kim P, Qin Z, Lee J. Tripeptide-Assisted Gold Nanocluster Formation for Fe 3+ and Cu 2+ Sensing. Molecules 2024; 29:2416. [PMID: 38893292 PMCID: PMC11173388 DOI: 10.3390/molecules29112416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/15/2024] [Accepted: 05/17/2024] [Indexed: 06/21/2024] Open
Abstract
Fluorescent gold nanoclusters (AuNCs) have shown promise as metal ion sensors. Further research into surface ligands is crucial for developing sensors that are both selective and sensitive. Here, we designed simple tripeptides to form fluorescent AuNCs, capitalizing on tyrosine's reduction capability under alkaline conditions. We investigated tyrosine's role in both forming AuNCs and sensing metal ions. Two tripeptides, tyrosine-cysteine-tyrosine (YCY) and serine-cysteine-tyrosine (SCY), were used to form AuNCs. YCY peptides produced AuNCs with blue and red fluorescence, while SCY peptides produced blue-emitting AuNCs. The blue fluorescence of YCY- and SCY-AuNCs was selectively quenched by Fe3+ and Cu2+, whereas red-emitting YCY-AuNC fluorescence remained stable with 13 different metal ions. The number of tyrosine residues influenced the sensor response. DLS measurements revealed different aggregation propensities in the presence of various metal ions, indicating that chelation between the peptide and target ions led to aggregation and fluorescence quenching. Highlighting the innovation of our approach, our study demonstrates the feasibility of the rational design of peptides for the formation of fluorescent AuNCs that serve as highly selective and sensitive surface ligands for metal ion sensing. This method marks an advancement over existing methods due to its dual capability in both synthesizing gold nanoclusters and detecting analytes, specifically Fe3+ and Cu2+.
Collapse
Affiliation(s)
- Jonghae Youn
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX 75080, USA; (J.Y.); (P.K.)
- Department of Mechanical Engineering, The University of Texas at Dallas, Richardson, TX 75080, USA; (P.K.); (Z.Q.)
| | - Peiyuan Kang
- Department of Mechanical Engineering, The University of Texas at Dallas, Richardson, TX 75080, USA; (P.K.); (Z.Q.)
| | - Justin Crowe
- Department of Chemistry and Biochemistry, The University of Texas at Tyler, Tyler, TX 75799, USA; (J.C.); (C.T.)
| | - Caleb Thornsbury
- Department of Chemistry and Biochemistry, The University of Texas at Tyler, Tyler, TX 75799, USA; (J.C.); (C.T.)
| | - Peter Kim
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX 75080, USA; (J.Y.); (P.K.)
| | - Zhenpeng Qin
- Department of Mechanical Engineering, The University of Texas at Dallas, Richardson, TX 75080, USA; (P.K.); (Z.Q.)
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX 75080, USA
- Department of Surgery, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Center for Advanced Pain Studies, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Jiyong Lee
- Department of Chemistry and Biochemistry, The University of Texas at Tyler, Tyler, TX 75799, USA; (J.C.); (C.T.)
| |
Collapse
|
3
|
Burratti L, Zannotti M, Maranges V, Giovannetti R, Duranti L, De Matteis F, Francini R, Prosposito P. Poly(ethylene glycol) Diacrylate Hydrogel with Silver Nanoclusters for Water Pb(II) Ions Filtering. Gels 2023; 9:gels9020133. [PMID: 36826304 PMCID: PMC9957228 DOI: 10.3390/gels9020133] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 01/25/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
Poly(ethylene glycol) diacrylate (PEGDA) hydrogels modified with luminescent silver nanoclusters (AgNCs) are synthesized by a photo-crosslinking process. The hybrid material thus obtained is employed to filter Pb(II) polluted water. Under the best conditions, the nanocomposite is able to remove up to 80-90% of lead contaminant, depending on the filter composition. The experimental results indicate that the adsorption process of Pb(II) onto the modified filter can be well modeled using the Freundlich isotherm, thus revealing that the chemisorption is the driving process of Pb(II) adsorption. In addition, the parameter n in the Freundlich model suggests that the adsorption process of Pb(II) ions in the modified hydrogel is favored. Based on the obtained remarkable contaminant uptake capacity and the overall low cost, this hybrid system appears to be a promising sorbent material for the removal of Pb(II) ions from aqueous media.
Collapse
Affiliation(s)
- Luca Burratti
- Department of Industrial Engineering, University of Rome Tor Vergata, Via del Politecnico 1, 00133 Rome, Italy
- Correspondence: (L.B.); (M.Z.)
| | - Marco Zannotti
- Department School of Science and Technology, Chemistry Division, ChIP Research Center, University of Camerino, Via Madonna delle Ceneri, 62032 Camerino, Italy
- Correspondence: (L.B.); (M.Z.)
| | - Valentin Maranges
- Department of Industrial Engineering, University of Rome Tor Vergata, Via del Politecnico 1, 00133 Rome, Italy
| | - Rita Giovannetti
- Department School of Science and Technology, Chemistry Division, ChIP Research Center, University of Camerino, Via Madonna delle Ceneri, 62032 Camerino, Italy
| | - Leonardo Duranti
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via Della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Fabio De Matteis
- Department of Industrial Engineering, University of Rome Tor Vergata, Via del Politecnico 1, 00133 Rome, Italy
| | - Roberto Francini
- Department of Industrial Engineering, University of Rome Tor Vergata, Via del Politecnico 1, 00133 Rome, Italy
| | - Paolo Prosposito
- Department of Industrial Engineering, University of Rome Tor Vergata, Via del Politecnico 1, 00133 Rome, Italy
| |
Collapse
|
4
|
Joshi DJ, Lalrinhlupuii, Malek NI, Muthukumaran RB, Kailasa SK. Microwave-Assisted Synthesis of Red Emitting Copper Nanoclusters Using Trypsin as a Ligand for Sensing of Pb 2+ And Hg 2+ Ions in Water and Tobacco Samples. APPLIED SPECTROSCOPY 2022; 76:1234-1245. [PMID: 35477299 DOI: 10.1177/00037028221100544] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In this work, a microwave assisted method was developed for synthesis of red fluorescent copper nanoclusters (NCs) using trypsin as a template (trypsin-Cu). The as-synthesized trypsin-Cu NCs are stable and water soluble, exhibiting fluorescence emission at 657 nm when excited at 490 nm. The as-prepared red-emitting trypsin-Cu NCs were characterized by using several analytical techniques such as ultraviolet-visible (UV-Vis) and fluorescence, fluorescence lifetime, Fourier transform infrared, and X-ray photoelectron spectroscopic techniques. Red-emitting trypsin-Cu NCs acted as a nanosensor for sensing both Pb2+ and Hg2+ ions through fluorescence quenching. Using this approach, good linearities are observed in the range of 0.1-25 and of 0.001-1 μM with the lower limit of detection of 14.63 and 56.81 nM for Pb2+ and Hg2+ ions, respectively. Trypsin-Cu NCs-based fluorescence assay was successfully applied to detect both Hg2+ and Pb2+ ions in water and tobacco samples.
Collapse
Affiliation(s)
- Dharaben J Joshi
- Department of Chemistry, 123518Sardar Vallabhbhai National Institute of Technology, Surat, India
| | - Lalrinhlupuii
- Department of Chemistry, 29670Mizoram University, Aizawl, India
| | - Naved I Malek
- Department of Chemistry, 123518Sardar Vallabhbhai National Institute of Technology, Surat, India
| | | | - Suresh Kumar Kailasa
- Department of Chemistry, 123518Sardar Vallabhbhai National Institute of Technology, Surat, India
| |
Collapse
|
5
|
Yu T, Wang B, Yu L. Dual‐mode color‐changing
pH
sensor based on fluorescent
MOF
embedded photonic crystal hydrogel. J CHIN CHEM SOC-TAIP 2022. [DOI: 10.1002/jccs.202200064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Tong Yu
- Department of Chemistry, School of Science Tianjin University Tianjin China
| | - Bin Wang
- Tianjin Engineering Technology Center of Chemical Wastewater Source Reduction and Recycling, School of Science Tianjin Chengjian University Tianjin China
| | - Li‐Ping Yu
- Department of Chemistry, School of Science Tianjin University Tianjin China
| |
Collapse
|
6
|
Tuning the Sensing Properties of N and S Co-Doped Carbon Dots for Colorimetric Detection of Copper and Cobalt in Water. SENSORS 2022; 22:s22072487. [PMID: 35408102 PMCID: PMC9003535 DOI: 10.3390/s22072487] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 01/05/2023]
Abstract
In this study, nitrogen and sulfur co-doped carbon dots (NS-CDs) were investigated for the detection of heavy metals in water through absorption-based colorimetric response. NS-CDs were synthesized by a simple one-pot hydrothermal method and characterized by TEM, STEM-coupled with energy dispersive X-ray analysis, NMR, and IR spectroscopy. Addition of Cu(II) ions to NS-CD aqueous solutions gave origin to a distinct absorption band at 660 nm which was attributed to the formation of cuprammonium complexes through coordination with amino functional groups of NS-CDs. Absorbance increased linearly with Cu(II) concentration in the range 1–100 µM and enabled a limit of detection of 200 nM. No response was observed with the other tested metals, including Fe(III) which, however, appreciably decreased sensitivity to copper. Increase of pH of the NS-CD solution up to 9.5 greatly reduced this interference effect and enhanced the response to Cu(II), thus confirming the different nature of the two interactions. In addition, a concurrent response to Co(II) appeared in a different spectral region, thus suggesting the possibility of dual-species multiple sensitivity. The present method neither requires any other reagents nor any previous assay treatment and thus can be a promising candidate for low-cost monitoring of copper onsite and by unskilled personnel.
Collapse
|
7
|
Han F, Li J, Wang W, Wang M, Li L. Synthesis of silver nanoclusters by irradiation reduction and detection of Cr 3+ ions. RSC Adv 2022; 12:33207-33214. [DOI: 10.1039/d2ra06536c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 11/09/2022] [Indexed: 11/22/2022] Open
Abstract
Using irradiation technology, the synthesis of silver nanoclusters can be achieved efficiently and green without relying on reducing agents and high energy consumption equipment.
Collapse
Affiliation(s)
- Fei Han
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jihao Li
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- Wuwei Institute of New Energy, Gansu, 733000, China
| | - Wenrui Wang
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mouhua Wang
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Linfan Li
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- Wuwei Institute of New Energy, Gansu, 733000, China
| |
Collapse
|
8
|
Chen L, Cheng Z, Luo M, Wang T, Zhang L, Wei J, Wang Y, Li P. Fluorescent noble metal nanoclusters for contaminants analysis in food matrix. Crit Rev Food Sci Nutr 2021:1-19. [PMID: 34658279 DOI: 10.1080/10408398.2021.1990010] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Recently, food safety issues caused by contaminants have aroused great public concern. The development of innovative and efficient sensing techniques for contaminants detection in food matrix is in urgent demand. As fluorescent nanomaterials, noble metal nanoclusters have attracted much attention because of their ease of synthesis, enhanced catalytic activity and biocompatibility, and most importantly, excellent photoluminescence property that provides promising analytical applications. This review comprehensively introduced the synthesis method of noble metal nanoclusters, and summarized the application of metal nanoclusters as fluorescent sensing materials in the detection of pollutants, including pesticides, heavy metal, mycotoxin, food additives, and other contaminants in food. The detection mechanism of pesticide residues mostly relies on the inhibition of natural enzymes. For heavy metals, the detection mechanism is mainly related to the interaction between metal ions and nanoclusters or ligands. It is evidenced that metal nanoclusters have great potential application in the field of food safety monitoring. Moreover, challenges and future trends of nanoclusters were discussed. We hope that this review can provide insights and directions for the application of nanoclusters in contaminants detection.
Collapse
Affiliation(s)
- Ling Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Zehua Cheng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Mai Luo
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Ting Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Lei Zhang
- Laboratory Animal Center, Sichuan Academy of Chinese Medicine Sciences, Chengdu, China
| | - Jinchao Wei
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Yitao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Peng Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| |
Collapse
|
9
|
Moreno-Torres JA, Flores-Acosta M, Ramírez-Bon R, Coutino-Gonzalez E. Lead confinement and fluorimetric detection using zeolites: towards a rapid and cost-effective detection of lead in water. JPHYS PHOTONICS 2021. [DOI: 10.1088/2515-7647/abf945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Abstract
Metal clusters stabilized in zeolites have emerged as promising candidates for optoelectronic applications due to their remarkable luminescent properties. These optical properties have been exploited to develop fast and highly sensitive methods for optical sensing in environmental monitoring. However, to date, these materials have not been proposed as a detection method based on their luminescent response for sensing toxic metal ions. In this report, we synthesized luminescent lead (Pb) clusters into the cavities of synthetic F9-NaX zeolites, which were used as scaffolds to confine and detect Pb2+ ions in water through a fluorimetric mode. These Pb-F9 samples display an intense cyan emission in dehydrated form. Also, a correlation between the luminescence intensity of the materials and the lead loadings was observed, obtaining a low limit of detection of 1.248 ppb and a limit of quantification of 3.782 ppb. The results clearly demonstrate the potential of luminescent lead-exchanged F9 zeolites as one-step method for lead monitoring in water using a rapid and low-cost strategy.
Collapse
|
10
|
MU J, YANG JL, ZHANG DW, JIA Q. Progress in Preparation of Metal Nanoclusters and Their Application in Detection of Environmental Pollutants. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2021. [DOI: 10.1016/s1872-2040(21)60082-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
11
|
Ruangchaithaweesuk S, Srirattanasakunsuk P, Poomuang C, Kanokworrakarn A, Tuntulani T. Poly(methacrylic acid)‐Stabilized Silver Nanoclusters as Colorimetric Sensors for the Rapid and Sensitive Detection of Ascorbic Acid. ChemistrySelect 2021. [DOI: 10.1002/slct.202004547] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Songtham Ruangchaithaweesuk
- Department of Chemistry Faculty of Liberal Arts and Science Kasetsart University Kamphaeng Saen Campus Nakhon Pathom 73140 Thailand
| | - Pattraporn Srirattanasakunsuk
- Department of Chemistry Faculty of Liberal Arts and Science Kasetsart University Kamphaeng Saen Campus Nakhon Pathom 73140 Thailand
| | - Chutima Poomuang
- Department of Chemistry Faculty of Liberal Arts and Science Kasetsart University Kamphaeng Saen Campus Nakhon Pathom 73140 Thailand
| | - Amornrat Kanokworrakarn
- Department of Chemistry Faculty of Liberal Arts and Science Kasetsart University Kamphaeng Saen Campus Nakhon Pathom 73140 Thailand
| | - Thawatchai Tuntulani
- Department of Chemistry Faculty of Science Chulalongkorn University Bangkok 10330 Thailand
| |
Collapse
|
12
|
Burratti L, Ciotta E, De Matteis F, Prosposito P. Metal Nanostructures for Environmental Pollutant Detection Based on Fluorescence. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:276. [PMID: 33494342 PMCID: PMC7911013 DOI: 10.3390/nano11020276] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/15/2021] [Accepted: 01/18/2021] [Indexed: 12/14/2022]
Abstract
Heavy metal ions and pesticides are extremely dangerous for human health and environment and an accurate detection is an essential step to monitor their levels in water. The standard and most used methods for detecting these pollutants are sophisticated and expensive analytical techniques. However, recent technological advancements have allowed the development of alternative techniques based on optical properties of noble metal nanomaterials, which provide many advantages such as ultrasensitive detection, fast turnover, simple protocols, in situ sampling, on-site capability and reduced cost. This paper provides a review of the most common photo-physical effects impact on the fluorescence of metal nanomaterials and how these processes can be exploited for the detection of pollutant species. The final aim is to provide readers with an updated guide on fluorescent metallic nano-systems used as optical sensors of heavy metal ions and pesticides in water.
Collapse
Affiliation(s)
- Luca Burratti
- Department of Industrial Engineering and INSTM, University of Rome Tor Vergata, Via del Politecnico 1, 00133 Rome, Italy; (L.B.); (F.D.M.)
| | - Erica Ciotta
- Institute for Microelectronics and Microsystems (IMM) CNR Tor Vergata, Via del Fosso del Cavaliere 100, 00133 Rome, Italy;
| | - Fabio De Matteis
- Department of Industrial Engineering and INSTM, University of Rome Tor Vergata, Via del Politecnico 1, 00133 Rome, Italy; (L.B.); (F.D.M.)
| | - Paolo Prosposito
- Department of Industrial Engineering and INSTM, University of Rome Tor Vergata, Via del Politecnico 1, 00133 Rome, Italy; (L.B.); (F.D.M.)
| |
Collapse
|
13
|
Dual-emission copper nanoclusters-based ratiometric fluorescent probe for intracellular detection of hydroxyl and superoxide anion species. Mikrochim Acta 2021; 188:13. [PMID: 33389152 DOI: 10.1007/s00604-020-04683-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 12/03/2020] [Indexed: 01/12/2023]
Abstract
A fluorescent nanoprobe based on copper nanoclusters (CuNCs) has been developed for ratiometric detection of hydroxyl radicals (•OH) and superoxide anion radicals (O2•-). Two differently luminescent CuNCs, namely cyan-emissive poly(methacrylic acid)-protected copper nanoclusters (PCuNCs) and orange-emissive bovine serum albumin-protected CuNCs (BCuNCs), were conjugated to obtain a hybrid, dual-emission nanoprobe (PCuNCs-BCuNCs) with the corresponding peaks at 445 nm and 652 nm at an excitation wavelength of 360 nm. In particular, the fluorescence peak at 445 nm gradually enhanced with the incremental addition of •OH and O2•-. However, the fluorescence emission at 652 nm was greatly quenched in the presence of •OH, while in case of O2•-, the fluorescence intensity remained constant. The differential response of the PCuNCs-BCuNCs towards •OH and O2•- formed the basis of ratiometric detection. Under optimal conditions, the PCuNCs-BCuNCs exhibited good sensitivity and linearity towards •OH and O2•- with limits of detection of 0.15 μM and 1.8 μM, respectively. Moreover, the nanoprobe exhibited high selectivity for •OH and O2•- over other potential ROS interferences. Besides, PCuNCs-BCuNCs were eventually applied for qualitative and quantitative ratiometric assessment of intracellular •OH and O2•- in L-132 cells. Therefore, this strategy unveils a new potential for copper nanocluster-based sensing of ROS.
Collapse
|
14
|
Pryshchepa O, Pomastowski P, Buszewski B. Silver nanoparticles: Synthesis, investigation techniques, and properties. Adv Colloid Interface Sci 2020; 284:102246. [PMID: 32977142 DOI: 10.1016/j.cis.2020.102246] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/15/2020] [Accepted: 08/18/2020] [Indexed: 12/19/2022]
Abstract
The unique silver properties, especially in the form of nanoparticles (NPs), allow to utilize them in numerous applications. For instance, Ag NPs can be utilized for the production of electronic and solar energy harvesting devices, in advanced analytical techniques (NALDI, SERS), catalysis and photocatalysis. Moreover, the Ag NPs can be useful in medicine for bioimaging, biosensing as well as in antibacterial and anticancer therapies. The Ag NPs utilization requires comprehensive knowledge about their features regarding the synthesis approaches as well as exploitation conditions. Unfortunately, a large number of scientific articles provide only restricted information according to the objects under investigation. Additionally, the results could be affected by artifacts introduced with exploited equipment, the utilized technique or sample preparation stages. However, it is rather difficult to get information about problems, which may occur during the studies. Thus, the review provides information about novel trends in the Ag NPs synthesis, among which the physical, chemical, and biological approaches can be found. Basic information about approaches for the control of critical parameters of NPs, i.e. size and shape, was also revealed. It was shown, that the reducing agent, stabilizer, the synthesis environment, including trace ions, have a direct impact on the Ag NPs properties. Further, the capabilities of modern analytical techniques for Ag NPs and nanocomposites investigations were shown, among other microscopic (optical, TEM, SEM, STEM, AFM), spectroscopic (UV-Vis, IR, Raman, NMR, electron spectroscopy, XRD), spectrometric (MALDI-TOF MS, SIMS, ICP-MS), and separation (CE, FFF, gel electrophoresis) techniques were described. The limitations and possible artifacts of the techniques were mentioned. A large number of presented techniques is a distinguishing feature, which makes the review different from others. Finally, the physicochemical and biological properties of Ag NPs were demonstrated. It was shown, that Ag NPs features are dependent on their basic parameters, such as size, shape, chemical composition, etc. At the end of the review, the modern theories of the Ag NPs toxic mechanism were shown in a way that has never been presented before. The review should be helpful for scientists in their own studies, as it can help to prepare experiments more carefully.
Collapse
|
15
|
Bolli E, Mezzi A, Burratti L, Prosposito P, Casciardi S, Kaciulis S. X‐ray and UV photoelectron spectroscopy of Ag nanoclusters. SURF INTERFACE ANAL 2020. [DOI: 10.1002/sia.6783] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Eleonora Bolli
- Institute for the Study of Nanostructured Materials ISMN‐CNR Rome Italy
- Department of Industrial Engineering University of Rome Tor Vergata Rome Italy
| | - Alessio Mezzi
- Institute for the Study of Nanostructured Materials ISMN‐CNR Rome Italy
| | - Luca Burratti
- Department of Industrial Engineering University of Rome Tor Vergata Rome Italy
| | - Paolo Prosposito
- Department of Industrial Engineering University of Rome Tor Vergata Rome Italy
| | - Stefano Casciardi
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene National Institute for Insurance against Accidents at Work (INAIL) Rome Italy
| | - Saulius Kaciulis
- Institute for the Study of Nanostructured Materials ISMN‐CNR Rome Italy
| |
Collapse
|
16
|
Abstract
This review provides an up-to-date overview on silver nanoparticles-based materials suitable as optical sensors for water pollutants. The topic is really hot considering the implications for human health and environment due to water pollutants. In fact, the pollutants present in the water disturb the spontaneity of life-related mechanisms, such as the synthesis of cellular constituents and the transport of nutrients into cells, and this causes long / short-term diseases. For this reason, research continuously tends to develop always innovative, selective and efficient processes / technologies to remove pollutants from water. In this paper we will report on the silver nanoparticles synthesis, paying attention to the stabilizers and mostly used ligands, to the characterizations, to the properties and applications as colorimetric sensors for water pollutants. As water pollutants our attention will be focused on several heavy metals ions, such as Hg(II), Ni(II),Cu(II), Fe(III), Mn(II), Cr(III/V) Co(II) Cd(II), Pb(II), due to their dangerous effects on human health. In addition, several systems based on silver nanoparticles employed as pesticides colorimetric sensors in water will be also discussed. All of this with the aim to provide to readers a guide about recent advanced silver nanomaterials, used as colorimetric sensors in water.
Collapse
|
17
|
Prosposito P, Burratti L, Bellingeri A, Protano G, Faleri C, Corsi I, Battocchio C, Iucci G, Tortora L, Secchi V, Franchi S, Venditti I. Bifunctionalized Silver Nanoparticles as Hg 2+ Plasmonic Sensor in Water: Synthesis, Characterizations, and Ecosafety. NANOMATERIALS 2019; 9:nano9101353. [PMID: 31547209 PMCID: PMC6835846 DOI: 10.3390/nano9101353] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 09/13/2019] [Accepted: 09/16/2019] [Indexed: 12/22/2022]
Abstract
In this work, hydrophilic silver nanoparticles (AgNPs), bifunctionalized with citrate (Cit) and L-cysteine (L-cys), were synthesized. The typical local surface plasmon resonance (LSPR) at λ max = 400 nm together with Dynamic Light Scattering (DLS) measurements (<2RH> = 8 ± 1 nm) and TEM studies (Ø = 5 ± 2 nm) confirmed the system nanodimension and the stability in water. Molecular and electronic structures of AgNPs were investigated by FTIR, SR-XPS, and NEXAFS techniques. We tested the system as plasmonic sensor in water with 16 different metal ions, finding sensitivity to Hg2+ in the range 1–10 ppm. After this first screening, the molecular and electronic structure of the AgNPs-Hg2+ conjugated system was deeply investigated by SR-XPS. Moreover, in view of AgNPs application as sensors in real water systems, environmental safety assessment (ecosafety) was performed by using standardized ecotoxicity bioassay as algal growth inhibition tests (OECD 201, ISO 10253:2006), coupled with determination of Ag+ release from the nanoparticles in fresh and marine aqueous exposure media, by means of ICP-MS. These latest studies confirmed low toxicity and low Ag+ release. Therefore, these ecosafe AgNPs demonstrate a great potential in selective detection of environmental Hg2+, which may attract a great interest for several biological research fields.
Collapse
Affiliation(s)
- Paolo Prosposito
- Department of Industrial Engineering and INSTM, University of Rome Tor Vergata, via del Politecnico 1, 00133 Rome, Italy.
- Center for Regenerative Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy.
| | - Luca Burratti
- Department of Industrial Engineering and INSTM, University of Rome Tor Vergata, via del Politecnico 1, 00133 Rome, Italy.
| | - Arianna Bellingeri
- Department of Physical, Earth and Environmental Sciences, University of Siena, Via Mattioli 4, 53100 Siena, Italy.
| | - Giuseppe Protano
- Department of Physical, Earth and Environmental Sciences, University of Siena, Via Mattioli 4, 53100 Siena, Italy.
| | - Claudia Faleri
- Department of Life Sciences, via Mattioli 4, 53100 Siena, Italy.
| | - Ilaria Corsi
- Department of Physical, Earth and Environmental Sciences, University of Siena, Via Mattioli 4, 53100 Siena, Italy.
| | - Chiara Battocchio
- Department of Sciences, Roma Tre University of Rome, Via della Vasca Navale 79, 00146 Rome, Italy.
| | - Giovanna Iucci
- Department of Sciences, Roma Tre University of Rome, Via della Vasca Navale 79, 00146 Rome, Italy.
| | - Luca Tortora
- Department of Sciences, Roma Tre University of Rome, Via della Vasca Navale 79, 00146 Rome, Italy.
- Surface Analysis Laboratory INFN Roma Tre, via della Vasca Navale 84, 00146 Rome, Italy.
| | - Valeria Secchi
- Department of Sciences, Roma Tre University of Rome, Via della Vasca Navale 79, 00146 Rome, Italy.
| | - Stefano Franchi
- Elettra-Sincrotrone Trieste S.c.p.A., Strada Statale 14, km 163.5, 34149 Basovizza Trieste, Italy.
| | - Iole Venditti
- Department of Sciences, Roma Tre University of Rome, Via della Vasca Navale 79, 00146 Rome, Italy.
| |
Collapse
|