1
|
Rahman A, Khan F, Jennings JR, Tan AL, Kim YM, Khan MM. Effect of CdS loading on the properties and photocatalytic activity of MoS 2 nanosheets. BMC Chem 2024; 18:135. [PMID: 39049130 PMCID: PMC11270851 DOI: 10.1186/s13065-024-01250-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 07/15/2024] [Indexed: 07/27/2024] Open
Abstract
Molybdenum sulfide (MoS2) and modified MoS2 with different percentages of CdS (10%, 30%, and 50% CdS@MoS2) were successfully synthesized and characterized. The photocatalytic performance of the MoS2 and CdS@MoS2 was evaluated by degrading brilliant green (BG), methylene blue (MB), and rhodamine B (RhB) dyes under visible light irradiation. Amongst the synthesized photocatalysts, 50% CdS@MoS2 exhibited the highest photocatalytic activity, degrading 97.6%, 90.3%, and 75.5% of BG, MB, and RhB dyes, respectively within 5 h. The active species involved in the degradation processes were investigated. All trapping agents inhibited BG and MB degradation to a similar extent, indicating that all of the probed active species play an important role in the degradation of BG and MB. In contrast, h+ and O2•- were found to be the main reactive species in the photocatalytic RhB degradation. A potential mechanism for the photocatalytic degradation of dyes using CdS@MoS2 has been proposed. This work highlights the potential of CdS@MoS2 as a photocatalyst for more efficient water remediation applications.
Collapse
Affiliation(s)
- Ashmalina Rahman
- Chemical Sciences, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong, BE, 1410, Brunei Darussalam
| | - Fazlurrahman Khan
- Institute of Fisheries Science, Pukyong National University, Busan, 48513, Republic of Korea
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea
| | - James Robert Jennings
- Applied Physics, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong, BE, 1410, Brunei Darussalam
- Optoelectronic Device Research Group, Universiti Brunei Darussalam, Brunei Darussalam, Jalan Tungku Link, Gadong, BE, 1410, Brunei Darussalam
| | - Ai Ling Tan
- Chemical Sciences, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong, BE, 1410, Brunei Darussalam
| | - Young-Mog Kim
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea
- Department of Food Science and Technology, Pukyong National University, Busan, 48513, Republic of Korea
| | - Mohammad Mansoob Khan
- Chemical Sciences, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong, BE, 1410, Brunei Darussalam.
- Optoelectronic Device Research Group, Universiti Brunei Darussalam, Brunei Darussalam, Jalan Tungku Link, Gadong, BE, 1410, Brunei Darussalam.
| |
Collapse
|
2
|
Reza Amani-Ghadim A, Dadkhah S, Abdouss M, Khataee A, Sattari S, Fattahi M. Development of a novel Z-scheme Co xNi 1-xTiO 3/CdS (x = 0.5) photocatalyst for the efficient degradation of organic pollutants via a visible-light-driven photocatalytic process. J Colloid Interface Sci 2024; 663:1035-1051. [PMID: 38452545 DOI: 10.1016/j.jcis.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 03/09/2024]
Abstract
Herein, for the first time, we reported the synthesis of a novel Z-scheme CoxNi1-xTiO3/CdS (x = 0.5) heterojunction photocatalyst and the investigation of its visible-light-driven photocatalytic performance toward degradation of methylene blue (MB). The developed photocatalyst was structurally characterized by applying X-Ray diffraction analysis (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), Brunauer-Emmett-Teller (BET), differential reflectance spectroscopy (DRS), and photoluminescence (PL) techniques. The results indicated the formation of a highly porous structure with improved visible light adsorption capacity, favorable for the catalytic activity. At an optimum condition of 10 mg/L of MB and 300 mg/L of catalyst, the ternary photocatalyst demonstrated a MB removal efficiency of 99 % after 75 min of the treatment process. The radical trapping experiments unveiled that hydroxyl and superoxide radicals were two main reactive species formed under visible light, while the valance holes possessed an insignificant role. The synergetic impact of the CoxNi1-xTiO3 (x = 0.5) and CdS on the photodegradation of MB over the as-prepared CoxNi1-xTiO3/CdS (x = 0.5) photocatalyst through Z-scheme photocatalysis was indicated by the results of the mechanism studies. The percentage impact of the treatment time, MB concentration, the ratio of CoxNi1-xTiO3/CdS (x = 0.5), and the dosage of catalyst using analysis of the CCD modeling was obtained as 47.04, 16.67, 7.22 and 0.87 %, respectively. Furthermore, the as-synthesized photocatalyst possessed high recyclability and photostability with only a 3 % decline in activity after four repetitive cycles.
Collapse
Affiliation(s)
- Ali Reza Amani-Ghadim
- Applied Chemistry Research Laboratory, Department of Chemistry, Faculty of Basic Science, Azarbaijan Shahid Madani University (ASMU), Tabriz 53751-71379, Iran; New Technologies in the Environment Research Center, Azarbaijan Shahid Madani University (ASMU), Tabriz 53751-71379, Iran.
| | - Shadi Dadkhah
- Department of Chemistry, Amirkabir University of Technology, 15875-4413 Tehran, Iran
| | - Majid Abdouss
- Department of Chemistry, Amirkabir University of Technology, 15875-4413 Tehran, Iran
| | - Alireza Khataee
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471 Tabriz, Iran; Department of Environmental Engineering, Gebze Technical University, 41400 Gebze, Turkey
| | - Shabnam Sattari
- Applied Chemistry Research Laboratory, Department of Chemistry, Faculty of Basic Science, Azarbaijan Shahid Madani University (ASMU), Tabriz 53751-71379, Iran
| | - Mehdi Fattahi
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam; School of Engineering & Technology, Duy Tan University, Da Nang, Vietnam.
| |
Collapse
|
3
|
Luu TVH, Nguyen HYX, Nguyen QT, Nguyen QB, Nguyen THC, Pham NC, Nguyen XD, Nguyen TK, Dao NN. Enhanced photocatalytic performance of ZnO under visible light by co-doping of Ta and C using hydrothermal method. RSC Adv 2024; 14:12954-12965. [PMID: 38650687 PMCID: PMC11033721 DOI: 10.1039/d4ra00579a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 04/10/2024] [Indexed: 04/25/2024] Open
Abstract
This study attempted to improve the photocatalytic activity of zinc oxide (ZnO) semiconductors in the visible light region by introducing the co-doping of carbon (C) and tantalum (Ta) to ZnO (ZTC) using a simple hydrothermal method with the respective precursors. The obtained uniform ZTC nanoparticles with an average crystal size of 29.30 nm (according to Scherrer's equation) revealed a redshift with a decrease in bandgap (Eg) from 3.04 eV to 2.88 eV, allowing the obtained photocatalyst to absorb the energy of the visible light for photocatalysis. Furthermore, the Zn 2p and Ta 4f core level spectra confirmed the presence of Zn2+ and Ta5+ in the ZTC sample. In addition, the infrared spectra identified hydrogen-related defects (HRDs), while the O 1s spectra indicated the existence of oxygen vacancies (VO). Electrochemical tests revealed improvement in the electron conductivity and charge separation of the obtained materials. To follow, the photocatalytic performance assessment was conducted by varying the C/Zn2+ ratios (5, 10, and 15 mol%) in ZTC samples, the initial RhB concentration (7, 15, and 30 ppm), and the pH of the RhB solution (3.0-10.0). The photodegradation on ZTC samples showed the most effectiveness for a 7 ppm RhB solution with a C/Zn2+ ratio of 10 mol% in the slightly alkaline medium (pH 9.0). Additionally, ZTC also exhibited commendable durability after being reused several times. The nature of RhB photodegradation was proposed and discussed via a mechanism at the end of this work.
Collapse
Affiliation(s)
- Thi Viet Ha Luu
- Faculty of Chemical Engineering, Industrial University of Ho Chi Minh City Ho Chi Minh City 700000 Vietnam
| | - Hong Yen Xuan Nguyen
- Faculty of Chemical Engineering, Industrial University of Ho Chi Minh City Ho Chi Minh City 700000 Vietnam
| | - Quoc Thang Nguyen
- Faculty of Chemical Engineering, Industrial University of Ho Chi Minh City Ho Chi Minh City 700000 Vietnam
| | - Quang Bac Nguyen
- Institute of Material Science, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet Hanoi 100000 Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet Hanoi 100000 Vietnam
| | - Thi Ha Chi Nguyen
- Institute of Material Science, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet Hanoi 100000 Vietnam
| | - Ngoc Chuc Pham
- Institute of Material Science, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet Hanoi 100000 Vietnam
| | | | - Trung Kien Nguyen
- Institute of Material Science, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet Hanoi 100000 Vietnam
| | - Ngoc Nhiem Dao
- Institute of Material Science, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet Hanoi 100000 Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet Hanoi 100000 Vietnam
| |
Collapse
|
4
|
Zhang S, Li C, Ke C, Liu S, Yao Q, Huang W, Dang Z, Guo C. Extracellular polymeric substances sustain photoreduction of Cr(VI) by Shewanella oneidensis-CdS biohybrid system. WATER RESEARCH 2023; 243:120339. [PMID: 37482009 DOI: 10.1016/j.watres.2023.120339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 07/11/2023] [Indexed: 07/25/2023]
Abstract
Photosensitized biohybrid system (PBS) enables bacteria to exploit light energy harvested by semiconductors for rapid pollutants transformation, possessing a promising future for water reclamation. Maintaining a biocompatible environment under photocatalytic conditions is the key to developing PBS-based treatment technologies. Natural microbial cells are surrounded by extracellular polymeric substances (EPS) that either be tightly bound to the cell wall (i.e., tightly bound EPS, tbEPS) or loosely associated with cell surface (i.e., loosely bound EPS, lbEPS), which provide protection from unfavorable environment. We hypothesized that providing EPS fractions can enhance bacterial viability under adverse environment created by photocatalytic reactions. We constructed a model PBS consisting of Shewanella oneidensis and CdS using Cr(VI) as the target pollutant. Results showed complete removal of 25 mg/L Cr(VI) within 90 min without an electron donor, which may mainly rely on the synergistic effect of CdS and bacteria on photoelectron transfer. Long-term cycling experiment of pristine PBS and PBS with extra EPS fractions (including lbEPS and tbEPS) for Cr(VI) treatment showed that PBS with extra lbEPS achieved efficient Cr(VI) removal within five consecutive batch treatment cycles, compared to the three cycles both in pristine PBS and PBS with tbEPS. After addition of lbEPS, the accumulation of reactive oxygen species (ROS) was greatly reduced via the EPS-capping effect and quenching effect, and the toxic metal internalization potential was lowered by complexation with Cd and Cr, resulting in enhanced bacterial viability during photocatalysis. This facile and efficient cytoprotective method helps the rational design of PBS for environmental remediation.
Collapse
Affiliation(s)
- Siyu Zhang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, China
| | - Changhao Li
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Changdong Ke
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, China
| | - Sijia Liu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, China
| | - Qian Yao
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, China
| | - Weilin Huang
- Department of Environmental Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, China; Guangdong Provincial Key Lab of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou 510006, China
| | - Chuling Guo
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, China.
| |
Collapse
|
5
|
Abdrabou D, Ahmed M, Hussein A, El-Sherbini T. Photocatalytic behavior for removal of methylene blue from aqueous solutions via nanocomposites based on Gd 2O 3/CdS and cellulose acetate nanofibers. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:99789-99808. [PMID: 37615907 PMCID: PMC10533607 DOI: 10.1007/s11356-023-28999-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/22/2023] [Indexed: 08/25/2023]
Abstract
Efficient cleaning of contaminated water by photocatalysis has become an effective strategy in recent years due to its environmental and ecological designation. Cadmium sulfate (CdS) is an excellent photocatalyst in the visible region but has low quantum efficiency. In order to increase the photocatalytic efficiency, CdS was modified with gadolinium oxide (Gd2O3) and combined with graphene oxide (GO) nanoparticles. The estimated crystallite size (Ds) for Gd2O3, CdS/Gd2O3, and CdS/Gd2O3@GO was 29.6, 11.6, and 11.5 nm, respectively. The degradation of methylene blue (MB) reaches the highest values after 60 min under visible light irradiation with a dye concentration of (0.25 ppm). Whereas in powdered composition the efficiency of dye removal has been enhanced under UV irradiation, it reduced by increasing the MB concentration to 0.50 ppm with visible light irradiation. In addition, the CdS with/without Gd2O3 and GO were integrated into electrospun nanofibrous cellulose acetate (CA) through the electrospinning technique. The compounds of Gd2O3, CdS/Gd2O3, and CdS/Gd2O3/GO were encapsulated into CA nanofibers for the degradation of MB under visible and UV irradiation. The apparent rate constant (k) achieves a value of 0.006, 0.007, and 0.0013 min-1 while the removal efficiency reaches 41.02%, 54.71%, and 71.42% for Gd2O3@CA, CdS/Gd2O3@CA, and CdS/Gd2O3/GO@CA, respectively, after 60 min under UV irradiation.
Collapse
Affiliation(s)
- Dalia Abdrabou
- Misr University for Science and Technology, 6 October, Giza, 12566, Egypt.
| | - Mohamed Ahmed
- Department of Physics, Faculty of Science, Suez University, Suez, 43518, Egypt
| | - Ali Hussein
- Misr University for Science and Technology, 6 October, Giza, 12566, Egypt
| | - Tharwat El-Sherbini
- Laboratory of Laser and New Materials, Department of Physics, Faculty of Science, Cairo University, Giza, 12613, Egypt
| |
Collapse
|
6
|
Liang H, Zhu C, Wang A, Palanisamy K, Chen F. Facile synthesis of NiAl 2O 4/g-C 3N 4 composite for efficient photocatalytic degradation of tetracycline. J Environ Sci (China) 2023; 127:700-713. [PMID: 36522099 DOI: 10.1016/j.jes.2022.06.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 06/17/2023]
Abstract
Designing high-efficiency photocatalysts responsive to visible light is important for the degradation of antibiotics in water. Heterojunction engineering is undoubtedly an effective strategy to improve the photocatalytic performance. In this work, spinel-type metal oxides (NiAl2O4, NAO) are synthesized by a simple sol-gel and calcination process. After compounding graphitic carbon nitride (g-C3N4), NAO/g-C3N4 heterojunction is obtained, which then is used as the photocatalyst for tetracycline hydrochloride (TC). The effects of photocatalyst dosage, the initial concentration of TC, and solution pH on photodegradation performance are systematically studied. The removal rate of TC on NAO/g-C3N4 reach up to ∼90% after visible light irradiation for 2 hr and the degradation rate constant is ∼7 times, and ∼32 times higher than that of pure NAO and g-C3N4. The significantly improved photocatalytic activity can be attributed to the synergistic effect between well matched energy levels in NAO/g-C3N4 heterojunctions, improvement of interfacial charge transfer, and enhancement of visible light absorption. This study provides a way for the synthesis of efficient photocatalysts and an economic strategy for removing antibiotics contamination in water.
Collapse
Affiliation(s)
- Huagen Liang
- Jiangsu Key Laboratory of Coal-based Greenhouse Gas Control and Utilization, Carbon Neutrality Institute, China University of Mining and Technology, Xuzhou 221008, China; School of Materials and Physics, China University of Mining and Technology, Xuzhou 221008, China.
| | - Chenxi Zhu
- Jiangsu Key Laboratory of Coal-based Greenhouse Gas Control and Utilization, Carbon Neutrality Institute, China University of Mining and Technology, Xuzhou 221008, China; School of Materials and Physics, China University of Mining and Technology, Xuzhou 221008, China
| | - Anhu Wang
- Jiangsu Key Laboratory of Coal-based Greenhouse Gas Control and Utilization, Carbon Neutrality Institute, China University of Mining and Technology, Xuzhou 221008, China; School of Materials and Physics, China University of Mining and Technology, Xuzhou 221008, China
| | - Kannan Palanisamy
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, China
| | - Fu Chen
- School of Public Administration, Hohai University, Nanjing 210098, China.
| |
Collapse
|
7
|
Mahalaxmi S, Rajesh G, Senthil Kumar P, Akilandeswari S, Arul Joshua M, Uma Shankar V, Ramya M, Thirumalai K, Rangasamy G. Fabrication of an effectual, stable and reusable Mg-doped CdAl 2O 4 nanoparticles for photodegradation of toxic pollutants under visible light illumination. CHEMOSPHERE 2023; 322:138178. [PMID: 36828113 DOI: 10.1016/j.chemosphere.2023.138178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 01/20/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
The water contamination caused by discharging extensive organic dyes stuff into water bodies is one of the utmost significant concerns disturbing the environment and human life. CdAl2O4 spinel materials have been excellent in the elimination of emerging pollutants by the photocatalysis route. These materials, when altered through methods namely doping with Mg ions, have benefits over CdAl2O4, especially reduced energy gap and light absorbed in the visible region. The XRD established the creation of space group R 3‾ with no other phase step being found. The photoluminescence outcomes indicated that Mg-doped CdAl2O4 nanoparticles had the preventing e--h+ recombination possibility, which was favorable for the photocatalytic process. The Mg (0.075 M)-doped CdAl2O4 catalyst had higher photocatalytic performance with 94 and 96% removal of two azo (BB and BG) dyes under a mere 90 min visible light irradiation, which indicated enhanced Photodegradation behaviors when compared to other Mg (0.025, 0.050 M)-doped and pure CdAl2O4 materials. More interestingly, pH 5 was optimum for the Mg (0.075 M)-doped CdAl2O4 samples photodegradation of both dyes, and the optimum catalyst amount was 5 mg/100 mL. The doped Mg ions influenced the elimination of both dyes by inducing the manufacture of more active species. The Mg (0.075 M)-doped CdAl2O4 samples is reusable and highly stable with only a 5% reduction in degradation rate after six cycles. Based on the quencher and ESR investigations, the .OH- and h+ are described as active species in the removal reaction. We hope our present examinations highlight the possibility of using Mg (0.075 M)-doped CdAl2O4 product for a broad range of photodegradation applications, also it may be applied for several ecological remediations, surface cleaning devices, foods and pharmaceutical industry applications.
Collapse
Affiliation(s)
- S Mahalaxmi
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603110, Tamil Nadu, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603 110, Tamil Nadu, India
| | - G Rajesh
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603110, Tamil Nadu, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603 110, Tamil Nadu, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603110, Tamil Nadu, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603 110, Tamil Nadu, India.
| | - S Akilandeswari
- PG & Research Department of Physics, Government College for Women (Autonomous), Kumbakonam, Tamil Nadu, India
| | - M Arul Joshua
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603110, Tamil Nadu, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603 110, Tamil Nadu, India
| | - V Uma Shankar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603110, Tamil Nadu, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603 110, Tamil Nadu, India
| | - M Ramya
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603110, Tamil Nadu, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603 110, Tamil Nadu, India
| | - K Thirumalai
- Department of Chemistry, Government Arts College, Tiruvannamalai, Tamil Nadu, India
| | - Gayathri Rangasamy
- School of Engineering, Lebanese American University, Byblos, Lebanon; Department of Sustainable Engineering, Institute of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| |
Collapse
|
8
|
Shrshr AE, Dong Y, Al-Tahan MA, Han L, Kang X, Guan H, Zhang J. Novel hydrothermal synthesis of Mn-TaS 3@rGO nanocomposite as a superior multifunctional mediator for advanced Li-S batteries. J Colloid Interface Sci 2023; 633:1042-1053. [PMID: 36516680 DOI: 10.1016/j.jcis.2022.12.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/24/2022] [Accepted: 12/04/2022] [Indexed: 12/13/2022]
Abstract
Because of its high theoretical capacity and energy density, the lithium-sulfur (Li-S) battery is a desirable next-generation energy storage technology. However, the shuttle effect of lithium polysulfide and the slow sulfur reaction kinetics remain significant barriers to Li-S battery application. In this work, tantalum trisulfide (TaS3) and selective manganese-doped tantalum trisulfide (Mn-TaS3) nanocomposites on reduced graphene oxide surface were developed via a one-step hydrothermal method for the first time and introduced as a novel multifunctional mediator in the Li-S battery. The surface engineering of Mn-TaS3@rGO with abundant defects not only exhibits the strong adsorption performance on lithium polysulfides (LiPSs) but also demonstrates the remarkable electrocatalytic effect on both the LiPSs conversion reaction in symmetric cell and the Li2S nucleation/dissolution processes in potentiostatic experiments, which would substantially promote the electrochemical performance of LSB. The cell assembled with Mn-TaS3@rGO/PP modified separator could significantly improve the cell conductivity and effectively accelerate the redox conversion of active sulfur during the charging/discharging process, which delivers exceptional long-term cycling with 683 mA h g-1 retention capacity after the 1000th cycle at 0.3C under the sulfur loading of 2.7 mg cm-2. Even at the E/S ratio as low as 5.0 µL mg-1, the reversible specific capacity of 692 mA h g-1 can be offered at 0.2C over 300 cycles. This research indicates that the novel Mn-TaS3@rGO multifunctional mediator is successfully fabricated and applied in Li-S batteries with extraordinary electrochemical performances and gives a strategy to explore the construction of a modified functional separator.
Collapse
Affiliation(s)
- Aml E Shrshr
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Yutao Dong
- College of Science, Henan Agricultural University, Zhengzhou 450002, China.
| | - Mohammed A Al-Tahan
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China; Chemistry Department, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt
| | - Lifeng Han
- Key Laboratory of Surface and Interface Science and Technology, College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Xiyang Kang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Hui Guan
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Jianmin Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
9
|
Wang F, Hu C, Chen C, Cao S, Li Q, Wang Y, Ma J. Enhanced photocatalytic water splitting over nickel-doped CdS nanocomposites synthesized via one-step controllable irradiation routine at ambient conditions. APPLIED SURFACE SCIENCE 2023; 614:156190. [DOI: 10.1016/j.apsusc.2022.156190] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2024]
|
10
|
Photocatalytic activity of Co3O4@C enhanced by induction of amorphous cobalt-based MOF. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
11
|
Novel 3D-flower shaped KTaO 3 perovskite for highly efficient photocatalytic and H 2 generation ability. Sci Rep 2022; 12:10776. [PMID: 35750702 PMCID: PMC9232656 DOI: 10.1038/s41598-022-14590-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 06/09/2022] [Indexed: 11/08/2022] Open
Abstract
Treatment of industrial wastewater is one of the biggest challenges that mankind is facing today to prevent environmental pollution and its associated adverse effects on human health. Environmentalists across the world have given a clarion call for dye degradation, wastewater treatment and their effective management in our surrounding habitats. Despite significant progress in the development of new water treatment technologies, new materials haven't matured enough for large scale industrial applications. Hence, the development of new scalable and sustainable multifunctional materials having the potential to treat wastewater and generate energy is the need of the hour. In this direction, novel 3D-flower shaped KTaO3 (3D-F-KT) material has been synthesized using areca seed powder as a green fuel. This new material has been successfully applied for the treatment of industrial wastewater contaminated with Rose Bengal. The efficiency of the material was analysed using several parameters like catalytic loading, dye concentration, kinetic and scavenging experiments, photostability, effect of co-existing ions and recyclability. In addition, the material was subjected to optical studies and H2 generation, making it a highly versatile multifunctional material, exhibiting a degradation efficiency of 94.12% in a short span of 150 min and a photocatalytic H2 generation efficiency of 374 µmol g-1 through water splitting. With an immense potential, KTaO3 presents itself as a multifunctional catalyst that can be scaled up for a variety of industrial applications ranging from wastewater treatment to energy generation and storage.
Collapse
|
12
|
Ikram M, Shahzadi A, Hayat S, Nabgan W, Ul-Hamid A, Haider A, Noor M, Goumri-Said S, Kanoun MB, Ali S. Novel Ta/chitosan-doped CuO nanorods for catalytic purification of industrial wastewater and antimicrobial applications. RSC Adv 2022; 12:16991-17004. [PMID: 35755577 PMCID: PMC9172551 DOI: 10.1039/d2ra03006c] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 05/30/2022] [Indexed: 02/05/2023] Open
Abstract
Novel tantalum (Ta) and chitosan (CS)-doped CuO nanorods (NRs) were synthesized using a single step co-precipitation route. Different concentrations (2 and 4%) of Ta were used in fixed amounts of CS and CuO to examine their catalytic activity and antimicrobial potential. For critical analysis, synthesized NRs were systematically examined using XRD, FTIR HRTEM, EDS, UV-Vis and PL spectroscopy. The XRD technique revealed the monoclinic structure of CuO while an increase in its crystallite size (from 15.5 to 18.5 nm) was observed upon doping. FTIR spectra were examined to study the functional groups of CuO where peaks at 514 cm-1 and 603 cm-1 confirmed the formation of CuO NRs. PL spectra depicted the charge transfer efficiency of the synthesized samples. The presence of dopants (Ta and CS) and constituent elements (Cu, O) was detected using EDS spectra. Additionally, the pH based catalytic performance of fabricated NRs revealed 99.7% dye degradation of toxic methylene blue (MB) dye in neutral media, 99.4% in basic media and 99.5% in acidic media along with promising antibacterial activities for Gram negative/positive bacteria, respectively upon doping of Ta (4%) into CS/CuO. The adsorption energies of CuO co-doped with CS/Ta led to the creation of stable structures that were investigated theoretically using density functional theory.
Collapse
Affiliation(s)
- M Ikram
- Solar Cell Application Research Lab, Department of Physics, Government College University Lahore Lahore 54000 Punjab Pakistan
| | - A Shahzadi
- Faculty of Pharmacy, The University of Lahore Lahore 54000 Pakistan
| | - S Hayat
- Department of Physics, Riphah Institute of Computing and Applied Sciences (RICAS), Riphah International University 14 Ali Road Lahore Pakistan
| | - W Nabgan
- Departament d'Enginyeria Química, Universitat Rovira i Virgili Av Països Catalans 26 43007 Tarragona Spain
| | - A Ul-Hamid
- Core Research Facilities, King Fahd University of Petroleum & Minerals Dhahran 31261 Saudi Arabia
| | - A Haider
- Department of Clinical Sciences, Faculty of Veterinary and Animal Sciences, Muhammad Nawaz Shareef University of Agriculture Multan 66000 Pakistan
| | - M Noor
- Department of Physics, Riphah Institute of Computing and Applied Sciences (RICAS), Riphah International University 14 Ali Road Lahore Pakistan
| | - Souraya Goumri-Said
- College of Science, Physics Department, Alfaisal University P. O. Box 50927 Riyadh 11533 Saudi Arabia
| | - Mohammed Benali Kanoun
- Department of Physics, College of Science, King Faisal University P. O. Box 400 Al-Ahsa 31982 Saudi Arabia
| | - S Ali
- Department of Physics, Riphah Institute of Computing and Applied Sciences (RICAS), Riphah International University 14 Ali Road Lahore Pakistan
| |
Collapse
|
13
|
Shalabayev Z, Baláž M, Khan N, Nurlan Y, Augustyniak A, Daneu N, Tatykayev B, Dutková E, Burashev G, Casas-Luna M, Džunda R, Bureš R, Čelko L, Ilin A, Burkitbayev M. Sustainable Synthesis of Cadmium Sulfide, with Applicability in Photocatalysis, Hydrogen Production, and as an Antibacterial Agent, Using Two Mechanochemical Protocols. NANOMATERIALS 2022; 12:nano12081250. [PMID: 35457958 PMCID: PMC9024533 DOI: 10.3390/nano12081250] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/29/2022] [Accepted: 04/02/2022] [Indexed: 01/20/2023]
Abstract
CdS nanoparticles were successfully synthesized using cadmium acetate and sodium sulfide as Cd and S precursors, respectively. The effect of using sodium thiosulfate as an additional sulfur precursor was also investigated (combined milling). The samples were characterized by XRD, Raman spectroscopy, XPS, UV-Vis spectroscopy, PL spectroscopy, DLS, and TEM. Photocatalytic activities of both CdS samples were compared. The photocatalytic activity of CdS, which is produced by combined milling, was superior to that of CdS, and was obtained by an acetate route in the degradation of Orange II under visible light irradiation. Better results for CdS prepared using a combined approach were also evidenced in photocatalytic experiments on hydrogen generation. The antibacterial potential of mechanochemically prepared CdS nanocrystals was also tested on reference strains of E. coli and S. aureus. Susceptibility tests included a 24-h toxicity test, a disk diffusion assay, and respiration monitoring. Bacterial growth was not completely inhibited by the presence of neither nanomaterial in the growth environment. However, the experiments have confirmed that the nanoparticles have some capability to inhibit bacterial growth during the logarithmic growth phase, with a more substantial effect coming from CdS nanoparticles prepared in the absence of sodium thiosulfate. The present research demonstrated the solvent-free, facile, and sustainable character of mechanochemical synthesis to produce semiconductor nanocrystals with multidisciplinary application.
Collapse
Affiliation(s)
- Zhandos Shalabayev
- General and Inorganic Chemistry Department, Al-Farabi Kazakh National University, Al-Farabi Ave. 71, Almaty 050040, Kazakhstan; (N.K.); (Y.N.); (B.T.); (G.B.); (M.B.)
- Scientific Center for Anti-Infectious Drugs, Al-Farabi Ave. 75B, Almaty 050060, Kazakhstan;
- Correspondence: ; Tel.: +7-707-793-17-65
| | - Matej Baláž
- Institute of Geotechnics, Slovak Academy of Sciences, Watsonova 45, 04001 Košice, Slovakia; (M.B.); (E.D.)
| | - Natalya Khan
- General and Inorganic Chemistry Department, Al-Farabi Kazakh National University, Al-Farabi Ave. 71, Almaty 050040, Kazakhstan; (N.K.); (Y.N.); (B.T.); (G.B.); (M.B.)
| | - Yelmira Nurlan
- General and Inorganic Chemistry Department, Al-Farabi Kazakh National University, Al-Farabi Ave. 71, Almaty 050040, Kazakhstan; (N.K.); (Y.N.); (B.T.); (G.B.); (M.B.)
| | - Adrian Augustyniak
- Chair of Building Materials and Construction Chemistry, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany;
- Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów Ave. 42, 71-065 Szczecin, Poland
| | - Nina Daneu
- Jožef Stefan Institute, Jamova Cesta 39, 01000 Ljubljana, Slovenia;
| | - Batukhan Tatykayev
- General and Inorganic Chemistry Department, Al-Farabi Kazakh National University, Al-Farabi Ave. 71, Almaty 050040, Kazakhstan; (N.K.); (Y.N.); (B.T.); (G.B.); (M.B.)
| | - Erika Dutková
- Institute of Geotechnics, Slovak Academy of Sciences, Watsonova 45, 04001 Košice, Slovakia; (M.B.); (E.D.)
| | - Gairat Burashev
- General and Inorganic Chemistry Department, Al-Farabi Kazakh National University, Al-Farabi Ave. 71, Almaty 050040, Kazakhstan; (N.K.); (Y.N.); (B.T.); (G.B.); (M.B.)
| | - Mariano Casas-Luna
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, 612 00 Brno, Czech Republic; (M.C.-L.); (L.Č.)
- Department of Physics of Materials, Charles University, 121 16 Prague, Czech Republic
| | - Róbert Džunda
- Institute of Materials Research, Slovak Academy of Sciences, Watsonova 47, 04001 Košice, Slovakia; (R.D.); (R.B.)
| | - Radovan Bureš
- Institute of Materials Research, Slovak Academy of Sciences, Watsonova 47, 04001 Košice, Slovakia; (R.D.); (R.B.)
| | - Ladislav Čelko
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, 612 00 Brno, Czech Republic; (M.C.-L.); (L.Č.)
| | - Aleksandr Ilin
- Scientific Center for Anti-Infectious Drugs, Al-Farabi Ave. 75B, Almaty 050060, Kazakhstan;
| | - Mukhambetkali Burkitbayev
- General and Inorganic Chemistry Department, Al-Farabi Kazakh National University, Al-Farabi Ave. 71, Almaty 050040, Kazakhstan; (N.K.); (Y.N.); (B.T.); (G.B.); (M.B.)
| |
Collapse
|
14
|
Enhanced sunlight irradiated photocatalytic activity of Sn doped CdS nanoparticles for the degradation of organic pollutants. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2021.109149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
15
|
Chen L, He C, Yin J, Chen S, Zhao W, Zhao C. Clearance of methylene blue by CdS enhanced composite hydrogel materials. ENVIRONMENTAL TECHNOLOGY 2022; 43:355-366. [PMID: 32579426 DOI: 10.1080/09593330.2020.1788170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 06/20/2020] [Indexed: 06/11/2023]
Abstract
Hydrogel material is considered to be one of the effective adsorbents widely used to remove organic pollutants. However, the poor mechanical properties of some hydrogels limit their applications. Herein, we prepared composite hydrogels, for which acrylic acid (AA) and acrylamide (AM) were cross-linked and polymerised as the main substrate with adsorption function, while CdS nanoparticles were mainly used as reinforced material. Scanning electron microscope (SEM), Fourier transform infrared spectrometer (FTIR), two-dimensional infrared vibrational echo spectroscopy (2D-IR), and thermal gravimetric analyzer (TGA) were used to determine the physical and chemical structures of the hydrogels. The effects of the composition of AA, AM, and CdS on the mechanical properties and adsorption behaviours of the hydrogels were investigated. Besides, based on the great potential photocatalytic application value for wastewater remediation under the sunlight of CdS, the influence of the CdS doping amount on the photocatalytic property was also studied. As a result, when the mass ratio of AA to AM was 5:5, the hydrogel showed the best mechanical properties, and along with increasing the amount of CdS, the mechanical strength of the hydrogel was significantly enhanced from 0.445 MPa to 1.014 MPa. Besides, the composite hydrogels showed high adsorption and photocatalytic degradation synergistic clearance effect on methylene blue. Thus, the introduction of CdS photocatalytic nanoparticles may be an efficient and economical approach towards bifunctional hydrogel materials with enhanced mechanical property and photocatalytic degradation for wastewater remediation.
Collapse
Affiliation(s)
- Lei Chen
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, People's Republic of China
| | - Chao He
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, People's Republic of China
| | - Jiarui Yin
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, People's Republic of China
| | - Shengqiu Chen
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, People's Republic of China
| | - Weifeng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, People's Republic of China
| | - Changsheng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, People's Republic of China
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, People's Republic of China
| |
Collapse
|
16
|
Zhang J, Lin L, Wang B, Zhang Y, Wang Y, Zhang L, Jiang Y, Chen H, Zhao M. Efficient charge separation of photo-Fenton catalyst: Core-shell CdS/Fe3O4@N-doped C for enhanced photodegradation performance. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126974] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
17
|
Vinh ND, Tan PM, Do PV, Bharti S, Hoa VX, Hien NT, Luyen NT, Ca NX. Effect of dopant concentration and the role of ZnS shell on optical properties of Sm 3+ doped CdS quantum dots. RSC Adv 2021; 11:7961-7971. [PMID: 35423296 PMCID: PMC8695085 DOI: 10.1039/d0ra08056j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 02/02/2021] [Indexed: 12/28/2022] Open
Abstract
The role of samarium (Sm) dopant on the structural, morphological, and optical properties of CdS QDs and CdS/ZnS core/shell QDs was methodically reported. The synthesis of Sm-doped CdS QDs and CdS/ZnS QDs was carried out via a facile wet chemical method. The structure, chemical composition, and optical properties of the synthesized QDs were investigated by using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy (RS), and photoluminescence (PL) spectroscopy. XRD analysis showed that the synthesized CdS QDs exhibited zinc blende structure which was not affected by doping Sm3+ ions. The particle size of the CdS:Sm and CdS:Sm (2%)/ZnS QDs was estimated to be ∼4 nm and ∼7 nm, respectively. Transmission electron microscopy (TEM) images revealed that the incorporation of Sm dopant did not significantly affect the size and morphology of CdS QDs, while the formation of the ZnS shell increased the particle size. XPS and XRD results confirmed the successful incorporation of Sm3+ ions into the CdS QDs. The effect of dopant concentration on the structural and luminescent properties was studied. The emission and excitation spectra of Sm3+-doped CdS QDs and CdS/ZnS QDs consisted of the characteristic lines corresponding to the intra-configurational f-f transitions. The energy transfer (ET) mechanism from the host to Sm3+ ions and the ET process through cross-relaxation between Sm3+ ions have been elucidated. The effect of the ZnS shell on the optical stability of the Sm3+-doped CdS QDs was studied in detail and the results showed that the CdS:Sm (2%)/ZnS QDs retained their good emission characteristics after 376 days of fabrication. The luminescent properties of Sm-doped QDs ranging from violet to red and PL lifetime extending to milliseconds demonstrated that these QDs are the potential materials for applications in white LEDs, biomarkers, and photocatalysis.
Collapse
Affiliation(s)
- N D Vinh
- Faculty of Chemistry, TNU - University of Sciences Thai Nguyen Vietnam
| | - P M Tan
- Faculty of Fundamental Sciences, Thai Nguyen University of Technology Thai Nguyen Vietnam
| | - P V Do
- Thuyloi University 175 Tay Son, Dong Da Hanoi Vietnam
| | - S Bharti
- Panjab University Chandigarh 160014 India
| | - V X Hoa
- Faculty of Physics and Technology, TNU - University of Sciences Thai Nguyen Vietnam
| | - N T Hien
- Faculty of Physics and Technology, TNU - University of Sciences Thai Nguyen Vietnam
| | - N T Luyen
- Faculty of Physics and Technology, TNU - University of Sciences Thai Nguyen Vietnam
| | - N X Ca
- Faculty of Physics and Technology, TNU - University of Sciences Thai Nguyen Vietnam
| |
Collapse
|
18
|
Visible Light-Driven Photocatalytic Rhodamine B Degradation Using CdS Nanorods. Processes (Basel) 2021. [DOI: 10.3390/pr9020263] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In this work, highly crystalline CdS nanorods (NRs) were successfully synthesized by a facile, one-step solvothermal method. The as-prepared CdS NRs powder was characterized by XRD, FESEM, Raman, PL, XPS, BET, and UV-visible techniques to evaluate the structural, morphological, and optical properties. The photocatalytic performance of the as-synthesized CdS NRs was investigated for the photodegradation of RhB dye under visible light irradiations. It has been found that CdS NRs show maximum RhB degradation efficiency of 88.4% in 120 min. The excellent photodegradation ability of the CdS NRs can be attributed to their rod-like structure together with their large surface area and surface state. The kinetic study indicated that the photodegradation process was best described by the pseudo-first-order kinetic model. The possible mechanism for the photodegradation of RhB dye over CdS NRs was proposed in this paper.
Collapse
|
19
|
Ultrathin h-BN/Bi 2MoO 6 heterojunction with synergetic effect for visible-light photocatalytic tetracycline degradation. J Colloid Interface Sci 2021; 589:545-555. [PMID: 33493864 DOI: 10.1016/j.jcis.2021.01.027] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/20/2020] [Accepted: 01/10/2021] [Indexed: 02/06/2023]
Abstract
Herein, a series of ultrathin h-BN/Bi2MoO6 heterojunction with excellent photocatalytic activity has been firstly prepared via a feasible solvothermal method. Our results suggest that the optimized photocatalyst possesses a high degradation ratio of tetracycline (TC), oxytetracycline (OTC) and doxycycline (DC) up to 99.19%, 95.28% and 91.04% under visible-light irradiation, respectively. We highlight that the outstanding photocatalytic activity is mainly attributed to the prominent performance of tetracycline adsorption on h-BN and the dominant visible-light absorption by Bi2MoO6 as well as the effective photogenerated carrier separation induced by the synergetic effect between h-BN and Bi2MoO6. Moreover, DFT calculations reveal that the built-in electric field formed between h-BN and Bi2MoO6 gives rise to the separation of carriers and the polarization of tetracycline molecules. Last but not the least, the specific process and micro-mechanism of the photocatalytic tetracycline degradation under visible-light driven have also been illuminated. The present work pioneers the application of ultrathin h-BN/Bi2MoO6 heterojunction as a novel tetracycline degradation photocatalyst and further guides the design of more visible-light photocatalysts.
Collapse
|
20
|
Paul A, Dhar SS. Designing Cu2V2O7/CoFe2O4/g-C3N4 ternary nanocomposite: A high performance magnetically recyclable photocatalyst in the reduction of 4-nitrophenol to 4-aminophenol. J SOLID STATE CHEM 2020. [DOI: 10.1016/j.jssc.2020.121563] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
21
|
Facile synthesis of TiO2@MoS2 hollow microtubes for removal of organic pollutants in water treatment. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.124900] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
22
|
Tang X, Liu H, Yang C, Jin X, Zhong J, Li J. In-situ fabrication of Z-scheme CdS/BiOCl heterojunctions with largely improved photocatalytic performance. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.124880] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
23
|
Zheng X, Dong Y, Liu T. Simultaneous photodegradation of dyes by NiS/CuS-CdS composites in visible light region. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.124854] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|