1
|
Luo Z, Li Y, Pei X, Woon KS, Liu M, Lin X, Hu Z, Li Y, Zhang Z. A potential slow-release fertilizer based on biogas residue biochar: Nutrient release patterns and synergistic mechanism for improving soil fertility. ENVIRONMENTAL RESEARCH 2024; 252:119076. [PMID: 38710430 DOI: 10.1016/j.envres.2024.119076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/21/2024] [Accepted: 05/03/2024] [Indexed: 05/08/2024]
Abstract
The large yield of anaerobic digestates and the suboptimal efficacy of nutrient slow-release severely limit its practical application. To address these issues, a new biochar based fertilizer (MAP@BRC) was developed using biogas residue biochar (BRC) to recover nitrogen and phosphorus from biogas slurry. The nutrient release patterns of MAP@BRC and mechanisms for enhancing soil fertility were studied, and it demonstrated excellent performance, with 59% total nitrogen and 50% total phosphorus nutrient release rates within 28 days. This was attributed to the coupling of the mechanism involving the dissolution of struvite skeletons and the release of biochar pores. Pot experiments showed that crop yield and water productivity were doubled in the MAP@BRC group compared with unfertilized planting. The application of MAP@BRC also improved soil nutrient levels, reduced soil acidification, increased microbial populations, and decreased soil heavy metal pollution risk. The key factors that contributed to the improvement in soil fertility by MAP@BRC were an increase in available nitrogen and the optimization of pH levels in the soil. Overall, MAP@BRC is a safe, slow-release fertilizer that exhibits biochar-fertilizer interactions and synergistic effects. This slow-release fertilizer was prepared by treating a phosphorus-rich biogas slurry with a nitrogen-rich biogas slurry, and it simultaneously addresses problems associated with livestock waste treatment and provides a promising strategy to promote zero-waste agriculture.
Collapse
Affiliation(s)
- Zifeng Luo
- College of Natural Resources and Environment, Joint Institute for Environmental Research & Education, South China Agricultural University, Guangzhou, 510642, China; South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Yunliang Li
- College of Natural Resources and Environment, Joint Institute for Environmental Research & Education, South China Agricultural University, Guangzhou, 510642, China; Wens Foodstuff Group Co., Ltd., Yunfu, 527400, China
| | - Xu Pei
- College of Natural Resources and Environment, Joint Institute for Environmental Research & Education, South China Agricultural University, Guangzhou, 510642, China; Wens Foodstuff Group Co., Ltd., Yunfu, 527400, China
| | - Kok Sin Woon
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Jalan Sunsuria, Bandar Sunsuria, 43900, Sepang, Selangor, Malaysia
| | - Mengxue Liu
- Wens Foodstuff Group Co., Ltd., Yunfu, 527400, China
| | - Xueming Lin
- College of Natural Resources and Environment, Joint Institute for Environmental Research & Education, South China Agricultural University, Guangzhou, 510642, China
| | - Zheng Hu
- College of Natural Resources and Environment, Joint Institute for Environmental Research & Education, South China Agricultural University, Guangzhou, 510642, China
| | - Yongtao Li
- College of Natural Resources and Environment, Joint Institute for Environmental Research & Education, South China Agricultural University, Guangzhou, 510642, China; Wens Foodstuff Group Co., Ltd., Yunfu, 527400, China.
| | - Zhen Zhang
- College of Natural Resources and Environment, Joint Institute for Environmental Research & Education, South China Agricultural University, Guangzhou, 510642, China; Wens Foodstuff Group Co., Ltd., Yunfu, 527400, China.
| |
Collapse
|
2
|
Zhang T, Yan L, Liu C, Liu J, Su X, Weng J, Wang W, Yang Y, Xu J, Xie J. Water-resistant and pyknotic recyclable waste-cotton-derived bio-polyurethane-coated controlled-release fertilizer: Improved longevity, mechanism and application. Int J Biol Macromol 2024; 256:128377. [PMID: 38000572 DOI: 10.1016/j.ijbiomac.2023.128377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/26/2023] [Accepted: 11/21/2023] [Indexed: 11/26/2023]
Abstract
Reasonably utilize the recyclable waste-cotton resource to develop the bio-polyurethane coatings had aroused more and more environmental interests recently. However, the terrible water resistance and porousness of the waste-cotton-derived bio-polyurethane coating caused the rapid nutrients release. In this work, the water-resistant and pyknotic cotton-fibre-derived coated-ureas (WPCUs) were fabricated with the recyclable low-cost waste-cotton-derived materials. The dramatically enhanced pyknotic and water-resistant characteristics of the WPCUs coatings can be obtained by the three-dimensional computerized tomography (2.33 to 1.19 %) and the water contact angle. The enhanced elasticity and the decreased water absorption were also vital to enhance the controlled-release performance. The accompanying controlled-release performance of the WPCUs was obviously improved (<2 h to 58.43 days). The modified WPCU75-10 with 4.0 % coating content exhibits the excellent controlled-release performance compared to the unmodified WPCU0-0. The controlled release mechanism can be clarified: The air column inside of the "small and few" micropores in the WPCUs coating only allow the gaseous water molecules to slowly penetrate and dissolve the inner urea cores (rather than liquid water). The obviously increased oilseed rape yield (128.75 %) showed the dependable agricultural application of the WPCUs. This work provides the resultful approach to develop the eco-friendly recyclable waste-plant-derived controlled-release fertilizers.
Collapse
Affiliation(s)
- Ting Zhang
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Liye Yan
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Chenghao Liu
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Jiahui Liu
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Xiaohan Su
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Jiaqi Weng
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Wentao Wang
- College of Food Science and Engineering, Shandong Agricultural University, Tai an, Shandong 271018, China
| | - Yuechao Yang
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Jing Xu
- College of Chemistry and Material Science, Shandong Agricultural University, Tai'an, Shandong 271018, China; Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, China
| | - Jiazhuo Xie
- College of Chemistry and Material Science, Shandong Agricultural University, Tai'an, Shandong 271018, China; Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, China.
| |
Collapse
|
3
|
Salimi M, Channab BE, El Idrissi A, Zahouily M, Motamedi E. A comprehensive review on starch: Structure, modification, and applications in slow/controlled-release fertilizers in agriculture. Carbohydr Polym 2023; 322:121326. [PMID: 37839830 DOI: 10.1016/j.carbpol.2023.121326] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/20/2023] [Accepted: 08/21/2023] [Indexed: 10/17/2023]
Abstract
This comprehensive review thoroughly examines starch's structure, modifications, and applications in slow/controlled-release fertilizers (SRFs) for agricultural purposes. The review begins by exploring starch's unique structure and properties, providing insights into its molecular arrangement and physicochemical characteristics. Various methods of modifying starch, including physical, chemical, and enzymatic techniques, are discussed, highlighting their ability to impart desirable properties such as controlled release and improved stability. The review then focuses on the applications of starch in the development of SRFs. It emphasizes the role of starch-based hydrogels as effective nutrient carriers, enabling their sustained release to plants over extended periods. Additionally, incorporating starch-based hydrogel nano-composites are explored, highlighting their potential in optimizing nutrient release profiles and promoting plant growth. Furthermore, the review highlights the benefits of starch-based fertilizers in enhancing plant growth and crop yield while minimizing nutrient losses. It presents case studies and field trials demonstrating starch-based formulations' efficacy in promoting sustainable agricultural practices. Overall, this review consolidates current knowledge on starch, its modifications, and its applications in SRFs, providing valuable insights into the potential of starch-based formulations to improve nutrient management, boost crop productivity, and support sustainable agriculture.
Collapse
Affiliation(s)
- Mehri Salimi
- Soil Science Department, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Badr-Eddine Channab
- Laboratory of Materials, Catalysis & Natural Resources Valorization, URAC 24, Faculty of Science and Technology, Hassan II University, Casablanca, B.P. 146, Morocco
| | - Ayoub El Idrissi
- Laboratory of Materials, Catalysis & Natural Resources Valorization, URAC 24, Faculty of Science and Technology, Hassan II University, Casablanca, B.P. 146, Morocco
| | - Mohamed Zahouily
- Laboratory of Materials, Catalysis & Natural Resources Valorization, URAC 24, Faculty of Science and Technology, Hassan II University, Casablanca, B.P. 146, Morocco; Natural Resources Valorization Center, Moroccan Foundation for Advanced Science, Innovation and Research, Rabat, Morocco; Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | - Elaheh Motamedi
- Department of Nanotechnology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran.
| |
Collapse
|
4
|
Shanmugavel D, Rusyn I, Solorza-Feria O, Kamaraj SK. Sustainable SMART fertilizers in agriculture systems: A review on fundamentals to in-field applications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166729. [PMID: 37678530 DOI: 10.1016/j.scitotenv.2023.166729] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 08/25/2023] [Accepted: 08/29/2023] [Indexed: 09/09/2023]
Abstract
Agriculture will face the issue of ensuring food security for a growing global population without compromising environmental security as demand for the world's food systems increases in the next decades. To provide enough food and reduce the harmful effects of chemical fertilization and improper disposal or reusing of agricultural wastes on the environment, will be required to apply current technologies in agroecosystems. Combining biotechnology and nanotechnology has the potential to transform agricultural practices and offer answers to both immediate and long-term issues. This review study seeks to identify, categorize, and characterize the so-called smart fertilizers as the future frontier of sustainable agriculture. The conventional fertilizer and smart fertilizers in general are covered in the first section of this review. Another key barrier preventing the widespread use of smart fertilizers in agriculture is the high cost of materials. Nevertheless, smart fertilizers are widely represented on the world market and are actively used in farms that have already switched to sustainable technologies. The advantages and disadvantages of various raw materials used to create smart fertilizers, with a focus on inorganic and organic materials, synthetic and natural polymers, along with their physical and chemical preparation processes, are contrasted in the following sections. The rate and the mechanism of release are covered. The purpose of this study is to provide a deep understanding of the advancements in smart fertilizers during the last ten years. Trends are also recognized and studied to provide insight for upcoming agricultural research projects.
Collapse
Affiliation(s)
- Divya Shanmugavel
- Programa de Nanociencias y Nanotecnología, CINVESTAV - IPN, Hydrogen and Fuel Cells Group, A. Postal 14-760, 07360 CDMX, Mexico
| | - Iryna Rusyn
- Department of Ecology and Sustainable Environmental Management, Viacheslav Chornovil Institute of Sustainable Development, Lviv Polytechnic National University, Stepan Bandera St., 12, Lviv, 79013, Ukraine
| | - Omar Solorza-Feria
- Department of Chemistry, CINVESTAV - IPN, Hydrogen, and Fuel Cells Group, A. Postal 14-760, 07360 CDMX, Mexico.
| | - Sathish-Kumar Kamaraj
- Instituto Politécnico Nacional (IPN)-Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Unidad Altamira (CICATA-Altamira), Carretera Tampico-Puerto Industrial Altamira Km 14.5, C. Manzano, Industrial Altamira, 89600 Altamira, Tamps., Mexico.
| |
Collapse
|
5
|
Wang Y, Li J, Lin R, Gu D, Zhou Y, Li H, Yang X. Recommended Values for the Hydrophobicity and Mechanical Properties of Coating Materials Usable for Preparing Controlled-Release Fertilizers. Polymers (Basel) 2023; 15:4687. [PMID: 38139939 PMCID: PMC10746998 DOI: 10.3390/polym15244687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/20/2023] [Accepted: 11/20/2023] [Indexed: 12/24/2023] Open
Abstract
The hydrophobicity and mechanical properties of coating materials and the nitrogen (N) release rates of 11 kinds of controlled-release fertilizers (CRFs) were determined in this study. The results show that the N release periods of the CRFs had negative correlations with the water absorption (WA) of the coating materials (y = 166.06x-1.24, r = 0.986), while they were positively correlated with the water contact angle (WCA) and elongation at break (EB) (y = 37.28x0.18, r = 0.701; y = -19.42 + 2.57x, r = 0.737). According to the fitted functional equation, CRFs that could fulfil the N release period of 30 days had a coating material WA < 2.4%, WCA > 68.8°, and EB > 57.7%. The recommended values for a CRF that can fulfil the N release period of 30 days are WA < 3.0%, WCA > 60.0°, and EB > 30.0% in the coating materials. CRFs with different nutrient release periods can be designed according to the recommended values to meet the needs of different crops. Furthermore, our experiments have illustrated that the N release period target of 30 days can be reached for modified sulfur-coated fertilizers (MSCFs) by improving their mechanical properties.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xiangdong Yang
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China/Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs/the Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.W.); (J.L.); (R.L.); (D.G.); (Y.Z.); (H.L.)
| |
Collapse
|
6
|
Zhang H, Liang H, Xing L, Ding W, Geng Z, Xu C. Cellulose-based slow-release nitrogen fertilizers: Synthesis, properties, and effects on pakchoi growth. Int J Biol Macromol 2023:125413. [PMID: 37327921 DOI: 10.1016/j.ijbiomac.2023.125413] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/02/2023] [Accepted: 06/13/2023] [Indexed: 06/18/2023]
Abstract
The application of most slow-release fertilizers is limited by complex preparation processes and short slow-release periods. In this study, carbon spheres (CSs) were prepared by a hydrothermal method using cellulose as the raw material. Using CSs as the fertilizer carrier, three new carbon-based slow-release nitrogen fertilizers were prepared using direct mixing (SRF-M), water-soluble immersion adsorption (SRFS), and co-pyrolysis (SRFP) methods, respectively. Examination of the CSs revealed regular and ordered surface morphology, enrichment of functional groups on the surfaces, and good thermal stability. Elemental analysis showed that SRF-M was rich in nitrogen (total nitrogen content of 19.66 %). Soil-leaching tests showed that the total cumulative nitrogen release of SRF-M and SRF-S was 55.78 % and 62.98 %, respectively, which greatly slowed down the release of nitrogen. Pot experiment results revealed that SRF-M significantly promoted the growth of pakchoi and improved crop quality. Thus, SRF-M was more effective in practical applications than the other two slow-release fertilizers. Mechanistic studies showed that CN, -COOR, pyridine-N and pyrrolic-N participated in nitrogen release. This study thus provides a simple, effective, and economical method for the preparation of slow-release fertilizers, providing new directions for further research and the develop of new slow-release fertilizers.
Collapse
Affiliation(s)
- Hongwei Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Hongxu Liang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Libin Xing
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Wei Ding
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Zengchao Geng
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; Key Laboratory of Northwest Plant Nutrition and Agro-Environment in Ministry of Agriculture, Yangling 712100, China.
| | - Chenyang Xu
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; Key Laboratory of Northwest Plant Nutrition and Agro-Environment in Ministry of Agriculture, Yangling 712100, China.
| |
Collapse
|
7
|
Wang Z, Abbas A, Sun H, Jin H, Jia T, Liu J, She D. Amination-modified lignin recovery of aqueous phosphate for use as binary slow-release fertilizer. Int J Biol Macromol 2023; 242:124862. [PMID: 37210049 DOI: 10.1016/j.ijbiomac.2023.124862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/06/2023] [Accepted: 05/10/2023] [Indexed: 05/22/2023]
Abstract
To address the global phosphorus crisis and solve the problem of eutrophication in water bodies, the recovery of phosphate from wastewater for use as a slow-release fertilizer and to improve the slow-release performance of fertilizers is considered an effective way. In this study, amine-modified lignin (AL) was prepared from industrial alkali lignin (L) for phosphate recovery from water bodies, and then the recovered phosphorus-rich aminated lignin (AL-P) was used as a slow-release N and P fertilizer. Batch adsorption experiments showed that the adsorption process was consistent with the Pseudo-second-order kinetics and Langmuir model. In addition, ion competition and actual aqueous adsorption experiments showed that AL had good adsorption selectivity and removal capacity. The adsorption mechanism included electrostatic adsorption, ionic ligand exchange and cross-linked addition reaction. In the aqueous release experiments, the rate of nitrogen release was constant and the release of phosphorus followed a Fickian diffusion mechanism. Soil column leaching experiments showed that the release of N and P from AL-P in soil followed the Fickian diffusion mechanism. Therefore, AL recovery of aqueous phosphate for use as a binary slow-release fertilizer has great potential to improve the environment of water bodies, enhance nutrient utilization and address the global phosphorus crisis.
Collapse
Affiliation(s)
- Zheng Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Aown Abbas
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Hao Sun
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Haoting Jin
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Tianzhong Jia
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Jing Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China.
| | - Diao She
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling 712100, China; Institute of Soil and Water Conservation, CAS&MWR, Yangling 712100, China.
| |
Collapse
|
8
|
Kavitha R, Latifah O, Ahmed OH, Charles PW, Susilawati K. Potential of Rejected Sago Starch as a Coating Material for Urea Encapsulation. Polymers (Basel) 2023; 15:polym15081863. [PMID: 37112010 PMCID: PMC10146585 DOI: 10.3390/polym15081863] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 03/28/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
Increases in food production to meet global food requirements lead to an increase in the demand for nitrogen (N) fertilizers, especially urea, for soil productivity, crop yield, and food security improvement. To achieve a high yield of food crops, the excessive use of urea has resulted in low urea-N use efficiency and environmental pollution. One promising alternative to increase urea-N use efficiency, improve soil N availability, and lessen the potential environmental effects of the excessive use of urea is to encapsulate urea granules with appropriate coating materials to synchronize the N release with crop assimilation. Chemical additives, such as sulfur-based coatings, mineral-based coatings, and several polymers with different action principles, have been explored and used for coating the urea granule. However, their high material cost, limited resources, and adverse effects on the soil ecosystem limit the widespread application of urea coated with these materials. This paper documents a review of issues related to the materials used for urea coating and the potential of natural polymers, such as rejected sago starch, as a coating material for urea encapsulation. The aim of the review is to unravel an understanding of the potential of rejected sago starch as a coating material for the slow release of N from urea. Rejected sago starch from sago flour processing is a natural polymer that could be used to coat urea because the starch enables a gradual, water-driven mechanism of N release from the urea-polymer interface to the polymer-soil interface. The advantages of rejected sago starch for urea encapsulation over other polymers are that rejected sago starch is one of the most abundant polysaccharide polymers, the cheapest biopolymer, and is fully biodegradable, renewable, and environmentally friendly. This review provides information on the potential of rejected sago starch as a coating material, the advantages of using rejected sago starch as coating material over other polymer materials, a simple coating method, and the mechanisms of N release from urea coated with rejected sago starch.
Collapse
Affiliation(s)
- Rajan Kavitha
- Department of Crop Science, Faculty of Agricultural Science and Forestry, Universiti Putra Malaysia, Bintulu Sarawak Campus, Bintulu 97008, Malaysia
| | - Omar Latifah
- Department of Crop Science, Faculty of Agricultural Science and Forestry, Universiti Putra Malaysia, Bintulu Sarawak Campus, Bintulu 97008, Malaysia
- Institute of Ecosystem Science Borneo, Universiti Putra Malaysia, Bintulu Sarawak Campus, Bintulu 97008, Malaysia
| | - Osumanu Haruna Ahmed
- Faculty of Agriculture, University Sultan Sharif Ali Brunei, Kampus Sinaut, Km 33, Jalan Tutong, Kampung Sinaut, Tutong TB1741, Brunei
| | - Primus Walter Charles
- Department of Science and Technology, Faculty of Humanities, Management and Science, Universiti Putra Malaysia, Bintulu Sarawak Campus, Bintulu 97008, Malaysia
| | - Kasim Susilawati
- Department of Land Management, Faculty of Agriculture, Serdang 43400, Malaysia
| |
Collapse
|
9
|
Ghumman ASM, Shamsuddin R, Nasef MM, Yahya WZN, Abbasi A, Almohamadi H. Sulfur enriched slow-release coated urea produced from inverse vulcanized copolymer. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 846:157417. [PMID: 35850358 DOI: 10.1016/j.scitotenv.2022.157417] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 07/07/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Abstract
Slow-release fertilizers are developed to enhance the nutrient use efficiency (NUE), by coating urea with less water soluble or hydrophobic material. Diverse range of materials have been utilized to coat urea, however, their inherit non-biodegradability, hydrophilicity, crystallinity, and high synthesis cost limits their scalability. Herein, we reported the preparation of a novel slow-release sulfur enriched urea fertilizers using sustainable hydrophobic, biodegradable, crosslinked copolymer made from sulfur and rubber seed oil (Poly(S-RSO)) through the use of dip coating method. Scanning electron microscopy (SEM) was employed to study the fertilizers morphology and estimate the coating film thickness. A nitrogen release test was carried out in distilled water, which revealed that the coated fertilizers with a coating thickness of 165 μm, 254 μm and 264 μm released only 65 % of its total nutrient content after 2, 19 and 43 days of incubation, respectively: hence, showing an excellent slow-release property. In soil, fertilizer with 264 μm coating thickness released only 17 % nitrogen after 20 days of incubation, in line with the European standard (EN 13266, 2001). The release kinetic data best fits the Ritger-Peppas model with a R2 value of 0.99 and the n value of 0.65 indicated the release was mainly due to diffusion. Submerged cultivation (SmC) demonstrated the potential of poly(S-RSO) to enhance sulfur oxidation; it was observed that the copolymer oxidation was 50 % greater than that of elemental sulfur. A comparison between the newly developed fertilizers and existing coated fertilizers was also presented. On the whole, the results demonstrated outstanding slow-release characteristics and improved sulfur oxidation.
Collapse
Affiliation(s)
- Ali Shaan Manzoor Ghumman
- Chemical Engineering Department, Universiti Teknologi PETRONAS, 32610 Bandar Seri Iskandar, Perak Darul Ridzuan, Malaysia; HICoE, Center for Biofuel and Biochemical Research (CBBR), Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia
| | - Rashid Shamsuddin
- Chemical Engineering Department, Universiti Teknologi PETRONAS, 32610 Bandar Seri Iskandar, Perak Darul Ridzuan, Malaysia; HICoE, Center for Biofuel and Biochemical Research (CBBR), Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia.
| | - Mohamed Mahmoud Nasef
- Department of Chemical and Environmental Engineering, Malaysia Japan International Institute of Technology, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, Kuala Lumpur 54100, Malaysia
| | - Wan Zaireen Nisa Yahya
- Chemical Engineering Department, Universiti Teknologi PETRONAS, 32610 Bandar Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Amin Abbasi
- Chemical Engineering Department, Universiti Teknologi PETRONAS, 32610 Bandar Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Hamad Almohamadi
- Department of Chemical Engineering, Faculty of Engineering, Islamic University of Madinah, Madinah, Saudi Arabia
| |
Collapse
|
10
|
Thongkam T, Hemavibool K. A simple epoxy resin screen-printed paper-based analytical device for detection of phosphate in soil. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:1069-1076. [PMID: 35195618 DOI: 10.1039/d1ay02011k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
This study develops a simple and low-cost 3D paper-based analytical device (3D PAD) for the detection of available phosphate in soil. Epoxy resin is presented as a new hydrophobic material for low-cost mass production of PADs using the screen-printing method. An optimized concentration of epoxy resin solution is screen printed onto Whatman filter paper no. 1 in an easy one-step process to create hydrophobic patterns on PADs. The epoxy resin is air dried at room temperature, without heating or UV curing. This method delivers high reproducibility, resolution, and stability, and the epoxy resin barrier is compatible with both organic solvents and aqueous solutions. The molybdenum blue method is used in this PAD to measure phosphate in a colorimetric assay. The developed 3D PAD attains a linear range of 0.5-40 mg L-1, with a limit of detection (LOD) of 0.25 mg L-1, and a limit of quantitation (LOQ) of 0.83 mg L-1. The relative standard deviation of intra-day measurements is 1.52-2.46%, and the inter-day standard deviation is 1.89-2.74%, indicating satisfactory reproducibility. This 3D PAD was tested for its ability to detect phosphate in a variety of actual soil samples and the results were validated against spectrophotometric analysis using a paired t-test, which showed high accuracy. In short, the new analytical device described in this study is simple, fast, and inexpensive to make and use, providing a versatile phosphate detection tool for many soil types, even in situations when resources are limited.
Collapse
Affiliation(s)
- Thinikan Thongkam
- Department of Chemistry, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand.
| | - Khuanjit Hemavibool
- Department of Chemistry, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand.
| |
Collapse
|
11
|
Controlled Release Fertilizers: A Review on Coating Materials and Mechanism of Release. PLANTS 2021; 10:plants10020238. [PMID: 33530608 PMCID: PMC7912041 DOI: 10.3390/plants10020238] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/14/2021] [Accepted: 01/20/2021] [Indexed: 02/06/2023]
Abstract
Rising world population is expected to increase the demand for nitrogen fertilizers to improve crop yield and ensure food security. With existing challenges on low nutrient use efficiency (NUE) of urea and its environmental concerns, controlled release fertilizers (CRFs) have become a potential solution by formulating them to synchronize nutrient release according to the requirement of plants. However, the most significant challenge that persists is the "tailing" effect, which reduces the economic benefits in terms of maximum fertilizer utilization. High materials cost is also a significant obstacle restraining the widespread application of CRF in agriculture. The first part of this review covers issues related to the application of conventional fertilizer and CRFs in general. In the subsequent sections, different raw materials utilized to form CRFs, focusing on inorganic and organic materials and synthetic and natural polymers alongside their physical and chemical preparation methods, are compared. Important factors affecting rate of release, mechanism of release and mathematical modelling approaches to predict nutrient release are also discussed. This review aims to provide a better overview of the developments regarding CRFs in the past ten years, and trends are identified and analyzed to provide an insight for future works in the field of agriculture.
Collapse
|
12
|
Abd El-Aziz ME, Salama DM, Morsi SMM, Youssef AM, El-Sakhawy M. Development of polymer composites and encapsulation technology for slow-release fertilizers. REV CHEM ENG 2021. [DOI: 10.1515/revce-2020-0044] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Abstract
The fertilizer manufacturing faces an ongoing challenge to develop its products to raise the effectiveness of their application, mainly of nitrogenous fertilizers, as well as to reduce any probable adverse ecological effect. In general, chemical fertilizers are very necessary for agricultural lands to provide the essential nutrients for plant growth, which are lost and leached into the surrounding environment during irrigation, which then leads to unwanted side effects, such as crop failure or increased losses to the environment. To solve this problem of nutrients being wasted, the most effective way is to use slow or controlled-release fertilizers (S/CRFs). The current review provides an insight vision into the methods used to save agricultural fertilizers from being wasted due to irrigation. The functional materials or physical techniques are used to maintain a steady release of nutrients. Fertilizers are encapsulated with various compounds based on synthetic or natural polymers to be used as SRFs. In this review paper, a comprehensive survey is presented on SRFs as an effective method in dealing with the problem of fertilizer wastage during irrigation. This review discusses the technology and applications of the latest research findings in this field.
Collapse
Affiliation(s)
- Mahmoud Essam Abd El-Aziz
- Polymers and Pigments Department , National Research Centre , 33 El Bohouth St., Dokki , Giza , P.O. 12622 , Egypt
| | - Dina M. Salama
- Vegetable Research Department , National Research Centre , 33 El Bohouth St., Dokki , Giza , P.O. 12622 , Egypt
| | - Samir M. M. Morsi
- Polymers and Pigments Department , National Research Centre , 33 El Bohouth St., Dokki , Giza , P.O. 12622 , Egypt
| | - Ahmed M. Youssef
- Packaging Materials Department , National Research Centre , 33 El Bohouth St., Dokki , Giza , P.O. 12622 , Egypt
| | - Mohamed El-Sakhawy
- Cellulose and Paper Department , National Research Centre , 33 El Bohouth St., Dokki , Giza , P.O. 12622 , Egypt
| |
Collapse
|
13
|
Thongkam T, Rungsirisakun R, Hemavibool K. A simple paper-based analytical device using UV resin screen-printing for the determination of ammonium in soil. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:4649-4656. [PMID: 32895682 DOI: 10.1039/d0ay01180k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
This study reports a convenient and low cost paper-based analytical device (PAD) for measuring ammonium in soil. This PAD has been developed using an inexpensive UV resin solution, as a new hydrophobic material, with a screen-printing method to create hydrophobic areas. The paper-based colorimetric device was developed using a modified Berthelot reaction in which salicylate and dichloroisocyanurate are used in order to produce a green compound of 2-2 dicarboxyindophenol in the presence of ammonium. The concentration of ammonium is proportional to the intensity of the resulting green color, as analysed by ImageJ software. A variety of tests was carried out to optimize and evaluate various aspects of the PAD's fabrication and utilization. A linear range was obtained in the range of 10-100 mg L-1 with a limit of detection and limit of quantitation of 0.5 mg L-1 and 1.7 mg L-1, respectively. The relative standard deviation of intra-day measurements was 3.0% and the inter-day precision was 3.2% with good reproducibility. When recovery of ammonium added to samples was evaluated it ranged from 95.5 to 107.5%. The PAD was applied to detect ammonium in a variety of actual soil samples, and the results were validated against spectrophotometric results using a paired t-test, showing good accuracy. A convenient color comparison chart was also created on paper to enable the user to interpret the color results without the need for a color scanner. This developed PAD is fast, easy, inexpensive, and provides an alternative to existing methods for the determination of ammonium in soil.
Collapse
Affiliation(s)
- Thinikan Thongkam
- Department of Chemistry, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand.
| | | | | |
Collapse
|
14
|
Investigation of Start-Up Characteristics of Thermosyphons Modified with Different Hydrophilic and Hydrophobic Inner Surfaces. ENERGIES 2020. [DOI: 10.3390/en13030765] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this paper, the influence of wettability properties on the start-up characteristics of two-phase closed thermosyphons (TPCTs) is investigated. Chemical coating and etching techniques are performed to prepare the surfaces with different wettabilities that is quantified in the form of the contact angle (CA). The 12 TPCTs are processed including the same CA and a different CA combination on the inner surfaces inside both the evaporator and the condenser sections. For TPCTs with the same wettability properties, the introduction of hydrophilic properties inside the evaporator section not only significantly reduces the start-up time but also decreases the start-up temperature. For example, the start-up time of a TPCT with CA = 28° at 40 W, 60 W and 80 W is 46%, 50% and 55% shorter than that of a TPCT with a smooth surface and the wall superheat degrees is 55%, 39% and 28% lower, respectively. For TPCTs with combined hydrophilic and hydrophobic properties, the start-up time spent on the evaporator section with hydrophilic properties is shorter than that of the hydrophobic evaporator section and the smaller CA on the condenser section shows better results. The start-up time of a TPCT with CA = 28° on the evaporator section and CA = 105° on the condenser section has the best start-up process at 40 W, 60 W and 80 W which is 14%, 22% and 26% shorter than that of a TPCT with smooth surface. Thus, the hydrophilic and hydrophobic modifications play a significant role in promoting the start-up process of a TPCT.
Collapse
|