1
|
Liu WR, Yu S, Liu Z, Jiang P, Wang K, Du HY, Hu ZY, Sun MH, Wang YL, Li Y, Chen LH, Su BL. Hierarchical Hollow TiO 2@Bi 2WO 6 with Light-Driven Excited Bi (3-x)+ Sites for Efficient Photothermal Catalytic CO 2 Reduction. Inorg Chem 2024; 63:6714-6722. [PMID: 38557020 DOI: 10.1021/acs.inorgchem.3c04627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Converting CO2 into valuable chemicals via sustainable energy sources is indispensable for human development. Photothermal catalysis combines the high selectivity of photocatalysis and the high yield of thermal catalysis, which is promising for CO2 reduction. However, the present photothermal catalysts suffer from low activity due to their poor light absorption ability and fast recombination of photogenerated electrons and holes. Here, a TiO2@Bi2WO6 heterojunction photocatalyst featuring a hierarchical hollow structure was prepared by an in situ growth method. The visible light absorption and photothermal effect of the TiO2@Bi2WO6 photocatalyst is promoted by a hierarchical hollow structure, while the recombination phenomenon is significantly mitigated due to the construction of the heterojunction interface and the existence of excited Bi(3-x)+ sites. Such a catalyst exhibits excellent photothermal performance with a CO yield of 43.7 μmol h-1 g-1, which is 15 and 4.7 times higher than that of pure Bi2WO6 and that of physically mixed TiO2/Bi2WO6, respectively. An in situ study shows that the pathway for the transformation of CO2 into CO over our TiO2@Bi2WO6 proceeds via two important intermediates, including COO- and COOH-. Our work provides a new idea of excited states for the design and synthesis of highly efficient photothermal catalysts for CO2 conversion.
Collapse
Affiliation(s)
- Wen-Rui Liu
- Laboratory of Living Materials at the State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Shen Yu
- Laboratory of Living Materials at the State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Zhan Liu
- Laboratory of Living Materials at the State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
- Nanostructure Research Center, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
- International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, Hubei, China
| | - Peng Jiang
- Laboratory of Living Materials at the State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Kun Wang
- Laboratory of Living Materials at the State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - He-You Du
- Laboratory of Living Materials at the State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
- International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, Hubei, China
| | - Zhi-Yi Hu
- Laboratory of Living Materials at the State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
- Nanostructure Research Center, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Ming-Hui Sun
- Laboratory of Living Materials at the State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Yi-Long Wang
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, Hubei, China
| | - Yu Li
- Laboratory of Living Materials at the State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Li-Hua Chen
- Laboratory of Living Materials at the State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Bao-Lian Su
- Laboratory of Living Materials at the State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
- Laboratory of Inorganic Materials Chemistry, University of Namur, 61 rue de Bruxelles, B-5000 Namur, Belgium
| |
Collapse
|
2
|
Jing S, Wang H, Wang A, Cheng R, Liang H, Chen F, Brouzgou A, Tsiakaras P. Surface plasmon resonance Bismuth-modified NH 2-UiO-66 with enhanced photocatalytic tetracycline degradation performance. J Colloid Interface Sci 2024; 655:120-132. [PMID: 37931552 DOI: 10.1016/j.jcis.2023.10.149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/10/2023] [Accepted: 10/27/2023] [Indexed: 11/08/2023]
Abstract
For nearly a century, the misuse of antibiotics has gradually polluted water and threatened human health. Photocatalysis is considered an efficient way to remove antibiotics from water. Zirconium-based metal-organic frameworks have attracted much attention as promising photocatalysts for the degradation of antibiotics. However, single Zirconium-based metal-organic frameworks can still not achieve a more satisfactory photocatalytic efficiency, due to poor light absorption and charge separation efficiency. In this study, a novel metal-loaded metal-organic frameworks material was explored. As a potential photocatalytic material, the performance of NH2-UiO-66 in the photocatalytic degradation of tetracycline was greatly improved just by the loading of a single metal. Bismuth/NH2-UiO-66 photocatalysts of various compositions were physicochemically (TEM, SEM, XRD, XPS, BET, FTIR, UV-VIS, PL), and electrochemically (electrochemical impedance spectroscopy, photocurrent response) characterized. We evaluated the photocatalytic performance of Bismuth/NH2-UiO-66 composites by measuring their ability towards tetracycline decomposition in simulated sunlight irradiation conditions. The experimental results indicated that the introduction of metal Bismuth significantly boosts the photocatalytic activity of the composite catalysts. The final degradation rate of Bismuth/NH2-UiO-66 for tetracycline was found to be 95.8%, namely 2.7 times higher than pure NH2-UiO-66. This behavior is due to the surface plasmon resonance effect of Bismuth, which ameliorates the photocatalyst's electron-hole separation and strengthens the charge transfer. Apart from that, the presence of Bismuth magnifies the visible-light absorption range of Bismuth/NH2-UiO-66. In this study, an innovative approach for designing efficient and cost-effective metal-modified metal-organic frameworks photocatalysts is proposed.
Collapse
Affiliation(s)
- Shengyu Jing
- School of Information and Control Engineering, China University of Mining and Technology, Xuzhou 221116, China; Laboratory of Alternative Energy Conversion Systems, Department of Mechanical Engineering, School of Engineering, University of Thessaly, Pedion Areos 38834, Volos, Greece
| | - Haoran Wang
- School of Information and Control Engineering, China University of Mining and Technology, Xuzhou 221116, China
| | - Anhu Wang
- Jiangsu Key Laboratory of Coal-based Greenhouse Gas Control and Utilization, Carbon Neutrality Institute, China University of Mining and Technology, Xuzhou 221008, China; School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221008, China
| | - Ruolin Cheng
- Jiangsu Key Laboratory of Coal-based Greenhouse Gas Control and Utilization, Carbon Neutrality Institute, China University of Mining and Technology, Xuzhou 221008, China
| | - Huagen Liang
- Jiangsu Key Laboratory of Coal-based Greenhouse Gas Control and Utilization, Carbon Neutrality Institute, China University of Mining and Technology, Xuzhou 221008, China; School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221008, China.
| | - Fu Chen
- School of Public Administration, Hohai University, Nanjing 210098, China.
| | - Angeliki Brouzgou
- Department of Energy Systems, Faculty of Technology, University of Thessaly, Geopolis, 41500 Larisa, Greece
| | - Panagiotis Tsiakaras
- Laboratory of Alternative Energy Conversion Systems, Department of Mechanical Engineering, School of Engineering, University of Thessaly, Pedion Areos 38834, Volos, Greece.
| |
Collapse
|
3
|
Yoo J, Lee J, Kim J. A floating photocatalytic fabric integrated with a AgI/UiO-66-NH 2 heterojunction as a facile strategy for wastewater treatment. RSC Adv 2024; 14:1794-1802. [PMID: 38192319 PMCID: PMC10772545 DOI: 10.1039/d3ra07534f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 12/12/2023] [Indexed: 01/10/2024] Open
Abstract
With an increased need of wastewater treatment, application of photocatalysts has drawn growing research attention as an advanced water remediation strategy. Herein, a floating photocatalytic fabric in a woven construction was developed for removal of Rhodamine B (RhB) in water. For an efficient photocatalytic reaction, AgI nanoparticles were grown on the surface of UiO-66-NH2 crystals in a layered structure, forming a heterojunction system on a cotton yarn, and this was woven with polypropylene yarn. The floating photocatalyst demonstrated the maximized light utilization and adequate contact with contaminated water. Through the heterojunction system, the electrons and holes were effectively separated to generate reactive chemical species, and this eventually led to an enhanced photocatalytic performance of AgI/UiO@fabric reaching 98% removal efficiency after 2 hours of irradiation. Photodegradation of RhB occurred mainly by superoxide radicals and holes, which were responsible for de-ethylation and decomposition of an aromatic ring, respectively. The kinetics of the photocatalytic reaction suggested that circulation of solution by stirring affected the photocatalytic removal rate. The recycle test demonstrated the potential long-term applicability of the developed material with structural integrity and catalytic stability. This study highlights the proof-of-concept of a floating photocatalytic material for facile and effective water remediation with repeated usability.
Collapse
Affiliation(s)
- Jaeseon Yoo
- Department of Fashion and Textiles, Seoul National University Seoul 08826 Republic of Korea
| | - Jinwook Lee
- Department of Fashion and Textiles, Seoul National University Seoul 08826 Republic of Korea
| | - Jooyoun Kim
- Department of Fashion and Textiles, Seoul National University Seoul 08826 Republic of Korea
- Research Institute of Human Ecology, Seoul National University Seoul 08826 Republic of Korea
| |
Collapse
|
4
|
Liu HL, Zhang Y, Lv XX, Cui MS, Cui KP, Dai ZL, Wang B, Weerasooriya R, Chen X. Efficient Degradation of Sulfamethoxazole by Diatomite-Supported Hydroxyl-Modified UIO-66 Photocatalyst after Calcination. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:3116. [PMID: 38133013 PMCID: PMC10745632 DOI: 10.3390/nano13243116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/29/2023] [Accepted: 11/29/2023] [Indexed: 12/23/2023]
Abstract
Sulfamethoxazole (SMX) is a widely used antibiotic to treat bacterial infections prevalent among humans and animals. SMX undergoes several transformation pathways in living organisms and external environments. Therefore, the development of efficient remediation methods for treating SMX and its metabolites is needed. We fabricated a photo-Fenton catalyst using an UIO-66 (Zr) metal-organic framework (MOF) dispersed in diatomite by a single-step solvothermal method for hydroxylation (HO-UIO-66). The HO-UIO-66-0/DE-assisted Fenton-like process degraded SMX with 94.7% efficiency; however, HO-UIO-66 (Zr) is not stable. We improved the stability of the catalyst by introducing a calcination step. The calcination temperature is critical to improving the catalytic efficiency of the composite (for example, designated as HO-UIO-66/DE-300 to denote hydroxylated UIO-66 dispersed in diatomite calcined at 300 °C). The degradation of SMX by HO-UIO-66/DE-300 was 93.8% in 120 min with 4 mmol/L H2O2 at pH 3 under visible light radiation. The O1s XPS signatures signify the stability of the catalyst after repeated use for SMX degradation. The electron spin resonance spectral data suggest the role of h+, •OH, •O2-, and 1O2 in SMX degradation routes. The HO-UIO-66/DE-300-assisted Fenton-like process shows potential in degrading pharmaceutical products present in water and wastewater.
Collapse
Affiliation(s)
- Hui-Lai Liu
- Key Laboratory of Nanominerals and Pollution Control of Higher Education Institutes, School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; (H.-L.L.); (Y.Z.); (X.-X.L.); (M.-S.C.); (K.-P.C.)
- Key Lab of Aerospace Structural Parts Forming Technology and Equipment of Anhui Province, Institute of Industry and Equipment Technology, Hefei University of Technology, Hefei 230009, China;
| | - Yu Zhang
- Key Laboratory of Nanominerals and Pollution Control of Higher Education Institutes, School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; (H.-L.L.); (Y.Z.); (X.-X.L.); (M.-S.C.); (K.-P.C.)
- Key Lab of Aerospace Structural Parts Forming Technology and Equipment of Anhui Province, Institute of Industry and Equipment Technology, Hefei University of Technology, Hefei 230009, China;
| | - Xin-Xin Lv
- Key Laboratory of Nanominerals and Pollution Control of Higher Education Institutes, School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; (H.-L.L.); (Y.Z.); (X.-X.L.); (M.-S.C.); (K.-P.C.)
- Key Lab of Aerospace Structural Parts Forming Technology and Equipment of Anhui Province, Institute of Industry and Equipment Technology, Hefei University of Technology, Hefei 230009, China;
| | - Min-Shu Cui
- Key Laboratory of Nanominerals and Pollution Control of Higher Education Institutes, School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; (H.-L.L.); (Y.Z.); (X.-X.L.); (M.-S.C.); (K.-P.C.)
| | - Kang-Ping Cui
- Key Laboratory of Nanominerals and Pollution Control of Higher Education Institutes, School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; (H.-L.L.); (Y.Z.); (X.-X.L.); (M.-S.C.); (K.-P.C.)
| | - Zheng-Liang Dai
- Anqing Changhong Chemical Co., Ltd., Anqing 246002, China; (Z.-L.D.); (B.W.)
| | - Bei Wang
- Anqing Changhong Chemical Co., Ltd., Anqing 246002, China; (Z.-L.D.); (B.W.)
| | - Rohan Weerasooriya
- Key Lab of Aerospace Structural Parts Forming Technology and Equipment of Anhui Province, Institute of Industry and Equipment Technology, Hefei University of Technology, Hefei 230009, China;
- National Centre for Water Quality Research, National Institute of Fundamental Studies, Hantana, Kandy 20000, Sri Lanka
| | - Xing Chen
- Key Laboratory of Nanominerals and Pollution Control of Higher Education Institutes, School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; (H.-L.L.); (Y.Z.); (X.-X.L.); (M.-S.C.); (K.-P.C.)
- Key Lab of Aerospace Structural Parts Forming Technology and Equipment of Anhui Province, Institute of Industry and Equipment Technology, Hefei University of Technology, Hefei 230009, China;
- National Centre for Water Quality Research, National Institute of Fundamental Studies, Hantana, Kandy 20000, Sri Lanka
| |
Collapse
|
5
|
Farrag M. Covalently anchoring silver nanoclusters Ag 44 on modified UiO-66-NH 2 with Bi 2S 3 nanorods and MoS 2 nanoparticles for exceptional solar wastewater treatment activity. Sci Rep 2023; 13:17634. [PMID: 37848533 PMCID: PMC10582164 DOI: 10.1038/s41598-023-44819-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/12/2023] [Indexed: 10/19/2023] Open
Abstract
For the first time, covalently anchoring size selected silver nanoclusters [Ag44(MNBA)30] on the Bi2S3@UiO-66-NH2 and MoS2@UiO-66-NH2 heterojunctions were constructed as novel photocatalysts for photodegradation of methylene blue (MB) dye. The anchoring of Ag44 on MoS2@UiO-66-NH2 and Bi2S3@UiO-66-NH2 heterojunctions extended the light absorption of UiO-66-NH2 to the visible region and improved the transfer and separation of photogenerated charge carriers through the heterojunctions with a unique band gap structure. The UV-Vis-NIR diffuse reflectance spectroscopic analysis confirmed that the optical absorption properties of the UiO-66-NH2 were shifted from the UV region at 379 nm to the visible region at ~ 705 nm after its doping with Bi2S3 nanorods and Ag44 nanoclusters (Bi2S3@UiO-66-NH-S-Ag44). The prepared Bi2S3@UiO-66-NH-S-Ag44 and MoS2@UiO-66-NH-S-Ag44 photocatalysts exhibited exceptional photocatalytic activity for visible light degradation of MB dye. The photocatalysts exhibited complete decolorization of the MB solution (50 ppm) within 90 and 120 min stirring under visible light irradiation, respectively. The supper photocatalytic performance and recycling efficiency of the prepared photocatalysts attributed to the covalent anchoring of the ultra-small silver clusters (Ag44) on the heterojunctions surface. The X-ray photoelectron spectroscopic analysis confirmed the charge of the silver clusters is zero. The disappearance of the N-H bending vibration peak of primary amines in the FTIR analysis of Bi2S3@UiO-66-NH-S-Ag44 confirmed the covalent anchoring of the protected silver nanoclusters on the UiO-66-NH2 surface via the condensation reaction. The Bi2S3@UiO-66-NH-S-Ag44 catalyst exhibited excellent recyclability efficiency more than five cycles without significant loss in activity, indicating their good potential for industrial applications. The texture properties, crystallinity, phase composition, particle size, and structural morphology of the prepared photocatalysts were investigated using adsorption-desorption N2 isotherms, X-ray diffraction (XRD), HR-TEM, and FE-SEM, respectively.
Collapse
Affiliation(s)
- Mostafa Farrag
- Chemistry Department, Faculty of Science, Assiut University, Assiut, 71516, Egypt.
| |
Collapse
|
6
|
Tang Y, Li T, Xiao W, Huang Z, Wen H, Situ W, Song X. Degradation mechanism and pathway of tetracycline in milk by heterojunction N-TiO2-Bi2WO6 film under visible light. Food Chem 2023; 401:134082. [DOI: 10.1016/j.foodchem.2022.134082] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 08/03/2022] [Accepted: 08/29/2022] [Indexed: 12/28/2022]
|
7
|
Wu L, Luo Y, Wang C, Wu S, Zheng Y, Li Z, Cui Z, Liang Y, Zhu S, Shen J, Liu X. Self-Driven Electron Transfer Biomimetic Enzymatic Catalysis of Bismuth-Doped PCN-222 MOF for Rapid Therapy of Bacteria-Infected Wounds. ACS NANO 2023; 17:1448-1463. [PMID: 36622022 DOI: 10.1021/acsnano.2c10203] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
In this work, a biomimetic nanozyme catalyst with rapid and efficient self-bacteria-killing and wound-healing performances was synthesized. Through an in situ reduction reaction, a PCN-222 metal organic framework (MOF) was doped with bismuth nanoparticles (Bi NPs) to form Bi-PCN-222, an interfacial Schottky heterojunction biomimetic nanozyme catalyst, which can kill 99.9% of Staphylococcus aureus (S. aureus). The underlying mechanism was that Bi NP doping can endow Bi-PCN-222 MOF with self-driven charge transfer through the Schottky interface and the capability of oxidase-like and peroxidase-like activity, because a large number of free electrons can be captured by surrounding oxygen species to produce radical oxygen species (ROS). Furthermore, once bacteria contact Bi-PCN-222 in a physiological environment, its appropriate redox potential can trigger electron transfer through the electron transport pathway in bacterial membranes and then the interior of the bacteria, which disturbs the bacterial respiration process and subsequent metabolism. Additionally, Bi-PCN-222 can also accelerate tissue regeneration by upregulating fibroblast proliferation and angiogenesis genes (bFGF, VEGF, and HIF-1α), thereby promoting wound healing. This biomimetic enzyme-catalyzed strategy will bring enlightenment to the design of self-bacterial agents for efficient disinfection and tissue reconstruction simultaneously.
Collapse
Affiliation(s)
- Lihua Wu
- Biomedical Materials Engineering Research Center, Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering, Hubei University, Wuhan430062, People's Republic of China
| | - Yue Luo
- Biomedical Materials Engineering Research Center, Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering, Hubei University, Wuhan430062, People's Republic of China
| | - Chaofeng Wang
- School of Health Science and Biomedical Engineering, Hebei University of Technology, Tianjin300401, People's Republic of China
| | - Shuilin Wu
- School of Materials Science and Engineering, Peking University, Beijing100871, People's Republic of China
| | - Yufeng Zheng
- School of Materials Science and Engineering, Peking University, Beijing100871, People's Republic of China
| | - Zhaoyang Li
- School of Materials Science & Engineering, The Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Tianjin300072, People's Republic of China
| | - Zhenduo Cui
- School of Materials Science & Engineering, The Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Tianjin300072, People's Republic of China
| | - Yanqin Liang
- School of Materials Science & Engineering, The Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Tianjin300072, People's Republic of China
| | - Shengli Zhu
- School of Materials Science & Engineering, The Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Tianjin300072, People's Republic of China
| | - Jie Shen
- Shenzhen Key Laboratory of Spine Surgery, Department of Spine Surgery, Peking University Shenzhen Hospital, Shenzhen516473, People's Republic of China
| | - Xiangmei Liu
- Biomedical Materials Engineering Research Center, Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering, Hubei University, Wuhan430062, People's Republic of China
- School of Health Science and Biomedical Engineering, Hebei University of Technology, Tianjin300401, People's Republic of China
| |
Collapse
|
8
|
Zhou Y, Zhou Y, Chen A, Zhang J. Enhanced Photocatalytic Degradation of RhB by Plasmonic Type‐II Ag/Ag
2
MoO
4
/BiOI Heterojunction. ChemistrySelect 2022. [DOI: 10.1002/slct.202202310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yi Zhou
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation School of Chemistry and Chemical Engineering Changsha University of Science and Technology Changsha 410114 China
| | - Yinghong Zhou
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation School of Chemistry and Chemical Engineering Changsha University of Science and Technology Changsha 410114 China
| | - Anna Chen
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation School of Chemistry and Chemical Engineering Changsha University of Science and Technology Changsha 410114 China
| | - Jin Zhang
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation School of Chemistry and Chemical Engineering Changsha University of Science and Technology Changsha 410114 China
| |
Collapse
|
9
|
Wang Q, Qian X, Xu H, He G, Chen H. Enriched surface oxygen vacancies of Bi2WO6/NH2-MIL-68(In) Z-scheme heterojunction with boosted visible-light photocatalytic degradation for levofloxacin: performance, degradation pathway and mechanism insight. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
10
|
Wang A, Zhang L, Li X, Gao Y, Li N, Lu G, Ge L. Synthesis of ternary Ni2P@UiO-66-NH2/Zn0.5Cd0.5S composite materials with significantly improved photocatalytic H2 production performance. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)63912-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
11
|
Yao T, Tan Y, Zhou Y, Chen Y, Xiang M. Preparation of core-shell MOF-5/Bi2WO6 composite for the enhanced photocatalytic degradation of pollutants. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.122882] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|